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Abstract

Mapping structural deformations in moiré materials using
diffraction-based electron microscopy

by

Madeline Van Winkle

Doctor of Philosophy in Chemistry

University of California, Berkeley

Professor D. Kwabena Bediako, Chair

Moiré superlattices, formed by vertically stacking atomically thin van der Waals layers
with a slight interlayer rotation and/or lattice constant difference, are a powerful plat-
form for modulating the physicochemical behavior of two-dimensional solids. While
the optical, electronic, and magnetic properties of moiré materials can be intention-
ally tuned by changing the extent of crystallographic mismatch between constituent
layers, structural perturbations such as lattice reconstruction, strain, and disorder
also have a substantial impact on observed behavior. Therefore, directly measuring
intrinsic structural deformations in moiré superlattices, learning how to dynamically
deform moiré structures, and efforts toward correlative structure–property measure-
ments are critical to understanding and controlling the emergent properties of these
unique materials.

In this dissertation, Chapter 1 first provides an introductory overview of recent de-
velopments in the field of two-dimensional materials and how the properties of these
materials can be modified, including through construction of moiré superlattices.
This discussion is followed by a comprehensive look at the fundamentals of moiré
engineering, the role that structural deformations play in affecting moiré properties,
and the appeal of a diffraction-based imaging approach for linking the structure of
moiré architectures to observed properties and current theoretical models. Chapter 2
then describes the development of Bragg interferometry, a 4D-STEM-based imaging
methodology for mapping moiré structures, and the insights afforded by the method-
ology regarding the spontaneous lattice deformations driving reconstruction in twisted
bilayer graphene, the effects of these deformations on flat band formation, and the
impact of extrinsic heterostrain on reconstruction-induced strain fields. Chapter 3
explores the extension of Bragg interferometry to transition metal dichalcogenide
(TMD) systems, providing evidence of distinct reconstruction mechanisms in twisted
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bilayer TMDs and heterobilayer TMDs. The compatibility of Bragg interferometry
with different heterostructure geometries is also exploited to illuminate the effects of
encapsulation layers on in-plane and out-of-plane reconstruction. Chapter 4 demon-
strates the application of Bragg interferometry to functional devices for the first time,
specifically for mapping the spatial arrangement of polar stacking domains in twisted
trilayer WSe2. This information is then complemented by operando dark-field TEM
imaging that uncovers a variety of electric field-driven structural responses in differ-
ent twisted trilayer polytypes. Lastly, Chapter 5 provides a summary of the reported
work and an outlook for future endeavours.



i

To my great grandfather

Whose legacy inspired me to become a scientist



ii

Contents

Contents ii

1 Introduction 1
1.1 Tuning the properties of two-dimensional van der Waals materials . . 1
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Chapter 1

Introduction

1.1 Tuning the properties of two-dimensional van

der Waals materials

The past several decades have seen rapid advances in the field of nanoscience and nan-
otechnology. The vigor of the field comes as no surprise considering the rich diversity
and tunability of nanomaterial properties and the corresponding widespread utility
of these systems for various applications. Stemming from the Greek word nanos,
which means dwarf, nanoscience is centered on the design, modification, and study of
structures on the atomic to nanometer (< 100 nm) length scale, and nanotechnology
involves the associated assembly, processing, and application of these structures. Al-
though nanomaterials have been embedded in society for quite some time, with the
earliest evidence of colloidal nanoparticles in dichroic glass dating back to the 4th
century1, the idea of nanoengineering was formally proposed by American physicist
Richard Feynman in 1959. In his well-known lecture, titled “There’s Plenty of Room
at the Bottom”, Feynman pondered possibilities such as writing all 24 volumes of
the Encyclopedia Brittanica on the head of a single pin, miniaturizing computers and
circuits, and building molecules atom-by-atom while also pointing out the challenges
in materials characterization and manipulation that must be overcome in order to re-
alize these visions2. Since then, nanomaterials have been extensively explored for use
in areas ranging from (opto)electronic devices3–5 to energy storage6,7 and medicine8,9,
driven by crucial developments in advanced electron microscopy and scanning probe
methods for imaging structures down to the atomic limit10–12, lithographic tools for
nanoscale patterning13,14, and synthetic schemes for producing nanostructures in an
ever-growing list of morphologies15,16, among many others.

