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Background: Older adults exhibit fragmented circadian rhythms and undergo age-related 

changes in other sleep domains. Several challenges exist in conducting inclusive research for 

promoting healthy sleep and aging over the lifespan. Multiple sleep dimensions exist and 

complicate synthesis of sleep findings. Sleep health disparities also disproportionately affect the 

same populations that experience overall health disparities, yet diverse groups are 

underrepresented in sleep research. 
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Methods: Study 1 examined prospective associations between self-reported sleep from the 

Hispanic Community Health Study / Study of Latinos (n=10,640) and actigraphy-derived 

sleep/circadian measures from Sueño (n=1,808) with multimorbidity at follow-up. Study 2 used 

an ensemble of machine learning techniques to identify accelerometry-derived sleep and 

circadian profiles; we then examined associations between sleep-circadian profiles, fall risk, and 

physical functioning among 4,543 diverse older women in OPACH. Study 3 linked 

accelerometry data, claims, and genetic data to construct two network models to simultaneously 

evaluate the relationship between multiple sleep rest-activity rhythm measures with each 

cognitive outcome (e.g., dementia and Alzheimer’s Disease). 

Results: In study 1, several sleep and circadian measures were associated with comorbidity at 

follow-up, and we observed effect modification of these associations by place of birth and 

duration of residency. In study 2, we identified multiple sleep and circadian profiles using 

machine learning, and these profiles were associated with greater fall risk and lower physical 

functioning. In study 3, several circadian measures were indirectly associated with dementia and 

AD and shared a central hub in the network model.  

Conclusion: This analysis enhances the field of life course epidemiology and sleep disparities 

research, having identified sleep and circadian behaviors as risk factors for disease and adverse 

aging outcomes. This study also highlights study designs that promote inclusive research. 
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1. Introduction 

1.1 Promoting Healthy Aging 

There is a critical need to promote healthy aging among adults aged 65 and older. Adults 

aged 65+ years are expected to comprise nearly 25% percent of the population by 2060 [1]. The 

average lifespan is 78 years in countries with “established” healthcare and fiscal infrastructure, 

whereas the average lifespan is ten years shorter in other countries [2]. This age group is 

becoming increasingly diverse, and members from underserved backgrounds remain largely 

underrepresented in research studies [3]. By 2060, the adult population aged 65+ of non-

Hispanic white individuals will decrease nationally to 55% from 78%; meanwhile, Black, 

Hispanic/Latino, and Asian older adults will increase to 12% from 9%, to 22% from 8%, and to 

9% from 4% in the general population, respectively [3]. Developing and maintaining functional 

ability that allows for well-being at older ages (e.g., healthy aging) continues to be a primary 

objective of many institutions, including the recent World Health Organization’s (WHO) 

Baseline report. It is critical to understand barriers to healthy aging. 

1.2 Clarifying Health Disparities in Disease Burden and Aging 

The Charlson Co-Morbidity Score (CCI) may detect accelerated aging prior to 

accumulation of geriatric syndromes (GSs) starting in middle-aged adults, and may also clarify 

disparities among diverse Latino populations. Having a higher CCI score for one’s age 

demographic is emerging as a measure predictive of accelerated aging, as with functional and 

cognitive ability [4, 5]. Healthcare delivery and medical research is often focused on single 

diseases, yet integration of care for multiple diseases within an individual patient may improve 

safety and efficacy for that individual [6]. On average, older adults have a greater total number of 

co-morbidities: specifically, 30.4% of individuals ages 45-64 reported multi-morbidities; 64.9% 
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for ages 65-84, and 81.5% for those greater than 85 years old in one UK-based study [7]. CCI is 

a validated, simple, and commonly utilized measure to quantify the total number of chronic 

diseases, subsequent prognosis and risk of death associated with multimorbidity [8]. Those with 

one or more multi-morbidities report lower quality of life [9] and utilize inpatient care more 

frequently [10]. More recently, the CCI index has gained attention for predicting risk of mortality 

among individuals hospitalized for COVID [11].  

1.3 Socioeconomic and Hispanic/Latino Differences in Disease Burden 

There is also evidence of a health disparity in accumulation of total co-morbidities among 

minoritized sub-groups after accounting for age. Those of lower socioeconomic status (i) have an 

earlier onset of total co-morbidities and (ii) accumulate co-morbidities more rapidly with aging. 

The total number of chronic diseases among those living in areas with greatest economic 

deprivation was equivalent to the total diseases seen in those 10-15 years older living in the most 

affluent regions [7]. For example, Black men and women started off with a greater total number 

of multi-morbidities, and this burden of disease increased more steeply with aging compared to 

non-Hispanic white men and women [12]. Meanwhile, this same study showed that Mexican 

Americans had lower overall multi-morbidity burden than non-Hispanic white individuals, and 

the total number of comorbidities increased less steeply with aging [12]. Further work is needed 

in heterogenous populations to further understand the Hispanic Paradox; it is unknown the extent 

to which contextual factors, including place of birth, acculturation, age, and heritage may modify 

these trajectories of comorbidities. Social support may partially account for the Hispanic Paradox 

witnessed among Hispanic/Latinos who show later onset of more co-morbidities and slower 

accumulation. One study observed that late-life social networks were inversely associated with 

accelerated accumulation of co-morbidities after adjusting for job strain, education, manual 
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labor, and other sociodemographic factors [13]. Note, comorbidity burden in other 

Hispanic/Latino ethnic groups is underreported. A gap was identified recently by the 2018 

workgroup, including the National Institute on Minority Health, the National Health, Lung, and 

Blood Institute, and the Office of Behavioral and Social Sciences research, suggesting that sleep-

circadian disruption may be disproportionately affecting minoritized groups, and these sleep 

behaviors may contribute to disparities seen with respect to chronic disease and other health 

outcomes [14]. 

1.4 Geriatric Syndromes (GSs) and Public Health 

GSs are a collection of signs and symptoms that share a similar etiology, are highly 

prevalent among older adults, and interfere with healthy aging by decreasing functional ability 

and quality of life. The term “geriatric syndrome” is not simply a collection of signs and 

symptoms related to a single disease state or process as implied by the term syndrome [15, 16]. 

GSs captures this decline in homeostatic reserve across multiple different organ systems as age 

increases [16]. This process reflects simultaneous aging that renders individuals with worse 

overall functional health [17]. The presence of one or more GSs is associated with greater 

disability [18], morbidity [19], and mortality [20] in older adults. GSs are prevalent among ~70-

80% of adults aged 70+ years, where subsequent aging is associated with further accumulation of 

GSs [18, 21]. The prevalence of each individual GS differs slightly between studies, and these 

differences between studies are mainly driven by the varying composition of a cohort’s gender 

and age demographic (65-69, 70-74, 75-79, vs. 80+ years old), where a greater burden of GSs is 

seen among women and older adults [22]. A study of nearly 20,000 community-dwelling adults 

observed that insomnia (37-41%) and urinary incontinence (21-37%) were the most commonly 

identified GSs in those in their mid-to-late sixties through their eighties [22]. Functional decline 
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was not common as common as other GSs in mid-to-late sixties but overtook other GSs in terms 

of prevalence by mid-seventies (26% up from 11%) and became most prevalent among those 

80+ years old (41%) [22]. Falls (7%→17%), severe vision problems (3%→9%), severe hearing 

problems (19%→26%), and depressive disorders (2%→3%) double-to-quadruple in prevalence 

from mid-sixties to 80+ year old [21]. In the Women’s Health Initiative (WHI), a study of 

women 65 years and older, there were some slight differences in estimated prevalence of these 

GSs: most noticeably a lower prevalence of reported sleep disturbances (8%) and higher 

prevalence of depression (8%), hearing impairment (29%), and vision impairment (21%) [23]. 

1.5 Identification Criteria of GSs 

Identification of GSs may be based on common signs and symptoms, co-occurrence, 

prevalence among older adults, and shared risk factors, although formal criteria for GSs are 

lacking. The rationale that is commonly used to identify a chronic condition as a GS is as 

follows: (i) higher disease prevalence among older adults, (ii) correlations with multi-morbidity, 

(iii) preventable/modifiable in nature, and (iv) evidence of this potential GS sharing risk factors 

with other existing GSs [15]. When identifying shared risk factors of GSs, researchers have often 

looked to the interactive concentric model for guiding public health decision making. The 

interactive concentric model is focused on addressing multiple shared risk factors, in order to 

curb a larger proportion of absolute GS risk, as compared to a concentric approach, focused on 

eliminating a single risk factor [15]. This interactive concentric model fits well with the socio-

ecological model, since upstream/structural factors are known to influence multiple outcomes. 

1.6 Sleep, Circadian Rhythms, and GSs 

Sleep disturbances is a GS and a candidate behavioral risk factor of GS co-occurrence. 

Yet, multiple dimensions of sleep exist (e.g. duration, regularity, satisfaction, sleep timing), as 
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under the RU-SATED model of sleep health [24]. It is unclear whether certain sleep profiles or 

characteristics are associated with greater GS co-occurrence. Clustering of these sleep 

dimensions may help elucidate which sleep profiles are more strongly associated with 

accumulating more GSs. An additional challenge in studying sleep and RARs is that there are 

many highly correlated sleep parameters, and separately examining each sleep parameter may 

result in residual confounding by other sleep parameters. Separate behavioral profiles, comprised 

of multiple sleep dimensions, may act in concert to modify disease risk. There is a growing shift 

to modeling multiple dimensions of sleep and circadian behaviors simultaneously, using 

dimension reduction [25] and/or clustering analyses [26] or factor analyses [27], and evaluating 

associations of these sleep profiles with morbidity and mortality [28].  

Some workgroups are interested in determining whether disruption in sleep rhythmicity 

and other physiological rhythms are emerging GSs [29]. Circadian disruption, as evidenced by 

disrupted rest-activity rhythms (RAR), manifests at older ages similar to other GSs. For example, 

circadian disruption is more prevalent in older adults, multiple co-occurring symptoms stem 

from more than one cause, and presence of a single GS (including circadian disruption) is 

associated with a decline in an individual’s overall health trajectory [15, 30]. Circadian rhythm 

are endogenous rhythms governed by the central pacemaker in the hypothalamus called the 

suprachiasmatic nucleus [31]. Sleep rhythmicity moderates circadian rhythms and is measured 

using actigraphy to determine RARs [32]; these rest-activity patterns can be measured by activity 

counts as through digital integration, which samples the actigraphy at a higher rate and sums the 

total area under the curve for that individual epoch or period of sampling [32]. Activity counts 

reported by an actigraphy measure duration and frequency of movement [32]; yet, rest-activity 

patterns may mask diurnal fluctuations in other circadian parameters in peripheral tissues, such 
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as changes in melatonin levels [32]. An imposed schedule is an example of a behavior modifier 

that can noticeably mask circadian rhythm and disruption [32]. Individuals with a restricted 

schedule may have no corresponding changes in melatonin despite variations in their period of 

wakefulness during the day [32]. 

There is mixed evidence that RAR fragmentation and sleep regularity (IV and IS) are 

associated with progression in GSs, as evidenced by vision and/or cognitive impairment. Several 

studies have observed associations between RARs and individual GSs, including falls and 

fractures [33], cognitive impairment [34, 35], and visual impairment [36]. One study of 75-year-

old men from the MrOs study observed that fragmented RARs were associated with greater 

cognitive decline, as evidenced by 3MS score, a brief cognitive battery of global cognitive 

functioning [34]. Another study among approximately 1,322 older adults from Rotterdam 

showed no association between RARs and dementia [37]. Challenges in generating this evidence 

base are (i) the availability of objectively measured RARs, (ii) long-term follow-up of older 

adults, and (iii) prospective measurement of GSs. 
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2. Sleep, Rest-Activity Rhythms, and the Charlson Comorbidity Index in the Hispanic 

Community Health Study/Study of Latinos and Sueño (HCHS/SOL) 

2.1 Abstract 

Disparities in chronic disease outcomes may arise due to differences in sleep and 

circadian health. We evaluated associations between self-reported sleep (from HCHS/SOL 

baseline, 2008-2011) and actigraphy-derived sleep/circadian measures (from Sueño, 2010-2013) 

with multimorbidity [modified Charlson Comorbidity Index (CCI) at HCHS/SOL Visit 2, 2011-

2017]. We categorized sleep variables using standard cut-off values or tertiles, and modeled 

associations with CCI (count) using a zero-inflated Poisson model after accounting for the 

complex sampling design. Within CCI outcome models, we tested for the multiplicative 

interaction effect between sleep-circadian measures with age group, gender, and nativity; nativity 

was split into four groups based on place of birth/duration of US residence (non-US-born<10yrs., 

10-20yrs., +20yrs. and US-born). After adjustment, actigraphy-assessed short (short-sleep, 

IRR:1.48 (95%CI:0.99-2.20)) and long sleep duration (long-sleep, IRR:1.52 (95%CI:0.95-2.43)), 

and sleep regularity index (T3vs.T1, IRR: 1.43 (95%CI:1.14-1.79)), in addition to self-reported 

insomnia symptoms (WHI insomnia score 9 vs. <9, IRR:1.23 (95%CI:1.13-1.34)) and 

excessive daytime sleepiness (ESS score 11 vs. <11, IRR:1.10 (0.99-1.21), were individually 

associated with higher overall multimorbidity 5-6 years later. Tests for interaction showed 

differences by nativity (two-sided, P < 0.05). Lower sleep satisfaction, daytime alertness, 

extreme sleep durations, and fragmented RARs are associated with greater chronic disease 

burden. 

2.2 Introduction 
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Approximately one in three people are estimated as living with multimorbidity globally 

[38, 39]. The estimated prevalence of multimorbidity among the Hispanic/Latino population is 

10.7%, and this group has been shown to accumulate morbidities more rapidly with aging 

compared to non-Hispanic white Americans, even though middle-aged Hispanic/Latino adults 

show a lower comorbidity burden than non-Hispanic, white adults [40, 41]. Hispanic/Latino 

persons in the U.S. also have a longer lifespan on average compared to white persons although a 

larger proportion of this lifespan is accompanied with an increased burden of disease among 

some Hispanic/Latino heritage groups [42]. 

Individuals from racial and ethnic minoritized groups more often report sleep 

disturbances, which may be contributing to a higher risk of cardiometabolic disease compared to 

other racial groups [43-46]. In 2020, the National Institutes of Health pointed to an existing gap 

in understanding disparities in chronic disease outcomes and subsequently called for further 

investigation of health and disease consequences associated with poor sleep patterns [14]. 

Several different sets of sleep and circadian rhythm measures are available, and so a 

theoretical sleep model may aid in selection of sleep measures for distinguishing healthy vs. 

harmful sleep patterns in the general population [24]. The RU-SATED model is a conceptual 

sleep health model that is a “multi-dimensional pattern of sleep-wakefulness, adapted to 

individual, social and environmental demands, that promotes physical and mental well-being” 

[24]. 

Existing literature predominantly investigates the relationship between sleep and 

morbidity with a cross-sectional design, and these cross-sectional studies have reported harmful 

associations between self-reported sleep disturbances or insomnia and multimorbidity [47, 48]. 

There are only a handful of studies that have examined the same relationship prospectively, and 
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these previous prospective cohort studies did not objectively measure sleep in their main sample 

and lacked racial or ethnic diversity [49, 50]. To begin to address these research gaps, the 

primary objective of this study is to evaluate associations between objectively-measured sleep 

and circadian rhythms (based on the RU-SATED sleep health model [24]) and the total count of 

chronic conditions included in the Charlson Comorbidity Index (CCI) [8, 11]. A secondary 

objective is to evaluate whether sleep-CCI associations differ based on place of birth and time 

spent residing in the U.S. We hypothesize that non-US-born Hispanic/Latino persons residing in 

the U.S. for more than a decade may have stronger sleep-CCI associations that more closely 

resemble those seen among U.S.-born Hispanic/Latino individuals when compared to non-US-

born Hispanic/Latino individuals who have resided in the U.S. for less than a decade. 

2.3 Methods 

Hispanic Community Health Study/Study of Latinos (HCHS/SOL) 

The Hispanic Community Health Study/Study of Latinos is a prospective, multi-center, 

community-based cohort study comprising a diverse population of Hispanic/Latino adults [51, 

52]. Two-stage area probability sampling was performed to allow for unbiased inferences to 

Hispanic/Latinos from four urban regions, including Bronx, NY; Chicago, IL; Miami, FL; and 

San Diego, CA [51, 52]. Analyses accounted for sampling weights (specifically replicate weights 

at visit 2) and the complex sampling design. More detailed information on the study design and 

recruitment are described elsewhere [51, 52]. 

The HCHS/SOL cohort comprises adult men and women (n=16,415) who self-identify as 

Hispanic/Latino and were aged 18-74 years at baseline (2008-2011). HCHS/SOL participants 

completed questionnaires through annual follow-up over a five-year period with yearly response 

rates between 88.6% and 95.5% [53]. The analytic sample for the current study was restricted to 
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those individuals who had attended a second clinic visit in 2014-2018 (Visit 2) and had available 

data on the CCI outcome (n=11,623). The sample was further restricted based on complete 

information for confounding covariates of the associations under study (n=10,728). Slightly 

different analytic samples were generated based on availability of each sleep measure, resulting 

in samples ranging from 10,277-10,595. 

Sueño HCHS/SOL Ancillary Study 

From December 2010 to December 2013, the Sueño ancillary study recruited 2,252 

HCHS/SOL participants who were within 30 months of their baseline visit [54]. Participants 

were included in the Sueño study based on any of the following inclusion criteria: 18-64 years 

old, did not have physician-diagnosed narcolepsy, had an apnea-hypopnea index < 50 

events/hour, and were not using nocturnal positive airway pressure therapy. Additional study 

details are described elsewhere [55, 56]. Within the Sueño subset, we performed the same set of 

restrictions as for the full HCHS/SOL cohort, based on those having attended visit 2 and 

provided complete information on the outcome (n=2,000), then on available confounding 

covariates (n=1,873), and finally by the availability of each sleep measure, resulting in samples 

ranging from 1,467 to 1,825. 

RU-SATED Sleep Health Model 

Sleep and circadian health measures were selected to have coverage over each sleep 

health indicator from the RU-SATED model, including sleep duration, efficiency, 

satisfaction/quality, regularity, timing, and alertness [24]. Actigraphy-derived sleep measures 

were available to characterize sleep duration, efficiency, regularity, and timing in the Sueño 

ancillary study (n=1,876), and self-reported sleep health measures were available from the main 

HCHS/SOL cohort (n=10,587). Sleep questionnaires were administered at HCHS/SOL baseline 
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to obtain sleep health indicators; the Women’s Health Initiative measure of insomnia symptoms 

[19, 20] was selected as a measure of satisfaction/quality and was binarized as <9 and 9; 

Epworth Sleepiness Score (ESS) [57] for daytime alertness/sleepiness and was binarized as <11 

and 11. Participants also self-reported their habitual bedtime and waketime on weekdays and 

weekends, which was used to obtain the following measures: sleep duration (<5hrs./5-

9hrs./>9hrs.); weekday midsleep timepoint (2:45pm-3:45am/3:45am-4:30am/4:30am-10:30am), 

weekday bedtime (10:00am-10:00pm/10:00pm-11:00pm/11:00pm-5:00am), and weekend 

waketime as average measures of sleep timing (8:00pm-7:00am/7:00am-9:00am/9:00am-

3:00pm). Prior work in the Sueño cohort observed that self-reported sleep duration was 

moderately correlated with actigraphy-derived sleep duration, although associations between 

self-reported and actigraphy-derived sleep duration were influenced by gender, age, sleep 

efficiency, and night-to-night variability [58]. 

Actigraphy-Derived Sleep and Circadian Health in Sueño 

Sueño participants were asked to continuously wear the Actiwatch Spectrum (Philips 

Respironics, Murrysville, PA) device on their non-dominant wrist for 7 days [55]. The sleep 

processing protocol is described in the Supplementary Methods, as well as in other published 

work [55]. Actigraphy-derived measures of sleep included the interdaily stability and sleep 

regularity index to represent sleep regularity [59, 60]; sleep efficiency and WASO for efficiency; 

and objectively measured sleep duration. Interdaily stability is a non-parametric measure of day-

to-daily stability of RARs; this measure is estimated as the between-hour variance to total 

(between-hour plus within-hour) variance [59]. Sleep regularity index is the probability of an 

individual being in the same wake-sleep status (e.g., awake vs. asleep) at any two timepoints 24 

hours apart averaged over the observation window [61]. Lower values of interdaily stability and 
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sleep regularity index represent lower day-to-day similarity or robustness [59, 60]. Both of these 

sleep regularity measures were operationalized as tertiles. 

Sleep efficiency was defined as the proportion of time from sleep onset to sleep offset 

that was scored as sleep and was categorized as 85%, 80-85%, and <80%. Sleep duration was 

the total amount of time from sleep onset to offset and was categorized into short (<5 hours), 

normal (5-8.75 hours), and long sleepers (>8.75 hours). The definition of long sleep was slightly 

shortened from the definition used in HCHS/SOL to increase the size of this subgroup. WASO is 

the total minutes of wakefulness after defined sleep onset and categorized into 45 min, 45 

(exclusive) – 90 min, and >90 min. Self-reported insomnia symptoms using the WHI insomnia 

questionnaire and ESS measures were also ascertained at the Sueño study visit and used in 

analyses involving the Sueño cohort; these measures were operationalized using the same cut-off 

values as those measured at baseline in the full HCHS/SOL cohort. 

Charlson Comorbidity Index 

The CCI is a weighted sum of self-reported comorbidities present at visit 2, with 

weighting based on the severity of the condition [8]. This study utilized a modified CCI based on 

available, self-report questionnaire data at visit 2, and a majority of the weightings for each 

disease is 1 unless stated otherwise in round brackets (#): specifically, the modified CCI includes 

myocardial infarction, congestive heart failure, peripheral artery disease, cerebrovascular 

disease, dementia or mild cognitive impairment, chronic obstructive pulmonary disease, 

connective tissue disease, ulcer disease or gastroesophageal reflux disease, mild liver disease, 

diabetes, moderate or severe renal disease (2), diabetes with end organ damage (2), any tumor, 

leukemia/lymphoma (2), and/or moderate or severe liver disease (3). When evaluating the 
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relationship between sleep and CCI, the CCI index was operationalized as a weighted count of 

the comorbidities with weights ascribed for severity. 

Descriptive Statistics 

We first described the overall sample using the gtsummary R package (version 1.6.1) 

with and without replicate weights from visit 2, and then tested for overall differences in CCI 

(0/1/2/3+) between sociodemographic and behavioral factors using a chi-squared test with Rao & 

Scott’s second-order correction, and the Wilcoxon rank-sum test for complex survey samples.  

Count Models for Modeling Associations between Sleep and Comorbidity at Visit 2 

We first estimated incidence rate ratios (IRRs) between sleep and circadian rhythm 

measures with the CCI at visit 2 using Poisson regression models in R. To obtain the offset to 

calculate IRRs, we calculated the difference in time between the initial visit  with measured sleep 

(SOL: baseline, Sueño: Sueño visit) and the follow-up visit (visit 2). Next, this time difference 

that represented individual study follow-up (years) was log-transformed and then added as an 

offset term to these Poisson regression models. IRRs allow for calculation of an increase in the 

weighted CCI index over a year of follow-up. These initial Poisson regression models were 

slightly over-dispersed (dispersion~1.2-1.3), so we shifted to using the zero-inflated Poisson 

(ZIP) model. 

These ZIP regression models provided the IRR for no comorbidities vs. any comorbidity 

(in a zero-inflation model) and for between subject differences in the weighted count of 

comorbidities over a year of follow-up for participants who had at least one morbidity (in a count 

model). Analyses of the ZIP models were run in STATA (version 17), which allowed us to 

account for the complex survey design. The results from the ZIP regression models are reported 

as the main result since this method is more appropriate than Poisson regression models for zero-
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inflated data. We also tested for the following statistical interactions: age-group (<45 y.o/45-64 

y.o/65 y.o) x sleep, gender (male/female) x sleep, and place of birth/duration of US residence 

(born outside of the US <10 years US residence, born outside of the US 50 states/DC 10-20 

years US residence, born outside of the US 50 states/≥ 20 years in country, US-born) x sleep. 

Progressive model adjustment was performed, with the base model adjusting for field 

center (Bronx/Chicago/Miami/San Diego), age (continuous), and gender (men/women). Then, 

we additionally adjusted for education (<high school, high school graduate, or >high school), 

household income (less than or equal to $30,000/ $30,000-50,000/more than $50,000), place of 

birth/duration of US residence, heritage (Mexican, Puerto Rican, Cuban, Dominican, Central 

American, South American, or Mixed/Other), smoking status (never/former/current), and alcohol 

use (never/former/current). Finally, we additionally adjusted for self-reported duration of 

moderate-to-vigorous physical activity (minutes/week) and body mass index (continuous in 

kg/m2). 

2.4 Results 

SOL and Sueño Population Characteristics 

 Accounting for the complex design and sample weights, we describe characteristics for 

the target population in HCHS/SOL and Sueño. The inter-quartile range of the population from 

SOL was 29-52 years of age and was composed of predominantly Mexican (38%), Cuban (19%), 

and Puerto Rican men and women (16%; Table 2.1). Most of the population had at least a high 

school education, with nearly 30% with a college degree; most were from households that 

reported earnings less than $30k/year on average. More than half of the population was born 

outside of the US 50 states/DC, had spent more than 10 years residing in the US after 

immigrating, and reported never smoking and current alcohol use. Overall, the population 
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reported engaging in six hours of moderate to vigorous physical activity weekly at baseline 

(Table 2.1). The Sueño population differed slightly with respect to their demographic 

characteristics due to differences in the enrollment criteria (e.g., younger age, different race, and 

ethnicity goal proportions; Table 2.1). 

Modified Charlson Multimorbidity Prevalence 

The prevalence of multimorbidity using the modified CCI (e.g., 2 or more comorbidities) 

was 16.7% and 13.8% within the HCHS/SOL and Sueño populations, respectively; older age 

groups were more likely to report multimorbidity compared to younger age groups (Table 2.2-

2.3). In HCHS/SOL, Puerto Rican and Cuban persons had the highest number of comorbidities 

compared to other heritage groups. Having two or more comorbidities at visit 2 was most 

common in US-Born and Hispanic/Latino persons born outside of the US 50 states/DC and who 

resided in the US for 20 years or more compared to other place of birth groups. On average, the 

distribution of the CCI was similar between target populations from HCHS/SOL and Sueño (e.g., 

HCHS/SOL vs. Sueño; Table 2.2-2.3). 

Sueño: Actigraphy-Derived Sleep and Multimorbidity Associations Ch 

Objectively measured sleep regularity metrics (e.g., sleep regularity index and interdaily 

stability) were associated with total comorbidities at visit 2. In Sueño, sleep regularity index and 

lower interdaily stability tertiles were inversely associated with total comorbidities at visit 2 after 

full adjustment (P’s=0.01; Table 2.4). In the Sueño population, those in the lowest (e.g., 

unhealthiest) tertile for the sleep regularity index and interdaily stability were younger, more 

often male, Puerto Rican, current drinkers, and engaged in more moderate-to-vigorous physical 

activity (Table 2.5). Current smokers and U.S. born individuals were more often in the 
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unhealthiest tertile for the sleep regularity index or interdaily stability compared to other tertiles 

(Table 2.5-2.6). 

Sleeping for less than 5 hours and more than 8.75 hours was positively associated with 

more total comorbidities at visit 2 compared to those with sleep durations between 5 and 8.75 

hours (short-IRR: 1.48 (95% CI: 0.99-2.20); long-IRR: 1.52 (95% CI: 0.95-2.43); P=0.03). Other 

objective sleep metrics in Sueño, including sleep efficiency and WASO, were not associated 

with total comorbidities at follow-up (Table 2.4). In Sueño, those with insomnia symptom scores 

of 9 and higher had an expected count of comorbidities that was 35% higher (IRR: 1.35 (95% CI: 

1.11-1.64)). Excessive daytime sleepiness was not associated with total comorbidities at visit 2. 

