
UC San Diego
UC San Diego Previously Published Works

Title
The Development and Validation of a Glaucoma Health Score for Glaucoma Screening 
Based on Clinical Parameters and Optical Coherence Tomography Metrics.

Permalink
https://escholarship.org/uc/item/6sw9s0cp

Journal
Journal of Clinical Medicine, 13(22)

ISSN
2077-0383

Authors
Chaglasian, Michael
Nishida, Takashi
Moghimi, Sasan
et al.

Publication Date
2024-11-08

DOI
10.3390/jcm13226728
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6sw9s0cp
https://escholarship.org/uc/item/6sw9s0cp#author
https://escholarship.org
http://www.cdlib.org/


Citation: Chaglasian, M.; Nishida, T.;

Moghimi, S.; Speilburg, A.; Durbin,

M.K.; Hou, H.; El-Nimri, N.W.; Lee,

C.K.; Guzman, A.; Arias, J.D.; et al.

The Development and Validation of a

Glaucoma Health Score for Glaucoma

Screening Based on Clinical

Parameters and Optical Coherence

Tomography Metrics. J. Clin. Med.

2024, 13, 6728. https://doi.org/

10.3390/jcm13226728

Academic Editors: Jose Javier

Garcia-Medina and Brent Siesky

Received: 30 September 2024

Revised: 28 October 2024

Accepted: 7 November 2024

Published: 8 November 2024

Copyright: © 2024 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

Article

The Development and Validation of a Glaucoma Health Score for
Glaucoma Screening Based on Clinical Parameters and Optical
Coherence Tomography Metrics
Michael Chaglasian 1 , Takashi Nishida 2, Sasan Moghimi 2, Ashley Speilburg 1, Mary K. Durbin 3 ,
Huiyuan Hou 3,* , Nevin W. El-Nimri 3, Christopher K. Lee 3, Anya Guzman 3, Juan D. Arias 3, Timothy Bossie 4 ,
Yu Xuan Yong 2, Linda M. Zangwill 2 and Robert N. Weinreb 2

1 Illinois College of Optometry, Chicago, IL 60616, USA; mchaglas@ico.edu (M.C.); ascheurer@ico.edu (A.S.)
2 Hamilton Glaucoma Center, Shiley Eye Institute, Viterbi Family Department of Ophthalmology, University of

California, San Diego, CA 92039, USA; tnishida@health.ucsd.edu (T.N.); samoghimi@health.ucsd.edu (S.M.);
x1yong@health.ucsd.edu (Y.X.Y.); lzangwill@health.ucsd.edu (L.M.Z.); rweinreb@ucsd.edu (R.N.W.)

3 Topcon Healthcare, Oakland, NJ 07436, USA; mdurbin@topcon.com (M.K.D.);
nel-nimri@topcon.com (N.W.E.-N.); clee@topcon.com (C.K.L.); aguzman@topcon.com (A.G.);
jarias@topcon.com (J.D.A.)

4 New England College of Optometry, Boston, MA 02115, USA; bossiet@neco.edu
* Correspondence: hhou@topcon.com

Abstract: Background/Objectives: This study aims to develop and validate a Glaucoma Health Score
(GHS) that incorporates multiple individual glaucoma risk factors to enhance glaucoma detection
in screening environments. Methods: The GHS was developed using a retrospective dataset from
two clinical sites, including both eyes of glaucoma patients and controls. The model incorporated
age, central corneal thickness, intraocular pressure, pattern standard deviation from a visual field
threshold 24-2 test, and two parameters from an optical coherence tomography (OCT) test: the
average circumpapillary retinal nerve fiber layer thickness and the minimum thickness of the six
sectors of the macular ganglion cell plus the inner plexiform layer. The GHS was then validated
in two independent datasets: one from primary care sites using Maestro OCT data (test dataset 1)
and another from an academic center using DRI OCT Triton (test dataset 2). Results: Both eyes
of 51 glaucoma patients and 67 controls were included in the development dataset. Setting the
GHS cutoff at 75 points out of 100, test dataset 1, which comprised 41 subjects with glaucoma and
41 healthy controls, achieved an area under the receiver operating characteristic curve (AUROC)
of 0.98, with a sensitivity of 71% and specificity of 98%; test dataset 2, which included 53 patients
with glaucoma and 53 healthy controls, resulted in an AUROC of 0.95, with a sensitivity of 75% and
specificity of 96%. A decision curve analysis across all datasets demonstrated a higher net benefit for
the GHS model compared to individual OCT parameters. Conclusions: The GHS offers a feasible,
standardized approach for early detection of glaucoma, providing strong specificity and acceptable
sensitivity, with clear decision-making benefits in screening settings.

Keywords: optical coherence tomography; glaucoma screening; primary eye care; glaucoma health score

1. Introduction

Glaucoma is one of the leading causes of irreversible blindness worldwide [1]. Open-
angle glaucoma, the most common form, is characterized by progressive damage to the
optic nerve and gradual vision loss. It typically has no symptoms in its early stages, making
it crucial to detect and manage before significant vision impairment occurs. The disease is
associated with risk factors such as elevated intraocular pressure (IOP), age, and family
history, and it progresses gradually over time if left untreated [2]. The severity of the
disease at the time of diagnosis is strongly correlated with outcomes, indicating that earlier
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detection is imperative [3]. With numerous available glaucoma treatment options, such
as pharmacological, laser, and surgical [2], ensuring that patients are routinely screened
in primary eye care settings and triaged appropriately for treatment and management is
important [3].