Two-dimensional (2D) van der Waals (vdW) compounds comprise one major class
of nanomaterials that has garnered immense interest during this period. The era
of experimental research on 2D materials research largely began in 2004 when Kon-
stantin Novoselov and Andre Geim from the University of Manchester discovered that
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Figure 1.1: Monolayer crystal structures of some common vdW materials.

bulk (that is, three-dimensional) graphite crystals, which consist of vertically-stacked
layers of carbon held together by weak interlayer vdW forces, could be repeatedly
exfoliated (peeled apart) using tape until a single atomic layer had been isolated17.
These monolayer carbon sheets, called graphene, contain a covalently-bound hexag-
onal network of sp2-hybridized carbon atoms and, intriguingly, display exceptional
electronic mobility17, thermal conductivity18, and mechanical strength19. As of to-
day, the library of vdW materials that can be isolated in 2D sheets (via mechanical
exfoliation, solvent-assisted exfoliation, bottom-up growth, etc.) has substantially
grown to include hexagonal boron nitride (hBN), transition metal dichalcogenides
(TMDs), MXenes, transition metal trihalides, and 2D oxides, to name a few20,21

(Fig. 1.1). The materials in this group have electrical conductivities ranging from
insulating to metallic regimes at room temperature20,21 and can exhibit a range of
exotic physical phenomena (often at lower temperatures) including superconductiv-
ity22,23, charge density wave formation24,25, and (anti-)ferromagnetism19,26,27. Due to
their wide selection of (opto)electronic and magnetic properties, coupled with a high
surface-to-volume ratio, compatibility with silicon-based device schemes and electro-
static gating, and good mechanical durability, 2D vdW materials are being actively
studied as candidates for low-power electronics17,28–31, next-generation catalysts and
battery components32–34, flexible sensors35, and more.

One of the most exciting features of 2D vdW materials is that their properties can
be readily tuned in a myriad of ways. Varying the number of stacked layers in the
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vdW crystal is one common route for controlling the material properties. For example,
the band gap of semiconducting vdW materials36–38 and electronic phase transition
temperatures of many 2D compounds39,40 can both be modulated in this way due to a
combination of alterations in interlayer interactions with changing thickness and the
relevance of quantum confinement effects in the 2D limit. The optical contrast of 2D
sheets placed on a reflective substrate, such as SiO2/Si wafers, is also layer-dependent
due to interference effects as visible light is absorbed by the nanothick crystal and
then reflected back by the substrate, enabling assignment of material thickness using
optical microscopy41. A second approach to manipulating the properties of 2D vdW
materials is the fabrication of heterostructures via vdW heteroepitaxy21,42. This pro-
cess consists of stacking or growing various atomic sheets on top of one another, akin
to building a tower of LEGO blocks but without any constraints on the rotational
alignment of the individual components, a key consideration that we will discuss fur-
ther. VdW materials exfoliate cleanly with no dangling bonds on the surface of the
2D layers, yielding heterostructures with atomically precise interfaces between con-
stituent layers28,42. The emergent properties of a given heterostructure are not always
a simple compilation of the properties of the individual layers but can also depend
on the interactions of the stacked materials across these interfaces, enabling access
to phenomena that would not be observed in the isolated compounds43–45. Other
strategies that have exhibited clear effects on measured properties include chemi-
cal doping and/or intercalation46–48, incorporation of defects/vacancies49–51, using an
electrostatic or ionic liquid gate to fine-tune carrier density17,48,52–54, and strain en-
gineering49,55,56. Lastly, a relatively new method for tailoring the properties of 2D
vdW compounds is the construction of moiré superlattices. The remaining sections
of this Chapter detail the fundamentals of moiré engineering and the close connection
between structure and observed properties in these systems, motivating the body of
work presented in this dissertation.