We detected a statistical interaction between place of birth and separate objectively 

measured sleep measures WASO, insomnia, and excessive daytime sleepiness from Sueño (P’s < 

0.10; Table 2.7). The non-US-born population that had spent more time residing in the U.S. had 

stronger insomnia-CCI that increased across categories of years residing in the U.S (Non-US-

born, 10-20 yrs. in U.S., IRR: 1.43 (95% CI: 1.06 - 1.93); Non-US-born, 20+ yrs. in U.S., IRR: 

1.96 (95% CI: 1.50 - 2.57); insomnia * nativity, P = 0.07). In other words, non-US-born 

individuals with a greater duration of residing in the U.S. had stronger associations between 

insomnia and excessive daytime sleepiness with comorbidity burden (Table 2.7). A similar 

pattern for duration of U.S. residency was observed among non-US-born persons for excessive 

sleepiness (non-US-born, <10 yrs. In U.S., IRR: 1.11 (95% CI: 0.71 - 1.72); non-US-born, 20+ 

yrs. In U.S., IRR: 1.30 (95% CI: 0.91 - 1.86)); US-born, IRR: 1.51 (95% CI: 0.96 - 2.35); ESS * 

nativity, P = 0.09). 

Although we observed no overall association between WASO and comorbidity burden at 

visit 2, we detected a statistical interaction between WASO and place of birth (WASO * nativity, 
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P=0.001) with respect to comorbidity burden: non-US born Hispanic/Latino people who were 

residing in the US between 10-20 years with WASO greater than 90 minutes had 272% higher 

comorbidity burden at visit 2 (IRR: 2.72 (95% CI: 1.79-4.12) as compared to those with less than 

45 minutes of WASO (Table 2.7). Among all US-born and non-US born groups with greater than 

10 years of U.S. residency, greater WASO was positively associated with comorbidity burden at 

visit 2 (Table 2.7). Although we tested statistical interactions between additional sleep-circadian 

measures with place of birth, age, and gender in Sueño, many of these models failed to converge 

due to small sample sizes. 

HCHS-SOL: Self-Reported Sleep and Multimorbidity Associations 

Several self-reported sleep measures, including insomnia symptoms and sleep duration, 

in HCHS/SOL were associated with total comorbidity burden at visit 2 (Table 2.8). In 

HCHS/SOL, those with insomnia symptom scores of 9 and higher had 23% higher comorbidity 

at visit 2 compared to the reference (IRR: 1.23 (95%CI: 1.13-1.34); P < 0.0001). In HCHS/SOL, 

short and long sleep durations were associated with more total comorbidities at visit 2, and we 

observed a higher effect size for short sleepers as compared to normal or long sleepers 

(HCHS/SOL, short IRR: 1.36 (95%CI: 1.11-1.66; long IRR: 1.11(95%CI: 1.00-1.25); P=0.006). 

Baseline characteristics of the cohort differed when stratified by tertiles of insomnia in the 

HCHS/SOL population. Those in the highest tertile with more reported insomnia symptoms were 

older, more often female, had a household income less than $30,000 per year, non-US-born with 

20+ years in U.S., and reported an hour and half less of moderate to vigorous physical activity 

per week on average compared to those in the lowest tertile of reported insomnia symptoms 

(Table 2.9). The excessive daytime sleepiness and sleep timing measures (including midsleep 
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timepoint, weekend waketime, and weekday bedtime) based on self-report were not associated 

with total comorbidities. 

HCHS/SOL: Place of birth-, Gender-, and Age Group Stratified Sleep-CCI Associations 

In HCHS/SOL, we identified a statistical interaction between excessive daytime 

sleepiness and place of birth/duration of US residence (ESS * nativity, P=0.01) in relation to 

total comorbidities (Table 2.10). Nativity-stratified IRRs are also reported for associations 

between excessive daytime sleepiness and total comorbidities: non-US-born < 10 years, IRR: 

1.07 (95% CI: 0.88-1.31); non-US-born 10-20 years, IRR: 1.29 (95% CI: 1.08 - 1.53); Non-US-

born, 20+ yrs., IRR: 1.13 (95%CI: 1.00 - 1.28), US-born, IRR: 1.61 (95% CI: 1.31-1.97)). These 

nativity-stratified IRRs demonstrate that stronger associations exist between excessive daytime 

sleepiness and comorbidity burden at V2 among US-born Hispanic/Latino persons, as compared 

to non-US-born Hispanic/Latino persons. The interaction between insomnia symptoms and place 

of birth was not statistically significant (insomnia * nativity, P=0.11; Table 2.10), although 

Hispanic/Latino persons born in the US 50 states/DC showed stronger positive associations 

between reported insomnia symptoms and multimorbidity when compared to those who were 

born elsewhere (US-born, insomnia 9 IRR: 1.39 (95%CI: 1.11-1.75)); non-US-born, insomnia 

9 IRRs between 1.00 and 1.14; interaction P=0.11). 

Young to middle-aged adults in the HCHS/SOL population showed stronger, positive 

associations in self-reported insomnia with the CCI as compared to older adults aged 65+ years 

old (Table 2.11; age group x insomnia P=0.009). Men with more severe insomnia symptoms in 

the HCHS/SOL population had stronger associations with total comorbidity at visit 2 as 

compared to women (Table 2.11; interaction P=0.03). We also detected a statistical interaction 

between excessive daytime sleepiness and age group showing similar patterns as the interaction 
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between age group and insomnia symptoms (Table 2.11; interaction P=0.01); there was no 

interaction between gender and excessive daytime sleepiness in the HCHS/SOL population. 

2.5 Discussion 

In a diverse population of U.S. Hispanic/Latino adults, objectively measured and self -

reported sleep and circadian rhythm measures were associated with a greater comorbidity burden 

at 5+ years of follow-up. The RU-SATED dimensions of sleep duration, satisfaction/quality 

(e.g., insomnia symptoms), regularity (e.g., interdaily variability and sleep regularity index), and 

alertness (e.g., excessive daytime sleepiness) were associated with comorbidity burden at follow-

up. Study samples from HCHS/SOL and the Sueño ancillary study subsample showed 

comparable results for self-report-based sleep satisfaction (e.g., insomnia symptoms) and 

alertness (e.g., excessive daytime sleepiness). Place of birth/duration of U.S. residency modified 

associations for the sleep satisfaction dimension in relation to comorbidity burden. We observed 

stronger associations between excessive daytime sleepiness, as well as insomnia symptoms, and 

multimorbidity for U.S. born adults relative to non-US-born Hispanic/Latinos; within non-US-

born Hispanic/Latinos, sleep-CCI associations increased by residency group category, which 

reflected increasing duration of U.S. residency. These results suggest that poor sleep and 

circadian health among non-US born Hispanic/Latino may progressively worsen comorbidity 

burden with greater time spent residing in U.S., even after accounting demographic and 

behavioral confounders. Over time, non-US-born Hispanic/Latino adults may begin to resemble 

US-born Hispanic/Latino adults with respect to their chronic disease outcomes partially due to 

the influence of poor sleep behaviors. 

This current work builds off several previous studies in the HCHS/SOL and Sueño that 

have observed associations between sleep and circadian patterns with individual chronic 
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conditions that comprise the CCI. These studies have identified associations between sleep 

(including sleep apnea) and/or circadian rhythm with cardiovascular disease [62], diabetes and 

metabolic syndrome [63-65], COPD [66], rheumatoid arthritis [67], and cognitive performance 

[68]. One study in HCHS/SOL among those aged 45+ and with symptomatic, obstructive sleep 

apnea (OSA) showed approximately three times the odds of incident heart failure and stroke 

compared to those without OSA [69]. Moderate-to-severe sleep apnea was associated with 

increased risk of peripheral artery disease, with stronger associations in Hispanic/Latino persons 

of Mexican and Puerto Rican heritage [70]. 

Our study findings are consistent with prior work in other cohorts, such as SNAC-K, that 

examined sleep and CCI associations [49]. The SNAC-K cohort found that moderate-to-severe 

sleep disturbances were associated with more rapid disease accumulation after 9 years of follow-

up [49]. In their study, the severity of the individuals’ sleep disturbances reflected shorter sleep, 

greater fragmentation, and greater WASO. Both the SNAC-K and Whitehall II prospective 

cohort studies found that CCI was associated with shortened sleep duration (<5 hours) based on 

self-report [49, 50]. Another cross-sectional study among largely late middle-aged adults 

identified a U-shaped relationship for sleep duration and CCI: shorter (<7 hours) and sleep 

duration (>9 hours) was associated with greater multimorbidity [71]. In both HCHS/SOL and 

Sueño, we also observed that individuals with shorter and longer sleep had an elevated risk of 

comorbidities at follow-up. 

There were several limitations of this study. First, the CCI outcome was ascertained 

prospectively using questionnaires, whereas other studies have ascertained this outcome using 

electronic medical records. The CCI outcome under study is also a modified version of the CCI, 

since the disease history questionnaires did not capture every disease that defined the full CCI 
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index. Disease history questionnaires did however capture the most prevalent diseases that 

comprise the CCI, including diabetes, myocardial infarction, and congestive heart failure. The 

impact of using this modified CCI index is that we may still be slightly underestimating the 

disease burden in some Hispanic/Latino adults in the target population. In addition, some of the 

comorbidities that comprised the modified CCI outcome measure were only measured at the 

follow-up visit and not baseline. Since the CCI measure would not have included the same 

diseases between baseline and visit 2, this study did not account for baseline comorbidity and did 

not address comorbidity accumulation from baseline. 

Strengths of this study include objective measurement of sleep and circadian sleep 

measures, longitudinal follow-up, and the diversity of this group of Hispanic/Latino adults. This 

study also investigates long-term health consequences of poor sleep quality and patterns and 

considers the influence of sociocultural factors, such as place of birth and duration of U.S. 

residency, to further promote healthy aging. In doing so, this study addresses a research gap in 

understanding sleep health disparities. Given the large selection of objective sleep measures that 

can be derived from actigraphy data, another strength is that this study puts forth the RU-SATED 

sleep health model to guide selection of report-based and objective sleep measures or 

comprehensively evaluating associations between sleep and disease. Using the RU-SATED 

model, this study comprehensively evaluated several different sleep dimensions, including sleep 

quality, quantity, sleep regularity, and timing. 

Our study expands on previous work in HCHS/SOL and Sueño by investigating a 

composite measure of disease burden in association with sleep, whereas prior studies in this 

cohort focused on individual associations between sleep and these chronic diseases. While we 

observed several robust associations between sleep and circadian rhythm with multimorbidity, 
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replication of these findings in other populations is important. Future work may also consider 

investigating prospective associations between sleep-circadian patterns and multimorbidity 

accumulation after longer follow-up and using repeated, objective measures of sleep. 
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Table 2.1. Baseline Demographic Characteristics of the HCHS/SOL study population, 2008-
2011 

 
This table was generated with unweighted and weighted estimates (weighted n, 95% CI and was 

based on the analytic sample. 
 

 HCHS/SOL Participants with Sleep 

Information, Weighted (n=10,640) 

Sueno Participants, Weighted 

(n=1,808) 

   
Demographic Characteristics   

Age (mean +/- SE) 41 (29, 52) 42 (30, 51) 
Female (%) 5,479 (51%) 917 (51%) 
Hispanic/Latino Background   
      Dominican 939 (8.8%) 229 (13%) 
      Central American 764 (7.2%) 106 (5.9%) 
      Cuban 2,038 (19%) 340 (19%) 
      Mexican 4,077 (38%) 674 (37%) 
      Puerto Rican 1,704 (16%) 373 (21%) 
      South American 532 (5.0%) 77 (4.2%) 
      Mixed/Other 585 (5.5%) 10 (0.5%) 
      Unknown 939 (8.8%)  
Education    
      Less than High School 898 (8.4%) 95 (5.2%) 
      Middle School 970 (9.1%) 165 (9.1%) 
      High School Graduate 4,341 (41%) 770 (43%) 
      Vocational 1,428 (13%) 255 (14%) 
      College 3,002 (28%) 523 (29%) 
Income    
      < $30,000 7,111 (67%) 1,227 (68%) 
      $30,000-$50,000 2,237 (21%) 375 (21%) 
      > $50,000 1,292 (12%) 206 (11%) 
Nativity/years in the US    
      Non-US born, < 10 years in the US 2,859 (27%) 501 (28%) 
      Non-US born, 10-20 years in the US 2,460 (23%) 388 (21%) 
      Non-US born, >20 years in the US 2,912 (27%) 452 (25%) 
      US born 2,409 (23%) 467 (26%) 

   
Clinical Characteristics   
BMI   
      Underweight to  
Normal (<18.5-24.9) 

2,399 (23%) 422 (23%) 

      Overweight (25.0-29.9) 3,952 (37%) 707 (39%) 
      Obese (30+) 4,290 (40%) 679 (38%) 
Behavioral Characteristics   
Smoking Status   
      Never 6,691 (63%) 1,111 (61%) 
      Former 1,843 (17%) 305 (17%) 
      Current 2,106 (20%) 392 (22%) 
Alcohol Intake   
      Never 1,931 (18%) 332 (18%) 
      Former 3,199 (30%) 557 (31%) 
      Current 5,510 (52%) 918 (51%) 
Total Weekly Moderate-Vigorous Physical 
Activity, minutes 

420 (75, 1,770) 450 (60, 1,680) 
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Table 2.2. Weighted Descriptive Statistics for Charlson Co-Morbidity Index at Visit 2: 
HCHS/SOL 

This table reflected the analytic sample after accounting for the complex survey weighting. 
 

  Total Charlson Comorbidities at Visit 2 

 n 0 1 2 3+ 

Overall  10,728 6,137 (57%) 2,797 (26%) 987 (9.2%) 807 (7.5%) 

Gender      

Men 4,230 2,361 (59%) 1,028 (26%) 346 (8.6%) 288 (7.2%) 

Women 6,705 3,776 (56%) 1,769 (26%) 641 (9.6%) 519 (7.7%) 

Age Sub-Groups      

Ages 18-44 3,829 2,911 (76%) 705 (18%) 159 (4.2%) 54 (1.4%) 

Ages 45-64 6,590 2,994 (49%) 1,844 (30%) 665 (11%) 556 (9.2%) 

Ages 65+ 840 232 (28%) 248 (30%) 163 (19%) 197 (23%) 

Heritage Group      

Dominican 866 520 (60%) 224 (26%) 65 (7.5%) 57 (6.6%) 

Central America  

  
1,660 684 (64%) 237 (22%) 89 (8.3%) 56 (5.3%) 

Cuban 1,468 786 (54%) 378 (26%) 164 (11%) 140 (9.5%) 

Mexican 4,504 2,700 (60%) 1,209 (27%) 345 (7.7%) 250 (5.6%) 

Puerto Rican 

   
1,682 708 (42%) 478 (28%) 253 (15%) 243 (14%) 

South American  

  
758 516 (68%) 164 (22%) 47 (6.2%) 31 (4.1%) 

Mixed/Other  

  
384 223 (58%) 107 (28%) 24 (6.2%) 30 (7.8%) 

Nativity Status      

   Non-US born, < 

10 years in the US 
2,327 1,538 (66%) 497 (21%) 176 (7.6%) 116 (5.0%) 

   Non-US born, 10-
20 years in the US 

2,453 1,521 (62%) 622 (25%) 188 (7.7%) 122 (5.0%) 

Non-US born, >20 

years in the US   
4,261 2,027 (48%) 1,298 (30%) 475 (11%) 461 (11%) 

US born 1,687 1,051 (62%) 380 (23%) 148 (8.8%) 108 (6.4%) 
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Table 2.3. Weighted Descriptive Statistics for Charlson Co-Morbidity Index at Visit 2: Sueno 

This table reflected the analytic sample after accounting for the complex survey weighting. 

  Total Charlson Comorbidities at Visit 2 

 n 0 1 2 3+ 

Overall 

 
1,825 

1,102 (60%) 471 (26%) 160 (8.8%) 92 (5.0%) 

Gender  0 1 2 3 

Men 626 385 (62%) 159 (25%) 55 (8.8%) 27 (4.3%) 

Women 1,199 717 (60%) 312 (26%) 105 (8.8%) 65 (5.4%) 

Age Sub-Groups  0 1 2 3 

Ages 18-44 570 437 (77%) 106 (19%) 22 (3.9%) 5 (0.9%) 

Ages 45-64 1,255 665 (53%) 365 (29%) 138 (11%) 87 (6.9%) 

Heritage Group  0 1 2 3 

Dominican 222 141 (64%) 54 (24%) 19 (8.6%) 8 (3.6%) 

Central American 
  

243 
165 (68%) 51 (21%) 19 (7.8%) 8 (3.3%) 

Cuban 317 191 (60%) 82 (26%) 27 (8.5%) 17 (5.4%) 

Mexican 502 319 (64%) 140 (28%) 29 (5.8%) 14 (2.8%) 

Puerto Rican 364 171 (47%) 105 (29%) 48 (13%) 40 (11%) 

South American 

 
164 

111 (68%) 34 (21%) 16 (9.8%) 3 (1.8%) 

Mixed/Other 13 4 (31%) 5 (38%) 2 (15%) 2 (15%) 

Nativity Status  0 1 2 3 

Non-US born, < 10 
years in the US 

441 300 (68%) 96 (22%) 31 (7.0%) 14 (3.2%) 

Non-US born, 10-20 
years in the US 

444 
286 (64%) 113 (25%) 34 (7.7%) 11 (2.5%) 

Non-US born, >20 
years in the US 

658 348 (53%) 193 (29%) 69 (10%) 48 (7.3%) 

US born 282 168 (60%) 69 (24%) 26 (9.2%) 19 (6.7%) 
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Table 2.4. Incidence Ratio Ratios between Objective and Self-Reported Sleep Measures and the 
Charlson Co-Morbidity Index in Sueno from Survey-Weighted, Zero-Inflated Poisson Model 

  Model 1a‡ Model 2b‡ Model 3c‡ 

 n 
IRR 

(95% CI) 
P 

IRR 

(95% CI) 
P 

IRR 

(95% CI) 
P 

Sleep Regularity Index 

(n=1,798) 
  0.0006  0.004  0.01 

T3: 75-100 631 Ref  Ref  Ref  

T2: 61-74 600 
1.24 

(0.99 - 1.56) 
 

1.22 

(0.97 - 1.53) 
 

1.19 

(0.96 - 1.49) 
 

T1: 0-60 567 
1.60 

(1.26 - 2.02) 
 

1.47 

(1.17 - 1.85) 
 

1.43 

(1.14 - 1.79) 
 

        

Interdaily Stability 

(n=1,467) 
       

T3: >0.85 492 Ref 0.001 Ref 0.008 Ref 0.01 

T2: 0.75 to 0.85 509 
1.29 

(1.00 - 1.65) 
 

1.24 

(0.97 - 1.57) 
 

1.23 

(0.97 - 1.55) 
 

T1: <0.75 466 
1.54 

(1.23 - 1.94) 
 

1.43 

(1.14 - 1.79) 
 

1.40 

(1.12 - 1.75) 
 

        

Total Sleep Duration†, mins 

(n=1,469) 
  0.01  0.07  0.03 

Ref, 5 to 8.75 hours 1,377 Ref  Ref  Ref  

Short, <5 hours 46 
1.63 

(1.08 - 2.47) 
 

1.42 

(0.93 - 2.16) 
 

1.48 

(0.99 - 2.20) 
 

Long, >8.75 hours 46 
1.74 

(0.92 - 3.28) 
 

1.52 

(0.91 - 2.53) 
 

1.52 

(0.95 - 2.43) 
 

        

Sleep Efficiency, % 

(n=1,469) 
  0.55  0.62  0.71 

85 973 Ref  Ref  Ref  
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Table 2.4. Incidence Ratio Ratios between Objective and Self-Reported Sleep Measures and the 
Charlson Co-Morbidity Index in Sueno from Survey-Weighted, Zero-Inflated Poisson Model, 

Continued 
 

  Model 1a‡ Model 2b‡ Model 3c‡ 

 n 
IRR 

(95% CI) 
P 

IRR 

(95% CI) 
P 

IRR 

(95% CI) 
P 

80 to 85 313 
0.98 (0.77 - 

1.24) 
 

0.92 (0.72 - 

1.18) 
 

0.93 (0.73 - 

1.19) 
 

<80 183 
1.16 (0.86 - 

1.57) 
 

1.07 (0.80 - 

1.44) 
 

1.05 (0.78 - 

1.42) 
 

        

Wake After Sleep Onset, 

mins 

(n=1,798) 

  0.12  0.16  0.17 

45 min 688 Ref  Ref  Ref  

45 to 90 min 935 
1.16 (0.94 - 

1.43) 
 

1.17 (0.97 - 

1.42) 
 

1.18 (0.97 - 

1.44) 
 

>90 min 175 
1.35 (0.98 - 

1.85) 
 

1.25 (0.91 - 

1.72) 
 

1.22 (0.89 - 

1.68) 
 

        

Insomnia 

(n=1,825) 
  0.001  0.002  0.003 

<9 153 Ref  Ref  Ref  

9 718 
1.41 (1.14 - 

1.73) 
 

1.36 (1.12 - 

1.65) 
 

1.35 (1.11 - 

1.64) 
 

        

Excessive Daytime 

Sleepiness 

(n=1,824) 

  0.06  0.08  0.09 

<11 1,479 Ref  Ref  Ref  

11 345 
1.26 (0.99 - 

1.60) 
 

1.24 (0.97 - 

1.58) 
 

1.23 (0.97 - 

1.55) 
 

*The logit section of the zero-inflated model modeled the probability of having non-zero and zero CCIs the same (e.g., only 

including an intercept term), whereas the count model included all of the confounding covariates. aAdjustment for field center 

(Bronx, Chicago, Miami, and San Diego), age (continuous), and gender (male/female).b Additionally adjusts for education (<high 
school, high school graduate, or >high school), household income (less than or equal to $30,000/ $30,000-50,000/more than 

50,000), nativity (non-US-born <10 years in country, non-US-born ≥ 10 years in country, US-born), heritage (Mexican, Puerto 

Rican, Cuban, Dominican, Central American, South American, or Mixed/Other), smoking status (never/former/current), alcohol 

use (never/former/current). cAdditionally adjusts for duration of moderate-to-vigorous physical activity (minutes) and body mass 

index (continuous in kg/m2). 
†Sleep duration categories were broadened for the long sleepers to also include individuals with 8 hours and 45 minutes of sleep 

per night, since the sample size dropped dramatically among individuals who slept 8 hours and 45 minutes compared to 9 hours.  

‡The reference groups for the following model are indicated for each covariate: alcohol use (ref=current drinker), body mass 

index (ref=Normal to Underweight), center (ref=San Diego), cigarette use (ref=never), household income (ref=<30k), nativity 

status (ref=Non-US Born and 10<=YRSUS <20), education (ref=high school), gender (ref=woman), marital status (ref=married), 
ethnicity (ref=Mexican). 
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Table 2.5. Baseline demographic characteristics (weighted) of the Sueno analytic sample 
(n=1467) stratified by tertiles for Sleep Regularity Index, 2008-2011. 

This table was based on the analytic sample; the p-value were an omnibus p-value. Chi-squared 
test with Rao & Scott’s second-order correction; Wilcoxon rank-sum test for complex survey 

samples. 
 

 Sleep Regularity Index, Mean or % (SE) 

 T1 

(n=466) 

T2 

(n=509) 

T3 

(n=492) 
p-value 

N (%); Median (IQR)     
Demographic Characteristics     
Age 46 (36, 52) 48 (40, 54) 50 (43, 56) <0.001 

Female 258 (55%) 352 (69%) 361 (73%) <0.001 

Hispanic/Latino Background    0.005 

      Dominican 60 (13%) 64 (13%) 60 (12%)  

      Central American 47 (10%) 72 (14%) 71 (14%)  

      Cuban 84 (18%) 95 (19%) 93 (19%)  

      Mexican 110 (24%) 138 (27%) 138 (28%)  

      Puerto Rican 129 (28%) 86 (17%) 80 (16%)  

      South American 34 (7.3%) 49 (9.6%) 45 (9.1%)  

      Mixed/Other 2 (0.4%) 5 (1.0%) 5 (1.0%)  

Education        0.07 

      Less than High School 29 (6.2%) 48 (9.4%) 57 (12%)  

      Middle School 52 (11%) 45 (8.8%) 54 (11%)  

      High School Graduate 182 (39%) 180 (35%) 175 (36%)  

      Vocational 65 (14%) 68 (13%) 75 (15%)  

      College 138 (30%) 168 (33%) 131 (27%)  

Income    0.20 

      < $30,000 349 (75%) 371 (73%) 340 (69%)  

      $30,000-$50,000 80 (17%) 103 (20%) 104 (21%)  

     > $50,000 37 (7.9%) 35 (6.9%) 48 (9.8%)  

Nativity/years in the US    <0.001 

   Non-US born, < 10 years in the US  109 (23%) 138 (27%) 114 (23%)  

   Non-US born, 10-20 years in the US 90 (19%) 133 (26%) 134 (27%)  

Non-US born, >20 years in the US    162 (35%) 170 (33%) 202 (41%)  
US born 105 (23%) 68 (13%) 42 (8.5%)  

Clinical Characteristics     

BMI    0.20 

    Underweight to  
    Normal (<18.5-24.9) 

91 (20%) 92 (18%) 79 (16%) 
 

    Overweight (25.0-29.9) 178 (38%) 188 (37%) 217 (44%)  

    Obese (30+) 197 (42%) 229 (45%) 196 (40%)  

Behavioral Characteristics        

Smoking Status    <0.001 

    Never 262 (56%) 313 (61%) 334 (68%)  

    Former 76 (16%) 111 (22%) 97 (20%)  

    Current 128 (27%) 85 (17%) 61 (12%)  

Alcohol Intake    0.001 

    Never 85 (18%) 108 (21%) 143 (29%)  

    Former 154 (33%) 166 (33%) 152 (31%)  

    Current 227 (49%) 235 (46%) 197 (40%)  

Total Weekly Moderate-Vigorous 

Physical Activity, minutes 

420 (60, 1,740) 300 (20, 1,252) 210 (0, 780) 
<0.001 

  



29 

Table 2.6. Baseline demographic characteristics (weighted) of the Sueno analytic sample 
(n=1467) stratified by tertiles of Interdaily Stability, 2008-2011. 

This table was based on the analytic sample; the p-value were an omnibus p-value. Chi-squared 
test with Rao & Scott’s second-order correction; Wilcoxon rank-sum test for complex survey 

samples. 
 

 Interdaily Stability Tertiles, Mean or % (SE) 

 T1 

(n=466) 

T2 

(n=509) 

T3 

(n=492) 
p-value 

N (%); Median (IQR)     
Demographic Characteristics     
Age 46 (36, 52) 48 (40, 54) 50 (43, 56) <0.001 

Female 258 (55%) 352 (69%) 361 (73%) <0.001 

Hispanic/Latino Background    0.005 

      Dominican 60 (13%) 64 (13%) 60 (12%)  

      Central American 47 (10%) 72 (14%) 71 (14%)  

      Cuban 84 (18%) 95 (19%) 93 (19%)  

      Mexican 110 (24%) 138 (27%) 138 (28%)  

      Puerto Rican 129 (28%) 86 (17%) 80 (16%)  

      South American 34 (7.3%) 49 (9.6%) 45 (9.1%)  

      Mixed/Other 2 (0.4%) 5 (1.0%) 5 (1.0%)  

Education        0.07 

      Less than High School 29 (6.2%) 48 (9.4%) 57 (12%)  

      Middle School 52 (11%) 45 (8.8%) 54 (11%)  

      High School Graduate 182 (39%) 180 (35%) 175 (36%)  

      Vocational 65 (14%) 68 (13%) 75 (15%)  

      College 138 (30%) 168 (33%) 131 (27%)  

Income    0.20 

      < $30,000 349 (75%) 371 (73%) 340 (69%)  

      $30,000-$50,000 80 (17%) 103 (20%) 104 (21%)  

     > $50,000 37 (7.9%) 35 (6.9%) 48 (9.8%)  

Nativity/years in the US    <0.001 

   Non-US born, < 10 years in the US  109 (23%) 138 (27%) 114 (23%)  

   Non-US born, 10-20 years in the US 90 (19%) 133 (26%) 134 (27%)  

Non-US born, >20 years in the US    162 (35%) 170 (33%) 202 (41%)  
US born 105 (23%) 68 (13%) 42 (8.5%)  

Clinical Characteristics     

BMI    0.20 

    Underweight to  
    Normal (<18.5-24.9) 

91 (20%) 92 (18%) 79 (16%) 
 

    Overweight (25.0-29.9) 178 (38%) 188 (37%) 217 (44%)  

    Obese (30+) 197 (42%) 229 (45%) 196 (40%)  

Behavioral Characteristics        

Smoking Status    <0.001 

    Never 262 (56%) 313 (61%) 334 (68%)  

    Former 76 (16%) 111 (22%) 97 (20%)  

    Current 128 (27%) 85 (17%) 61 (12%)  

Alcohol Intake    0.001 

    Never 85 (18%) 108 (21%) 143 (29%)  

    Former 154 (33%) 166 (33%) 152 (31%)  

    Current 227 (49%) 235 (46%) 197 (40%)  

Total Weekly Moderate-Vigorous 

Physical Activity, minutes 

420 (60, 1,740) 300 (20, 1,252) 210 (0, 780) 
<0.001 
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Table 2.7. Nativity-Stratified Associations of Objective Sleep Measures and the Charlson Co-
Morbidity Index in Sueno Ancillary Study 

The results presented in the table above are for the fully adjusted model. Adjustment for field 
center (Bronx, Chicago, Miami, and San Diego), age (continuous), and gender (male/female), 

education (<high school, high school graduate, or >high school), household income (less than or 
equal to $30,000/ $30,000-50,000/more than 50,000), nativity (non-US-born <10 years in 
country, non-US-born ≥ 10 years in country, US-born), heritage (Mexican, Puerto Rican, Cuban, 

Dominican, Central American, South American, or Mixed/Other), smoking status 
(never/former/current), alcohol use (never/former/current), duration of moderate-to-vigorous 

physical activity (minutes) and body mass index (continuous in kg/m2). Note, models did not 
converge after adding physical activity and BMI to the model, so models are presented without 
adjustment for those variables. 