While the literature suggests that population screening can identify undetected glau-
coma and may reduce low vision and blindness caused by the disease by approximately
50% [3], the evidence supporting widespread screening remains inconclusive [4]. Primary
eye care may serve as an effective means for glaucoma detection, as patients come in for
routine vision-related services or annual eye examinations. Paul et al. found that integrat-
ing optical coherence tomography (OCT) as part of routine eye examinations in primary
eye care increased referrals to specialists for glaucoma management [5]. However, they
and others have noted that this approach lacks the required specificity, hence creating a
scenario where glaucoma specialists are inundated with patients who may not require
their care [3,5,6]. For this reason, there is a clinical need for systematic, highly specific
methods to screen patients and identify those in need of glaucoma monitoring at the earliest
stages possible, such as in primary eye care clinics. These methods would enable effective
early detection of glaucoma and appropriate patient triage, thereby preventing vision loss.
Given that the majority of individuals who are evaluated in these screening settings do not
have glaucoma, such methods must prioritize high specificity. One systematic approach to
achieve high specificity, without compromising early detection, is to develop a single score
that includes OCT and other clinically relevant risk factors to quantify the likelihood of
having glaucoma, facilitating appropriate follow-up and triage.

Several scores based solely on OCT have been developed [7–9]. While these may prove
useful in screening settings, they exclude other standard clinical parameters that practi-
tioners consider when detecting glaucoma. Methods that incorporate additional clinical
parameters have been derived from the Ocular Hypertension Treatment Study (OHTS) [10]
and the European Glaucoma Prevention and Study (EGPS) [11]. However, these scores
were specifically designed to assess the risk of developing glaucoma in individuals with
ocular hypertension [12], are not applicable to patients without this condition, and are
hence not applicable for the purpose of screening.

In this study, we aim to develop and evaluate a health score for open-angle glaucoma
that utilizes data that are readily available in primary eye care settings, which routinely use
OCT for screening of disease, and to assess the likelihood of a patient having glaucoma at
the time of their visit.

2. Materials and Methods
2.1. Model Development

To develop the Glaucoma Health Score (GHS), data were retrospectively evaluated
from two primary eye care clinics (the Illinois College of Optometry (ICO) and the Topcon
Healthcare Innovation Center (THINC)). Both study protocols received Institutional Review
Board (IRB) approval and adhered to the principles of the Declaration of Helsinki and the
Health Insurance Portability and Accountability Act.

Subjects were included if 12 × 9 mm 3D Wide OCT scans imaged using the Maestro2
(Topcon Corporation, Tokyo, Japan), from both eyes of the participants, were acceptable and
if no confounding ocular pathology (such as epiretinal membrane or diabetic retinopathy)
was present. To be considered normal for the model development purposes, both eyes had
to be free of elevated intraocular pressure (IOP < 22), structural abnormalities, or functional
loss that indicate glaucomatous damage based on the clinical records. To be classified in the
glaucoma category, at least one eye had to be diagnosed with glaucoma as per the clinical
records of the site based on a comprehensive eye exam. There were no specific requirements
for the severity of glaucoma. If a subject was suspected of glaucoma in either eye due to
ocular hypertension or a suspiciously appearing disk but did not have a definitive diagnosis
of glaucoma in either eye, they were treated as a suspect and included in the control group.
The clinical diagnosis at the time of the OCT evaluation, based on a comprehensive eye
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exam, was used at the subject level. Clinical data and OCT measurements from both eyes
of each subject were included. The clinical data evaluated comprised age at the time of
the OCT scan, central corneal thickness (CCT), and IOP, as well as the pattern standard
deviation (PSD) from a 24-2 threshold visual field test (using either the Humphrey Field
Analyzer (HFA, ZEISS, Dublin, CA, USA) or TEMPO/imovifa (Crewt Medical Systems Inc.,
Tokyo, Japan)). The OCT data (Maestro2) included two diagnostically useful parameters for
discriminating between normal eyes and eyes with glaucoma: the average circumpapillary
retinal nerve fiber layer (cpRNFL) thickness and the minimum thickness of the six sectors
of the macular ganglion cell plus the inner plexiform layer (minGCL+) [7–9].

2.2. Model Testing
2.2.1. Test Set 1 (Maestro2)

Independent data from three sites—ICO, the New England College of Optometry
(NECO), and THINC—collected using the Maestro2 device, were used to form the first
test dataset. This dataset was evaluated by two independent professional graders using
the Columbia University OCT-based method (CU OCT) [13]. The graders reviewed the
RNFL and GCL+ probability maps, the RNFL and GCL+ thickness maps, and the cpRNFL
B-scan image on the OCT reports. Scans considered acceptable for categorization were
labeled as healthy, optic neuropathy consistent with glaucoma, glaucoma suspects, or
other pathologies. Scans labeled as suspects or other pathologies were excluded from the
analysis. OCT scans were reviewed for acceptability and excluded if the graders identified
artifacts such as clipping and/or segmentation errors that were likely to significantly impact
the cpRNFL thickness measurements, evidence of significant motion artifacts, blinks, or
mispositioning of the optic disk in the GCL+. Scans with a TopQ (image quality) score of
less than 25 were also excluded, as recommended by the Maestro2 user manual for this
device and scan type.