1.2 A deep dive into moiré engineering

In general, overlaying two patterns with similar but inequivalent periodicities causes
an interference effect called a moiré pattern. On an atomic scale, the same principle
applies when two similar crystalline lattices with a small lattice constant difference
and/or rotational misalignment are vertically stacked. The resulting structure, called
a moiré superlattice, contains a spatially varying atomic stacking order with a much
larger periodicity than that of the underlying atomic lattices (Fig. 1.2). This period-
icity (λ) can be modelled by the following expression:

λ =
(1 + δ)a√

2(1 + δ)(1− cos(θm)) + δ2
(1.1)
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Figure 1.2: Illustrations of moiré superlattices formed by a, a rotation (θm) and b,
a lattice constant difference (δ) between two overlaid atomic lattices. a is the atomic
lattice constant. Insets between the two panels depict the atomic lattices.

where a is the smaller lattice constant, θm is the moiré twist angle, and δ is the
lattice mismatch between the two materials57. Early reports showed the presence of
nanoscale moiré superlattices in graphite crystals containing naturally folded/rotated
layers58–60. Many studies have also demonstrated the generation of moiré superstruc-
tures in epitaxially grown 2D films due to interference effects between the lattice
of the film and that of the substrate61–64. More recently, the fabrication of moiré
heterostructures through vdW heteroepitaxy has made it possible to deterministi-
cally control the moiré periodicity (through precise control of θm) and to study moiré
physics in a wide variety of material combinations, illuminating the unique behav-
ior that can emerge in these systems and giving rise to an entire field of solid state
physics – twistronics. The main classes of moiré materials and their properties are
highlighted below.

1.2.1 Graphene-based moirés

Theoretical predictions of the manifestation of exotic physical phenomena in moiré
materials began with graphene-based moirés. To understand the insight afforded by
these studies, it is useful to first consider the electronic band structure of a single
layer of graphene. Given real space lattice vectors describing the hexagonal graphene
lattice, a1 and a2 (Equation 1.2, Fig. 1.3a), one can use a tight-binding model to
derive the dispersion relationship for the two electronic bands corresponding to the
π bonding and anti-bonding interactions between the C pz orbitals65,66, as shown in
Equation 1.3 and Fig. 1.3b. We focus on the pz orbitals because they are positioned
out-of-plane and will therefore be most relevant when considering electronic interac-
tions between stacked layers.
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a1 =
a

2
(
√
3, 1) , a2 =

a

2
(
√
3,−1) (1.2)

E±(k) = ±t

√√√√1 + 4cos

(√
3a

2
kx

)
cos
(a
2
ky

)
+ 4cos2

(a
2
ky

)
(1.3)

Here, E is energy defined relative to the Fermi energy, k = (kx, ky) is a wave vector
in the Brillouin zone, t is the energy for electron hopping between nearest neighbors
on the same sublattice, and a is the graphene lattice constant (2.46 Å). Based on this
dispersion relation, the K and K ′ points, located at the corners of the Brillouin zone
(Equation 1.4, Fig. 1.3c), are of particular importance.

K =
2π

a

(
1√
3
,
1

3

)
, K ′ =

2π

a

(
1√
3
,−1

3

)
(1.4)

Referring to Equation 1.3, one finds that at these specific positions, E(k) = 0 for both
the π and π∗ bands, causing them to meet at a sharp point (Fig. 1.3b,d). Further,
in the vicinity of these positions (highlighted by the gray box in Fig. 1.3d), there is

Figure 1.3: a, Atomic lattice of a graphene monolayer. Dashed lines outline the two-
atom unit cell, defined by vectors a1 and a2. b, 3D and d, 2D representations of the
π and π∗ bands in an undoped graphene monolayer, obtained from the relationship
given in Equation 1.3. εF is the Fermi energy. Dirac cones are located at the corners
of the Brillouin zone, which is outlined in black in b and illustrated in further detail
in c. The gray box in d highlights the linear dispersion near one of six Dirac points.
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Figure 1.4: a, Brillouin zones for two graphene monolayers (shown in red and
blue), offset by a twist angle of θm. The resulting mini Brillouin zone is shown in
purple (subscript s represents the superlattice). b, 2D representation of the Dirac
cones for graphene layers 1 and 2, offset by θm. c, Corresponding illustration of
hybridization of the bands from the two layers, yielding flattened hybridized bands
(purple). Transparent outlines of the original Dirac cones are shown in the background
for comparison. d, Calculated density of states (DOS) profiles for TBL-Gr near the
largest predicted magic angle (purple) compared to an untwisted AB (Bernal)-stacked
bilayer graphene (BL-Gr, gray). Peaks are observed in the DOS profile for TBL-Gr
at the flat band energies. εF is the Fermi energy. Panels a,d were adapted with
permission from Yu, Y. et al. Nat. Chem. 14, 267–273 (2020). Copyright 2022 by
Springer Nature.