 

Nativity 

 Non-US-born, <10 yrs. In 
U.S. 

Non-US-born,  
10-20 yrs. in U.S. 

Non-US-born, 20+ yrs. in 
U.S. 

US-Born 

 
IRR 

(95% CI) 

IRR 

(95% CI) 

IRR 

(95% CI) 

IRR 

(95% CI) 

Wake After Sleep 
Onset, mins 
(n=1,798) 

   p=0.001 

>0 to 45 min Ref Ref Ref Ref 

>45 to 90 min 0.81 
(0.57 - 1.15) 

1.20 
(0.80 - 1.78) 

1.32 
(0.98 - 1.77) 

1.56 
(0.93 - 2.62) 

>90 min 0.31 
(0.11 - 0.89) 

2.72 
(1.79 - 4.12) 

1.33 
(0.85 - 2.06) 

0.94 
(0.53 - 1.67) 

     

Insomnia 
(n=1,825) 

   P=0.07 

<9 Ref Ref Ref Ref 

9 1.23 
(0.77 - 1.94) 

1.43 
(1.06 - 1.93) 

1.96 
(1.50 - 2.57) 

0.92 
(0.63 - 1.34) 

     

Excessive Sleepiness 

(n=1,824)    P=0.09 

<11 Ref Ref Ref Ref 

11 1.11 

(0.71 - 1.72) 

1.15 

(0.70 - 1.89) 

1.30 

(0.91 - 1.86) 

1.51 

(0.96 - 2.35) 
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Table 2.8. Incidence Ratio Ratios between Self-Reported Sleep Measures and the Charlson Co-
Morbidity Index in HCHS/SOL from Survey-Weighted, Zero-Inflated Poisson Models* 

  Model 1
a
‡ Model 2

b
‡ Model 3

c
‡  

n IRR (95% CI) P IRR (95% CI) P IRR (95% CI) P 
Insomnia 

(n=10,469) 
 

 <0.0001  <0.0001  <0.0001 

<9 6,658 Ref  Ref  Ref  

9 3,811 1.29 

(1.19 - 1.41) 
 

1.25 

(1.15 - 1.36) 
 

1.23 

(1.13 - 1.34) 
 

        

Excessive 
Sleepiness 

(n=10,595) 

 
 0.006  0.01  0.07 

<11 8,426 Ref  Ref  Ref  

11 2,169 1.15 
(1.04 - 1.28) 

 
1.14 

(1.03 - 1.26) 
 

1.10 
(0.99 - 1.21) 

 

        

Sleep Duration, 

hrs 
(n=10,277) 

 

 0.0001  0.002  0.006 

Short, <5 hours 
276 1.47 

(1.19 - 1.82) 
 

1.41 

(1.15 - 1.73) 
 

1.36 

(1.11 - 1.66) 
 

Ref, 5-9 hours 7,705 Ref  Ref  Ref  

Long, >9 hours 
1,306 1.18 

(1.05 - 1.33) 
 

1.12 
(1.00 - 1.26) 

 
1.11 

(1.00 - 1.25) 
 

        

Midsleep 

Timepoint 
(n= 10,438) 

 

 0.049  0.08  0.07 

2:45pm-3:45am 
4,069 1.04 

(0.95 - 1.15) 
 

1.06 
(0.96 - 1.17) 

 
1.05 

(0.95 - 1.16) 
 

3:45am-4:30am 3,134 Ref  Ref  Ref  

4:30am-
10:30am 

3,235 1.13 
(1.02 - 1.24) 

 
1.11 

(1.01 - 1.22) 
 

1.12 
(1.02 - 1.23) 

 

        

Weekday 
Bedtime 

(n=10,444) 

 
 0.14  0.23  0.33 

10:00am-
10:00pm 

3,788 
Ref  Ref  Ref  

10:00pm-

11:00pm 

3,416 1.01 

(0.90 - 1.13) 
 

1.01 

(0.91 - 1.12) 
 

1.02 

(0.91 - 1.13) 
 

11:00pm-
5:00am 

3,240 1.09 
(0.99 - 1.202) 

 
1.08 

(0.98 - 1.19) 
 

1.07 
(0.97 - 1.19) 

 

        

Weekend 

Awake Time 
(n=10,381) 

 

 0.08  0.22  0.57 

8:00pm-7:00am 
4,310 1.08 

(0.99 - 1.18) 
 

1.06 

(0.98 - 1.16) 
 

1.04 

(0.95 - 1.13) 
 

7:00am-9:00am 4,002 Ref  Ref  Ref  

9:00am-3:00pm 
2,069 1.12 

(1.01 - 1.25) 
 

1.09 
(0.98 - 1.21) 

 
1.05 

(0.94 - 1.17) 
 

*The logit section of the zero-inflated model modeled the probability of having non-zero and zero CCIs the same 

(e.g., only including an intercept term), whereas the count model included all of the confounding covariates.  
an Adjustment for field center (Bronx, Chicago, Miami, and San Diego), age (continuous), and gender (male/female). 
b Additionally adjusts for education (<high school, high school graduate, or >high school), household income (less 

than or equal to $30,000/ $30,000-50,000/more than 50,000), nativity (non-US-born <10 years in country, non-US-

born ≥ 10 years in country, US-born), heritage (Mexican, Puerto Rican, Cuban, Dominican, Central American, 

South American, or Mixed/Other), smoking status (never/former/current), alcohol use (never/former/ current). 
cAdditionally adjusts for duration of moderate-to-vigorous physical activity (minutes) and body mass index 

(continuous in kg/m2). 

‡The reference groups for the following model are indicated for each covariate: alcohol use (ref=current drinker), 

body mass index (ref=Normal to Underweight), center (ref=San Diego), cigarette use (ref=never), household income 

(ref=<30k), nativity status (ref=Non-US Born and 10<=YRSUS <20), education (ref=high school), gender 

(ref=woman), marital status (ref=married), ethnicity (ref=Mexican). 
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Table 2.9. Baseline demographic characteristics (weighted) of the HCHS/SOL analytic sample 
(n=11,748) stratified by tertiles of Insomnia, 2008-2011. 

This table was based on the analytic sample; the p-value were an omnibus p-value. Chi-squared 
test with Rao & Scott’s second-order correction; Wilcoxon rank-sum test for complex survey 

samples. 
 

 Insomnia Tertiles, Mean or % (SE) 

 T1 

(n=4,460) 

T2 

(n=3,970) 

T3 

(n=3,318) 
p-value 

N (%); Median (IQR)     
Demographic Characteristics     
Age 47 (36, 55) 49 (39, 57) 51 (43, 58) <0.001 

Female 2,284 (56%) 1,924 (62%) 2,348 (71%) <0.001 

Hispanic/Latino Background    <0.001 

      Dominican 254 (6.3%) 247 (8.0%) 327 (9.9%)  

      Central American 451 (11%) 290 (9.4%) 306 (9.2%)  

      Cuban 566 (14%) 365 (12%) 484 (15%)  

      Mexican 1,906 (47%) 1,426 (46%) 1,104 (33%)  

      Puerto Rican 418 (10%) 442 (14%) 773 (23%)  

      South American 332 (8.2%) 205 (6.6%) 195 (5.9%)  

      Mixed/Other 119 (2.9%) 122 (3.9%) 129 (3.9%)  

Education     0.009 

      Less than High School 496 (12%) 402 (13%) 467 (14%)  

      Middle School 445 (11%) 369 (12%) 396 (12%)  

      High School Graduate 1,460 (36%) 1,131 (37%) 1,241 (37%)  

      Vocational 576 (14%) 436 (14%) 477 (14%)  

      College 1,069 (26%) 759 (25%) 737 (22%)  

Income    <0.001 

      < $30,000 2,599 (64%) 2,099 (68%) 2,449 (74%)  

      $30,000-$50,000 963 (24%) 650 (21%) 592 (18%)  

     > $50,000 484 (12%) 348 (11%) 277 (8.3%)  

Nativity/years in the US    <0.001 

   Non-US born, < 10 years in the US  996 (25%) 645 (21%) 611 (18%)  

   Non-US born, 10-20 years in the US 998 (25%) 703 (23%) 698 (21%)  

Non-US born, >20 years in the US    1,480 (37%) 1,234 (40%) 1,450 (44%)  
US born 572 (14%) 515 (17%) 559 (17%)  

Clinical Characteristics     

BMI    <0.001 

    Underweight to  
    Normal (<18.5-24.9) 823 (20%) 569 (18%) 563 (17%)  

    Overweight (25.0-29.9) 1,575 (39%) 1,200 (39%) 1,207 (36%)  

    Obese (30+) 1,648 (41%) 1,328 (43%) 1,548 (47%)  

Behavioral Characteristics     

Smoking Status    <0.001 

    Never 2,648 (65%) 1,913 (62%) 1,905 (57%)  

    Former 766 (19%) 665 (21%) 712 (21%)  

    Current 632 (16%) 519 (17%) 701 (21%)  

Alcohol Intake    0.012 

    Never 859 (21%) 608 (20%) 630 (19%)  

    Former 1,276 (32%) 1,028 (33%) 1,173 (35%)  

    Current 1,911 (47%) 1,461 (47%) 1,515 (46%)  

Total Weekly Moderate-Vigorous 

Physical Activity, minutes 
360 (60, 1,440) 300 (40, 1,440) 285 (10, 1,195) <0.001 
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Table 2.10. Nativity Stratified Associations of Self-Reported Sleep Measures and the Charlson 
Co-Morbidity Index in HCHS/SOL Cohort, Continued 

Additional information is given as to the mean of wider quartiles for select sleep timing variables 
with wide quartiles, as follows. The results presented in the table below are for the fully adjusted 

model. Adjustment for field center (Bronx, Chicago, Miami, and San Diego), age (continuous), 
and gender (male/female), education (<high school, high school graduate, or >high school), 
household income (less than or equal to $30,000/ $30,000-50,000/more than 50,000), nativity 

(non-US-born <10 years in country, non-US-born ≥ 10 years in country, US-born), heritage 
(Mexican, Puerto Rican, Cuban, Dominican, Central American, South American, or 

Mixed/Other), smoking status (never/former/current), and alcohol use (never/former/current).  
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Table 2.11. Age, or Gender Stratified Associations of Self-Reported Sleep Measures and the 
Charlson Co-Morbidity Index: HCHS/SOL 

The results presented in the table below were for the fully adjusted model. Adjustment for field 
center (Bronx, Chicago, Miami, and San Diego), age (continuous), and gender (male/female), 

education (<high school, high school graduate, or >high school), household income (less than or 
equal to $30,000/ $30,000-50,000/more than 50,000), nativity (non-US-born <10 years in 
country, non-US-born ≥ 10 years in country, US-born), heritage (Mexican, Puerto Rican, Cuban, 

Dominican, Central American, South American, or Mixed/Other), smoking status 
(never/former/current), and alcohol use (never/former/current).  
 

 

 

 Gender Age Group 

 Men Women <45 y.o. 46-60 y.o. 60+ y.o. 

 
IRR 

(95% CI) 

IRR 

(95% CI) 

IRR 

(95% CI) 

IRR 

(95% CI) 

IRR 

(95% CI) 

Insomnia 
(n=10,469) 

 p=0.03   p=0.009 

<9 Ref Ref Ref Ref Ref 

9 1.36 

(1.19- 1.55) 

1.14 

(1.02-1.26) 

1.37 

(1.15 - 1.62) 

1.24 

(1.13 - 1.36) 

1.06 

(0.88 - 1.27) 

      

Excessive 

Daytime 

Sleepiness 
(n=10,595) 

 P=0.91   P=0.01 

<11 Ref Ref Ref Ref Ref 

11 1.09 

(0.94 - 1.27) 

1.09 

(0.96 - 1.24) 

1.22 

(1.00 - 1.50) 

1.15 

(1.03 - 1.28) 

0.84 

(0.67 - 1.04) 
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3. Sleep Pattern Clusters, Physical Function and Fall Risk: Geriatric Syndromes 

Among Older Ambulatory Women 

Tentative Order: Alexis C. Garduno, Varun Viswanath, Benjamin Smarr, Linda McEvoy, Qian 

Xiao, Kelsie Full, Linda Gallo, Humberto Parada, Carolyn Crandall, Jane Cauley, Lesley F 

Tinker, Andrea Z. LaCroix PhD 

3.1 Abstract 

Poor sleep is a suspected risk factor for worse physical functioning and frequent falling at 

older ages. There is limited research that identifies key sleep patterns among older adults that 

may be targeted for improving physical functioning and fall risk. Existing studies also lack 

objectively measured sleep, RARs, and/or prospectively collected falls data in older adults. This 

study simultaneously evaluated the relationship between multiple sleep and RAR dimensions 

with fall risk and physical functioning among 4,543 older women from the OPACH study. 

Uniform manifold approximation projection and K-Means clustering identified 5 sleep-RAR 

clusters, in order to distinguish healthy and unhealthy sleep patterns. After cross-validating these 

sleep clusters, we examined associations with fall risk using negative binomial models after 

adjusting for sociodemographic and behavioral factors. Linear regression models estimated 

associations between sleep clusters with the Short Physical Performance Battery (SPPB) physical 

functioning score, and the sub-scores, including the balance test, chair stands, and gait speed. We 

tested for the presence of a statistical interaction between clusters and physical functioning 

(sleep*SPPB) with respect to fall risk. Five sleep clusters were identified including C1 (“sleep 

disturbed”, n=1051), C2 (“healthy”, n=1043), C3 (“mild RAR, active”, n=1446), C4 (“earlier 

sleepers, n=105), and C5 (“shorter, mildly disrupted, later sleeper”, n=898). Unhealthy sleep 

clusters C1 and C4 were associated with a higher fall risk compared to healthy cluster C2 after 
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adjustment (C4, IRR: 1.76 (95%CI:1.15-2.69)). These same clusters were also associated with 

lower balance scores (score: 0-4) after adjustment (C1, beta: -0.11 (95% CI:-0.21 to -0.01); C4, 

beta: -0.30 (95%CI: -0.55 to -0.05)). Older adults with unhealthier sleep-RAR patterns are more 

at risk for falling, which may be partially explained by the role of sleep on balance and physical 

functioning. 

3.2 Introduction 

As they age, adults develop more fragmented sleep, along with changes in sleep 

architecture, earlier waketime and bedtimes, increased napping, decreased sleep efficiency, and 

shifts in circadian phases, relative to younger adults [72]. The RU-SATED sleep model 

characterizes sleep as a complex behavior that can be represented by multiple domains, including 

regularity, satisfaction, alertness, timing, efficiency, and duration [24]. General sleep 

disturbances are regarded as a common geriatric syndrome that occurs in one out of two older 

adults aged 65 years or older [73, 74]. By definition, GSs often co-occur with other GSs, and are 

related to a decline in homeostatic reserve across one or multiple functional domains (e.g., 

cognitive or physical) [16]. GSs are prevalent among 70-80% of adults aged 70 years or older 

[18, 21] and are associated with lower overall quality of life [75], greater risk of disability [18], 

and mortality [20]. Circadian rhythms are endogenous rhythms following a 24-hour, recurring 

pattern that are further modified by behavioral factors, including blue light exposure, timing of 

physical activity, meal consumption, and extrinsic factors [31]. Additional work is needed to 

clarify whether disrupted circadian rhythms are associated with aging and co-occur with other 

GSs. 

Frequent falling is a leading cause of fatal and non-fatal injury among adults 65 years of 

age, and this syndrome is also the third leading cause of death from unintentional injury [76, 77]. 
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Prior studies have observed associations between sleep quality, duration, and fragmentation with 

fall risk, although most of these studies relied on self-reported sleep and/or retrospectively 

ascertained fall history [78-80]. Other sleep dimensions have been understudied with respect to 

falling, including the domains of sleep regularity and timing [24]. Sleep regularity and timing are 

indices that are measured objectively using actigraphy and can be used to infer disruption of an 

individual’s circadian rhythms. Physical functioning is another key health risk factor/factor that 

is closely tied to frequent falling, and several studies have observed associations between sleep 

duration and quality with physical functioning [81, 82]. 

A major limitation of these prior studies is reliance on self-reported sleep, or by lack of 

adjustment for social and behavioral confounders. Other studies are also limited, as they have 

focused more on the role of acute sleep deprivation and postural balance, which is a key aspect 

of physical functioning, yet additional work is needed to understand the role of habitual sleep 

and rest-activity disturbances [83]. These studies of postural balance were often conducted in 

controlled research settings, which may be less representative of community-based sleep 

behaviors, and a majority of these studies examined the role of short-term sleep deprivation [83]. 

For example, a small case-crossover study in a controlled setting found that older adults were 

more vulnerable than younger adults to the effect of sleep deprivation on postural control, which 

was further modified by visual impairment [84]. Another recent study in older adults with 

Parkinson’s Disease, which is a population with documented circadian disruption, observed an 

association between circadian disruption, specifically reduced amplitude, and postural stability 

and gait initiation [85]. 

Two prospective cohort studies were conducted among older men and found that shorter 

sleep, lower sleep efficiency, and delayed peak-activity or acrophase were associated with 
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greater physical function decline and fall risk [78, 86]. Additional studies are needed that 

investigate these associations in women with respect to falling, since falling and fall-related 

injuries disproportionately affect women as compared to men [87-89]. Existing studies have 

focused on examining each sleep feature independently; yet examination of individual sleep 

features does not account for the synergistic or antagonistic role of other sleep patterns that co-

occur within the same individual, which is a methodological gap in existing sleep research 

studies. Clustering of sleep measures may help identify patterns of healthy versus unhealthy 

sleep that are common in older women aged 70-80 years old. 

Our study aims to identify healthy and unhealthy sleep-circadian clusters (e.g., profiles), 

using objective and subjective sleep metrics that represent each domain of the RU-SATED sleep 

model; next, this study examines associations between these sleep profiles with fall risk and 

physical function. We hypothesized that “unhealthy” sleep profiles with more fragmented sleep, 

shorter sleep duration, and greater total awakenings (among other sleep metrics that are 

directionally consistent) would be associated with greater fall risk and lower physical function. 

Thematically, this study may also further lay credence to the concept that some GSs, such as 

sleep disturbances and possibly circadian disruption, do not just co-occur but may precipitate the 

development of GSs that result in greater risk of injury and mortality. 

3.3 Methods 

Objective Physical Activity and Cardiovascular Health (OPACH) Study Sample  

The OPACH Study is a prospective, ancillary study of the Women’s Health Initiative 

(WHI) aimed at characterizing physical activity and cardiovascular health in older women. We 

conducted a secondary analysis in this cohort to investigate the relationships between 

accelerometer-measured RARs with fall risk and physical functioning. Additional information on 
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the OPACH study objectives, protocol and recruitment are detailed elsewhere [90]. In brief, a 

total of 6,489 ambulatory women consented to the study from 2012-2013 and wore an 

accelerometer for up to 7 days. Next, we excluded women for whom we could not obtain RAR 

metrics using our script (n=345). We also excluded women with greater than 50% of the epochs 

that did not meet data processing standards (n=450). Research technicians scored a subset of 

sleep duration periods as a part of another secondary analysis [91]. Manual scoring was not 

performed if sleep log was absent, GT3X file was missing, or there was no accelerometry at 

night; additionally, these technicians did not perform scoring for women who did not have 

measured cardiometabolic data. Due to these restrictions for manual scoring, an additional 1,151 

women were excluded (Figure 3.1). Women were also excluded from this analysis if they did not 

return at least one falls month calendar (n=424); finally, women were excluded if they 

experienced an extreme number of falls (>325, n=1), leaving a final analytic sample of 4,543 

participants (Figure 3.1). 

To address potential concerns for selection bias, we examined baseline descriptive 

statistics of the overall study population (n=6,489) stratified by whether an individual was 

excluded from the analytic sample (included: n=4,543; excluded: n=1,946). We evaluated 

whether any quantitative differences in the study characteristics were statistically different 

among individuals included the analytic sample compared to those excluded (omnibus p-value < 

0.05). Additional sensitivity analyses are discussed below. 

Sleep and Rest-Activity Rhythm (RAR) Measures 

ActiGraph GT3X+ triaxial accelerometers were worn continuously by participants for up 

to 7 consecutive days on their right hip and were only removed when swimming or bathing. 

ActiGraph measured activity in 15-second epochs, which were aggregated to 1-minute epochs 
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for the purposes of extracting sleep features. Sleep and RAR measures were chosen to represent 

each sleep domain from the RU-SATED model, including sleep regularity, sleep 

continuity/efficiency, duration, timing, alertness/sleepiness, and satisfaction/quality (see 

Supplementary Methods) [24]. After further data processing (see Supplementary Methods), RAR 

measures were calculated using non-parametric models for sleep-activity data using previously 

described methods [92, 93]. These RAR measures included intra-daily variability (IV), inter-

daily stability (IS), average hourly activity during 5 consecutive hours with the lowest activity 

(L5), the start and midpoint of the L5 period, the average hourly activity during the 10 

consecutive hours of the day with the highest activity (M10), and the start and midpoint of the 

M10 period. Intra-daily variability is a non-parametric measure that estimates the fragmentation 

within a single day of the rest-activity rhythm; individuals who engage in daytime napping or 

wake up in the middle of the night have higher IV values [92]. Inter-daily stability is a non-

parametric measure of sleep regularity that measures the day-to-daily stability of RARs; this 

measure is estimated as the between-hour variance to total (between-hour plus within-hour) 

variance of sleep/wake status [54]. Individuals with higher IS values have more stable and 

regular rest and activity cycles between days. 

We also processed total sleep duration (units=hours), sleep efficiency (units=%), sleep 

latency (units=hours), WASO (units=mins), and frequency of awakenings (units=count) from 

ActiLife version 6.11 software. Activity was sampled at 30 Hz and aggregated into 60-second 

Agilegraph Date Files (ADF). Individual ADF files were scored using a standard protocol by a 

trained technician. To identify sleep periods, technicians used participant’s sleep logs and a 

visual review of the data for each night the participant wore the device [91]. This process is 

aligned with the actigraphy method guidelines from the Society of Behavioral Sleep Medicine 
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[94, 95]. After identifying the sleep periods, the Cole-Kripke algorithm was applied to classify 

epochs within the sleep period as awake or asleep [96]. Finally, we included several measures 

from sleep questionnaires that occurred in the same year as the Long Life Study Visit. Daytime 

napping and falling asleep during light activities represented the daytime alertness domain, 

whereas sleep quality represented the quality/satisfaction domain (see Supplementary Methods). 

Fall Ascertainment 

Falls were measured after ascertainment of the participant’s sleep and RARs, and this 

primary study outcome was operationalized as the total reported number of falls over the total 

person-months of observation (e.g., incident fall rate). The denominator of person-months was 

based on the total number of calendar pages returned by the participants. Incident falls were 

collected using a 13-month fall calendar that women completed on a daily basis if they had 

fallen. A fall was defined as “lost balance and fell to the ground or a lower level or if they had to 

use a wall, rail, or other object to prevent themselves from falling to the ground [97].” Additional 

information about the collection of calendars and reliability compared to other forms of self -

report are described elsewhere [98]. 

Physical Functioning 

Physical functioning was a primary study outcome that we measured using the Short 

Physical Performance Battery (SPPB) for lower extremity function at the Long-Life Study home 

visit [99, 100]. We also hypothesized that physical functioning may be acting as a potential 

effect modifier and mediator between sleep and fall risk as observed in prior work between 

steps/day and fall risk [101]. Individuals with shorter and more disrupted sleep may have lower 

physical functioning, which may partially mediate associations between sleep and fall risk. At 

the same time, individuals with lower physical functioning may have stronger, positive 
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associations between sleep and fall risk. The overall SPPB score was included, as well as the 

scores from the three separate tests of physical functioning, including the time to complete 5 

unassisted chair stands, 3 progressively difficult balance tests, and gait speed assessment over 4 

meters. Each test is scored from 0 (lowest) to 4 (highest) with higher scores indicating improved 

physical functioning.  

Machine-Learning Derived Clusters using UMAP and Unsupervised Learning 

All sleep and circadian-rhythm measures were standardized prior to data reduction and 

clustering. A modern data reduction approach called Uniform Manifold Approximation and 

Projection (UMAP) was applied to preserve both local and global structure of the sleep profiles, 

allowing for identification of informative, reproducible clusters [102]. UMAP dimension 

reduction is a non-linear data reduction technique based on Riemannian geometry that identifies 

a lower dimensional embedding of a manifold’s underlying topology [103]. After we performed 

UMAP data reduction, we identified distinct sleep-circadian health clusters using several 

alternative unsupervised machine learning methods, specifically K-means and Mixtures of 

Gaussian with the sklearn package in Python. 

We plotted the number of clusters k : 0-14 on elbow plots to compare silhouette scores 

and SSEs for judging the cluster quality of candidate clustering models [104]. We manually 

tuned the hyperparameters for the data reduction UMAP procedure at the same time as the 

unsupervised clustering algorithms using cross-validation [105]. The number of neighbors 

(n_neighbors) in the embedding and minimum density (components) are hyperparameters that 

control the balance between local and global structure, as well as determine the distance between 

points (min_dist), respectively [103]. 



45 

The final sleep cluster model was identified using k=5 clusters from K-Means, although 

we found that the silhouette scores were relatively similar between K-Means and MOG. This 

final cluster model also preserved a sleep island, which was a cluster with a smaller number of 

participants with more extreme differences in sleep indices. Next, stratified k-fold cross-

validation was used to evaluate clustering and to tune the model in the presence of class 

imbalance in race and ethnicity between participants [106]. Stratified k-fold cross-validation was 

chosen to address this imbalance by maintaining the balance of the racial-ethnic group, while 

randomly splitting the dataset into 25 pairs of training and test sets [106]. Silhouette scores were 

averaged across the 25 folds of the cross-validation to perform internal validation [107]; 

specifically, the silhouette scores quantified the clustering quality (after ensuring balance 

between race and ethnicity across test and training sets) based on the closeness of classified 

instances and separation between different clustering groups [107]. UMAP data reduction 

followed by unsupervised learning yielded several, interpretable sleep profile clusters. The final 

set of hyperparameters for UMAP based on race and ethnicity stratified, k-fold cross-validation 

and cluster separation was n_neighbors = 4, min_dist=0.10, n_components=2, and 

metric=Euclidean. 

We required that the final model have hyperparameters that resulted in an average 

silhouette score (e.g., across the folds) that was greater than 0.50, since manual tuning had 

uncovered silhouette scores within ±0.15 of this range between folds. This silhouette score 

threshold was used to prune the list of candidate clustering models from the list of previously 

described models. The final two criteria for selecting the final clustering model were to choose a 

model in which (i) there was the largest separation in mean and standard deviation of z-scores for 

most sleep indices, and (ii) these individual sleep features were directionally consistent for either 
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healthy or disordered sleep based on domain knowledge. In other words, the final sleep 

clustering model was chosen by identifying clusters with trends in sleep features in the same 

direction. 

Statistical Modeling 

We calculated descriptive statistics of population and sleep characteristics (e.g., WASO, 

IS, IV) from the sample used in the complete case analysis, and these characteristics were also 

stratified by sleep rhythm clusters. Using these descriptive statistics, we confirmed the face 

validity of sleep clusters with unhealthier sleep patterns by checking that clusters were 

directionally consistent for sleep characteristics. (e.g., greater sleep duration, lower WASO, 

lower IS). As hypothesized, we confirmed that the “unhealthy” sleep clusters would have a 

higher prevalence of cardiometabolic conditions, such as diabetes and cardiovascular disease 

(CVD), compared to the cluster/s with healthier sleep patterns. 