Cases where the graders disagreed on a diagnosis were resolved through adjudication
in a decision meeting. This process involved reassessing the case with additional clinical
data, such as IOP, CCT, visual field reports, and OCT reports from the patient record,
including previous visits, if available. Data from both eyes were reviewed and categorized
into the healthy or glaucoma groups. Subjects in the healthy group were required to have
both eyes labeled as healthy. Subjects in the glaucoma group only required one eye to be
labeled as glaucomatous. The severity of the glaucoma of each subject was determined by
the worse eye. The healthy and glaucoma groups were matched for sex and age.

2.2.2. Test Set 2 (Triton)

The second independent dataset was from the Hamilton Glaucoma Center, Shiley
Eye Institute, University of California, San Diego. The subjects were included from the
Diagnostic Innovations in Glaucoma Study (DIGS) [14]. All subjects provided written
informed consent, the IRB at the University of California San Diego approved all protocols,
and all methods adheres to the Declaration of Helsinki. The methods for diagnosing
glaucoma and the OCT device used (DRI OCT Triton, Topcon Corporation, Tokyo, Japan)
differed from those in the development dataset and test dataset 1 to verify performance in
different settings, considering clinical practice applicability.

The inclusion and exclusion criteria for DIGS were described previously [14]. Specifi-
cally, all subjects underwent the following examinations: (1) a baseline examination includ-
ing ultrasound pachymetry and gonioscopy; (2) an annual ophthalmologic examination
including best-corrected visual acuity, slit lamp biomicroscopy, dilated fundus examination,
and stereoscopic optic disk photography; and (3) a semiannual examination including IOP
measurement with Goldmann applanation tonometry, visual field, and OCT in both eyes.
The inclusion criteria also consisted of (1) age above 18 years, (2) open angles on gonioscopy,
(3) best-corrected visual acuity of 20/40 or better, and (4) refraction within 5.0 diopters
spherical and within 3.0 diopters cylinder at baseline. The exclusion criteria were (1) a
history of trauma or intraocular surgery (except for uncomplicated cataract surgery or
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glaucoma surgery); (2) coexisting retinal disease, uveitis, or non-glaucomatous optic neu-
ropathy; (3) other systemic or ocular diseases known to affect visual field performance or
reliability; and (4) a diagnosis of Parkinson disease, Alzheimer disease, or dementia or a
history of stroke. Eyes with an axial length of 27 mm or greater were also excluded. Reliable
visual fields (fixation losses and false negatives ≤ 33% and false positives ≤ 15%) were
assessed using the 24-2 HFA SITA-Standard, and OCT data were derived from the Triton
OCT 3D wide scans (12 × 9 mm) encompassing the peripapillary and macula regions. OCT
scans with an image quality score of ≥40 [15] were included in this dataset.

Eyes characterized as glaucoma suspect were defined as having glaucomatous optic
neuropathy or an elevated IOP of 22 mmHg or greater without any repeatable glaucomatous
visual field defect. Eyes with primary open-angle glaucoma were defined by glaucomatous
optic neuropathy and repeatable glaucomatous visual field defects, which included a
Glaucoma Hemifield Test outside the normal limits and a PSD outside the 95% normal
limits [14]. Two masked clinical graders reviewed stereoscopic optic disk photographs
for the presence of glaucomatous optic neuropathy based on neuroretinal rim narrowing,
notching, excavation, or localized or diffuse RNFL defect [14]. If one eye had glaucoma,
the subject was treated as a glaucoma subject, and if both eyes were normal, the subject
was treated as normal.

2.3. Statistical Analysis

Continuous and categorical data are presented as mean (standard deviation (SD))
and count. The statistical significance of differences across groups was determined by
two-sample t-tests for continuous variables and chi square tests for categorical variables.

A logistic regression model was fitted to the development data using MATLAB (ver-
sion: 9.8.0 R2020a, The MathWorks Inc.: Natick, MA, USA) to predict whether the clinical
assessment indicated glaucoma as opposed to control. The model was then simplified
by combining weights from both eyes to create a model that was applicable to a subject.
Since the goal of the tool is to support screening in settings where glaucoma presents at
its natural prevalence of 0.6–8.3% [16], a model cutoff that provided a specificity of 95% in
the development data was selected. A second cutoff that gave a specificity of 85% in the
development data was also considered.

The GHS was applied to the subject of the test dataset, and the area under the receiver
operating characteristic curve (AUC) was calculated. To evaluate the sensitivity and
specificity, the score was compared to one of two thresholds: one associated with 95%
specificity and the other with 85% specificity in the development dataset. The ground truth
was determined by the diagnosis generated by the independent graders. Confidence limits
at the 95% level were calculated using the exact binomial calculation.

The clinical utility of the GHS, cpRNFL, and minGCL+ were assessed through decision
curve analysis (DCA) to determine its net benefit in potential clinical use. Data from
the development and test datasets were analyzed using multivariable logistic regression
models, normalized across datasets. Binomial generalized linear mixed models were
employed with random effects for patients to account for within-subject variability [17].