a linear relationship between E and k:

E±(k) ≈ ±
√
3ta

2
|k|

= ±vFℏ|k|
(1.5)

where vF is the Fermi velocity (equivalent to
√
3ta/2ℏ). All together, this results in

the formation of a Dirac cone structure at each K and K ′ point (also called the Dirac
points) (Fig. 1.3b,d).

This unique band structure already yields many interesting electronic properties
in isolated monolayer graphene, such as the possession of massless Dirac fermions67.
However, when another monolayer of graphene is then placed on top of the first
with a small interlayer rotation, the Dirac cones from the two layers become offset
in k space by an amount that is directly proportional to the moiré twist angle (Fig.
1.4a,b), which also has very distinctive effects. These offset Dirac cones define the
K and K ′ points of a mini Brillouin zone generated by the presence of the longer
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lengthscale moiré periodicity (Fig. 1.4a). Consequently, the electronic bands from
the two graphene sheets fold into this mini Brillouin zone where they can hybridize
due to interlayer electronic interactions, producing a new band structure distinct from
that of the individual graphene monolayers68–71 (Fig. 1.4c).

The nature of this band hybridization in the mini Brillouin zone is dependent on
the moiré twist angle; as a result, one can tune the electronic properties of the system
by modulating θm. Calculations have shown that interlayer coupling in the twisted
system causes the Fermi velocity (i.e., the slope of E vs k) around the Dirac points
to renormalize68–71. For a given value of for a given θm, the ratio between the Fermi
velocity in the twisted (v∗F ) and untwisted (vF ) graphene bilayer can be expressed
as71:

v∗F
vF

=
1− 3α2

1 + 6α2
(1.6)

where α = w/vFkθm with w as the interlayer hopping energy (set to 110 meV in Ref.
[71]) and kθm as the wave vector between the Dirac points of the two layers (i.e., the
vector between K1 and K2 in Fig. 1.4a). For relatively small values of α (meaning
larger twist angles, 10–30◦), this equation simplifies to68–72:

v∗F
vF

= 1− 9α2 (1.7)

In this large twist regime, there is relatively weak electronic coupling between layers;
therefore, the Dirac cones remain intact at the corners of the mini Brillouin zone
while the slope of the cones monotonically decreases as θm decreases68–70,72. On the
other hand, at larger α (smaller twist angles, < 10◦), electronic coupling strengthens.
Notably, in this regime, Bistritzer and MacDonald found that v∗F anomalously equals
0 at a series of specific twist angles (referred to as “magic angles”): 1.05◦, 0.5◦, 0.35◦,
0.24◦, and 0.2◦71. In the smaller twist regime, a band gap also opens at the points
where the Dirac cones from the two layers overlap due to increasing interlayer electron
tunneling and corresponding hybridization of the π/π∗ orbitals70,73. Taken together,
these models proposed that the Fermi velocity renormalization and gap opening would
lead to the generation of increasingly flat, isolated electronic bands in twisted bilayer
graphene (TBL-Gr) as θm decreased68–70,72 (Fig. 1.4c), with particularly flat bands
appearing at the magic angles71.

Flat bands are typically associated with the emergence of strongly correlated elec-
tronic states (for example, superconducting phases74). This is due to the fact that,
when bands are very narrow, the Coulombic energy between electrons becomes more
prominent than their kinetic energy, which is proportional to vF

75. In addition, in
the energy range near the flat bands there is a high density of electronic states (DOS,
Fig. 1.4d), defined as the number of states per unit energy, which further enhances
these electron–electron interactions74,75. With this in mind, the theoretical predictions
outlined above spurred great experimental interest in the flat band-driven physical
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phenomena of twisted bilayer graphene and, more generally, in the electronic prop-
erties of graphene-based moiré matter. Some of the first experimental reports on a
2D vdW moiré heterostructure provided evidence of massless Dirac fermions57 and
a Hofstadter butterfly effect76 in superlattices formed between monolayer hBN and
monolayer graphene, which have a lattice constant difference of only 1.9%. Unconven-
tional superconductivity77,78, correlated insulating states78,79, and ferromagnetism80

have all been observed in TBL-Gr with θm near the largest magic angle, 1.05± 0.1◦.
Correlated phases also persist in twisted graphene multilayers (twisted trilayers and
quadlayers81–84, twisted double bilayers85, etc.).