Multiple imputation (mice package) was performed with 25 rounds of imputation over 

five iterations; the exposure, outcomes, and all confounding covariates were included in the 

predictor matrix, in order to impute observations for missing confounding covariates. Since the 

SPPB sub-scores were moderately to strongly correlated, only the overall SPPB score was 

included in the predictor matrix. Prior to imputation, we examined the proportion of missingness 

in the covariates that would be imputed and visually inspected for patterns of missingness. 

Within the multiply imputed analytic sample, negative binomial, parametric regression 

models were used to evaluate whether women with certain “unhealthy” sleep rhythm clusters (as 

evidenced by shorter sleep duration, greater intra-daily variability, lower inter-daily stability, 

lower sleep efficiency/greater WASO, or earlier L5 midpoint) had a higher risk of falling, as 

evidenced by their fall rate over 13 months. A negative binomial regression model was used 
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(with the MASS  R package, version 7.3-56), since the fall incidence is highly right-skewed that 

led to over-dispersed Poisson models upon inspection. To address another primary study 

objective, we evaluated associations between sleep-RAR clusters and physical functioning 

within the multiply imputed sample, since declines in physical functioning may precede frequent 

falling among older adults. Linear regression models were constructed between sleep rhythm 

clusters and the total physical functioning score (i.e., SPPB), in addition to components of the 

overall SPPB score including the balance test, chair stands, and gait speed. 

To test for the presence of a multiplicative interaction, physical function was 

operationalized as a binary variable to classify lower (lower: SPPB 1-8) and higher (higher: 

SPPB 9-12) physical functioning, and then an interaction between this term and sleep clusters 

was added to the negative, binomial models for fall risk. We reported separate, stratified models 

for those with lower and higher physical functioning. 

Progressive model adjustment was performed in models of sleep with fall risk and 

physical functioning to address confounding. The first model was adjusted for age (continuous in 

years), race and ethnicity (white/Black/Hispanic), and education (High School or GED/Some 

College/College Graduate+). We adjusted for race and ethnicity as a potential confounder in 

sleep-fall risk associations, since sleep disparities are experienced disproportionately by 

individuals who identify as Hispanic/Latina or Black [46, 108]. Some studies have found that 

Black participants have greater fall risk in later life compared to non-Hispanic white adults in 

later life due to greater exposure to environmental predictors of falls, including neighborhoods 

without sidewalks and residences in non-metropolitan areas, although other studies observed no 

differences between these groups [109, 110]. Next, we additionally adjusted for alcohol 

consumption (Non-Drinker/<1 time per week/>=1 time per week), smoking status (current 
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smoker/not current smoker), total minutes spent in physical activity (continuous in minutes), 

CVD (yes/no), diabetes (yes/no), and cancer (yes/no). These diseases were selected for 

adjustment due to their known association with sleep disruption [111, 112]. The third model was 

progressively adjusted for body mass index (continuous in kg/m2), sleep medications (not in the 

past month or less/less than once per week/1+ times per week), and depression (yes/no). We also 

repeated modeling between quartiles of individual sleep metrics and fall risk. 

In addition, we modeled associations between quartiles of RAR measures (e.g., IV, IS, 

L5, M10) with fall risk and physical functioning, since these particular sleep dimensions 

distinguished clusters. Also, there is limited research examining the role of RAR measures on 

declining physical functioning. We performed sensitivity analyses to address the concern for 

selection bias due to missing sleep cluster data. Inverse probability censoring weighting (IPCW) 

was performed to upweight women in the sleep clusters with the same baseline characteristics of 

women who were censored from the study due to missing sleep cluster data [113, 114]. 

Bootstrapped 95% confidence intervals were generated for IPCW models with the multiply 

imputed data over n=1,000 resamples [115]. Briefly, women were sampled from the multiply 

imputed dataset by converting the list of multiply imputed datasets into a long version of the 

dataset. ICPW weighting was calculated with respect to each resample. Complete case was also 

performed as a sensitivity analysis, in which we re-analyzed all of the primary associations 

between the sleep clusters, physical functioning, and fall risk.  

3.4 Results 

Sleep and RAR Characteristics 

On average (SD), OPACH participants slept 8.20 (±1.26) total hours, with 95.59% 

(±2.71) efficiency and latency of 1.86 (±1.88) hours (Table 3.1). The average time in and out of 
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bed occurred at 7:29 PM (± 3.50 hrs.) and 5:32 AM (±1.69 hrs.). The average wake after onset 

for participants was 21.03 (±14.40) minutes; participants awoke an average of 5.51 (±2.96) times 

per night and spent on average 3.78 (±1.53) minutes awake. The average intra-daily variability 

for participants was 1.12 (±0.27), whereas the average inter-daily stability for participants was 

0.49 (±0.11). In terms of activity and sleep timing, the midpoint of the L5 period was between 3-

4am (3.59 ±3.35 hours), with the average L5 activity level at 9.18 (±10.45) counts. In addition, 

the midpoint of the M10 period occurred at 1pm (±1.82 hrs.), with the average M10 activity level 

at 115.15(±49.48) counts.  

Unsupervised Machine Learning: Sleep Clusters of Sleep and RAR Parameters  

We obtained a total of 5 clusters from the final clustering model that classified the sleep 

patterns of 4,543 study participants, which were classified as follows: cluster 1 “sleep disturbed” 

(n=1051), cluster 2 “healthy” (n=1043), cluster 3 “mild RAR disruption”(n=1446), cluster 4 

“earlier sleepers” (n=105), and cluster 5 “shorter, mildly disrupted, later sleeper”(n=898; see 

Figure 3.2). Cluster 2 was considered the only healthy sleep cluster, and all remaining clusters 

were considered “unhealthy” sleep clusters that reflect lower overall sleep quality. Descriptive 

statistics and visualizations are shown in Table 3.1 and Figure 3.2 for each sleep feature that 

defines the clusters (prior to data reduction). In the top half of figure 3.2, there are three panels 

that characterize sleep feature patterns for each cluster with respect to a group of indices, which 

span from the RAR and sleep regularity (panel a, Figure 3.2), sleep efficiency (panel b, Figure 

3.2), and then sleep timing, duration, and self-reported sleep quality (panel c, Figure 3.2). The 

mean and distribution of the sleep features is shown in the lower set of panels between the 

healthy cluster C2 and a select, unhealthy cluster C4. Panel d highlights that the sleep features 

are directionally consistent in representing a healthy versus unhealthy sleep profile. For example, 
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an unhealthy sleep profile (as demonstrated by cluster 4) has lower inter-daily stability, higher 

intra-daily variability, lower sleep efficiency, shorter sleep duration, greater WASO, and worse 

sleep quality (panel d, Figure 3.2). 

Clusters 1 “sleep disturbed” and 5 “shorter, mildly disrupted, later sleeper” were also 

sleep clusters that exhibited more disrupted RARs for both inter-daily stability and intra-daily 

variability (Table 3.1). Clusters 1 and 5 have an average intra-daily variability that is half a 

standard deviation greater than other clusters (Table 3.1; Figure 3.2, panel a); additionally, these 

clusters have lower inter-daily stability, representing lower consolidation in their sleep cycle 

between days (Table 3.1). Cluster 4 also exhibits more fragmented RARs, as reflected by a 

higher intra-daily variability on par with Clusters 1 and 5 (Figure 3.2, panel a). 

Inter-daily stability in clusters 2-5 decreased across each cluster by 0.20 standard 

deviations, whereas intra-daily variability in these clusters increased by nearly a half standard 

deviation between groups. Cluster 2 “Healthy” had RAR and sleep metrics that reflected 

healthier rest-activity-patterns; for example, cluster 2 had the lowest intra-daily variability, 

highest inter-daily stability, highest sleep efficiency, highest total sleep time, lowest WASO, 

lowest length, and frequency of awakenings, and lowest report-based, sleep quality scores (Table 

3.1).  

Compared to all other RU-SATED sleep features, the start and midpoint of the least 

active 5-hour period (e.g., L5-Start and L5-Mid) had z-scores that differed the most overall for 

cluster 4 compared to all other sleep clusters. Of note, the L5 period had the latest L5 midpoint 

numerically (11:10PM), since time was represented from 0 (12:00am) to less than 24 (11:59pm). 

Since the L5 period is capturing the sleep period that crosses midnight (12:00am), the C4 cluster 

with the “highest” L5 period corresponded to having the earliest L5 midpoint for their least 
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active, sleep period compared to other clusters. Clusters C1-C3 and C5 had L5 midpoints that 

occurred between 1:43am to 3:50am.  

Cluster 4 “earlier L5 sleep midpoint” was a sleep island, since this cluster contained the 

fewest number of people, and this cluster was less proximal to other clusters when visualized 

along the first two UMAP dimensions (Figure 3.3). Cluster 4 also had the most extreme midpoint 

of the L5 period with a midpoint that was 6 standard deviations higher than all other cluster 

groups. The total activity count for the L5 and M10 period was inversely related within clusters, 

where clusters 1 and 4 having the highest L5 and cluster 4 (followed by clusters 1 and 5) having 

the lowest M10 counts. The M10 start and midpoint decreased as cluster groups increased, 

except for group 5 which was more similar to group 1 or 2.  

As the cluster number increased from 1-5, time spent in bed increased and total sleep 

time decreased (with the exception of group 4). WASO, frequency of awakenings, and length of 

awakenings were similar across groups, except for cluster 1 (Table 3.1, Figure 3.2, panel b). 

Finally, questionnaire-based sleep quality and alertness measures did not differentiate sleep 

cluster groups as well as other objectively measured sleep dimensions (Table 3.1, Figure 3.2, 

panel c).  

Assessment of Heterogeneity Enrichment 

There was no evidence of cluster enrichment for most potential latent factors, including 

age group (≥80 years old/<80 years old), race and ethnicity (white/Black/Hispanic), depression 

(yes/no), and diabetes (yes/no) through visual inspection (Figure 3.4). The density of the points 

representing individuals with cardiovascular disease were less densely clustered in cluster 2 

“Healthy” (Figure 3.4). Similarly, Table 3.2 demonstrates that Cluster 2 had the lowest 
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prevalence of cardiovascular disease (7.2%) compared to all other clusters (C1: 13.1%, C3: 

8.3%, C4: 9.9%, C5: 9.3%; overall-p = 0.001). 

Comparing Fall Rates for Sleep Profiles and RAR Measures  

We observed higher adjusted fall rates among women with disrupted sleep clusters 1, 3, 

and 4 compared to the healthy sleep cluster 2. In multiply imputed models, women in clusters 1 

and 3 had a fall rate nearly 1.2 times the magnitude of the healthy sleep cluster after full 

adjustment (Table 3.3). Notably, the incidence risk ratio (IRR) among the “earlier sleepers” 

cluster 4 showed the highest risk of falling compared to the healthy sleep cluster (IRR: 1.76 

(95%CI: 1.15-2.69); Table 3.3).  Lower inter-daily stability quartiles (reflecting greater sleep 

consolidation), higher intra-daily variability, and lower M10 activity counts were individually 

associated with having a lower fall risk after adjustment (IS, p-value=0.002; IV, p-value=0.004; 

M10, p-value=0.002; Table 3.3). In addition, the complete case analysis was also consistent with 

the multiple imputation analysis when studying the relationships between sleep clusters with fall 

risk (Table 3.4).  

Associations between Sleep Clusters with Physical Functioning Measures 

The sleep clusters were solely associated with balance component (range: 0-4) of the 

physical functioning score in the analyses using multiply imputed data. Clusters 1 “disturbed 

sleep” and 4 “earlier sleepers” on average had an adjusted mean difference of  -0.11 (95% CI: -

0.21 to -0.01) and -0.30 (95% CI: -0.55 to -0.05) for balance compared to the healthy sleep 

cluster 2. We observed no association for sleep clusters with either the overall physical 

functioning score or the chair stand or gait speed sub-scores, although there was suggestion of an 

association for gait speed and overall physical functioning in the complete case analysis (Table 

3.5).  
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Physical Functioning - Stratified Associations between Sleep Clusters and Fall Risk 

There was evidence of a statistical interaction between sleep clusters and physical 

functioning with respect to fall risk (Sleep Clusters*SPPB, omnibus p-value=0.002; Table 3.6). 

Women with higher physical functioning (SPPB 9-12) with sleep patterns classified by the 

“sleep disturbed” cluster 1 had 1.31 times the fall risk (IRR: 1.31 (95% CI: 1.03-1.66)) compared 

to the healthy sleep cluster 2 (Table 3.6). Meanwhile, women with lower physical functioning 

(SPPB 0-8) with sleep patterns classified by the “sleep disturbed” cluster 1 had 1.11 (95% CI: 

0.87-1.41) times the fall risk compared to the healthy sleep cluster. Women with lower physical 

functioning with sleep patterns classified by the “earlier sleepers” cluster 4 had 2.03 times the 

fall risk (IRR: 2.03 (95% CI: 1.16-3.58)) compared to the healthy sleep cluster 2. Women with 

higher physical functioning with sleep patterns classified by the “earlier sleepers” cluster 4 had 

1.76 times the fall risk (IRR: 1.42 (95% CI: 0.82-2.46)) compared to the healthy sleep cluster 2. 

IPCW-Weighted Analyses for Missing Sleep Cluster Data 

 The IPCW-weighted estimates were consistent with the primary statistical models for the 

relationship between sleep clusters and fall risk (Table 3.7). Note, the effect size of the 

association (seen in the primary statistical models) for sleep cluster 1 and fall risk increased after 

IPCW weighting (fully adjusted IRR: 1.21 (95%CI: 1.03-1.44). The relationship between sleep 

clusters and physical functioning scores were also consistent with prior results after IPCW 

weighting (Table 3.8). On the other hand, the relationships between M10 and intra-daily 

variability quartiles with fall risk were weakened after IPCW weighting (Table 3.7). 

3.5 Discussion 

This study provides a comprehensive examination of the relationship between sleep and 

RAR clusters and prospective fall risk based on daily reporting of falls. This chapter identified 
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several sleep and RAR profiles based on underlying sleep patterns in community-based older 

women; identification of these profiles allows for consideration of the influence of multiple, co-

occurring sleep conditions.  

Most notably, sleep cluster 4 identified earlier sleepers and was positively associated with 

greater fall risk and lower physical functioning, as evidenced by worse balance, compared to 

healthy cluster 2. Cluster 2 identified women with healthier sleep and  rest-activity patterns, and 

this cluster exhibited the lowest IV, highest IS, highest sleep efficiency, highest total sleep time, 

and lowest WASO. In addition to Cluster 4, Cluster 1 was associated with greater fall risk and 

lower balance, and individuals identified by Cluster 1 exhibited greater WASO, higher intra-

variability, and lower inter-daily rhythm stability or consolidation. Physical functioning modified 

associations between RARs and fall risk, where individuals with higher physical functioning 

showed stronger associations between sleep cluster 1 and fall risk.  

The association between sleep disturbances and fragmented rest activity rhythms on fall 

risk is likely partially mediated through balance [116]. Older adults are generally more 

vulnerable to the influence of acute sleep deprivation on balance as compared to younger adults 

[84], which may influence this population’s heightened risk of falling after experiencing sleep 

disturbances and fragmented RARs; others have shown that sleep may influence balance through 

diminishing cognitive load with aging [117].  This hypothesis is a more specific example of the 

conceptual model of geriatric syndromes, in which these prevalent health outcomes in older 

adults co-occur and are synergistic. 

This study is consistent with existing prospective cohort studies in MrOS showing an 

association between a RAR metric that characterized the timing of the RAR, specifically 

acrophase, and fall risk in older adults [86].  Later timing of peak circadian activity, as 
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determined by acrophase, was associated with greater risk of being a frequent faller compared to 

earlier acrophase timing. Measurement of the exposure and disease were similar between the 

OPACH and MrOS study. The MrOS study was a prospective cohort study that objectively 

measured RARs; this study also ascertained falls every four months after recontacting 

participants with postcards or over the telephone. Note, MrOS ascertained falls over a mean of 

8.7 years, whereas the OPACH study measured falls in the year following actigraphy 

measurement. There were some methodological differences between the RARs from MrOS and 

this current study. Specifically, the analysis in MrOS utilizes RAR measures derived from the 

extended cosine model (e.g., amplitude, mesor, and acrophase), whereas this study utilizes 

measures derived from a non-parametric model (e.g. IV, IS, L5, L5 start and midpoint) [86].  

Compared to the other rest-activity metrics derived from the extended cosine curve, acrophase is 

the only sleep timing metric that describes the shift in the extended cosine curve. Specifically, 

acrophase characterizes the time of day of peak activity and indicates a preference for earlier or 

later activity rhythms. The acrophase measure is most analogous to the L5 and M10 timing 

measures that we derived from non-parametric model. Moreover, we observed that the sleep 

clusters derived using unsupervised machine learning showed greater signal in predicting fall 

risk than quartiles of the individual rest-activity metrics. Similarly, an earlier study in MrOS also 

observed associations between actigraphy-based sleep disturbance metrics (e.g., <70% sleep 

efficiency and ≤5hrs sleep duration) and self-report-based metrics (e.g., excessive sleepiness, 

sleep quality) with greater odds of being a frequent faller [118].  

Prior studies have observed associations between insomnia and sleep disturbances with 

worse performance at task-switching [112, 119], executive function and memory [120, 121]. The 

reduced ability to task switch following a poor night’s slight may promote falling, particularly 
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among individuals engaged in more physically intense activities. Studies have reported that 

individuals who are engaged in higher physical activity, who also have higher physical 

functioning, are at an increased risk of falling [122-124]. Older individuals with lower physical 

functioning may walk less often or rest more on days with poor sleep and RARs, which may 

subsequently lower their risk of falling compared to individuals with higher physical functioning. 

An alternative explanation is that fall risk is higher in individuals with lower physical 

functioning, where unhealthy sleep may be influential in this relationship as compared to other 

risk factors for falling, including weakness and reaction time. 

There are several key strengths to this chapter. This study allows for further 

generalizability of prior knowledge about sleep disturbances and fall risk to a diverse cohort that 

includes white, Black, and Hispanic/Latina older women in their late seventies and eighties. 

Valid, precise, and prospective measurement of the exposure and outcome was another strength 

of this work, since RARs were objectively measured using accelerometers at the OPACH study 

onset for up to 7 days. This study is well-suited to address this research question since there are 

limited studies with objective sleep measurements and daily surveillance of falls. Another 

strength is that we demonstrate that unsupervised learning can be successful at identifying 

behavioral clusters that are potentially meaningful when looking at declining physical function 

and fall risk among older adults. Examining circadian-sleep parameters independently when 

modeling associations between sleep and fall risk ignores that these measures co-occur and are 

correlated. Identifying sleep behavioral profiles, comprised of multiple sleep dimensions, allow 

for consideration of how sleep and rest-activity parameters act in concert to modify fall risk. 

Lastly, another key strength was the use of race and ethnicity stratified cross-validation to tune 

hyperparameters and score clustering. Use of this race and ethnicity stratified cross-validation 
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ensures that the model is trained over each round or fold of data using data with a balance of 

racial-ethnic diversity that matches the original analytic sample. This approach to cross-

validation helps ensure that the model scoring is not influenced by varying racial-ethnic 

composition between rounds or folds of data during validation. 

UMAP has several advantages compared to other data reduction techniques, including 

computational efficiency, flexibility to work with multiple types of variables, and fewer 

hyperparameters to tune compared to other data reduction techniques, such as t-SNE [102]. 

Although PCA is one of the most commonly used data reduction techniques, PCA is a linear, 

data reduction method that maximizes projected variance and identifies more global structures, 

when identifying principal components in the order of importance [125]. Other data reductions, 

such as t-SNE, identify local structure, yet the findings from t-SNE, specifically the arrangement 

of clusters, are less frequently re-identified when attempting to reproduce these results across 

samples [102]. 

There are a few limitations to this study. The identification of behavioral clusters is an 

exploratory approach to evaluate associations with sleep rhythm metrics and fall risk. The 

generalizability of the associations observed between sleep clusters, fall risk, and physical 

functioning needs further exploration. A majority of the OPACH participants had healthy sleep 

patterns, with the population averaging approximately 8 hours of sleep, 96% sleep efficiency, 

and low sleep latency. Different sleep clusters may be identified among older adults who exhibit 

more disrupted sleep and greater variability in their sleep as compared to the sleep patterns seen 

among OPACH participants. For example, short sleep is a commonly reported sleep concern 

among older adults, with one study estimating approximately 30% of older adults not receiving 

at least 7 hour of sleep per night [126]. Among adults with more disrupted sleep, we may expect 
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similar clusters but with greater overall difference in sleep features between groups. Additional 

studies are needed to confirm the reproducibility of generating these clusters among a general 

population with unhealthier sleep patterns, as well as among older men who were not represented 

in the OPACH study. Clustering sleep and RAR parameters in a population with greater 

variability in their sleep patterns may uncover additional sleep and RAR features that may be 

predictive of fall risk and declining physical function. Future researchers may also consider 

performing clustering with different hyperparameters or constraints (e.g., k number of clusters). 

There is a growing shift to modeling multiple dimensions of sleep and circadian 

behaviors simultaneously, using dimension reduction [25], clustering analyses [26], or factor 

analyses [27], and evaluating associations of these sleep profiles with morbidity and mortality 

[28]. This study demonstrated that the unhealthy sleep clusters, representing disrupted RARs, 

lower sleep efficiency, and earlier L5 midpoint timing, are identifying poor sleepers among older 

adults. Older adults who are poor sleepers are more likely to have worse physical functioning 

and a heightened fall risk compared to healthier sleepers. Addressing sleep concerns and shifting 

women from unhealthy to healthy sleep clusters may further promote longevity by addressing 

multiple, interlinked geriatric syndromes, involving physical functioning, falls, and cognitive 

performance. Future work may consider reproducing this clustering in a similarly aged cohort 

and may also look to extend this to a broader age demographic. 
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Figure 3.1. Flow chart of the patient characteristics in the Women’s Health Initiative analysis 
(n=4,543) 
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Figure 3.3. Two-dimensional visualization of k-means (k=5) clustering following the UMAP 

data reduction 

The five clusters are shown in the figure above numbered as 0-4 with the same ordered 
maintained throughout the table.  

For example, cluster 0 corresponds to cluster 1 in all of the other tables. The healthy reference 
group used in the analyses is the blue cluster. 
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Figure 3.4. Cluster enrichment plot of clinically relevant cardiometabolic and aging phenotypes 

This cluster enrichment analysis shows that there are no patterns of clinically relevant covariates 

that are acting as a latent variable that may be influencing clustering performance. There was 
suggestion that the healthy sleep cluster 2 had a lower density of CVD cases compared to the 

other sleep clusters. This plot influenced exploration of a sleep cluster by CVD interaction in 
associations between sleep and fall risk.
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Table 3.2. Baseline Characteristics in OPACH (2012-2018) and Stratified by Sleep-Circadian 
Clusters derived from K-Means (k=5) following UMAP data reduction (n=4,543) 

Under the cluster identifier, the names summarize the contents of the cluster. Mean, standard 
deviation, and proportions were reported across stratum of inter-daily quartile. Differences in 

characteristics across categories were determined using Chi square tests for proportions and 
ANOVA for continuous variables. Percentages shown in the total column and within each sleep 
cluster stratum do not add up to 100%, since the percentages include the missingness. 

 
 Sleep-Circadian Clusters 

 

Total Cluster 1  

“Sleep 
Disturbed” 

Cluster 2 

“Healthy” 

Cluster 3 

“Mild Frag-
mentation” 

Cluster 4  

“Earlier L5 
midpoint” 

Cluster 5  

“C1with 
Shorter, Less 

Disrupted 

Sleep” 

 

 

n=4,543 n=1051 n=1043 n=1446 n=105 n=898 p-

values† 

Age, yrs.; mean (sd) 78.69 (6.74) 78.70 (6.87) 77.90 (6.66) 79.28 (6.60) 80.47 (6.92) 78.43 (6.76) <0.001 

Age Groups, 80 Years; n (%) 2267 (49.9) 516 (49.5) 467 (44.4) 792 (54.8) 62 (59.0) 430 (47.9) <0.001 

Race-ethnicity; n (%)       <0.001 
  White 2288 (50.4) 456 (43.7) 520 (49.5) 830 (57.4) 63 (60.0) 419 (46.7)  
  Black 1519 (33.4) 444 (42.6) 305 (29.0) 407 (28.1) 29 (27.6) 334 (37.2)  

  Hispanic 736 (16.2) 143 (13.7) 226 (21.5) 209 (14.5) 13 (12.4) 145 (16.1)  
Education; n (%)       0.07 
  High School/GED 920 (20.3) 206 (19.8) 217 (20.6) 318 (22.0) 24 (22.9) 155 (17.3)  
  Some College 1774 (39.0) 422 (40.5) 419 (39.9) 555 (38.4) 43 (41.0) 335 (37.3)  

  College Graduate+ 1822 (40.1) 410 (39.3) 411 (39.1) 561 (38.8) 38 (36.2) 402 (44.8)  
Self-Rated Health; n (%)       <0.001 
  Excel./Very Good 2269 (49.9) 419 (40.2) 593 (56.4) 765 (52.9) 49 (46.7) 443 (49.3)  
  Good 1820 (40.1) 480 (46.0) 370 (35.2) 567 (39.2) 41 (39.0) 362 (40.3)  

  Poor/Very Poor 439 (9.7) 139 (13.3) 85 (8.1) 111 (7.7) 15 (14.3) 89 (9.9)  
Physical Activity, total steps 
per day; mean (sd) 

340.78 
(98.37) 

318.64 
(93.05) 

362.96 
(100.16) 

349.29 
(96.98) 

284.14 
(96.85) 

333.40 
(96.23) <0.001 

Physical Function; mean (sd) 68.59 

(26.08) 

62.12 

(27.73) 

73.27 

(24.25) 

71.41 

(24.85) 

60.24 

(27.53) 

67.01 

(26.15) <0.001 
Smoker Status;  n (%)       0.045 
  Non-Smoker 4033 (88.8) 881 (84.5) 958 (91.2) 1316 (91.0) 89 (84.8) 789 (87.9)  

  Current-Smoker 118 (2.6) 35 (3.4) 26 (2.5) 26 (1.8) 5 (4.8) 26 (2.9)  
Sleep Medication; n (%)       0.007 
   Not in the past month or less 3097 (68.2) 644 (61.7) 734 (69.8) 1013 (70.1) 69 (65.7) 637 (70.9)  
   Less than once per week 358 (7.9) 79 (7.6) 78 (7.4) 124 (8.6) 9 (8.6) 68 (7.6)  

   1+ times per week 690  (15.2) 193 (18.5) 166 (15.8) 200 (13.8) 14 (13.3) 117 (13.0)  
Alcohol Frequency; n (%)       <0.001 
  Non-Drinker 1563 (34.4) 384 (36.8) 342 (32.5) 489 (33.8) 44 (41.9) 304 (33.9)  
  <1 per Week 1429 (31.5) 314 (30.1) 333 (31.7) 435 (30.1) 30 (28.6) 317 (35.3)  

  1 per Week 1165 (25.6) 221 (21.2) 310 (29.5) 418 (28.9) 20 (19.0) 196 (21.8)  

BMI; mean (sd) 28.04 (5.68) 29.63 (6.22) 26.96 (5.06) 27.36 (5.39) 28.57 (5.67) 28.55 (5.75) <0.001 
Diabetes, yes; n (%) 925 (20.4) 268 (25.7) 180 (17.1) 235 (16.3) 24 (22.9) 218 (24.3) <0.001 
Cardiovascular disease, yes; n 

(%)   437 (9.6) 133 (12.8) 85 (8.1) 121 (8.4) 10 (9.5) 88 (9.8) 0.002 
Cancer, yes; n (%) 780 (17.2) 196 (18.8) 165 (15.7) 231 (16.0) 21 (20.0) 167 (18.6) 0.14 
Depression;  n (%)       0.48 
  Yes 271 (6.0) 61 (5.8) 58 (5.5) 82 (5.7) 9 (8.6) 61 (6.8)  

   No 3700 (81.4) 812 (77.9) 888 (84.5) 1187 (82.1) 79 (75.2) 734 (81.7)  

 

†P-value is an omnibus p-value and examines differences between non-NA categories or values. 
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Table 3.3. Multiply Imputed (m=25), Negative Binomial Models of Fall Rate with Sleep-
Circadian Cluster Risk Factors derived from K-Means (k=5) following UMAP data reduction 

(n=4,543) 

Abbreviations: IS – inter-daily stability; IV – intra-daily variability; L5 – activity count for least 

active 5 hours of the day; M10 – activity count most active 10 hours of the day . IRR: Incidence 
Rate Ratio. C1-5: Clusters between 1-5.   The crude model (M1) was adjusted for age, race-
ethnicity, and education. Model 2 was adjusted for the following covariates including age, race-

ethnicity, education, self-rated health, alcohol consumption, smoking status, total minutes spent 
in physical activity, cardiovascular disease, diabetes, and cancer. The fully adjusted model (M3) 

was adjusted for the same model covariates as model 2 and was additionally adjusted for sleep 
medication, depression, and body mass index.  