3. Results

The development dataset comprised data from both eyes of 51 subjects with glaucoma
and 67 control subjects. Table 1 presents descriptive statistics for the development dataset.
Most eyes with glaucoma were in the early stage, with only 16 out of 102 eyes having a
mean deviation (MD) worse than −6 decibels (dB). There was no significant difference
among the groups in terms of age, IOP, and CCT. The groups differed by gender, MD, PSD,
cpRNFL, and minGCL+.
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Table 1. Descriptive statistics [mean (standard deviation)] for each parameter considered as part of
the screening score (development dataset), test set 1, and test set 2.

Development Dataset Test Dataset 1 (Maestro2) Test Dataset 2 (Triton)

Control Glaucoma p-Value Control Glaucoma p-Value Control Glaucoma p-Value

Subject (n) 67 51 41 41 53 53
Age (years) 61.0 (12.6) 60.4 (11.7) 0.8 63.3 (14.2) 63.7 (14.9) 0.92 67.5 (1.9) 70.5 (1.7) 0.233
Male:
Female 22:45 27:24 0.03 16:25 16:25 0.99 15:38 15:38 1.000

logMAR 0.0 (0.1) 0.0 (0.1) 0.02 0.0 (2.6) −0.1 (6.7) 0.01 0.0 (0.1) 0.0 (0.1) 0.038
IOP (mmHg) 17.2 (4.8) 21.9 (6.4) <0.001 14.6 (2.9) 15.9 (4.5) 0.001 13.6 (2.5) 14.0 (4.2) 0.560
CCT (µm) 547.8 (42.4) 541.6 (33.4) 0.38 543.4 (34.9) 524.4 (36.0) 0.02 544.4 (38.7) 538.3 (40.9) 0.438
MD (dB) −0.8 (1.9) −3.5 (4.8) 0.001 0.0 (1.7) −4.6 (5.0) <0.001 −0.1 (1.1) −5.6 (6.0) <0.001
PSD (dB) 1.8 (1.3) 3.5 (3.2) <0.001 1.6 (1.4) 4.4 (4.0) <0.001 1.7 (0.3) 5.7 (3.4) <0.001
cpRNFL (µm) 99.5 (13.4) 79.4 (17.4) <0.001 102.7 (10.6) 74.2 (16.8) <0.001 99.9 (12.2) 72.2 (18.5) <0.001
minGCL+ (µm) 63.6 (6.9) 52.3 (11.7) <0.001 65.9 (5.3) 48.0 (7.8) <0.001 64.0 (6.1) 52.0 (8.8) <0.001
Severity of Glaucoma
Early
MD ≥ −6 dB
Moderate
−12 ≤ MD < −6 dB
Severe
MD ≥ −12 dB

N/A
39 (76%)
5 (10%)
7 (14%)

N/A
30 (73%)
8 (20%)
3 (7%)

N/A
30 (57%)
10 (19%)
13 (25%)

Abbreviations: logMAR = Logarithm of the Minimum Angle of Resolution; IOP = intraocular pressure;
CCT = central corneal thickness; MD = mean deviation; PSD = pattern standard deviation; cpRNFL = circum-
papillary retinal nerve fiber layer; minGCL+ = minimum thickness of the ganglion cell layer plus inner the
plexiform layer.

Figure 1 shows the resulting receiver operating characteristic (ROC) curve for the
development dataset, test set 1, and test set 2, respectively. They were compared to the
ROC curve of two common metrics: the cpRNFL average and the minimum grid value for
the ganglion cell plus the inner plexiform layer thickness (minGCL+). In the development
dataset, the AUC (with 95% confidence limits) for the GHS was 0.91 (0.84, 0.95), compared
to 0.88 (0.82, 0.93) for cpRNFL and 0.85 (0.76, 0.91) for minGCL+.
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Figure 1. Receiver operating characteristic curves for the development dataset (left), test set
1 (middle), and test set 2 (right) for the Glaucoma Health Score (GHS) (magenta) compared to
curves for the average circumpapillary retinal nerve fiber layer (cpRNFL) thickness and minimum
thickness of the six sectors of the macular ganglion cell plus the inner plexiform layer (GCL+).

The logistic regression in Formula (1), based on the model fit and simplified to apply
to a single eye (by summing the weights for both eyes), was as follows:

Y = 11.43 − 0.017 × Age + 0.138 × IOP − 0.004 × CCT + 0.329 × PSD − 0.083 × cpRNFL − 0.076 × minGCL+,
P = eY

1+eY × 100
(1)
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Based on the range of values observed in the development dataset, the factors were
ranked in terms of their potential contribution from highest to lowest as follows: average
cpRNFL thickness, PSD, IOP, minimum ganglion cell layer (minGCL+) thickness, age,
and CCT.

A cutoff of 75 (of 100 possible) was selected to identify glaucoma, based on a goal of
95% specificity in the development dataset. A cutoff of 50 was established for borderline
cases to identify an increasing probability of glaucoma, which was consistent with a
specificity better than 85% in the development dataset.