Beyond physics, the presence of flat bands also plays an important role in tuning
the electrochemical activity of the moiré surface34. It has been shown that aligning the
flat band energy (and therefore the peak in electronic DOS) of TBL-Gr with the redox
potential of a particular chemical species in solution leads to a substantial enhance-
ment in the rate of charge transfer between the moiré electrode and the molecule86.
A similar effect has also been observed on twisted trilayer graphene surfaces; how-
ever, here there is the added complexity of variations in how the DOS from the
hybridized bands is distributed across the three layers based on the two twist angles
present, which also impacts the charge transfer kinetics at the electrode–electrolyte
interface87.

1.2.2 TMD-based moirés

Exploring vdW materials beyond graphene, moiré engineering has also been applied
to TMD-based systems, with a strong focus on H -phase Group VI TMDs (MX2 with
M = Mo, W and X = S, Se, Te). These particular materials are direct band gap semi-
conductors in the monolayer limit36,37 with parabolic conduction and valence band
edges at the K and K ′ points88 rather than the linear Dirac cone structure observed
in monolayer graphene. Applying a similar concept of band hybridization in the mini
Brillouin zone of a twisted TMD bilayer, calculations again predict the formation
of flat bands near the Fermi level89–91 (Fig. 1.5a). However, the actual mechanism
of flat band formation is quite different between graphene and TMDs. Namely, in
TMD-based moirés, flat band formation is largely attributed to the considerable vari-
ation in interlayer spacing throughout the superlattice, which occurs due to repulsion
between the out-of-plane chalcogen pz orbitals. The corrugation of the equilibrium
structure produces an inhomogeneous interlayer hybridization that localizes charge
carriers and produces the flattened bands92.

The presence of a band gap and parabolic nature of the band edges near the K
and K ′ points in the isolated layers also predisposes TMD-based moirés to hosting
narrower bands after hybridization, which ultimately loosens the constraints on the
twist angles at which flat bands occur93. Rather than having a list of discrete magic
angles where correlated electronic states are expected, twisted bilayer TMDs are pre-
dicted to have a continuous range of magic angles, with substantial band flattening
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starting around θm < 7◦ and the emergence of very flat bands (with a similar band-
width to the flat bands in magic angle TBL-Gr92) around θm < 3.5◦89–92. Indeed,
this has been experimentally realized, with a correlated insulating state and potential
superconducting phase observed in TBL-WSe2 for θm ranging from 4–5◦93 as well as
the observation of flat bands in TBL-WSe2 with θm = 3◦ using scanning tunneling
spectroscopy94. Correlated insulating states and Wigner crystals, a crystalline phase
of electrons driven by strong interactions, have also been reported in heterobilayer sys-
tems95,96 (that is, moirés formed by two different TMDs with a small lattice constant
mismatch).

Figure 1.5: a, Illustration of band hybridization in a semiconducting twisted bilayer
TMD. b,c, Schematics of parallel (near 0◦, b) and anti-parallel (near 60◦, c) twisted
bilayer TMD configurations, with corresponding top-down views of the distinct sets
of interlayer stacking orders found in each moiré shown underneath.

For TMD-based moirés it is also important to distinguish between the parallel (P)
and anti-parallel (AP) stacking of the TMD monolayers. Unlike graphene, which has
inversion symmetry, TMD monolayers are not symmetric with respect to inversion.
Consequently, stacking the TMD monolayers near 0◦ (P) and near 180◦ (or 60◦,
AP) yields two distinct superlattices with different sets of atomic stacking sequences
sampled in each (Fig. 1.5b,c). Both configurations can host flat bands; however, band
flattening occurs primarily near the valence band edge in the P structure, while the
AP structure has flat bands that are both narrower than in the P structure and are
found at both the conduction and valence band edges. This is in part due to different
spatial variations in interlayer hybridization in the two configurations92. Additional
factors account for the other part, discussed in Section 1.3.