 
† “Earlier L5 midpoint” : An Earlier L5 midpoint corresponds to the L5 midpoint occurring later in the day 

according to time ordered from midnight up to 11:59pm. For this cluster, the L5 midpoint occurs within an hour of 

midnight, whereas the other clusters have L5 midpoints in the early morning hours after midnight. 

ǂThe L5 activity and M10 activity counts represent total activity measured with the accelerometer that occurred 

during the least active 5-hour period and the most active 10-hour period. 

 

 

  Model 1 Model 2 Model 3 

Sleep 
Exposure 

Categories 
IRR  

(95% CI) 
P-

value 
IRR  

(95% CI) 
P-

value 
IRR  

(95% CI) 
P-

value 

ML-Derived 
Clusters 

C1 
“Sleep Disturbed” 

1.25 (1.05-1.47) 
1.58E-

04 
1.19 (1.01-1.40) 0.002 1.18 (1.00-1.39) 0.002 

 
C2  

“Healthy” 
Ref  Ref  Ref  

 
C3 

“Mild Fragmentation” 
1.18 (1.02-1.36)  1.16 (1.00-1.34)  1.16 (1.00-1.34)  

 
C4 

“Earlier L5 midpoint”† 
1.93 (1.24-3.00)  1.78 (1.15-2.75)  1.76 (1.15-2.69)  

 
C5 

“C1with Shorter, Less 

Disrupted Sleep” 
1.09 (0.92-1.29)  1.06 (0.89-1.25)  1.05 (0.89-1.25)  

        
Inter-Daily 

Stability  
(IS) 

Q1 1.34 (1.15-1.55) 
7.03E-

05 
1.25 (1.07-1.47) 0.004 1.25 (1.06-1.47) 0.004 

 Q2 1.17 (0.99-1.38)  1.13 (0.96-1.34)  1.13 (0.96-1.33)  

 Q3 1.20 (1.03-1.40)  1.17 (1.01-1.37)  1.16 (1.00-1.36)  
 Q4 Ref  Ref  Ref  
        

Intra-Daily 

Variability 
(IV) 

Q1 Ref 
1.39E-

05 
Ref 

8.90E-

04 
Ref 

7.35E

-04 

 Q2 1.25 (1.07-1.47)  1.23 (1.05-1.44)  1.24 (1.06-1.45)  
 Q3 1.18 (1.00-1.39)  1.16 (0.98-1.37)  1.16 (0.98-1.37)  

 Q4 1.36 (1.16-1.59)  1.27 (1.07-1.51)  1.27 (1.07-1.51)  
        

L5  Activity 
Countsǂ 

Q1 Ref 0.35 Ref 0.26 Ref 0.31 

 Q2 1.00 (0.85-1.16)  1.00 (0.86-1.17)  1.00 (0.85-1.17)  
 Q3 0.94 (0.80-1.12)  0.96 (0.81-1.13)  0.96 (0.81-1.13)  
 Q4 1.15 (0.98-1.34)  1.17 (1.00-1.36)  1.16 (0.99-1.35)  

   
1.71E-

07 
 

5.30E-
04 

 0.002 

M10 Activity 
Countsǂ 

Q1 1.46 (1.23-1.74)  1.42 (1.10-1.82)  1.38 (1.07-1.78)  

 Q2 1.25 (1.07-1.46)  1.22 (1.00-1.48)  1.20 (0.99-1.46)  
 Q3 1.23 (1.06-1.42)  1.23 (1.04-1.44)  1.21 (1.03-1.43)  
 Q4 Ref  Ref  Ref  
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Table 3.4. Complete Case Analysis, Linear Regression of Sleep-Circadian Cluster with Physical 
Functioning Markers using UMAP and K-Means (k=5; n=3,455) 

Abbreviations: IS – inter-daily stability; IV – intra-daily variability; L5 – activity count for least 
active 5 hours of the day; M10 – activity count most active 10 hours of the day. C1-5: Clusters 

between 1-5. The crude model (M1) was adjusted for age, race-ethnicity, and education. Model 2 
was adjusted for the following covariates including age, race-ethnicity, education, self-rated 
health, alcohol consumption, smoking status, total minutes spent in physical activity, 

cardiovascular disease, diabetes, and cancer. The fully adjusted model (M3) was adjusted for the 
same model covariates as model 2 and was additionally adjusted for sleep medication, 

depression, and body mass index. 

 

  Model 1 Model 2 Model 3 

Physical 
Functioning 

Marker 

Sleep  
Clusters 

Beta  
(95% CI) 

P-
value 

Beta  
(95% CI) 

P-
value 

Beta  
(95% CI) 

P-
value 

EPESE 

SPBB Score 
(0-12) 

C2: “Healthy” 
Ref 

2.32E-
08 

Ref 
9.08E-

03 

 

Ref 
0.046 

 

 C1: “Sleep 
Disturbed” 

-0.63 (-0.86- -0.40)  -0.33 (-0.55- -0.10)  -0.23 (-0.46-0.01)  

 C3: “Mild 
Fragmentation” 

0.00 (-0.21-0.21)  0.05 (-0.15-0.26)  0.10 (-0.10-0.31)  

 C4: “Earlier L5 

midpoint” 
-0.56 (-1.12-0.00)  -0.10 (-0.64-0.44)  0.11 (-0.45-0.68)  

 C5: “C1with 
Shorter, Less 

Disrupted Sleep”\\ 
-0.26 (-0.5- -0.03)  -0.05 (-0.28-0.18)  0.05 (-0.19-0.28)  

Balance 

Test Score 
(0-4) 

C2: “Healthy” 
Ref 

1.16E-

05 
Ref 

8.39E-

03 
Ref 0.01 

 C1: “Sleep 
Disturbed” 

-0.20 (-0.30- -0.10)  -0.13 (-0.23- -0.03)  -0.11 (-0.21- -0.01)  

 C3: “Mild 
Fragmentation” 

-0.02 (-0.11-0.08)  0.00 (-0.09-0.09)  0.02 (-0.07-0.11)  

 C4: “Earlier L5 

midpoint” 
-0.43 (-0.67- -0.19)  -0.32 (-0.56- -0.08)  -0.30 (-0.55- -0.05)  

 C5: “C1with 
Shorter, Less 

Disrupted Sleep” 
-0.08 (-0.19-0.02)  -0.03 (-0.13-0.07)  0.00 (-0.10-0.11)  

Chair Stand 

Score (0-4) 

C2: “Healthy” 
Ref 

2.05E-

05 
Ref 0.18 Ref 0.47 

 C1: “Sleep 
Disturbed” -0.28 (-0.39- -0.16)  -0.14 (-0.25- -0.03)  -0.09 (-0.21-0.02)  

 C3: “Mild 
Fragmentation” 

-0.06 (-0.16-0.05)  -0.04 (-0.14-0.06)  -0.02 (-0.12-0.09)  

 C4: “Earlier L5 

midpoint” 
-0.21 (-0.48-0.07)  -0.01 (-0.27-0.26)  0.09 (-0.19-0.37)  

 C5: “C1with 
Shorter, Less 

Disrupted Sleep” 
-0.16 (-0.28- -0.04)  -0.06 (-0.18-0.05)  -0.04 (-0.15-0.08)  

Gait Speed 

Score (0-4) 

C2: “Healthy” 
Ref 

1.99E-

04 
Ref 0.01 Ref 0.02 

 C1: “Sleep 
Disturbed” -0.19 (-0.30- -0.08)  -0.09 (-0.20-0.02)  -0.04 (-0.16-0.07)  

 C3: “Mild 
Fragmentation” 

0.05 (-0.05-0.15)  0.07 (-0.03-0.17)  0.08 (-0.02-0.18)  

 C4: “Earlier L5 

midpoint” 
0.05 (-0.21-0.32)  0.21 (-0.05-0.47)  0.29 (0.01-0.57)  

 C5: “C1with 
Shorter, Less 

Disrupted Sleep” 
0.00 (-0.11-0.12)  0.07 (-0.04-0.18)  0.10 (-0.02-0.21)  
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Table 3.5. Stratified Negative Binomial Models of Fall Rate with Sleep-Circadian Cluster Risk 
Factors using UMAP and K-Means (k=5; n=3,455) 

Abbreviations: C1-5: Clusters between 1-5. The crude model (M1) was adjusted for age, race-
ethnicity, and education. Model 2 was adjusted for the following covariates including age, race-

ethnicity, education, self-rated health, alcohol consumption, smoking status, total minutes spent 
in physical activity, cardiovascular disease, diabetes, and cancer. The fully adjusted model (M3) 
was adjusted for the same model covariates as model 2 and was additionally adjusted for sleep 

medication, depression, and body mass index. 

 

  Model 1 Model 2 Model 3 

Disease 
Outcome 

Cluster
s 

IRR  
(95% CI) 

P-
value 

IRR  
(95% CI) 

P-
value 

IRR  
(95% CI) 

P-
value 

Overall        

Fall Rate C1 
1.22 (1.04-1.42) 

6.75E-

04 1.16 (0.99-1.36) 

5.25

E-03 1.14 (0.97-1.35) 

1.69E

-03 
 C2 Ref  Ref  Ref  
 C3 1.16 (1.00-1.33)  1.13 (0.98-1.30)  1.15 (1.00-1.33)  
 C4 1.99 (1.41-2.86)  1.83 (1.29-2.63)  1.97 (1.38-2.84)  

 C5 1.06 (0.90-1.25)  1.03 (0.87-1.21)  1.02 (0.87-1.21)  
Cluster* 

SPPB 
 

 0.19  0.67  0.02 

Low SPPB 

(SPPB 0-8) 
 

 1.77E-

04 

 1.49

E-04 

 1.98E

-05 
Fall Rate C2 Ref  Ref  Ref  

 C1 1.04 (95%CI: 0.82-1.31)  1.03 (95%CI: 0.81-1.31)  0.94 (95%CI: 0.73-1.20)  
 C3 1.17 (95%CI: 0.93-1.46)  1.13 (95%CI: 0.90-1.42)  1.12 (95%CI: 0.89-1.40)  

 C4 2.47 (95%CI: 1.48-4.26)  2.32 (95%CI: 1.39-3.99)  2.50 (95%CI: 1.49-4.30)  
 C5 1.01 (95%CI: 0.79-1.30)  1.03 (95%CI: 0.8-1.32)  0.99 (95%CI: 0.77-1.27)  
        

High SPPB 

(SPPB 9-12) 
 

 1.06E-

02 

 1.02

E-02 

 2.49E

-03 
Fall Rate C2 Ref  Ref  Ref  

 C1 1.42 (95%CI: 1.13-1.78)  1.40 (95%CI: 1.10-1.77)  1.44 (95%CI: 1.12-1.84)  

 C3 1.22 (95%CI: 1.00-1.48)  1.21 (95%CI: 1.00-1.48)  1.29 (95%CI: 1.05-1.59)  
 C4 1.65 (95%CI: 1.01-2.73)  1.68 (95%CI: 1.02-2.79)  1.75 (95%CI: 1.04-2.98)  
 C5 1.08 (95%CI: 0.86-1.36)  1.06 (95%CI: 0.84-1.33)  1.09 (95%CI: 0.85-1.38)  
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Table 3.6. Multiply Imputed (m=25), Stratified Negative Binomial Models of Fall Rate with 
Sleep-Circadian Cluster Risk Factors using UMAP and K-Means (k=5; n=4,543) 

Abbreviations: C1-5: Clusters between 1-5.   The crude model (M1) was adjusted for age, race-
ethnicity, and education. Model 2 was adjusted for the following covariates including age, race-

ethnicity, education, self-rated health, alcohol consumption, smoking status, total minutes spent 
in physical activity, cardiovascular disease, diabetes, and cancer. The fully adjusted model (M3) 
was adjusted for the same model covariates as model 2 and was additionally adjusted for sleep 

medication, depression, and body mass index. 
 

 

  Model 1 Model 2 Model 3 

Disease 
Outcome 

Cluster
s 

IRR  
(95% CI) 

P-
value 

IRR  
(95% CI) 

P-
value 

IRR  
(95% CI) 

P-
value 

Overall        

Fall Rate C1 
1.25 (1.05-1.47) 1.58E-

04 
1.19 (1.01-1.40) 0.002 1.18 (1.00-1.39) 0.002 

 C2 Ref  Ref  Ref  
 C3 1.18 (1.02-1.36)  1.16 (1.00-1.34)  1.16 (1.00-1.34)  

 C4 1.93 (1.24-3.00)  1.78 (1.15-2.75)  1.76 (1.15-2.69)  
 C5 1.09 (0.92-1.29)  1.06 (0.89-1.25)  1.05 (0.89-1.25)  

Cluster* 

SPPB 
 

 0.001  0.001  0.002 

Low SPPB 
(SPPB 0-8) 

 
 0.03  0.04 

 
 0.04 

 
Fall Rate C2 Ref  Ref  Ref  

 C1 1.12 (0.88-1.43)  1.11 (0.87-1.41)  1.11 (0.87-1.41)  
 C3 1.20 (0.96-1.51)  1.16 (0.92-1.45)  1.16 (0.93-1.45)  
 C4 2.07 (1.16-3.70)  2.04 (1.15-3.62)  2.03 (1.16-3.58)  
 C5 1.07 (0.82-1.39)  1.07 (0.83-1.39)  1.08 (0.84-1.39)  

        
High SPPB 

(SPPB 9-12) 
 

 0.04 
 

 0.05 
 

 0.07 
 

Fall Rate C2 Ref  Ref  Ref  

 C1 1.33 (1.06-1.67)  1.32 (1.05-1.66)  1.31 (1.03-1.66)  
 C3 1.14 (0.94-1.39)  1.15 (0.95-1.40)  1.15 (0.95-1.41)  
 C4 1.47 (0.85-2.54)  1.46 (0.84-2.52)  1.42 (0.82-2.46)  
 C5 1.06 (0.84-1.33)  1.03 (0.82-1.31)  1.03 (0.82-1.31)  
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Table 3.7. Negative Binomial Models of Fall Rate with Sleep-Circadian Cluster Risk Factors 
derived from K-Means (k=5) following UMAP data reduction (n=6,489) with IPCW weighting 

for missing accelerometry data 

Abbreviations:  IS – inter-daily stability; IV – intra-daily variability; L5 – activity count for least 

active 5 hours of the day; M10 – activity count most active 10 hours of the day. C1-5: Clusters 
between 1-5.   The crude model (M1) was adjusted for age, race-ethnicity, and education. Model 
2 was adjusted for the following covariates including age, race-ethnicity, education, self-rated 

health, alcohol consumption, smoking status, total minutes spent in physical activity, 
cardiovascular disease, diabetes, and cancer. The fully adjusted model (M3) was adjusted for the 

same model covariates as model 2 and was additionally adjusted for sleep medication, 
depression, and body mass index. 
 

 

  Model 1 Model 2 Model 3 

Sleep Exposure Categories 
IRR  

(95% CI) 
IRR  

(95% CI) 
IRR  

(95% CI) 

ML-Derived 
Clusters 

C1 
“Sleep Disturbed” 

1.32 (1.11-1.57) 1.23 (1.05-1.46) 1.21 (1.03-1.44) 

 
C2  

“Healthy” 
Ref Ref Ref 

 
C3 

“Mild Fragmentation” 
1.14 (0.96-1.35) 1.13 (0.96-1.33) 1.13 (0.96-1.33) 

 
C4 

“Earlier L5 midpoint” 
1.74 (1.17-2.56) 1.47 (0.99-2.16) 1.40 (0.96-2.01) 

 
C5 

“C1with Shorter, Less 

Disrupted Sleep” 
0.99 (0.86-1.15) 0.96 (0.83-1.11) 0.94 (0.81-1.09) 

     
Inter-Daily 

Stability 
Q1 1.54 (1.27-1.83) 1.40 (1.17-1.66) 1.40 (1.17-1.65) 

 Q2 1.18 (1.02-1.37) 1.13 (0.98-1.31) 1.14 (0.99-1.31) 

 Q3 1.18 (1.00-1.39) 1.14 (0.97-1.33) 1.15 (0.99-1.33) 

 Q4 Ref Ref Ref 
     

Intra-Daily 
Variability 

Q1 Ref Ref Ref 

 Q2 1.01 (0.86-1.20) 0.96 (0.81-1.12) 0.97 (0.83-1.14) 

 Q3 0.95 (0.80-1.13) 0.87 (0.74-1.03) 0.88 (0.75-1.04) 
 Q4 1.28 (1.04-1.54) 1.07 (0.87-1.32) 1.07 (0.88-1.33) 

     

L5 Activity Counts Q1 0.86 (0.72-1.03) 0.87 (0.73-1.02) 0.87 (0.73-1.03) 

 Q2 0.96 (0.80-1.17) 0.98 (0.82-1.17) 0.97 (0.81-1.16) 

 Q3 0.94 (0.79-1.13) 0.99 (0.84-1.18) 0.97 (0.82-1.14) 
 Q4 Ref Ref Ref 

     
M10 Activity 

Counts 
Q1 Ref Ref Ref 

 Q2 1.51 (1.26-1.78) 1.29 (1.01-1.67) 1.26 (0.98-1.61) 
 Q3 1.17 (0.98-1.38) 1.06 (0.85-1.28) 1.05 (0.84-1.27) 

 Q4 1.02 (0.87-1.19) 0.98 (0.83-1.16) 0.97 (0.82-1.15) 
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Table 3.8. Linear Regression Models of Sleep-Circadian Cluster with Physical Functioning 
Markers using UMAP and K-Means (k=5; n=6,489) with IPCW weighting for missing 

accelerometry 

Abbreviations: C1-5: Clusters between 1-5. The crude model (M1) was adjusted for age, race-

ethnicity, and education. Model 2 was adjusted for the following covariates including age, race-
ethnicity, education, self-rated health, alcohol consumption, smoking status, total minutes spent 
in physical activity, cardiovascular disease, diabetes, and cancer. The fully adjusted model (M3) 

was adjusted for the same model covariates as model 2 and was additionally adjusted for sleep 
medication, depression, and body mass index. 

 

 

 

  Model 1 Model 2 Model 3 

Physical 
Functioning 

Marker 

Sleep  
Clusters 

Beta  
(95% CI) 

Beta  
(95% CI) 

Beta  
(95% CI) 

EPESE SPBB 

Score (0-12) 
C2: “Healthy” Ref Ref Ref 

 C1: “Sleep 
Disturbed” 

-0.47 (-0.64--0.30) -0.18 (-0.35-0.00) -0.13 (-0.30-0.04) 

 C3: “Mild 
Fragmentation” 

-0.14 (-0.30-0.02) -0.06 (-0.21-0.09) -0.04 (-0.19-0.10) 

 C4: “Earlier L5 
midpoint” 

-0.98 (-1.44--0.51) -0.66 (-1.09--0.22) -0.58 (-1.04--0.13) 

 C5: “C1with Shorter, 
Less Disrupted 

Sleep” 
-0.16 (-0.33-0.02) 0.02 (-0.15-0.20) 0.06 (-0.12-0.23) 

Balance Test 

Score (0-4) 
C2: “Healthy” Ref Ref Ref 

 C1: “Sleep 

Disturbed” 
-0.18 (-0.26--0.11) -0.10 (-0.18--0.03) -0.08 (-0.16--0.01) 

 C3: “Mild 
Fragmentation” 

-0.05 (-0.12-0.02) -0.03 (-0.09-0.04) -0.02 (-0.09-0.05) 

 C4: “Earlier L5 

midpoint” 
-0.51 (-0.73--0.30) -0.42 (-0.63--0.21) -0.39 (-0.61--0.19) 

 C5: “C1with Shorter, 
Less Disrupted 

Sleep” 

-0.06 (-0.14-0.02) -0.01 (-0.08-0.07) 0.00 (-0.07-0.08) 

Chair Stand 
Score (0-4) 

C2: “Healthy” Ref Ref Ref 

 C1: “Sleep 

Disturbed” 
-0.12 (-0.21--0.04) 0.00 (-0.08-0.09) 0.02 (-0.07-0.10) 

 C3: “Mild 
Fragmentation” 

-0.06 (-0.15-0.02) -0.03 (-0.11-0.05) -0.02 (-0.11-0.06) 

 C4: “Earlier L5 

midpoint” 
-0.25 (-0.46--0.05) -0.11 (-0.32-0.10) -0.08 (-0.30-0.13) 

 C5: “C1with Shorter, 
Less Disrupted 

Sleep” 
-0.07 (-0.16-0.02) 0.00 (-0.09-0.09) 0.02 (-0.07-0.10) 

Gait Speed 
Score (0-4) 

C2: “Healthy” Ref Ref Ref 

 C1: “Sleep 

Disturbed” 
-0.21 (-0.29--0.13) -0.12 (-0.20--0.04) -0.11 (-0.19- -0.03) 

 C3: “Mild 
Fragmentation” 

-0.07 (-0.14-0.01) -0.04 (-0.12-0.03) -0.04 (-0.11-0.04) 

 C4: “Earlier L5 

midpoint” 
-0.19 (-0.39-0.00) -0.08 (-0.28-0.11) -0.06 (-0.26-0.13) 

 C5: “C1with Shorter, 
Less Disrupted 

Sleep” 
-0.05 (-0.14-0.04) 0.00 (-0.08-0.1) 0.01 (-0.07-0.10) 
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Chapter 3, in part, is currently being prepared for submission for publication of the 

material. Garduno, Alexis C.; Viswanath, Varun; Smarr, Benjamin; McEvoy, Linda K.; Xiao, 

Qian; Full, Kelsie; Gallo, Linda; Parada, Humberto; Crandall, Carolyn; Cauley, Jane; Tinker, 

Lesley F.; LaCroix, Andrea Z. The dissertation author was the primary researcher and author of 

this material. 
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4. Bayesian Network Analysis of Rest-Activity Rhythms, Alzheimer’s Disease and 

Dementia among Diverse Older Women in the Women’s Health Initiative 

4.1 Abstract 

Importance: Circadian disturbances have been observed in those diagnosed with 

Alzheimer’s Disease (AD) and those without dementia with AD pathology. It is unknown the 

extent to which these results are confounded by other sleep measures.  

Objective: To simultaneously evaluate the relationships between multiple sleep and 

circadian disturbance measures with all cause dementia in a diverse population of older women. 

Design, Setting, Participants: Prospective cohort study of older women with 

accelerometry from baseline AD (2012-2013), linked to genetic and Centers for Medicare and 

Medicaid Services (CMS) claims-based (1991-2020) databases. The setting was community-

dwelling participants from the Women’s Health Initiative (WHI) Objective Physical Activity and 

Cardiovascular Health (OPACH) Study. Participants were ambulatory older women who were 

cognitively healthy at baseline. 

Methods: Multivariable Cox proportional hazard models allowed for estimation of 

associations between sleep-RAR, dementia, and AD. Bayesian network models were constructed 

to identify direct and indirect sleep-RAR associations with AD and dementia using a 

bootstrapped model with 1,000 iterations. We simulated the intervention effect of sleep behavior 

changes, including improving inter-daily stability and lowering intra-daily RAR fragmentation, 

using do-calculus. 

Results: Activity counts from the most active 10-hour period (M10 activity) (Q4, 

HR=1.91 (95%CI: 1.43-2.56), p <0.001) and the M10 period start time (Q2, HR: 0.72 (95%CI: 

0.56-0.92), p=0.048) were inversely associated with incident dementia after full adjustment. 
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Individuals with an M10 start time prior to 8:56am were at lower risk for incident dementia. 

Individuals with less stable RARs (Q1) had a greater hazard of incident AD (HR, Q1: 1.15 (95% 

CI:  1.15 (1.02-1.29), p=0.03). M10 activity was a robust central hub (dementia: degree 

centrality=14, betweenness centrality=117, Kleinberg hub score=1.0) that bridged the sleep, 

dementia, and AD networks. The potential causal odds ratio for the total indirect association 

between intra-daily variability (IV) (Q1 to Q4) and AD was OR = 1.40 (95%CI:1.22-1.60), and 

the potential causal odds ratio for the total indirect association between IV(Q1 to Q4) and 

dementia was OR = 1.85 (95% CI:  1.57-2.19). Similar, indirect associations were observed 

between inter-daily stability (IS), AD, and dementia, although the strength of these associations 

was weaker. 

4.2 Introduction 

Dementia is a clinical syndrome defined as the acquired loss of cognitive abilities in two 

or more domains of sufficient severity to interfere with daily activities that is caused by brain 

disease or injury [127]. Alzheimer’s Disease (AD) is the most common neurodegenerative form 

of dementia [127] and leads to worsening of memory, thought processes, and functional health 

[128]. In 2022, an estimated 6.5 million adults in the United States were reported as living with 

AD, with 75% of this population aged 75 years and older [129]. Black and Hispanic older adults 

have higher age-adjusted incident rates of dementia than Non-Hispanic white older adults [130], 

yet these race and ethnic groups are underrepresented in dementia research [131]. 

Older adults exhibit more fragmented sleep rhythms as they age, and they undergo a shift 

in their preferred waketime to a “morning lark” chronotype among other age-related changes 

[132]. Sleep rhythms are recurring, twenty-four-hour patterns governed by the suprachiasmatic 

nucleus (SCN) in the hypothalamus, and the SCN entrains other physiological clocks [133]. 
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Sleep rhythms are further modified by light exposure, quality and timing of physical activity and 

meal consumption, and genetics among other factors [31]. Sleep rhythms, such as stability and 

synchrony, can be considered modifiable behaviors that may be associated with lower dementia 

risk.  

Studies evaluating associations between objectively measured sleep and AD have focused 

largely on sleep macroarchitecture (e.g., sleep duration, efficiency) and microarchitecture, and 

not circadian disturbances [134-137]. Circadian disturbances have been observed among those 

with preclinical AD (i.e. those who have evidence of AD pathology but do not have 

dementia)and to further worsen with progression of mild cognitive impairment (MCI), a 

prodromal stage of AD [138, 139], although these studies did not consider the role of other sleep 

metrics. A recent study in the Women’s Health Initiative observed a prospective association 

between weakened RARs and probable dementia; this study was conducted in predominantly 

white older women [93].  

There is a growing shift to modeling multiple dimensions of sleep and circadian 

behaviors simultaneously [140, 141]. Regression-based approaches may be limited in 

characterizing multivariate relationships [142]. Structural learning of a network is an alternative 

approach that can be used to identify the network of relationships between correlated risk factors 

for dementia, and this approach can assist with identifying pathways for intervention and/or 

future study between sleep and cognition [143].  

This study was aimed at disentangling associations between objectively measured sleep 

and rest-activity characteristics with all cause dementia and AD using Medicare Claims data. 

Bayesian network (BN) models allowed us to simultaneously evaluate multivariate associations 

between multiple sleep and circadian metrics and dementia and identify potential indirect effects. 
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Utilizing claims data allows for retention of a larger population of Black or Hispanic/Latina older 

women with accelerometry data. 

4.3 Methods 

Study Population: 

The Objective Physical Activity and Cardiovascular Disease Health in Older Women 

(OPACH) Study is a prospective, ancillary study of the WHI that defined the cohort for our 

secondary analysis [90]. In brief, a total of 6,489 ambulatory women consented to participate in 

the OPACH study from 2012-2013 and wore a GT3X+ accelerometer (ActiGraph LLC, 

Pensacola, Florida) for up to 7 days. In this study, we excluded 345 women for whom we could 

not obtain RAR metrics from our accelerometry data using our script. We also excluded 450 

women with greater than 50% of the epochs did not meet data processing standards. Research 

technicians scored a subset of sleep duration periods as a part of another secondary analysis [91]. 

Manual scoring is a validated approach for determining sleep intervals and reduces 

misclassification of wake-sleep periods. An additional 1,151 women were excluded if these 

technicians had not performed manual sleep scoring (Figure 4.1). Manual scoring was not 

performed if an accompanying sleep log was absent, the GT3X file was missing, or there was no 

night accelerometry wear time. Additionally, these technicians did not perform scoring for 

women who did not have measured cardiometabolic biomarkers. 