Test dataset 1 included 41 subjects with glaucoma (30 early, 8 moderate, and 3 severe
glaucoma), and 41 eyes from 41 healthy controls. Table 1 presents the descriptive statistics
for the test dataset. The ROC curve for this dataset, compared with the curves for cpRNFL
average and the minGCL+, is shown in Figure 1 (middle). The AUC for the GHS was 0.98
(CI: 0.93, 0.99), which was slightly better than the AUC in this dataset for the minGCL+ 0.96
(CI: 0.90, 0.99) and cpRNFL 0.93 (CI: 0.85, 0.97). Using a cutoff of 75, the sensitivity in the test
dataset was 71%, with a specificity of 98%. Using a lower cutoff of 50 to indicate potentially
borderline cases, the sensitivity changed to 83%, with the specificity remaining 98%.

In test dataset 2, comprising 53 patients with glaucoma and 53 healthy controls, setting
the GHS cutoff at 50 points out of 100 yielded a sensitivity of 89% and a specificity of 91%.
Adjusting the GHS cutoff to 75 points resulted in a sensitivity of 75% and a specificity of 96%.
The AUC for GHS was 0.95 (95% CI: 0.90 to 0.98). The ROC curve for dataset 2, compared
with the curves for cpRNFL average and the minGCL+, is shown in Figure 1 (right).

Figure 2 shows the decision curves for all three datasets, comparing GHS, cpRNFL
and minGCL+ to “intervene for none” and “intervene for all” scenarios. The DCA re-
sults demonstrate that the GHS consistently provides the highest net benefit compared
to cpRNFL and minGCL+ across all decision thresholds. Specifically, the GHS curve re-
mains above both the “intervene for none” and “intervene for all” reference lines across all
thresholds, indicating its superior clinical utility.
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4. Discussion

This study presents a model, the Glaucoma Health Score (GHS), which uses OCT and
clinical parameters to predict the likelihood of glaucoma in screening settings.
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The GHS uses a logistic regression model that is similar to the OHTS and EGPS
scores [11,12] but includes subjects with a wider range of IOP. Additionally, it incorpo-
rates OCT analysis/data, which were not available at the time of the initial OHTS and
EGPS studies.

The GHS is similar to several OCT-only models, such as the UNC OCT Index [9] by
Fukai et al. [7], in that it outperforms single metrics derived from OCT data. These models
were validated in independent datasets and showed strong performance in diagnosing
glaucoma, with the UNC OCT Index achieving an AUC of 0.96 and Fukai-Nakano’s models
achieving an AUC of 0.97. The GHS has an AUC of 0.98 in the test dataset, which is
comparable to these OCT-only models. However, since glaucoma detection is known to
be influenced by population characteristics such as age, race, ethnicity, and the severity
of glaucoma [18], comparing AUC values across studies or datasets that involve different
subject groups may lead to inaccurate conclusions. Therefore, direct comparisons should
be avoided unless the subjects in the studies or datasets are closely matched. Overall, the
GHS performs similarly to these OCT-only models. However, the GHS improves upon
these earlier models by incorporating clinical parameters that are commonly used in the
diagnosis of glaucoma, as it would be advantageous for clinicians in screening settings to
consider more than just OCT [11].

The GHS benefits from incorporating clinical parameters that practitioners collect
in screening settings and consider when making decisions. These parameters are also
known to be associated with the onset and progression of glaucoma [2,10,11]. Previously
developed glaucoma risk scores using clinical data generally did not include OCT or
included OCT only and were designed specifically for clinically indicated populations
rather than for use in screening settings. These risk scores are intended to support decisions
regarding glaucoma treatment in the presence of a high IOP [10,11]. Consequently, their
performance is not measured based on a binary comparison and their performance cannot
be directly compared to the GHS. Conversely, the clinical decision supported by the GHS
is whether or not a patient should be monitored for glaucoma. While the incidence of
undiagnosed glaucoma remains high, the prevalence of glaucoma in patients seeking
vision-related care or annual eye examinations has been demonstrated to be low, so it
is essential to optimize specificity to avoid false positives overwhelming the healthcare
system [19]. The high specificity observed in the test dataset suggests that the GHS could
be useful in these scenarios. The introduction of a high-specificity tool to screen for the
possible presence of glaucoma could help prevent false positives that have been observed
using OCT in these clinical settings [5,19–21]. The superior clinical utility of the GHS is also
demonstrated by the high net benefit shown for the GHS in the DCA [22]. This suggests that
incorporating the GHS into screening protocols could improve the accuracy of glaucoma
detection, potentially reducing both false positives and unnecessary interventions. By
providing a clearer benefit in decision-making compared to traditional measures, the GHS
may help streamline early detection efforts, particularly in screening scenarios, leading to
more timely and targeted interventions for individuals at risk. Although the DCA shows
that cpRNFL and minGCL+ perform worse than an “intervene for all” strategy, they may
still hold potential value in targeted screening strategies for high-risk populations, such
as those with high polygenic risk scores, older individuals, or individuals of African or
Hispanic descent. In cases where demographic or ophthalmic data (such as IOP, CCT,
and VF) included in the GHS are not easily obtainable, future research is needed to assess
whether OCT-only parameters, like cpRNFL and minGCL+, could help reduce costs while
maintaining screening effectiveness in targeted settings [23,24]. A notable finding of the
current study is the effective performance of a score developed in SD-OCT when applied
to SS-OCT data. This success can be anticipated due to recent studies showing excellent
agreement between measurements from these two devices [25].

Incorporating suspects within the control group of the development set was aimed at
capturing the full spectrum of clinical presentations that are encountered in primary eye care
settings. By including these suspicious cases within the control group, we aimed to improve



J. Clin. Med. 2024, 13, 6728 8 of 10

the model’s ability to differentiate potential normal variations from those with early signs
of glaucoma. This approach helped ensure that the model could handle the inherent
variability in real-world patient populations. Furthermore, the GHS demonstrated robust
performance across both test datasets, despite variations in data sources, including practice
type, patient population, devices used, diagnostic criteria, etc. These findings suggest that
the GHS can detect glaucoma effectively across diverse clinical settings, highlighting its
broad applicability in real-world scenarios.

One limitation of this study is the small sample size used for development and inability
to check the generalizability across age, race, and glaucoma severity. However, a strength of
this study is the use of two independent test datasets obtained from two different settings
to validate the performance of the model.

Another limitation of this study is the incorporation of suspects within the control
arm of the development set, along with the exclusion of suspects from both test sets,
which may have contributed to the higher specificity observed in the test sets compared
to the development set. Nevertheless, given the necessity for high specificity and the
ability of OCT to capture disease earlier than traditional eye examinations that do not use
OCT, it seems reasonable to acknowledge that detecting suspects falls beyond the scope
of screening.

A third limitation is the use of only global parameters from OCT. Future modifications
may include adding local OCT parameters, such as the quadrant RNFL and GCL+ thickness
values. However, the introduction of these additional local variables reduces the specificity.
A final limitation is the use of parameters such as the CCT and visual field threshold tests
that may not be routinely captured in these screening environments. Future work can
explore the use of reduced parameter sets.

5. Conclusions

Overall, this study demonstrates that it is feasible to develop a multi-risk factor Glau-
coma Health Score that includes OCT and maintains excellent specificity and acceptable
sensitivity in screening settings. Moreover, the DCA demonstrates that the GHS may
be useful in screening settings that include OCT in pre-test examinations, enabling the
clinician to determine if further evaluation for glaucoma is indicated.

Author Contributions: Conceptualization, M.C., M.K.D., S.M., C.K.L., R.N.W. and H.H.; Data
curation, M.C., M.K.D., A.S., T.N., Y.X.Y., H.H., N.W.E.-N., L.M.Z., J.D.A. and A.G.; Formal analysis,
M.K.D., T.N., A.G. and H.H.; Investigation, M.C., A.S., T.N., J.D.A., Y.X.Y., S.M., H.H., N.W.E.-N. and
T.B.; Methodology, M.K.D., H.H. and T.N.; Project administration, M.C., M.K.D., T.B. and R.N.W.;
Resources, M.C., A.S., M.K.D., C.K.L., T.B., L.M.Z., S.M. and R.N.W.; Supervision, M.C., T.B, and
R.N.W.; Visualization, M.K.D., T.N., A.G. and H.H.; Writing—original draft, M.C., M.K.D., H.H. and
T.N.; Writing—review and editing, M.C., T.N., S.M., A.S., M.K.D., H.H., N.W.E.-N., C.K.L., A.G.,
J.D.A., T.B., Y.X.Y., L.M.Z. and R.N.W. All authors have read and agreed to the published version of
the manuscript.

Funding: This research received no external funding.

Institutional Review Board Statement: The study utilized data from two studies: the development
dataset and test set 1 were from a retrospective study conducted in accordance with the Declaration of
Helsinki and approved by Advarra Institutional Review Board (MOD01564217) on 14 February 2023;
test set 2 comprised data from the Diagnostic Innovations in Glaucoma Study (DIGS), conducted in
accordance with the Declaration of Helsinki and approved by the Institutional Review Board of the
University of California at San Diego.

Informed Consent Statement: The current study was conducted using anonymized data in accor-
dance with the terms of the IRB approvals. For the development dataset and test set 1, patient consent
was waived due to the retrospective nature of the study, and anonymized data were used, which was
approved by the IRB. For test set 2, informed consent was obtained from all participants involved in
the original study (DIGS), which included permission for their data to be used in future research.

Data Availability Statement: Datasets are available on request from the authors.



J. Clin. Med. 2024, 13, 6728 9 of 10

Conflicts of Interest: Authors Michael Chaglasian, Takashi Nishida, Ashley Speilburg, and Timothy
Bossie have been involved as consultants in Topcon Healthcare. Authors Mary Durbin, Huiyuan
Hou, Nevin W. El-Nimri, Christopher Lee, Anya Guzman, and Juan Arias are employees of Topcon
Healthcare. Author Robert N. Weinreb has received research support from the National Eye Institute,
Konan Medical, Optovue, and Centervue; served as a consultant for Abbvie, Alcon, Amydis, Editas,
Eyenovia, Iantrek, IOPtic, Implandata, iSTAR Medical, Nicox, and Topcon; and holds patents for
Toromedes and Carl Zeiss Meditec. Authors Sasan Moghimi and Yu Xuan Yong have no conflicts
of interest.