After performing accelerometry-related exclusions, we excluded 263 individuals with no 

enrollment records available in the CMS dataset. Next, we required that OPACH participants be 

enrolled in either Medicare Part A, Part B, or A and B for at least 50% of the eligible follow-up 

period until the date of dementia/AD diagnosis or date of death, resulting in the exclusion of 171 

women. Of note, approximately half of the OPACH population was insured under an HMO at 
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some point during follow-up. Periods of enrollment under an HMO are treated as missing since 

HMO claims and subsequent disease history are not fully captured during these enrollment 

periods. We adopt a more inclusive approach with enrollment to understand sleep, dementia, and 

AD risk in a representative, diverse population of older adults [144]. Requiring continuous 

enrollment would potentially exclude women with slight lapses in enrollment. Of the remaining 

4,109 women, we excluded those with prevalent dementia and AD (n=206), in order to ensure 

that the sample was cognitively healthy at baseline. The final analytic sample after these 

exclusions was 3,873 women. 

Sleep and Rest-Activity Measures:  

Multiple sleep and RAR measures were chosen to represent each sleep domain based on 

the RUSATED model; the RUSATED model identifies sleep by the following domains: 

regularity, duration, timing, alertness/sleepiness, and satisfaction/quality [24]. Rest-activity 

rhythm (RAR) measures were calculated using non-parametric models for sleep-activity data 

using previously described methods [92, 93]. These regularity and timing measures included 

intra-daily variability (IV), inter-daily stability (IS), average hourly activity during five 

consecutive hours with the lowest activity (L5), the average hourly activity during the 10 

consecutive hours of the day with the highest activity (M10), and several L5 and M10 timing 

markers, including L5 start, L5 midpoint, M10 start, and M10 midpoint. Higher IV corresponded 

to higher rhythm fragmentation during the day, as evidenced by napping or nighttime 

awakenings, whereas higher IS corresponded to higher rhythm stability, or less variability 

between RARs between days.  

Sleep duration (hours) was processed from ActiLife version 6.11 software. First, the 

activity from the accelerometer was sampled at 30 Hz and aggregated into 60-second Agilegraph 
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Date Files (ADF). Individual ADF files were scored using a standard protocol by a trained 

technician that identified sleep periods. These technicians used participant’s sleep logs and a 

visual review of the data for each night the participant wore the device [91]. Identification of 

these sleep periods aligned with the actigraphy method guidelines from the Society of Behavioral 

Sleep Medicine [94, 95]. Additional subjective sleep measures were collected during the LLS 

home-visit, or the most recent preceding WHI questionnaire assessment, including sleep quality, 

daytime sleepiness, and napping. 

Outcome Measures:  

We leveraged the Centers for Medicare and Medicaid Services Chronic Condition Data 

Warehouse with claims from 1991-2020 [145] to identify incident dementia and AD cases after 

OPACH baseline (2012-2013) through 2020. We classified women with at least one inpatient or 

outpatient diagnosis code with dementia or AD using the Bynum algorithm [146, 147], 

respectively - (see Supplement 1-2 for ICD codes included for each outcome), or as having a 

prescription for donepezil, rivastigmine, galantamine, or memantine [148, 149]. This Bynum 

algorithm definition of dementia had a sensitivity of 79%, specificity of  88%, positive predictive 

value of 50%, and negative predictive value of 97% among patients who were continuously 

enrolled for the one-year study period in Medicare Parts A and B [146]. The accuracy of this 

definition would be 86% assuming dementia prevalence was 20%. 

Covariates: 

Covariates were ascertained at the Long-Life Study (LLS) home-visit and the most recent 

WHI questionnaire assessment preceding accelerometry measurement. These covariates were 

selected based on domain knowledge of confounding or mediating factors in the association 

between sleep and dementia/AD for survival and network models as appropriate. Specifically, 
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social behavioral factors (e.g., smoking status and alcohol use) [150, 151], and cardiometabolic 

conditions [91, 152] may directly or indirectly influence the relationship from sleep and RAR to 

cognitive outcomes, respectively. 

Age was represented as continuous in years; race and ethnicity were defined as Black, 

Hispanic/Latina/Latino, non-Hispanic white, and education was defined as high school/GED; 

some college; college graduate or greater. Type 2 diabetes, cardiovascular disease, and 

depression were defined in all models as the presence or absence of the disease using self -

reported history at baseline. The behavioral factors were defined the same across models, 

including smoking status (current/non-smoker) and alcohol use (non-drinker; <1 drink per week; 

1 per week), with the exception of physical activity. In survival analyses, physical activity was 

modeled continuously as total physical activity in minutes.  

Women were classified as having low (SPPB: 0-8) or high physical functioning (SPPB: 

9-12) using the short physical performance battery (SPPB) that was measured during the LLS 

visit [99, 153]. In both models, social support was ascertained using the 9-item version of the 

Medical Outcomes Study Social Support Survey (MOS) [154]. Sleep medication use was 

categorized as not in the past month or less, less than once per week, and 1+ times per week. 

Body mass index (BMI) was categorized into the following groups: <25.0, 25.0 to 29.9, and 

≥30.0 kg/m2. Several markers used for diagnosing metabolic syndrome were included in the BN 

network as possible mediating factors, where each cardiometabolic marker was categorized 

according to this harmonized definition [155]. For example, elevated triglycerides were defined 

as ≥150 mg/dL; reduced HDL was defined as <50 mg/dL. Elevated fasting glucose was defined 

as having ≥100 mg/dL, whereas elevated blood pressure was defined as having systolic blood 

pressure (BP) ≥130 and/or diastolic BP ≥85 mg/dL. 
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Statistical Analyses:  

Descriptive statistics characterized the sociodemographic, behavioral, and health 

characteristics for the overall population and stratified by quartiles of M10. We estimated 

associations between individual sleep and sleep rhythm metrics and incident dementia/AD using 

cox proportional hazard models. Models were progressively adjusted for confounding variables, 

including age, race-ethnicity, education, general health, alcohol use, smoking status, 

accelerometer-measured minutes of physical activity, cardiovascular disease, diabetes, BMI, 

sleep medication use, social support, and physical functioning. We tested for the presence of a 

statistical interaction between the rest-activity activity metrics and APOE4 (ε4 carrier/ versus 

non-carrier) by including RAR* APOE4 term in the survival models; an interaction was 

identified using a p-threshold of 0.05. We hypothesized that protective associations between 

healthy rest-activity metrics and AD or dementia would be stronger among APOE4 non-carriers 

compared to APOE4 carriers based on prior literature review. 

Bayesian Network Analysis:  

A BN analysis is a statistical model that represents multivariate relationships between 

variables. In epidemiological research, a directed acyclic graph is a specific type of graph used to 

formulate scientific hypotheses and can be used to identify and communicate confounding 

variables for adjustment. Similarly, a graph identified by a BN analysis can be constrained to 

prevent feedback loops, and these graphs can be undirected, partially directed, or directed. Each 

sleep feature, cognitive outcome, and covariate (e.g., depression, smoking status, CRP, fasting 

glucose) is represented as a node; edges are (direct and indirect) paths that connect each node 

and represent dependencies. For example, the absence of an edge between two nodes represents 

that these nodes are conditionally independent from other variables entered into the BN model.  
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A BN identifies dependencies and conditional independence between variables and can be 

written out as a joint probability of the conditional probabilities with the following form:  

Pr(𝑋|𝑀) =  ∏ Pr (𝑋𝑖|𝑝(𝑋𝑖)) 

where X comprises the set of variables (e.g., X1 = intra-daily variability, X2 = social support) 

input into the BN model M. Within this graph, nodes can represent continuous or categorical 

variables, and the corresponding probability distribution can be estimated by regression methods 

including multivariate Gaussian or non-parametric distributions for continuous, or multinomial 

distributions for categorical variables. There can be more than one graph that matches the 

dependencies represented in a BN; in other words, two or more directed graphs may have the 

same Markov properties and be Markov equivalent. It is also possible for Markov graphs to 

identify hypothetical causal networks by artificially modeling the counterfactual within each 

individual in the population and then estimating the potential causal relative effects. 

We have chosen to undertake network analysis (using bnlearn R packages [156]) to 

characterize pathways in which sleep disturbances, insomnia, and sleep fragmentation directly 

influence development of dementia/AD. This network model may further identify which sleep 

features, such as sleep fragmentation or shortened sleep duration, are central in the dementia/AD 

network and bridge pathways between known risk factors, such as alcohol use, smoking status, 

and/or depression, with development of dementia/AD. We also hypothesized that there may be 

additional, indirect connections between sleep fragmentation and shortened sleep duration with 

dementia and/or AD through cardiometabolic factors, including body mass index, diabetes, or 

cardiovascular disease. First, we fit BN models to examine multivariate relationships between 

sleep and RAR metrics with incident dementia and AD. We fit separate BN models for each 

outcome, in order to examine incident dementia and AD. Within BN models, the incident 
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outcomes were operationalized as dementia or AD within 9 years of follow-up (yes/no). 

Individuals who died prior to the end of follow-up and had not developed the outcome were 

censored from network models. Based on domain knowledge, we constrained the BN network 

model to prevent age, race, and ethnicity, APOE4, and education from having other nodes as 

parents. The outcomes of dementia and AD were constrained to prevent these outcomes from 

parenting any other nodes in the network. 

We implemented the score-based tabu algorithm in bnlearn [156] to construct sleep-

dementia/AD networks using a two-step process: the first step searches the space of penalized 

likelihood scores to identify all possible acyclic causal relationships between variable pairs. The 

second step performs a series of conditional independence tests to rule out possible edges. We 

explored use of mutual information, Pearson’s Chi-Squared, Fast Mutual Information, AIC, and 

BIC [156]. Bootstrap resampling was performed to learn 1,000 network structures, which were 

averaged to identify the consensus network, as this consensus network has better predictive 

power than choosing a single high-performing network [157]. 

In addition, we characterized the stability of the inferred edges by calculating arc strength 

and direction strength, which is the probability of the edge or direction occurring over the total 

number of networks, respectively. Using the BN models, we report associations adjusted for the 

Markov Blanket (e.g., the subset of variables or parents that directly influenced these outcomes). 

For each edge from the averaged BN model, the parent node is an independent variable in the 

BN model that predicts the child node and is conditionally independent of other non-parents. 

Based on the edges identified in the exploratory BN models, we estimated direct effects and 95% 

confidence intervals for associations between sleep parameters and incident dementia and AD 

after conditioning on parents identified in the BN network using multinomial and logistic 
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regression as appropriate. Indirect effects were estimated using the lavaan package for structural 

equation modeling (see Supplementary Methods for additional details) by constructing mediation 

and outcome models adjusted for parents in the BN models. We estimated 95% confidence 

intervals for indirect effects using bootstrapped confidence intervals over 1,000 samples. 

Simulating Sleep Behavior Change in Sleep-dementia/AD Networks:  

With do-calculus within the bnlearn package using the cpquery function, we performed a 

simulation in the sleep-AD and sleep-dementia networks to estimate the average treatment effect 

of healthy sleep behaviors (e.g., strong sleep rhythmicity in the upper quartile) on dementia 

and/or AD, given the observed network structure between sleep and cognitive performance. This 

treatment effect can be estimated by specifying a conditional, intervention distribution (e.g., ). 

For example, the causal odds ratio (OR) was estimated by artificially exposing each individual to 

the treatment (e.g., quartile 4 of intra-daily variability) and also exposing each individual to the 

non-treatment (e.g., quartile 1 of intra-daily variability) using the following formula: 

 𝐶𝑎𝑢𝑠𝑎𝑙 𝑂𝑅𝐴𝐷 =
𝑃(𝑌𝐴𝐷 =1 |𝑑𝑜(𝐴𝑄4=1)) /(1−𝑃(𝑌𝐴𝐷=1 |𝑑𝑜(𝐴𝑄4=1)) ) 

𝑃(𝑌𝐴𝐷 =1 |𝑑𝑜(𝐴𝑄4 =0)) /(1−𝑃(𝑌𝐴𝐷 =1 |𝑑𝑜(𝐴𝑄4=0)) )
 

where  𝑑𝑜(𝐴𝑄4 = 0) = 𝑑𝑜(𝐴𝑄1 = 1), since the reference is the lowest quartile of the IV 

exposure. We estimated 95% confidence intervals by performing bootstrapping with 200 

samples. Based on the edges identified in the BN models, we estimated the potential causal OR 

for IV (treatment=Q4 vs. Q1), IS (treatment=Q1 vs. Q4), and M10 activity (treatment=Q4 vs. 

Q1). 

4.4 Results 

WHI Population Characteristics 

The primary analytic sample comprised 3,873 women who were an average of 79 (±6.61) 

years old, of whom 32.3% self-identified as Black, 15.7% self-identified Hispanic/Latina, and 
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52.0% self-identified as white (Table 4.1). These women predominantly had graduated or 

completed some college (79.7%), were non-smokers (97.2%), and were non-drinkers or 

infrequent drinkers (71.5%). The mean BMI of these women was 28.01 (±5.59), with 19.8% 

reporting physician-diagnosed diabetes and 9.7% reporting physician-diagnosed cardiovascular 

disease (CVD). Depression was prevalent in 6.4% of the population, and cancer was reported in 

17.2%., and 74.7% of the population reported no sleep medication use in the past month or less. 

In terms of overall health, a majority of participants reported to be in good to excellent health 

(90.6%), with moderate reported physical functioning scores averaging 68.80 (±25.87) and lower 

social support averaging 37.26 (±7.83; range=9-45). 

RAR-Stratified Population Characteristics 

IS quartiles ranged from 0.08-0.41 (Q1), 0.42-0.49 (Q2), 0.49-0.56 (Q3), and 0.56-1.00 

(Q4); IV quartiles ranged from 0.36-0.92 (Q1), 0.93-1.09 (Q2), 1.10-1.29 (Q3), and 1.30-2.38 

(Q4). L5 quartiles ranged from 0.10-5.75 (Q1), 5.76-8.40 (Q2), 8.41-12.36 (Q3), and 12.37-

90.63 (Q4). M10 quartiles ranged from 11.35-80.34 (Q1), 80.35-108.954 (Q2), 108.95-143.53 

(Q3), and 143.54-495.36 (Q4). The start of the M10 period (M10 Start) ranged from 12am-

6:57am (Q1), 6:58am-7:54am (Q2), 7:55am-8:55am (Q3), and 8:56am-11:59pm (Q4). Compared 

to women in the lowest M10 quartile, women in the highest M10 quartile were more often <80 

years old (33.0% vs. 69.9%), had more physical activity, had higher physical functioning, and 

reported more frequent alcohol consumption (Table 4.1). Those in the highest M10 quartile were 

more likely to report being in excellent or very good health and less often had diabetes, 

cardiovascular disease, or cancer at baseline (Table 4.1).  

Time-to-Event Analysis of Dementia and AD 
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M10 activity counts and the M10 start time were inversely associated with incident 

dementia after full adjustment (Table 4.2). Individuals in the first quartile (11.35-80.34 activity 

count) had 1.91 times the risk of incident dementia compared to individuals in the fourth quartile 

(143.54-495.36 activity count) of M10 activity counts (Hazard Ratio, HR=1.91 (95% CI: 1.43-

2.56)). Individuals whose M10 activity period started prior to 8:56am were at lower risk for 

incident dementia as compared to those whose M10 activity period started after 8:56am. For 

example, the HR for individuals whose M10 activity period started from 6:58am-7:54am was 

0.72 (95%CI: 0.56-0.92), and the M10 activity period that started from 7:55am-8:55am had a 

similar yet slightly weaker association (HR: 0.78 (95% CI: 0.61-1.00)). The associations for the 

M10 start and midpoint were similar with respect to dementia risk.  

IV was inversely associated with incident dementia after adjustment for all covariates in 

the fully adjusted model (except for physical activity), and this observed association was largely 

driven by differences between quartile 4 and 1 (HR,Q2: 0.93 (95%CI: 0.72-1.21), HR,Q3: 1.02 

(95%CI: 0.79-1.31), HR,Q4: 1.30 (95%CI: 1.01-1.68; p=0.04); this association was attenuated 

when adjusted for physical activity (omnibus p=0.16). 

IS was inversely associated with incident AD, and individuals with the least stable RARs 

(Q1) had a greater hazard of incident AD (HR,Q1: 1.15 (95% CI:  1.15 (1.02-1.29)) as compared 

to those with the most stable RARs (Q4). IV was positively associated with incident AD prior to 

adjustment for physical activity. There was also evidence of a linear trend between IV and AD 

prior to adjustment for physical activity (Table 4.2). Similarly, M10 activity count was also 

inversely associated with incident AD prior to adjustment for physical activity. 

There were no statistical interactions between RAR metrics and APOE4 carrier status 

with respect to either outcome after full adjustment (p > 0.05, results not shown). 
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Sleep-RAR Hubs and Subnetworks for Dementia 

In this section, we describe subnetworks within the sleep and dementia network model. 

We also identify “parent” variables that directly influence incident dementia. After 9 years of 

follow-up from time of accelerometry, we observed 525 incident dementia cases and 439 deaths; 

the 439 deaths were censored from the BN model. In the sleep and dementia network, there were 

several direct edges with incident dementia at 9 years follow-up in at least 50% of the 1,000 

bootstrapped network models, including M10 activity, body mass index, and age group (≥80 

Years; Figure 4.2). M10 activity metric was the strongest hub in the sleep-dementia network, and 

the robustness of this hub was evidenced by multiple centrality measures (degree centrality=14, 

betweenness centrality=117, Kleinberg hub score=1.0), although the closeness centrality metric 

was weak compared to other nodes in the network (closeness centrality=0.02). M10 activity 

metric was directly connected to 14 other nodes including dementia (degree), lay on many of the 

shortest paths between nodes (betweenness), and M10 activity was the best possible hub across 

the network (Kleinberg hub score). M10 activity metric was not particularly close to other nodes 

in the network compared to other nodes (closeness centrality). M10 activity metric had a large 

Markov blanket comprising IS, IV, total sleep time, L5, L5 start, M10 midpoint, sleep latency, 

age, race and ethnicity, educational attainment, CVD, BMI, lipid medication, general health, 

physical functioning, and HDL, indicating its specific influence on other nodes. M10 activity 

metric was independent of all other variables conditional on this Markov blanket.  

There were several different nodes that emerged as moderate hubs after M10, which 

included general health (degree=11, betweenness=50, Kleinberg hub=0.72), alcohol use, 

(degree= 7, betweenness= 44, Kleinberg hub=0.14) IS (degree=6, betweenness=66, Kleinberg 

hub=0.23), and IV (degree=6, betweenness =46, Kleinberg hub=0.14). Similar to M10, IS had 
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overlapping Markov blankets that included other RAR metrics (IV, total sleep time, L5, L5 start, 

M10 midpoint) and sociodemographic characteristics (age, race, and ethnicity). IV and IS both 

had M10 and age in their Markov Blanket. There were some differences between the Markov 

Blankets between IS and IV. For example, IV was conditionally independent of all other 

variables after conditioning on IS, M10, M10 midpoint, sleep latency, and age. IS was 

conditionally independent after conditioning on IV, L5, M10, M10 start time, M10 midpoint, L5 

start, L5 midpoint, race and ethnicity, and cancer. When examining the sleep subnetwork, there 

was considerable overlap in the RAR nodes appearing in each other’s Markov Blankets.  

Sleep and AD Network 

Overall, the sleep and RAR sub-networks were similar for the sleep-dementia and sleep-

AD networks, although there were some subtle differences in the sub-networks between RAR 

and AD (Figure 4.3). A key difference was that a direct edge connecting M10 activity and AD 

was not present in at least 50% of the models, although this edge existed in the sleep-dementia 

network (Figure 4.3). Instead, M10 was indirectly associated with AD through physical 

functioning. There were direct edges between age group, APOE4, and physical functioning with 

AD. IV and IS were indirectly associated with AD through physical functioning.  

In the sleep-AD network, M10 remained a primary hub, yet the M10 hub was not as 

dominant in this network, and was more closely tied with age group, ethnicity, and general health 

in the sleep-AD network (Figure 4.3). In contrast to the sleep-dementia network, a path between 

ethnicity and education opened up with the AD outcome through general health, which is the 

parent of physical functioning in the sleep-AD network. Another path between M10 activity and 

AD opened through the general health node. 
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L5 start time had the most unique Markov Blanket compared to all other sleep timing 

metrics, including IS, L5, M10, L5 midpoint, age, race, and ethnicity, APOE4 carrier status, and 

education. The Markov Blanket for other sleep timing blankets were relatively small and 

primarily included RAR metrics and occasionally age as well as race and ethnicity. Another key 

difference is that the L5 start is the only sleep metric that is parented by APOE4, and this direct 

edge is only present in the AD network. 

BN-Derived Associations between Sleep-RAR, Dementia and AD  

We report associations that were adjusted based on the structure identified by the BN 

network in this section (Table 4.3). Higher quartiles of M10 were strongly associated with 

incident dementia (M10Q4 OR: 0.35 (95%CI: 0.27-0.46)) and AD (M10Q4OR = 0.36 (95%CI: 

0.27-0.49)) after adjustment for the Markov Blanket (Table 4.3). Note, an edge was observed 

between M10 and the outcome in 89% of models for dementia and in 26% of models for AD, 

which indicates lower confidence in the M10 edge in the AD model (Table 4.3). Based on the 

Markov property, we observe that IV and IS were indirectly associated with incident dementia 

and AD through M10 (P[M10|IS+ IV]). The odds of incident dementia mediated by M10 were 

1.07 times higher (OR=1.07 (95%CI: 1.05-1.09) among individuals in the highest quartile of IV  

compared to individuals in the lowest quartile of IV). There was also suggestion of a linear trend 

for intra-daily variability and AD (IVQ2 OR : 1.01 (95%CI: 1.01-1.02), IVQ3 OR: 1.02 (95%CI: 

1.02-1.03), IVQ4 OR: 1.04 (95%CI: 1.02-1.05); Table 4.3). There was a weak indirect effect 

between IS, dementia, and AD. 

Simulated RAR Intervention on AD or Dementia 

There was a protective treatment effect observed at higher M10 quartiles for both 

incident dementia and AD after 9 years of follow-up in the simulated experiment. The potential 
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causal OR for the association between M10 and AD was 0.59 (95%CI: 0.51-0.68), whereas the 

potential causal OR for the association between M10 and dementia was 0.32 (95%CI: 0.25-0.42) 

(Table 4.4). A harmful treatment effect was observed for both intra-daily variability and inter-

daily stability in relation to incident AD and dementia (Table 4.4). On average, older women 

who moved to the highest intra-daily variability quartile would have 1.40 times the odds of 

developing AD compared to if they remained in the lowest intra-daily variability quartile 

(OR=1.40 (95%CI: 1.22-1.60); Table 4.4). The potential causal ORS for inter-daily stability and 

AD and dementia were 1.07 (95%CI: 0.95-1.20) and 1.29 (95%CI: 1.14-1.48) (Table 4.4), 

respectively. 

4.5 Discussion 

We have identified several interconnected sleep and RAR measures that were associated 

with incident dementia and AD among a population of diverse older women. The BN model 

identified M10 as a mediator between IV and IS with dementia and AD. Artificially intervening 

on M10 showed a protective treatment effect for both incident dementia and AD, and artificially 

intervening on the IS and IV showed a harmful treatment effect for incident dementia and AD. In 

time-to-event analyses, IS and IV were associated with incident AD only. Associations observed 

from time-to-event analyses for M10 were directionally consistent with the BN models.  

As demonstrated in this current work, BN networks can address existing challenges in 

sleep research: BN models allowed for disentangling the influence of highly correlated sleep 

measures. BN models also characterized the key list of parents (e.g., exposures) that directly 

influenced the child (e.g., outcome) nodes. For example, BN models identified that incident 

dementia and AD were conditionally independent of all other modeled comorbidities, 

depression, and alcohol use, given M10, BMI, age, APOE4, and race-ethnicity.  
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Our findings are consistent with other prospective cohort studies examining associations 

between objectively measured RARs and dementia [35, 93]. A prior study was conducted among 

predominantly white older women who had completed both the OPACH and WHI Memory 

Study (WHIMS) with available accelerometry and telephone-administered cognitive assessments 

[93]. This OPACH study similarly observed that lower M10 was associated with higher risk for 

incident MCI and probable dementia [93]. This study expanded on this prior work through 

incorporation of the CMS claims data to further explore the generalizability of these findings to a 

more diverse population of Black and Hispanic/Latina older women.  

The midpoint of M10 was also associated with MCI and probable dementia, in contrast to 

this present study that observed no association with any sleep timing parameters. Some studies 

have observed an association between L5 timing and dementia. For example, an earlier “lights 

out” time, which may be most comparable to our L5 timing measures, was associated with 

higher dementia risk in the Rotterdam Study, although no association was observed between IS 

or IV with dementia [37]. Another study among older community-dwelling women in the Study 

of Osteoporotic Fractures demonstrated that earlier L5 timing was associated with higher 

dementia risk based on a test for trend [35].  

Findings from the time-to-event analyses are consistent with existing literature with 

respect to the handful of prospective cohort studies with objectively measured RAR metrics and 

clinician-diagnosed AD, which have more often shown direct effects between IV and the closely 

related measure of napping duration or frequency with AD risk [158, 159]. We may not have 

observed an association with napping since the napping measure evaluated was based on self -

report, in contrast to objectively estimating daytime naps. In two Rush Memory and Aging 

project studies, longer and more frequent napping [159], higher IV, and lower inter-daily 
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variability were associated with higher AD risk [158]; the non-parametric sleep rhythm measures 

(e.g., IV and IS) were associated with incident conversion from MCI to AD [158].   

In addition, this study identified the M10 activity component of the RAR model as 

predictive of lower dementia and a potential mediator in the influence of sleep on dementia and 

AD risk. However, the literature is mixed with respect to whether physical activity is associated 

with dementia, with several studies, including a systematic literature review, concluding that 

studies of physical activity and dementia with less than 10 years of follow-up are more likely to 

observe an association as compared to studies with follow-up longer than 10 years [160, 161]. 

These studies that observed no association between physical activity and dementia commonly 

utilized self-reported physical activity. Nevertheless, several studies with long-term follow-up 

have demonstrated associations between physical activity with incident dementia [162-164]. 

Another study examining questionnaire-based physical activity at midlife observed strong 

protective associations for dementia and AD, with a stronger protective effect of physical activity 

observed among APOE e4 carriers [163]. Lastly, this study in OPACH also observed 

associations between moderate intensity stepping and lower mild cognitive impairment and 

dementia risk [164].  

There were several key strengths. For example, sleep and RAR metrics were measured 

objectively for one week, and these co-exposures preceded the outcome temporally. Another 

strength in exposure-disease ascertainment was that dementia and AD were tracked in the claims 

data for nearly one decade following the sleep measurement. Construction of a network model 

also allowed for the examination of related sleep parameters simultaneously; simultaneous 

identification allowed us to determine which rest activity metric was most influential in the 

behavioral network. Modeling of indirect relationships revealed that disrupted sleep may be 
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acting on dementia and AD risk through physical activity. Lastly, this study was designed to 

maximize diversity of the study population of older women and subsequently generalizability; 

identification of dementia and AD from the CMS claims data allowed us to retain the diversity of 

the original OPACH sample (32.2% Black and 15.7% Hispanic/Latina). 

This study was not without limitations. While BN models are capable of detecting 

potential causal relationships, identification of these direct relationships assumes that there are 

no unmeasured factors that may influence the structural BN model. In addition, the current BN 

model does not allow for the presence of feedback loops between factors and assumes an acyclic 

BN structure; additional work may explore the application of dynamic BN models to account for 

the cyclic relationships. In this work, we chose not to utilize the dynamic BN model for 

estimating time-varying risk models, since many of the participant characteristics were measured 

at the same timepoint, specifically baseline, with the exception of the dementia and AD 

outcomes [165].  

Moreover, we included a term for race and ethnicity in our model to begin exploring 

identification of health disparities in dementia and AD incidence. We advise cautious 

interpretation of the race and ethnicity term in the BN model, since race and ethnicity are social 

constructs that maybe potentially useful for health surveillance and detecting health disparities, 

but race and ethnicity definitions are imperfect measures, and this BN model does not account 

for other important characteristics that affect health and quality of care, including language 

preference, place of birth, and other social determinants of health [166]. The conditional 

probability distribution for dementia and AD showed that AD was directly influenced by M10 

along with race and ethnicity and was independent of other measured sociodemographic and 

behavioral factors. Nevertheless, the purpose of these models is for evaluating potential 
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associations and differences in health outcomes between groups and are not developed for the 

purpose of prediction.  