References
1. Flaxman, S.R.; Bourne, R.R.A.; Resnikoff, S.; Ackland, P.; Braithwaite, T.; Cicinelli, M.V.; Das, A.; Jonas, J.B.; Keeffe, J.;

Kempen, J.H.; et al. Global Causes of Blindness and Distance Vision Impairment 1990–2020: A Systematic Review and Meta-
Analysis. Lancet Glob. Health 2017, 5, e1221–e1234. [CrossRef] [PubMed]

2. Weinreb, R.N.; Aung, T.; Medeiros, F.A. The Pathophysiology and Treatment of Glaucoma: A Review. JAMA 2014, 311, 1901.
[CrossRef] [PubMed]

3. Aspberg, J.; Heijl, A.; Bengtsson, B. Screening for Open-Angle Glaucoma and Its Effect on Blindness. Am. J. Ophthalmol. 2021, 228,
106–116. [CrossRef] [PubMed]

4. US Preventive Services Task Force; Mangione, C.M.; Barry, M.J.; Nicholson, W.K.; Cabana, M.; Chelmow, D.; Coker, T.R.;
Davis, E.M.; Donahue, K.E.; Epling, J.W.; et al. Screening for Primary Open-Angle Glaucoma: US Preventive Services Task Force
Recommendation Statement. JAMA 2022, 327, 1992–1997. [CrossRef]

5. Paul, J.P.; McGuinness, M.B.; Ashby, B.D.; Tan, J.; Barber, N.M.; Weisinger, H.S.; Martin, K.R.; van Wijngaarden, P.; Larsen, P.D.
Increased Glaucoma Case-Finding Through Routine Optical Coherence Tomography in Optometry Practice. J. Glaucoma 2024, 33,
347–354. [CrossRef]

6. Ratnarajan, G.; Newsom, W.; Vernon, S.A.; Fenerty, C.; Henson, D.; Spencer, F.; Wang, Y.; Harper, R.; McNaught, A.;
Collins, L.; et al. The Effectiveness of Schemes That Refine Referrals between Primary and Secondary Care—The UK Experience
with Glaucoma Referrals: The Health Innovation & Education Cluster (HIEC) Glaucoma Pathways Project. BMJ Open 2013, 3,
e002715. [CrossRef]

7. Fukai, K.; Terauchi, R.; Noro, T.; Ogawa, S.; Watanabe, T.; Nakagawa, T.; Honda, T.; Watanabe, Y.; Furuya, Y.; Hayashi, T.; et al.
Real-Time Risk Score for Glaucoma Mass Screening by Spectral Domain Optical Coherence Tomography: Development and
Validation. Transl. Vis. Sci. Technol. 2022, 11, 8. [CrossRef]

8. Mwanza, J.-C.; Budenz, D.L. Optical Coherence Tomography Platforms and Parameters for Glaucoma Diagnosis and Progression.
Curr. Opin. Ophthalmol. 2016, 27, 102–110. [CrossRef]

9. Mwanza, J.-C.; Lee, G.; Budenz, D.L.; Warren, J.L.; Wall, M.; Artes, P.H.; Callan, T.M.; Flanagan, J.G. Validation of the UNC OCT
Index for the Diagnosis of Early Glaucoma. Transl. Vis. Sci. Technol. 2018, 7, 16. [CrossRef]

10. Gordon, M.O. The Ocular Hypertension Treatment Study: Baseline Factors That Predict the Onset of Primary Open-Angle
Glaucoma. Arch. Ophthalmol. 2002, 120, 714. [CrossRef]

11. European Glaucoma Prevention Study (EGPS) Group; Miglior, S.; Pfeiffer, N.; Torri, V.; Zeyen, T.; Cunha-Vaz, J.; Adamsons, I.
Predictive Factors for Open-Angle Glaucoma among Patients with Ocular Hypertension in the European Glaucoma Prevention
Study. Ophthalmology 2007, 114, 3–9. [CrossRef] [PubMed]

12. Medeiros, F.A. Validation of a Predictive Model to Estimate the Risk of Conversion From Ocular Hypertension to Glaucoma.
Arch. Ophthalmol. 2005, 123, 1351. [CrossRef] [PubMed]

13. Hood, D.C.; La Bruna, S.; Tsamis, E.; Thakoor, K.A.; Rai, A.; Leshno, A.; de Moraes, C.G.V.; Cioffi, G.A.; Liebmann, J.M. Detecting
Glaucoma with Only OCT: Implications for the Clinic, Research, Screening, and AI Development. Prog. Retin. Eye Res. 2022, 90,
101052. [CrossRef] [PubMed]

14. Sample, P.A.; Girkin, C.A.; Zangwill, L.M.; Jain, S. The African Descent and Glaucoma Evaluation Study (ADAGES): Design and
Baseline Data. Arch. Ophthalmol. 2009, 127, 1136. [CrossRef]

15. Song, Y.; Li, F.; Chong, R.S.; Wang, W.; Ran, A.R.; Lin, F.; Wang, P.; Wang, Z.; Jiang, J.; Kong, K.; et al. High Myopia Normative
Database of Peripapillary Retinal Nerve Fiber Layer Thickness to Detect Myopic Glaucoma in a Chinese Population. Ophthalmology
2023, 130, 1279–1289. [CrossRef]

16. Davuluru, S.S.; Jess, A.T.; Kim, J.S.B.; Yoo, K.; Nguyen, V.; Xu, B.Y. Identifying, Understanding, and Addressing Disparities in
Glaucoma Care in the United States. Transl. Vis. Sci. Technol. 2023, 12, 18. [CrossRef]

17. Vickers, A.J.; Calster, B.V.; Steyerberg, E.W. Net Benefit Approaches to the Evaluation of Prediction Models, Molecular Markers,
and Diagnostic Tests. BMJ 2016, 352, i6. [CrossRef]

18. Rudnicka, A.R.; Mt-Isa, S.; Owen, C.G.; Cook, D.G.; Ashby, D. Variations in Primary Open-Angle Glaucoma Prevalence by Age,
Gender, and Race: A Bayesian Meta-Analysis. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4254. [CrossRef]

19. Hamid, S.; Desai, P.; Hysi, P.; Burr, J.M.; Khawaja, A.P. Population Screening for Glaucoma in UK: Current Recommendations and
Future Directions. Eye 2022, 36, 504–509. [CrossRef]

20. Azuara-Blanco, A.; Burr, J.; Thomas, R.; Maclennan, G.; McPherson, S. The Accuracy of Accredited Glaucoma Optometrists in the
Diagnosis and Treatment Recommendation for Glaucoma. Br. J. Ophthalmol. 2007, 91, 1639–1643. [CrossRef]

https://doi.org/10.1016/S2214-109X(17)30393-5
https://www.ncbi.nlm.nih.gov/pubmed/29032195
https://doi.org/10.1001/jama.2014.3192
https://www.ncbi.nlm.nih.gov/pubmed/24825645
https://doi.org/10.1016/j.ajo.2021.03.030
https://www.ncbi.nlm.nih.gov/pubmed/33823158
https://doi.org/10.1001/jama.2022.7013
https://doi.org/10.1097/IJG.0000000000002339
https://doi.org/10.1136/bmjopen-2013-002715
https://doi.org/10.1167/tvst.11.8.8
https://doi.org/10.1097/ICU.0000000000000231
https://doi.org/10.1167/tvst.7.2.16
https://doi.org/10.1001/archopht.120.6.714
https://doi.org/10.1016/j.ophtha.2006.05.075
https://www.ncbi.nlm.nih.gov/pubmed/17070596
https://doi.org/10.1001/archopht.123.10.1351
https://www.ncbi.nlm.nih.gov/pubmed/16219726
https://doi.org/10.1016/j.preteyeres.2022.101052
https://www.ncbi.nlm.nih.gov/pubmed/35216894
https://doi.org/10.1001/archophthalmol.2009.187
https://doi.org/10.1016/j.ophtha.2023.07.022
https://doi.org/10.1167/tvst.12.10.18
https://doi.org/10.1136/bmj.i6
https://doi.org/10.1167/iovs.06-0299
https://doi.org/10.1038/s41433-021-01687-8
https://doi.org/10.1136/bjo.2007.119628


J. Clin. Med. 2024, 13, 6728 10 of 10

21. Banes, M.J.; Culham, L.E.; Bunce, C.; Xing, W.; Viswanathan, A.; Garway-Heath, D. Agreement between Optometrists and
Ophthalmologists on Clinical Management Decisions for Patients with Glaucoma. Br. J. Ophthalmol. 2006, 90, 579–585. [CrossRef]
[PubMed]

22. Vickers, A.J.; van Calster, B.; Steyerberg, E.W. A Simple, Step-by-Step Guide to Interpreting Decision Curve Analysis. Diagn.
Progn. Res. 2019, 3, 18. [CrossRef] [PubMed]

23. Founti, P.; Stuart, K.; Nolan, W.P.; Khawaja, A.P.; Foster, P.J. Screening Strategies and Methodologies. J. Glaucoma 2024, 33, S15–S20.
[CrossRef] [PubMed]

24. Beniz, L.A.F.; Campos, V.P.; Medeiros, F.A. Optical Coherence Tomography Versus Optic Disc Photo Assessment in Glaucoma
Screening. J. Glaucoma 2024, 33, S21–S25. [CrossRef]

25. Hou, H.; El-Nimri, N.W.; Durbin, M.K.; Arias, J.D.; Moghimi, S.; Weinreb, R.N. Agreement and Precision of Wide and Cube
Scan Measurements between Swept-Source and Spectral-Domain OCT in Normal and Glaucoma Eyes. Sci. Rep. 2023, 13, 15876.
[CrossRef]

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual
author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to
people or property resulting from any ideas, methods, instructions or products referred to in the content.

https://doi.org/10.1136/bjo.2005.082388
https://www.ncbi.nlm.nih.gov/pubmed/16622087
https://doi.org/10.1186/s41512-019-0064-7
https://www.ncbi.nlm.nih.gov/pubmed/31592444
https://doi.org/10.1097/IJG.0000000000002426
https://www.ncbi.nlm.nih.gov/pubmed/39149948
https://doi.org/10.1097/IJG.0000000000002392
https://doi.org/10.1038/s41598-023-43230-7

	Introduction 
	Materials and Methods 
	Model Development 
	Model Testing 
	Test Set 1 (Maestro2) 
	Test Set 2 (Triton) 

	Statistical Analysis 

	Results 
	Discussion 
	Conclusions 
	References