The present study showed that M10 was strongly associated with incident dementia and 

AD risk among a diverse population of older women. These results suggest women with more 

irregular sleep patterns are more likely to develop incident AD as compared to women with more 

regular sleep patterns due to the indirect influence of sleep on M10 activity. Future studies may 

further explore sleep-AD network modeling with additional physical activity metrics; M10 

activity could be replaced with other physical activity metrics (e.g., steps per day, MVPA, etc.) 

to further characterize indirect pathways from sleep through steps per day or MVPA on dementia 

and AD. Another future direction is to explore potential associations between APOE4 carrier 

status and sleep timing measures, in order to understand whether APOE4 may be potentially 

influencing sleep timing. Development of additional measures of circadian disturbance may also 

be worth exploring in public health research. 
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Figure 4.1. Flow diagram: Women’s Health Initiative 
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Figure 4.2. Sleep-RAR and Dementia Bayesian Network 

Arrows are visualized if they occur in 50% of the bootstrapped network model run over 1,000 

iterations. Note, the smoking node and cancer did not have edges that went into the network; this 
node still exists in the network, yet no other nodes connected to smoking in more than 49% of 

the network models for the bootstrapped network model.  
Abbreviations: AD = incident Alzheimer’s Disease at 9 years; APOE4  = APOE4 carrier status 
(yes/no); IS = inter-daily stability quartiles; IV = intra-daily variability quartiles; L5= L5 activity 

count quartiles; L5 Start = start time of L5 period quartiles; L5 Midpoint = midpoint time of L5 
period; M10= M10 activity count quartiles; M10 Start = start time of M10 period quartiles; M10 

Midpoint = midpoint time of M10 period; TST = total sleep time; WASO = wake after sleep 
onset; Efficiency = sleep efficiency; Latency = Sleep Latency; Quality Sleep = quality sleep; 
Sleepiness = daytime sleepiness; Nap = daytime napping; DEP = depression; Education = 

educational attainment; General Health = general health categories; Alcohol Use = alcohol use; 
Sleep Med = sleep medication; BP = blood pressure medication; Lipid Med = lipid medication; 

DIAB = diabetes; Hypertension = hypertension medication; Ethnicity= race and ethnicity; Trig = 
triglycerides; HDL = HDL; BMI = BMI category; SPPB = physical functioning; Age 
(continuous); SOCSUPP = social support
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Figure 4.3. Sleep-RAR and AD Bayesian Network 

Arrows are visualized if they occur in 50% of the bootstrapped network model run over 1,000 

iterations. 
Abbreviations: AD = incident Alzheimer’s Disease at 9 years; APOE4  = APOE4 carrier status 

(yes/no); IS = inter-daily stability quartiles; IV = intra-daily variability quartiles; L5= L5 activity 
count quartiles; L5 Start = start time of L5 period quartiles; L5 Midpoint = midpoint time of L5 
period; M10= M10 activity count quartiles; M10 Start = start time of M10 period quartiles; M10 

Midpoint = midpoint time of M10 period; TST = total sleep time; WASO = wake after sleep 
onset; Efficiency = sleep efficiency; Latency = Sleep Latency; Quality Sleep = quality sleep; 

Sleepiness = daytime sleepiness; Nap = daytime napping; DEP = depression; Education = 
educational attainment; General Health = general health categories; Alcohol Use = alcohol use; 
Sleep Med = sleep medication; BP = blood pressure medication; Lipid Med = lipid medication; 

DIAB = diabetes; Hypertension = hypertension medication; Ethnicity= race and ethnicity; Trig = 
triglycerides; HDL = HDL; BMI = BMI category; SPPB = physical functioning; Age 

(continuous); SOCSUPP = social support 
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Table 4.1. Baseline Characteristics in OPACH and Stratified by M10 Quartiles (n=3,873) 

Mean, standard deviation, and proportions were reported across stratum of M10 quartile. 

Differences in characteristics across categories were determined using Chi square tests for 
proportions and ANOVA for continuous variables. 

 
 M10 Quartiles  

Total 
Quartile 1 

(n=967) 

Quartile 2 

(n=967) 

Quartile 3 

(n=967) 

Quartile 4 

(n=967) 

p-

values 

Age, yrs.; mean (sd) 78.83 (6.61) 81.99 (6.06) 79.39 (6.49) 78.12 (6.30) 75.83 (6.07) <0.001 

Age Groups, 80 Years; n (%) 1963 (50.7) 676 (69.9) 513 (53.1) 453 (46.8) 319 (33.0) <0.001 

Race-ethnicity; n (%)      <0.001 

  white 2013 (52.0) 583 (60.3) 500 (51.7) 489 (50.6) 439 (45.4)  

  Black 1252 (32.3) 300 (31.0) 348 (36.0) 317 (32.8) 285 (29.5)  
  Hispanic/Latina 608 (15.7) 84 (8.7) 119 (12.3) 161 (16.6) 243 (25.1)  

Education; n (%)      0.10 

  High School/GED 782 (20.3) 182 (18.9) 201 (20.9) 194 (20.3) 203 (21.0)  

  Some College 1530 (39.7) 420 (43.6) 383 (39.9) 370 (38.6) 355 (36.7)  

  College Graduate+ 1540 (40.0) 361 (37.5) 376 (39.2) 394 (41.1) 408 (42.2)  
Self-Rated Health; n (%)      <0.001 

  Excel./Very Good 1973 (51.1) 325 (33.7) 469 (48.6) 540 (56.0) 637 (66.0)  

  Good 1527 (39.5) 464 (48.1) 423 (43.8) 356 (36.9) 282 (29.2)  

  Poor/Very Poor 364 (9.4) 175 (18.2) 73 (7.6) 69 (7.2) 46 (4.8)  

Physical Activity, total steps 
per day; mean (sd) 

341.02 
(97.75) 

236.33  
(59.73) 

314.68 
(52.63) 

369.66 
(60.30) 

443.34 
(73.01) <0.001 

Physical Function; n (%)      <0.001 

    Low (0-8 SPBB) 

68.80 (25.87) 49.81 (26.50) 

67.52 

(24.09) 

74.23 

(21.66) 

83.67 

(17.66)  

Social Support; mean (sd) 37.26 (7.83) 36.67 (7.78) 37.12 (7.96) 37.39 (7.80) 37.84 (7.73) 0.02 
Smoker Status, Smoker; n (%) 100 (2.8) 35 (4.0) 28 (3.2) 24 (2.7) 13 (1.4) 0.01 

Sleep Medication; n (%)      0.02 

   Not in the past month or less 2644 (74.7) 621 (72.2) 674 (76.2) 666 (74.3) 680 (76.1)  

   Less than once per week 304 (8.6) 67 (7.8) 69 (7.8) 77 (8.6) 90 (10.1)  

   1+ times per week 591 (16.7) 172 (20.0) 141 (16.0) 153 (17.1) 124 (13.9)  
Alcohol Frequency; n (%)      <0.001 

  Non-Drinker 1311 (36.9) 391 (45.0) 344 (38.9) 309 (34.5) 265 (29.4)  

  <1 per Week 1230 (34.6) 309 (35.6) 316 (35.7) 302 (33.7) 300 (33.3)  

  1 per Week 1014 (28.5) 168 (19.4) 224 (25.3) 285 (31.8) 337 (37.4)  
BMI; mean (sd) 28.01 (5.59) 29.61 (5.98) 28.67 (5.55) 27.67 (5.31) 26.14 (4.89) <0.001 

Diabetes, yes; n (%) 766 (19.8) 260 (26.9) 228 (23.6) 162 (16.8) 116 (12.0) <0.001 

Cardiovascular disease, yes; n 

(%)   374 (9.7) 157 (16.2) 106 (11.0) 71 (7.3) 40 (4.1) <0.001 

Cancer, yes; n (%) 666 (17.2) 202 (20.9) 188 (19.4) 138 (14.3) 136 (14.1) <0.001 
Depression, no ;  n (%) 3181 (93.6) 772 (92.1) 781 (93.0) 804 (94.5) 820 (94.6) 0.11 

APOE4 non-carrier; n (%)  2359 (78.7) 155 (21.8) 156 (20.8) 159 (20.7) 168 (22.0) 0.90 
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Table 4.2. Hazard Model of Objectively Measured Sleep and Sleep Rhythm Metrics with All 
Cause Dementia and Alzheimer’s Disease 

The fully adjusted model was adjusted for the following covariates including age, race-ethnicity, 
education, self-rated health, physical function, alcohol consumption, smoking status, total 

minutes spent in physical activity, cardiovascular disease, diabetes, body mass index, sleep 
medications, physical functioning, and social support
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Table 4.3. Network associations and stability of rest-activity parameters, dementia, and 
Alzheimer’s Disease 

The RAR metrics are parents or predictors of the outcome based on the derived sleep-dementia 
and sleep-AD networks. Analyses adjusted for confounding variables identified in the BN model 

by identifying shared parents between the exposure and the outcome. Adjustment performed for 
confounding variables based on the BN model since associations are conditionally independent  
of all other variables depicted in the BN model. The indirect effects reported for IV and IS are 

the indirect effects of these sleep parameters acting through the M10 activity parameter on the 
outcome. 

 

Outcome (Child) Effect 

Predictors  

(Parents) Strengthǂ Directionǂ 

Odds Ratio (95% CI)  

Sleep-Dementia Network 

Incident Dementia  Direct M10_Q2 0.89 1 0.61 (0.48-0.77) 

  M10_Q3   0.50 (0.39-0.63) 

  M10_Q4   0.35 (0.27-0.46) 

 
Indirect 

through M10 
IV_Q2 

0.89 

(0.89*1) 

0.99 

(1*0.99) 
1.02 (1.01-1.03) 

  IV_Q3   1.04 (1.03-1.05) 

  IV_Q4   1.07 (1.05-1.09) 

 
Indirect 

through M10 
IS_Q2 

0.88 

(0.89*0.99) 

1 

(1*1) 
1.06 (1.04-1.07) 

  IS_Q3   1.03 (1.02-1.04) 

  IS_Q4   1.02 (1.01-1.03) 

Incident 

Alzheimer’s 

Disease 

Direct M10_Q2 0.26 1 0.70 (0.53-0.91) 

  M10_Q3   0.55 (0.42-0.72) 

  M10_Q4   0.36 (0.27-0.49) 

 
Indirect 

through M10 
IV_Q2 

0.26 

(0.26*1) 

0.98 

(1*0.98) 
1.01 (1.01-1.02) 

  IV_Q3   1.02 (1.02-1.03) 

  IV_Q4   1.04 (1.02-1.05) 

 
Indirect 

through M10 
IS_Q2 

0.26 

(0.26*0.99) 

1 

(1*1) 
1.03 (1.02-1.05) 

  IS_Q3   1.02 (1.01-1.03) 

  IS_Q4   1.01 (1.01-1.02) 

ǂStrength and direction are estimated for indirect effects by multiplying the strength and direction across each edge, 

which is indicated in the brackets. For example, 0.58 for the indirect effect for IV through M10 had a strength of 

0.58 for the arrow from M10 to AD and a strength of 1 for the arrow from IV to M10 in the AD BN model. 
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Table 4.4. Simulated Sleep-Dementia/AD Network Propagation: Predicting Changes in the Odds 
Ratio of Dementia and AD Due to Sleep Rhythm Intervention 

 

Simulated 
Intervention 

Change in Target  
Behavior (s) 

(Reference to Treatment) 
Outcome 

Potential Causal Odds Ratio  
for the Outcome  

(95% Confidence Intervals) 

M10 Q1 to Q4 AD 0.59 (0.51-0.68) 

IV Q1 to Q4 AD 1.40 (1.22-1.60) 

IS Q4 to Q1 AD 1.07 (0.95-1.20) 

M10 Q1 to Q4 DEM 0.32 (0.25-0.42) 

IV Q1 to Q4 DEM 1.85 (1.57-2.19) 

IS Q4 to Q1 DEM 1.29 (1.14-1.48) 
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Chapter 4, in part is currently being prepared for submission for publication of the 

material. Garduno, Alexis C.;  Natarajan, Loki; McEvoy, Linda K.; Smarr, Benjamin; Parada, 

Humberto; Gallo, Linda; Xiao, Qian; Full, Kelsie; Baker, Laura D.; Eaton, Charles B.; 

Henderson, Victor W.; Liu, Longjian; Hery, Chloe; LaCroix, Andrea Z. The dissertation author 

was the primary researcher and author of this material. 
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5. Discussion 

5.1 Summary of Key Findings 

Findings from this dissertation all contribute to the body of work around sleep disparities, 

GSs, and life course epidemiology. Chapter 2 was conducted to further understand sleep 

disparities on total morbidity among diverse Hispanic/Latino men and women, and this chapter 

may inform development of RAR interventions. Chapter 3 demonstrates that circadian 

disturbances may be a shared risk factor for two critical GSs, specifically physical function and 

fall risk. Chapter 4 examined associations between sleep and circadian disturbances with 

dementia and AD in CMS claims. Building on Chapter 3, physical functioning was included in 

these network models and allowed for identification of potentially etiologic pathways through 

which sleep and circadian disturbances were associated, directly or indirectly, with dementia and 

AD. All of these chapters highlight different approaches for simultaneously studying sleep and 

RAR measures and for developing RAR focused intervention studies to improve aging.  

There were several risk factors that emerged as the primary sleep and circadian 

characteristics across Chapters 2-4, including IS/SRI, IV, M10, and L5 start time. Lower IS/SRI 

was associated with a greater total multimorbidity and higher fall risk. IS and IV were indirectly 

associated with incident dementia through M10 activity and BMI, whereas IS and IV were 

indirectly associated with AD through physical functioning (Chap. 4). Chapters 2-4 support the 

hypothesis that circadian disruption, in addition to general sleep disturbances (e.g., shortened 

sleep), meet the informal criteria for inclusion as a GS. The informal criteria for GSs are (i) 

collection of signs and symptoms, that often co-occur together (as evidenced by associations 

between circadian disturbances, falls and dementia in Chapters 2-4), (ii) occur more frequently in 

older adults, and (iii) are related to gradual decline in homeostatic reserve across one or multiple 
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cognitive and functional domains [16]. In general, formal criteria for GS are currently lacking 

and are needed for identifying emerging syndromes, especially those observed with new digital 

health tools and sequencing technologies [15]. 

Higher IV was associated with greater total multimorbidity, higher fall risk, and was 

indirectly associated with incident dementia. In contrast to IS, we did not observe a direct 

association with dementia in time-to-event models after adjusting for total amount of time spent 

in physical activity. Additionally, the BN analyses suggested that M10 was a mediator of 

associations between IV, dementia, and AD risk. This raises an important conceptual (or causal 

pathway) issue about whether to consider physical activity as a mediator or confounder in 

associations between sleep, dementia, and AD. This mediating pathway is plausible, since 

individuals who engage in physical activity may expend more energy and this activity may 

improve mood or anxiety that may increase sleep latency; individuals who engage in physical 

activity may more easily sleep through the night and so require less daytime napping. In Chapter 

4, we observed that M10 was highly correlated with physical activity (r=0.80).    

M10 activity was a strong risk factor for fall risk, which is an outcome with significant 

public health burden. Older women identified by the “healthy sleep cluster” had M10 values that 

were approximately 1.20 times greater than the M10 values for other clusters, with the exception 

of the mild RAR cluster that had higher physical activity, higher intra-daily “unhealthier” 

variability, and higher “healthier” IS (C3). The earlier sleeper cluster was most strongly 

associated with fall risk, and this early sleep cluster also had lower M10 values. We did not 

evaluate M10 activity in Chapter 2 since we were primarily interested in the sleep regularity 

under the RU-SATED model. The RU-SATED model does not include all of the RAR metrics, 

and M10 and IV were not considered a measure of sleep regularity (unlike IS). Some may view 
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IV as more closely related to the alertness (e.g., daytime alertness) domain from the RU-SATED 

model, since IV is highly sensitive to napping [167]. 

The findings for sleep timings are mixed in Chapters 2-4. In Chapter 2, there were no 

associations observed between any sleep timing measures and multimorbidity. In Chapter 4, L5 

start time appears to be a collider for AD risk, since both the APOE4 and age nodes point to L5 

start time. In Chapter 3, individuals who were earlier sleepers also had earlier M10 start times, 

suggesting a harmful association between M10 start time and fall risk among individuals with 

disrupted sleep. In Chapter 4, earlier M10 start times were associated with a lower risk of 

dementia. Chapter 3 and 4 taken together suggest that M10 start time may be protective among 

individuals with high sleep efficiency and minimal sleep disturbances, and conversely, M10 start 

time may be harmful among individuals with irregular sleep patterns and disturbed sleep. 

5.2 Contribution to Research and Implications 

The original work of this dissertation advances the literature demonstrating that sleep is a 

multidimensional construct, and the multidimensional RU-SATED sleep model is a helpful 

framework for epidemiologists to use when selecting sleep measures to evaluate. Through this 

dissertation, we develop a more holistic understanding of sleep health. Similar to others, we have 

employed unsupervised learning approaches to identify sleep profiles that showed different 

profiles of each RU-SATED dimension, including regularity, satisfaction, alertness, timing, 

efficiency, and duration [27, 168]. Identification of sleep profiles is largely data-driven and 

differs from a confirmatory factor analysis that seeks to confirm a hypothetical structure of the 

RU-SATED model as done more recently with objective sleep measures [27, 169]. 

In  Chapter 2, we identified sleep regularity as a critical sleep domain and risk factor for 

predicting multimorbidity accumulation. These findings are consistent with two recent studies by 
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Wallace et al. [27] conducted in MrOs and SOF and Chung et al. in the Multi-Ethnic Study of 

Atherosclerosis (MESA) [168] that simultaneously examined associations between machine 

learned sleep profiles using a RUSATED-informed clustering approach with respect to all-cause 

and cardiovascular mortality. Few studies have examined sleep with respect to multimorbidity; it 

is important to note that historically the Charlson Comorbidity Index is used to predict all-cause 

mortality. 

There are conflicting results on napping and many of these studies utilize self-reported 

napping. The Wallace clusters suggest that a greater propensity for sleep, largely driven by 

napping, was a protective cluster relative to mortality. The results from Chapter 3 and Chapter 4 

are in conflict with this finding. In Chapters 3 and 4, we observed that higher IV quartiles were 

individually associated with a higher rate of falling, dementia, and AD although the results were 

less robust for AD after adjusting for physical activity. The results from Chapter 3 and 4 with 

respect to falling, physical function, and dementia are consistent with a recent meta-analysis that 

demonstrated a J-shaped association between napping and all-cause mortality [170]. Another 

study conducted in more than 7,000 participants from NHANES, who were nationally 

representative of the study population, observed that IV was associated with a greater risk for all-

cause mortality that survived adjustment for behavioral factors [171]. 

Rest-activity fragmentation and sleep irregularity, as evidenced by higher IV and lower 

IS, are key risk factors for identifying older adults at risk for worse aging. In Chapter 4, IV and 

IS were indirectly associated with dementia and AD. These results are consistent with results 

observed among individuals with pre-clinical AD and among individuals with MCI who 

progressed to AD [138, 139]. First, a cross-sectional study observed that that two biomarkers for 

the presence of preclinical amyloid plaque pathology (including PiB imaging and cerebrospinal 



106 

fluid phosphorylated-tau to amyloid ratio) were associated with greater IV among cognitively 

normal individuals [138]. Another study conducted in the Rush Memory and Aging Project 

observed that increased IV was associated with incident AD (HR=1.22 (95%CI: 1.04-1.42), 

although this result lost significance after adjustment for physical activity and APOE4 carrier 

status [139]. Lastly, this study identified that changes in IV and IS accelerate after diagnosis of 

mild cognitive impairment and further accelerate with diagnosis of AD [139]. Despite SCN 

being identified as a key clock that entrains biological clocks, there is limited research 

suggesting which dementia subtypes are more sensitive to RAR and sleep disturbances. The 

mediating role of physical activity in the BN models may suggest that the cardiovascular 

hypothesis of AD is biologically plausible [172]. 

5.3 Limitations 

This dissertation work was not without limitations. The primary theme of this dissertation 

work is focused on the role of sleep and circadian disruption on aging. Throughout Chapters 2-4, 

an important inclusion criterion that influenced identification of the study population was the age 

of adults. In Chapter 2, a limitation was that the diverse population of Hispanic/Latino men and 

women were predominantly middle-aged. Those who are middle-aged are considered to be 

younger than when one would expect multimorbidity to develop. While we observed some 

individuals developing multimorbidity earlier in life, associations between sleep and circadian 

disturbances and multimorbidity accumulation may strengthen or accelerate at older ages when 

multimorbidity development is more common. Longer follow-up of HCHS/SOL and Sueno is 

required to better evaluate this particular relationship among this same population when they 

reach 60 or 70 years of age or older. 
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Another limitation is that objective measures of sleep and circadian disturbance measured 

in the Women’s Health Initiative (Chapters 3-4) were derived from hip-worn accelerometers as 

compared to wrist-worn accelerometers. Additional studies are needed to better understand 

differences in estimation of sleep and RAR measurements between wrist-worn and hip-worn 

placements. One study of the ActiGraph GT3X+ in younger children suggested that hip-worn 

accelerometers obtained estimates of sleep timing that were closer to the gold standard estimated 

from polysomnography [173]. Hip-worn accelerometers detected sleep onset 6 minutes later than 

PSG as compared to wrist-worn accelerometers that estimated a sleep onset that was 21 minutes 

later than PSG (p <0.05). Hip-worn accelerometers appeared to overestimate sleep duration by 

approximately 20 minutes, whereas wrist-worn accelerometers underestimated sleep duration. 

This validation paper in children could not make a recommendation on the placement of 

Actigraph GT3X+ for measuring sleep. Wrist-worn placement outperformed hip-worn 

replacement with respect to the sleep efficiency domains, hip-worn accelerometers 

underestimated WASO, and slightly overestimated sleep efficiency. We may have failed to 

observe associations between WASO and sleep efficiency in Chapters 3 and 4 due to the use of 

hip-worn accelerometers. It is worth noting that this validation showed slight underestimation of 

WASO, and overestimation of sleep efficiency compared to PSG among wrist-worn 

accelerometers too. In Chapter 2, we may not have been able to detect associations with respect 

to sleep efficiency due to the need for PSG measurement of this particular sleep domain. Another 

study conducted in 17 older adults (aged 50-75 years) who completed a night of PSG with one 

hip-worn and two wrist-worn accelerometers (dominant and non-dominant) hand suggested that 

hip-worn accelerometers under-estimated sleep duration by 37 minutes, underestimated sleep 

efficiency by 10%, and over-estimated wake after sleep onset  [174]. This study was limited as it 
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was intended as a feasibility pilot and did not calculate concordance by comparing epoch levels. 

This finding differs from the earlier study that was conducted in a larger sample of children.  

An ongoing challenge in the sleep research field is the study and evaluation of multiple 

sleep measures simultaneously. To address this ongoing challenge, new machine learning 

techniques, including clustering and BN analysis, may be helpful in addressing this challenge. 

Yet, reproducibility may be challenging when applying these methods to another cohort of a 

different demographic. A limitation of the results in Chapter 3 is that use of an unsupervised 

machine learning approach, with or without data reduction, may disagree on definitions of the 

sleep and circadian rhythm profiles. Some differences may arise in defining these sleep groups 

based on the sample’s sleep health, demographic characteristics, device placement, and use of 

derived sleep and RAR measures. There are diagnostic characteristics that allow one to pre-

define the expected number of groups to identify, but choices around the algorithm, number of 

groups, and tuning of the hyperparameters may produce different sleep profiles. Similarly in 

network models, operationalization of certain variables may influence the structure of the 

network learned. For example, in Chapter 4,  modeling age as continuous as compared to binary 

with a cut point at 80 years of age altered the structure of the learned network. 

5.4 Recommendations for Future Research 

There are multiple areas for further exploration that build off of Chapters 2-4. Additional 

studies are needed to understand the relationship between sleep and circadian disturbances with 

GSs and multimorbidity among diverse older adults. Additional studies may seek to follow 

heterogeneous populations of Hispanic/Latino men and women, such as participants from Sueno 

and HCHS/SOL studies. Another Sueno visit may allow for evaluation of changes in RAR with 

aging. This longer follow-up allowed for further characterizations of the same associations 
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examined in Chapters 2-4 and allow for further generalizability of these study findings to non-

US-born and US-born Hispanic/Latino participants. While we found evidence of sleep disparities 

as residency duration increased among non-US-born Hispanic/Latino individuals, it may also be 

important to incorporate qualitative and mixed methods analysis to further understand social, 

cultural, structural, and environmental differences that may be driving shift in patterns between 

sleep and multimorbidity. Minoritized populations are generally underrepresented in studies on 

sleep-circadian health and aging, so additional studies are needed in other non-US born 

populations.   

Additional research may look to reproduce the sleep clusters and BN models in cohorts 

other than the Women’s Health Initiative. Reproduction of these sleep clusters, as well as the BN 

analysis, may be heavily influenced by the age group of participants. It may be advisable for 

future research to explore strategies for clustering age groups and potentially gender-stratified 

sleep clusters. Additional studies may employ propensity mapping or covariate balancing 

techniques to aggregate sleep and circadian sample characteristics in a population that is 

representative of a broad range of participants.  

Future studies may also consider the use of dynamic BN modeling if there are multiple 

measurements of sleep-circadian metrics over time. In Chapter 4, the dynamic BN was not 

appropriate due to the non-repeated nature of the accelerometry data after the initial 7-day 

consecutive measurement period.  Another area of further development would be to explore 

generation of a broader BN model with inclusion of all GSs beyond physical functioning, 

cognitive health, and sleep-circadian parameters, and evaluation of gender differences between 

BN geriatric network models. 
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5.5 Concluding Remarks 

The research furthered the evidence base surrounding sleep, circadian disruption (as 

evidenced by RAR), and GS development. This dissertation demonstrated: 1) associations 

between separate dimensions of sleep and circadian health with multimorbidity, 2) that multiple 

sleep and circadian parameters define healthy and unhealthy sleep profiles and sleep profiles are 

associated with frequent falling and physical functioning, and 3) sleep and circadian health 

measures are directly and indirectly associated with dementia and possibly AD. This work 

supports multiple contributions of circadian disruption to varied GSs when taken together with 

existing literature. 
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APPENDIX A: Supplementary Materials to Chapter 2 

 

Supplementary Methods 

Actigraphy-Derived Sleep and Circadian Health in Sueño 

These devices collected activity and light data in 30-second epochs, and then sleep 

periods were scored at the central reading center at Brigham and Women’s Hospital. These sleep 

periods were scored based on sleep diaries and sleep habits, using event markers for in and out of 

bedtimes, and a sudden drop in signal intensity for activity and light readings. At the epoch-level, 

sleep-wake status was classified based on the Actiware 5.59 scoring algorithm with 5 immobile 

minutes to define sleep onset, 0 minutes to define sleep offset, and an activity count of 40 to 

classify the epoch as awake versus asleep. 

Rationale for Sleep-Circadian Measure Operationalization 

Sleep and circadian rhythm measures were operationalized in each count model based on 

the standard definition used by clinicians and researchers, which was previously described. In the 

absence of a standard definition, these sleep measures were operationalized as tertiles. We chose 

to operationalize these sleep measures as tertiles, since tertiles (i) allows for examination of sleep 

health on the continuum that is present in the general population (as opposed to focused solely on 

dichotomization of healthy versus disordered sleep), (ii) is a unified approach when limited 

evidence exists about threshold effects of each sleep measure in association with comorbidity 

burden, and (iii) may also help inform choice of alternative modeling strategies for identifying 

possible non-linear or dose-response effects in sleep-CCI associations. As previously stated, the 

study outcome CCI was operationalized as a weighted count based on severity of the disease. 

Descriptive  Statistics of CCI Group Differences 
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The CCI was also categorized into groups (0/1/2/3+) solely for descriptive analyses that 

estimated prevalence of comorbidity burden at visit 2. We were specifically interested in 

summarizing group differences in CCI across age groups (18-44/45-64/65+ years old in 

HCHS/SOL and 18-44/45-64 in Sueño), heritage, and nativity groups. Nativity group is defined 

as the place of birth/duration of US residence at baseline (non-US-born, <10 years in the US/ 

non-US-born, 10-20 years in the US/>20 years in the US/US-born). Henceforth, non-US-born 

will refer to participants born outside of the US 50 states/DC, and participants born outside 

within the U.S. territories are categorized as non-US-born. We estimated prevalence of the 

comorbidity burden at visit 2 between certain sociodemographic groups to facilitate comparisons 

between this sample with other studies. Lastly, we examined weighted, sample characteristics 

stratified by tertiles of sleep measures and performed the same tests for overall differences. 
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Table A.1. Incidence Ratio Ratios between Alternative Inter-Daily Stability Sleep Measures and 
the Charlson Co-Morbidity Index in Sueno from Survey-Weighted, Zero-Inflated Poisson Model 

 
  Model 1‡ Model 2‡ Model 3‡  

n IRR (95% CI) P IRR (95% CI) P IRR (95% CI) P 

Interdaily Stability 
(Primary) 
(n=1,467) 

 

      

T3: >0.85 492 Ref 0.001 Ref 0.008 Ref 0.01 

T2: 0.75 to 0.85 509 1.29 
(1.00 - 1.65) 

 
1.24 

(0.97 - 1.57) 
 

1.23 
(0.97 - 1.55) 

 

T1: <0.75 466 1.54 
(1.23 - 1.94) 

 
1.43 

(1.14 - 1.79) 
 

1.40 
(1.12 - 1.75) 

 

Inter-Daily Stability 
(Secondary) 

(n=1,470) 

 

 0.10  0.29  0.29 

T3: >0.61 497 Ref  Ref  Ref  

T2: 0.51-0.61 488 1.29 

(1.01 - 1.66) 
 

1.20 

(0.94 - 1.54) 
 

1.21 

(0.94  - 1.54) 
 

T1: <0.51 485 1.03 

(0.79 - 1.35) 
 

1.05 

(0.80 - 1.37)  
 

1.07 

(0.82 - 1.40) 
 

*The logit section of the zero-inflated model modeled the probability of having non-zero and zero CCIs the same 

(e.g., only including an intercept term), whereas the count model included all of the confounding covariates. a 

Adjustment for field center (Bronx, Chicago, Miami, and San Diego), age (continuous), and gender (male/female).b 

Additionally adjusts for education (<high school, high school graduate, or >high school), household income (less 

than or equal to $30,000/ $30,000-50,000/more than 50,000), nativity (non-US-born <10 years in country, non-US-

born ≥ 10 years in country, US-born), heritage (Mexican, Puerto Rican, Cuban, Dominican, Central American, 

South American, or Mixed/Other), smoking status (never/former/current), alcohol use (never/former/cu rrent). 
cAdditionally adjusts for duration of moderate-to-vigorous physical activity (minutes) and body mass index 

(continuous in kg/m2). 

†Sleep duration categories were broadened for the long sleepers to also include individuals with 8 hours and 45 

minutes of sleep per night, since the sample size dropped dramatically among individuals who slept 8 hours and 45 

minutes compared to 9 hours.  

‡The reference groups for the following model are indicated for each covariate: alcohol use (ref=current drinker), 

body mass index (ref=Normal to Underweight), center (refe=San Diego), cigarette use (ref=never), household 

income (ref=<30k), nativity status (ref=Non-US Born and 10<=YRSUS <20), education (ref=high school), gender 

(ref=woman), marital status (ref=married), ethnicity (ref=Mexican).
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Table A.2. Incidence Ratio Ratios between Self-Reported Sleep Measures and the Charlson Co-
Morbidity Index in Tertiles in Sueno from Survey-Weighted, Zero-Inflated Poisson Model 

 
 Model 1

a
‡ Model 2

b
‡ Model 3

c
‡  

IRR  

(95% CI) 
P 

IRR  

(95% CI) 
P 

IRR  

(95% CI) 
P 

Insomnia 

(n=1,825) 
 0.0001  0.0004  0.001 

T1: 0-4 Ref  Ref  Ref  

T2: 5-10 1.33 

(1.06 - 1.67) 
 

1.30 

(1.04 - 1.63) 
 

1.27 

(1.02 - 1.59) 
 

T3: 11-20 1.76 

(1.37 - 2.26) 
 

1.64 

(1.28 - 2.10) 
 

1.60 

(1.25 - 2.04) 
 

       

Excessive Daytime 

Sleepiness 

(n=1,824) 

 0.004  0.005  0.006 

T1: 0-3 Ref  Ref  Ref  

T2: 3-7 1.29 
(0.99 - 1.68) 

 
1.33 

(1.03 - 1.72) 
 

1.33 
(1.03 - 1.71) 

 

T3: 7-24 1.42 

(1.15 - 1.77) 
 

1.42 

(1.13 - 1.79) 
 

1.40 

(1.12 - 1.75) 
 

       

*The logit section of the zero-inflated model modeled the probability of having non-zero and zero CCIs the same 

(e.g., only including an intercept term), whereas the count model included all of the confounding covariates. a 

Adjustment for field center (Bronx, Chicago, Miami, and San Diego), age (continuous), and gender (male/female).b 

Additionally adjusts for education (<high school, high school graduate, or >high school), household income (less 

than or equal to $30,000/ $30,000-50,000/more than 50,000), nativity (non-US-born <10 years in country, non-US-

born ≥ 10 years in country, US-born), heritage (Mexican, Puerto Rican, Cuban, Dominican, Central American, 

South American, or Mixed/Other), smoking status (never/former/current), alcohol use (never/former/current). 
cAdditionally adjusts for duration of moderate-to-vigorous physical activity (minutes) and body mass index 

(continuous in kg/m2). 

†Sleep duration categories were broadened for the long sleepers to also include individuals with 8 hours and 45 

minutes of sleep per night, since the sample size dropped dramatically among individuals who slept 8 hours and 45 

minutes compared to 9 hours. ‡The reference groups for the following model are indicated for each covariate: 

alcohol use (ref=current drinker), body mass index (ref=Normal to Underweight), center (refe=San Diego), cigarette 

use (ref=never), household income (ref=<30k), nativity status (ref=Non-US Born and 10<=YRSUS <20), education 

(ref=high school), gender (ref=woman), marital status (ref=married), ethnicity (ref=Mexican). 



115 

Table A.3. Interaction P-Values between Sleep Rest-Activity Metrics and Charlson Co-
Morbidity Index 

 
 Nativity Gender Age Group 

Categorical    

Insomnia <0.0001 0.03 0.009 

Excessive Sleepiness 0.07 0.91 0.01 

Sleep Duration 0.006 0.99 0.89 

Midsleep Timepoint 0.07 0.50 0.14 

Weekday Bedtime 0.33 0.98 0.47 

Weekend Awaketime 0.57 0.45 0.40 
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APPENDIX B: Supplementary Materials to Chapter 3 
 

Supplementary Methods 

Sleep Data Processing for Rest-Activity Rhythm Metrics 

Sleep/wake classification was obtained from the Cole-Kripke algorithm using the vector 

magnitude (VM) [96]. VMs were also used to derive rest-activity rhythm (RAR) characteristics, 

using non-parametric approaches after discarding the first day of wear. Non-wear periods were 

imputed in two stages; first, the dominant sleep/wake classification is used to fill in non-wear 

periods if there are at least 30 minutes of sleep or wakefulness within a day and hour. Otherwise, 

the awake/sleep classification was be based on the dominant classification from the hour for VM 

and sleep/wake status, respectively. Mean imputation was performed on VM for non-wear 

periods of activity in this same two-step process. 

Form 155 Sleep Questionnaire 

The daytime napping question stated the following: “Please pick the answer that best 

describes how often you experienced the situation in the past 4 weeks. Did you nap during the 

day?”. The daytime sleepiness related to light activities stated the following: “Please pick the 

answer that best describes how often you experienced the situation in the past 4 weeks. Did you 

fall asleep during quiet activities like reading, watching TV, or riding in a car?”. Each of the 

questions were converted into an ordinal category starting at 0, and the value increased with 

improved daytime alertness or satisfaction. The daytime alertness questions had the following 

response options, and the associated values are shown: “No, not in past 4 weeks” (0), “Yes, less 

than once a week” (1), “Yes, 1 or 2 times a week” (2), “Yes, 3 or 4 times a week” (3), “Yes, 5 or 

more times per week” (4). The sleep satisfaction question stated: “Overall, was your typical 

night's sleep during the past 4 weeks.” This sleep satisfaction measure was also converted from 
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numeric to ordinal for the following response options: “very restless” (0), “restless” (1), “average 

quality” (2), “sound or restful” (3), and “very sound or restful” (4). Each of these questionnaire 

measures were converted from categorical to numeric measures, in order to allow for them to be 

used in defining sleep clusters/profiles in later clustering analyses. 

Mapping of Individual Sleep and Rest-Activity Rhythm Measures to the RUSATED model 

Inter-daily stability represented the sleep regularity dimension of the RUSATED model; 

sleep duration, WASO, sleep latency, number of awakenings, length of awakenings, and sleep 

efficiency represented sleep duration and continuity/efficiency dimensions. The remaining 

RUSATED dimensions of daytime sleepiness/alertness and sleep satisfaction were represented 

by the following sleep parameters: objectively measured intra-daily stability, self-reported 

daytime napping, daytime sleepiness during light activities, and sleep quality. Sleep timing was 

presented by the start and midpoint of M10 and L5 periods, average waketime, and average 

bedtime. 

Sleep Cluster Enrichment: Visualization of Participant-Level Heterogeneity within Clusters 

As a sensitivity analysis, we performed sample heterogeneity assessments of the distinct 

clusters (see Supplementary Methods) [175] to visualize cluster enrichment for age group (<80 

years, >80 years), race-ethnicity (White, Black, Hispanic), diabetes status (yes/no), CVD 

(yes/no) and depression (yes/no). Differences in cluster enrichment may identify a latent factor 

that is describing differences in sleep patterns and subsequently sleep-fall risk associations; we 

further evaluated whether sleep-fall associations could be explained by these potential latent 

factors by adding an interaction term for latent factor * clusters into fall models and reporting 

models stratified by this potential latent factor. 
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The term “sample heterogeneity” arises from the cellular and genomic literature [175], 

which we will refer to as “participant-level heterogeneity,” since we are studying heterogeneity 

between participant-level sleep profiles. In exploring this heterogeneity, we calculated the 

enrichment of each cluster for clinically meaningful classes (e.g., disease outcomes) and 

visualize these labels with the pre-defined clusters. While this approach is being increasingly 

explored in the literature to uncover underlying potential causes [175], we used this approach to 

inform whether we tested for effect modification in the existing statistical models by this 

clinically meaningful class. Additionally, we also visualized mortality (yes/no) during 

subsequent follow-up of this population, although it would be theoretically inappropriate to 

evaluate mortality as an effect modifier. Additionally, we also looked for the presence of 

frequent fallers (>2 falls per year) within these clusters. Lastly, we visualized outliers for each 

individual sleep feature within the clusters to inform understanding of classification of these 

OPACH participants who had extreme sleep profiles.



119 

  

Figure B.1. Elbow plot of silhouette scores and SSE plot for cluster selection for the 

hyperparameters used in the final clustering model 

This silhouette plot indicates that clusters 2-5 from K-Means had cluster scores above the model 

selection criteria of 0.50.  
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Figure B.2. Flow chart for the complete-case analysis in this Women’s Health Initiative analysis 
of sleep and fall risk 
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Table B.1. Multiply Imputed (m=25), Linear Regression Models of Sleep-Circadian Cluster with 
Physical Functioning Markers using UMAP and K-Means (k=5; n=4,543) 

 

 

  Model 1 Model 2 Model 3 

Physical 
Functioning 

Marker 

Sleep  
Clusters 

Beta  
(95% CI) 

P-
value 

Beta  
(95% CI) 

P-
value 

Beta  
(95% CI) 

P-
value 

EPESE 

SPBB Score 
(0-12) 

C2: “Healthy” 

Ref 

1.99E-

09 
 

Ref 
0.03 

 
Ref 

0.13 

 

 C1: “Sleep 
Disturbed” 

-0.63 (-0.84--0.41)  -0.32 (-0.53--0.12)  -0.26 (-0.47--0.05)  

 C3: “Mild 
Fragmentation” 

-0.06 (-0.26-0.14)  -0.02 (-0.21-0.17)  -0.01 (-0.21-0.18)  

 C4: “Earlier L5 
midpoint” 

-0.75 (-1.30--0.21)  -0.27 (-0.79-0.26)  -0.24 (-0.77-0.28)  

 C5: “C1with 
Shorter, Less 

Disrupted 
Sleep” 

-0.31 (-0.53--0.08)  -0.10 (-0.31-0.12)  -0.07 (-0.28-0.15)  

Balance 
Test Score 

(0-4) 

C2: “Healthy” 
Ref 

2.41E-
06 

 
Ref 

0.008 
 

Ref 
0.02 

 

 C1: “Sleep 
Disturbed” 

-0.20 (-0.29--0.10)  -0.13 (-0.22--0.03)  -0.11 (-0.21--0.02)  

 C3: “Mild 
Fragmentation” 

-0.03 (-0.11-0.06)  -0.02 (-0.10-0.07)  -0.01 (-0.10-0.07)  

 C4: “Earlier L5 
midpoint” 

-0.39 (-0.61--0.17)  -0.28 (-0.51--0.06)  -0.28 (-0.50--0.06)  

 C5: “C1with 
Shorter, Less 

Disrupted 
Sleep” 

-0.09 (-0.19-0.01)  -0.04 (-0.14-0.05)  -0.04 (-0.14-0.06)  

Chair Stand 
Score (0-4) 

C2: “Healthy” 
Ref 

1.81E-
08 

 

Ref 
0.04 

 
Ref 

0.18 

 

 C1: “Sleep 
Disturbed” 

-0.28 (-0.38--0.17)  -0.14 (-0.25--0.04)  -0.11 (-0.21-0.00)  

 C3: “Mild 

Fragmentation” 
-0.07 (-0.17-0.03)  -0.05 (-0.14-0.05)  -0.04 (-0.14-0.05)  

 C4: “Earlier L5 
midpoint” 

-0.32 (-0.58--0.06)  -0.10 (-0.36-0.16)  -0.08 (-0.34-0.17)  

 C5: “C1with 
Shorter, Less 

Disrupted 
Sleep” 

-0.17 (-0.28--0.06)  -0.08 (-0.18-0.03)  -0.06 (-0.17-0.04)  

Gait Speed 
Score (0-4) 

C2: “Healthy” 
Ref 0.009 Ref 

0.29 
 

 
0.36 

 
 C1: “Sleep 

Disturbed” 
-0.19 (-0.30--0.09)  -0.09 (-0.19-0.01)  -0.08 (-0.18-0.03)  

 C3: “Mild 
Fragmentation” 

0.01 (-0.08-0.11)  0.03 (-0.06-0.12)  0.03 (-0.06-0.13)  

 C4: “Earlier L5 
midpoint” 

-0.03 (-0.28-0.22)  0.14 (-0.11-0.38)  0.14 (-0.11-0.39)  

 C5: “C1with 
Shorter, Less 

Disrupted 

Sleep” 

-0.03 (-0.14-0.07)  0.04 (-0.07-0.14)  0.04 (-0.06-0.15)  

Abbreviations: C1-5: Clusters between 1-5.   The crude model (M1) was adjusted for age, race-ethnicity, and 

education. Model 2 was adjusted for the following covariates including age, race -ethnicity, education, self-rated 

health, alcohol consumption, smoking status, total minutes spent in physical activity, cardiovascular disease, 

diabetes, and cancer. The fully adjusted model (M3) was adjusted for the same model covariates as model 2 and 

was additionally adjusted for sleep medication, depression, and body mass index . 
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Table B.2. Baseline Characteristics in OPACH (2012-2018) for Full Sample (n=6,489), Analytic 
Sample (n=4,4543), and Multiply Imputed Sample (n=4,543) with m=25 imputations 

 

 

 
Full, Unrestricted 

Sample 

Multiply Imputed with  

Complete 
Accelerometry 

Analytic Sample 

without Imputation 

Excluded from 

Analytic Sample 

P-value  

for Analytic vs. 
Excluded 

 n=6,489 n=4,543 n=4,543 n=1,946 n=6,489 

Age, yrs.; mean (sd) 78.70 (6.70) 78.69 (6.74) 78.69 (6.74) 78.72 (6.60) 0.85 

Age Groups, 80 
Years; n (%) 

3223 (49.7) 2267 (49.9) 2267 (49.9) 956 (49.1) 0.59 

Race-ethnicity; n 
(%) 

    0.02 

  White 3205 (49.4) 2288 (50.36) 2288 (50.4) 917 (47.1)  
  Black 2187 (33.7) 1519 (33.44) 1519 (33.4) 668 (34.3)  

  Hispanic 1097 (16.9) 736 (16.2) 736 (16.2) 361 (18.6)  
Education; n (%)     0.33 
  High School/GED 1316 (20.4) 926 (20.38) 920 (20.4) 396 (20.5)  

  Some College 2496 (38.7) 1784 (39.28) 1774 (39.3) 722 (37.4)  
  College Graduate+ 2634 (40.9) 1833 (40.34) 1822 (40.3) 812 (42.1)  
Self-Rated Health; n 
(%) 

    0.26 

  Excel./Very Good 3235 (50.1) 2275 (50.08) 2269 (50.1) 966 (50.0)  
  Good 2574 (39.8) 1826 (40.20) 1820 (40.2) 754 (39.0)  
  Poor/Very Poor 651 (10.1) 441 (9.71) 439 (9.7) 212 (11.0)  
Physical Activity, 

total steps per day; 
mean (sd) 

334.05 (98.91) 
 

340.76 (98.36) 
340.78 (98.37) 317.47 (98.33) <0.001 

Physical Function; 
mean (sd) 

68.43 (26.09) 68.51 (26.11) 68.59 (26.08) 68.05 (26.12) 0.45 

Smoker Status, 
Smoker; n (%) 

164 (2.8) 131 (2.88) 118 (2.8) 46 (2.7) 0.76 

Sleep Medication; n 
(%) 

    0.009 

   Not in the past 
month or less 

4309 (73.6) 3393 (74.68) 3097 (74.7) 1212 (70.8)  

   Less than once per 

week 
527 (9.0) 393 (8.65) 358 (8.6) 169 (9.9)  

   1+ times per week 1020 (17.4) 758 (16.68) 690 (16.6) 330 (19.3)  
Alcohol Frequency; 
n (%) 

    0.75 

  Non-Drinker 2230 (37.9) 1720 (37.86) 1563 (37.6) 667 (38.5)  
  <1 per Week 2008 (34.1) 1560 (34.35) 1429 (34.4) 579 (33.4)  

  1 per Week 1651 (28.0) 1263 (27.80) 1165 (28.0) 486 (28.1)  
BMI; mean (sd) 28.17 (5.77) 28.08 (5.69) 28.04 (5.68) 28.47 (5.96) 0.008 
Diabetes, yes; n (%) 1350 (20.8) 925 (20.36) 925 (20.4) 425 (21.8) 0.19 

Cardiovascular 
disease, yes; n (%)   

637 (9.8) 
 

437 (9.62) 
437 (9.6) 200 (10.3) 0.44 

Cancer, yes; n (%) 1090 (16.8) 780 (17.17) 780 (17.2) 310 (15.9) 0.24 

Depression, no ;  n 
(%) 

5238 (93.3) 4223 (92.95) 3700 (93.2) 1538 (93.7) 0.54 
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Table B.3. Complete Case Analysis, Negative Binomial Models of Fall Rate with Sleep-
Circadian Cluster Risk Factors derived from K-Means (k=5) following UMAP data reduction 

(n=3,455) 

 

 

 
  

  Model 1 Model 2 Model 3 

Sleep 
Exposure 

Categories 
IRR  

(95% CI) 
P-

value 
IRR  

(95% CI) 
P-

value 
IRR  

(95% CI) 
P-

value 

ML-Derived 

Clusters 
C1 

“Sleep Disturbed” 
1.22 (1.04-1.42) 

6.75E-

04 
1.16 (0.99-1.36) 

5.25E-

03 
1.14 (0.97-1.35) 

1.69E

-03 

 
C2  

“Healthy” 
Ref  Ref  Ref  

 
C3 

“Mild Fragmentation” 
1.16 (1.00-1.33)  1.13 (0.98-1.30)  1.15 (1.00-1.33)  

 
C4 

“Earlier L5 midpoint” 
1.99 (1.41-2.86)  1.83 (1.29-2.63)  1.97 (1.38-2.84)  

 
C5 

“C1with Shorter, Less 
Disrupted Sleep” 

1.06 (0.90-1.25)  1.03 (0.87-1.21)  1.02 (0.87-1.21)  

        

Inter-Daily 
Variability 

(IS)  
Q1 

Ref 0.02 
 

Ref 0.12 
 

Ref 0.18 

 Q2 0.92 (0.79-1.07)  0.95 (0.82-1.11)  0.95 (0.82-1.11)  

 Q3 0.96 (0.83-1.12)  0.98 (0.84-1.15)  0.95 (0.81-1.12)  
 Q4 0.79 (0.68-0.92)  0.84 (0.72-0.99)  0.84 (0.71-0.99)  
        

Intra-Daily 
Variability 

(IV) 
Q1 

Ref 0.01 Ref 0.08 Ref 0.27 

 Q2 1.23 (1.06-1.43)  1.2 (1.03-1.4)  1.12 (0.96-1.31)  

 Q3 1.10 (0.94-1.28)  1.07 (0.91-1.26)  1.07 (0.91-1.26)  
 Q4 1.26 (1.08-1.47)  1.18 (0.99-1.4)  1.18 (0.99-1.42)  
        

L5  Q1 Ref 0.07 Ref 0.06 Ref 0.09 

 Q2 0.97 (0.84-1.13)  0.97 (0.84-1.12)  0.92 (0.79-1.07)  
 Q3 0.90 (0.78-1.04)  0.91 (0.79-1.06)  0.91 (0.79-1.06)  
 Q4 1.10 (0.95-1.28)  1.12 (0.96-1.29)  1.09 (0.93-1.27)  
        

M10 Q1 
Ref 1.95E-

04 
Ref 0.049 Ref 0.29 

 Q2 0.88 (0.76-1.02)  0.88 (0.75-1.04)  0.90 (0.76-1.06)  

 Q3 0.85 (0.73-0.99)  0.87 (0.72-1.05)  0.92 (0.76-1.11)  
 Q4 0.70 (0.6-0.82)  0.72 (0.57-0.91)  0.80 (0.63-1.02)  

Abbreviations:  IS – inter-daily stability; IV – intra-daily variability; L5 – activity count for least active 5 hours of 

the day; M10 – activity count most active 10 hours of the day. C1-5: Clusters between 1-5.   The crude model 

(M1) was adjusted for age, race-ethnicity, and education. Model 2 was adjusted for the following covariates 

including age, race-ethnicity, education, self-rated health, alcohol consumption, smoking status, tota l minutes 

spent in physical activity, cardiovascular disease, diabetes, and cancer. The fully adjusted model (M3) was 

adjusted for the same model covariates as model 2 and was additionally adjusted for sleep medication, 

depression, and body mass index. 
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APPENDIX C: Supplementary Materials to Chapter 4 
 

Supplementary Methods 

Mediation Analysis of Rest-Activity Metrics, M10, and Cognitive Outcomes. 

Supplementary Results 

Bayesian Network of Sleep, Dementia, and AD 

In this study, we present two Bayesian Network models that characterize the structure of 

the relationship between sleep-RAR factors and incident dementia and Alzheimer's disease 

(Figures 1-2). This derived network can be described as a product of the conditional probability 

distributions of the variables that comprise the network’s nodes (e.g., joint probability 

distribution). By decomposing each model described, a complex model can be simplified to 

highlight the factors that directly influence each variable in the sleep-cognition models. We 

highlight differences in the conditional probabilities between sleep-dementia and sleep-AD 

networks in bold. 
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Figure C.1. Mediation visualization of intra-daily variability, M10 activity, and AD 

The network diagram identified from the Bayesian Network model identified an indirect effect 
for intra-daily variability and Alzheimer’s Disease that is mediated by M10 activity. Structural 

equation modeling was performed with the lavaan package to  identify the indirect effect; no 
direct effect was modeled between intra-daily variability and incident Alzheimer’s Disease due 
to the absence of an edge in the network model, in addition to the absence of an association from 

survival analyses. Logistic regression models were fit for the mediation and  outcome models. 
Each mediation model separately regressed the dummy variables coded using indicator coding 

for M10 quartile levels 2-4 on the independent variable (intra-daily variability). These mediation 
models were adjusted for inter-daily stability and race-ethnicity, since these variables were 
identified as confounding variables based on the BN model. The outcome model regressed 

Alzheimer’s Disease on the mediator, and the outcome model was also adjusted for inter-daily 
stability and race-ethnicity. Bootstrapped confidence intervals were estimated for the indirect 

effects based on 1,000 samples.  
The mediation models were identified based on an existing work focused on conducting 
mediation analyses with multiple category, unordered variables [176].  

For example, the indirect effect for intra-daily variability quartile 2 vs. quartile 1 is indicated by 
the following equations: 

Indirect Effect for IV quartile 2 vs. 1 = a1*b1+a2*b2+a3*b3 
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Figure C.2. Mediation Visualization of Inter-Daily Stability, M10 Activity, and Alzheimer’s 
Disease 
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Table C.1. Bynum Algorithm Definition of Alzheimer’s Disease and Related Disorder or Senile 
Dementia 

The Bynum-standard  algorithm was implemented using ICD-9 codes and ICD-10 codes to 
identify dementia in the CMS claims database. Additional dementia and AD cases were 

identified using a list of medications, specifically the generic name. The diagnosis codes used for 
the dementia and AD diagnoses are indicated below. Prescription records for the following 
medications (identified using the generic name) were used to identify additional dementia and 

AD cases. The same list of medications (based on generic names) were used to identify dementia 
and Alzheimer’s Disease cases, which included Memantine, Donepezil, Rivastigmine, and 

Galantamine. 
 

ICD Code Description 
ICD 

Version 

2900 Senile dementia, uncomplicated 9 

29010 Presenile dementia, uncomplicated 9 

29011 Presenile dementia with delirium 9 

29012 Presenile dementia with delusional features 9 

29013 Presenile dementia with depressive features 9 

29020 Senile dementia with delusional features 9 

29021 Senile dementia with depressive features 9 

2903 Senile dementia with delirium 9 

29040 Vascular dementia, uncomplicated 9 

29041 Vascular dementia, with delirium 9 

29042 Vascular dementia, with delusions 9 

29043 Vascular dementia, with depressed mood 9 

2940 Amnestic disorder in conditions classified elsewhere 9 

29410 Dementia in conditions classified elsewhere without behavioral 
disturbance 

9 

29411 Dementia in conditions classified elsewhere with behavioral 

disturbance 

9 

29420 Dementia, unspecified, without behavioral disturbance 9 

29421 Dementia, unspecified, with behavioral disturbance 9 

3310 Alzheimer's disease 9 

33111 Pick's disease 9 

33119 Other frontotemporal dementia 9 

3312 Senile degeneration of brain 9 

3317 Cerebral degeneration in diseases classified elsewhere 9 

33182 Dementia with Lewy bodies 9 

797 Senility without mention of psychosis 9 
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Table C.1. Bynum Algorithm Definition of Alzheimer’s Disease and Related Disorder or Senile 
Dementia, Continued. 

 
ICD Code 

 
Description 

ICD 

Version 

F0150 Vascular dementia, unspecified severity, without behavioral 
disturbance, psychotic disturbance, mood disturbance, and anxiety 

10 

F0151 Vascular dementia with behavioral disturbance 10 

F0280 Dementia in other diseases classified elsewhere, unspecified severity, 
without behavioral disturbance, psychotic disturbance, mood 

disturbance, and anxiety 

10 

F0281 Dementia in other diseases classified elsewhere with behavioral 
disturbance 

10 

F0390 Unspecified dementia, unspecified severity, without behavioral 

disturbance, psychotic disturbance, mood disturbance, and anxiety 

10 

F0391 Unspecified dementia with behavioral disturbance 10 

F04 Amnestic disorder due to known physiological condition 10 

G138 Systemic atrophy primarily affecting central nervous system in other 
diseases classified elsewhere 

10 

G300 Alzheimer's disease with early onset 10 

G301 Alzheimer's disease with late onset 10 

G308 Other Alzheimer's disease 10 

G309 Alzheimer's disease, unspecified 10 

G3101 Pick's disease 10 

G3109 Other frontotemporal neurocognitive disorder 10 

G311 Senile degeneration of brain, not elsewhere classified 10 

G312 Degeneration of nervous system due to alcohol 10 

R4181 Age-related cognitive decline 10 
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Table C.2. Alzheimer’s Disease Bynum Definition 

 

ICD Code Description 
ICD 

Version 

3310 Alzheimer's disease 9 

G300 Alzheimer's disease with early onset 10 

G301 Alzheimer's disease with late onset 10 

G308 Other Alzheimer's disease 10 

G309 Alzheimer's disease, unspecified  10 
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