Many studies have also investigated the optical properties that arise in TMD-based
moirés. As mentioned above, in these systems the extent of interlayer hybridization
is inhomogeneous throughout the moiré unit cell. In turn, there is a variation in
the band gap on the moiré length scale, meaning electrons and holes preferentially
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localize in different stacking sites in the superlattice92,97. This enables the genera-
tion of intralayer moiré excitons98 (bound exciton-hole pairs) upon optical excitation.
In TMD heterobilayers, the conduction and valence band edges of the two layers
are also staggered, which makes it possible for electrons and holes to also localize
on different layers, producing interlayer moiré excitons99,100. Other more complex
excitonic species, such as hybrid moiré excitons101, moiré trions102, and moiré exci-
ton–polaritons103 have been reported as well97,104. Uniquely, these moiré excitons are
subject to different optical selection rules compared to typical excitons due to the
presence of the moiré potential. As a result, multiple excitonic features have been
observed in photoluminescence spectra for TMD moiré materials, in contrast to a
single photoluminescence peak observed for monolayer TMDs97,104.

1.2.3 Up and coming moiré materials

The vast majority of both theoretical and experimental work has focused on graphene-
and TMD-based moiré structures, and these systems will also be the focus of the
work in this dissertation. However, it is worth noting that studies on the prop-
erties of moirés comprised of other vdW materials have started to pop up in the
last couple of years. For example, in 2023 Zhao et al. reported the fabrication of
twisted Bi2Sr2CaCu2O8+δ (BSSCO) heterostructures105. BSSCO is a vdW material
with a relatively high superconducting transition temperature (∼ 87–90 K in bulk
and ∼ 85–88 K in a monolayer)106. Uniquely, the twisted system (with a total thick-
ness of ∼ 80 nm and θm near 45◦) was found to exhibit spontaneous time-reversal
symmetry breaking superconductivity, a rare type of unconventional superconductiv-
ity105. Recent studies have also shown how moiré engineering can be used to generate
complex magnetic textures. In 2022 Xu et al. reported co-existing anti-ferromagnetic
and ferromagnetic domains in twisted bilayer chromium triiodide (CrI3) due to the
presence of both rhombohedral (ferromagnetic) and monoclinic (anti-ferromagnetic)
stacking orders in the moiré superlattice107.

The incorporation of ions in the interstitial space between the layers of a moiré
superlattice presents another opportunity to greatly diversify the range of potential
moiré materials. Calculations suggest that, for dilute intercalation amounts, inter-
calants will preferentially cluster in particular regions of a moiré superlattice due to
spatial variations in the local coordination environment102,108. This preferential clus-
tering is predicted to affect the interlayer coupling of the layers in the intercalation
sites102,108 and to promote further band flattening109, which may impact measured
transport properties. One could also envision inducing spatially localized phase tran-
sitions, magnetic states, etc. in this way. While, experimentally, this concept has
not been directly demonstrated in epitaxial vdW heterostructures, Zou et al. used
atomic resolution electron microscopy to demonstrate similar regioselective ion ex-
change in naturally twisted biotite mica110. All of this is to say, the design of new
moiré materials is just beginning.
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Figure 1.6: a, Side view illustrations of high and low energy stacking orders in
graphene, P-stacked TMDs, and AP-stacked TMDs. AA, MMXX, and XX stacking
orders have the highest interlayer energy. AB/BA, XM/MX, and XMMX stacking
orders have the lowest energies. The MM stacking type is an intermediate case. Black
dashed lines highlight positions where atoms in the two layers are directly aligned.
b,c, Schematics depicting the formation of expanded low energy stacking regions due
to lattice reconstruction. Similar relaxed structures are expected in P TMDs and
graphene (b) while a different structure is expected in AP TMDs (c) based on the
different stacking orders present in each superlattice, their spatial arrangements, and
their relative energies.

1.3 Impacts of structural deformations in moirés

With a general understanding of moiré materials and their unique properties in hand,
this section now discusses structural perturbations that can affect the observed be-
havior of these systems.

1.3.1 Lattice reconstruction effects

One of the primary types of structural deformations that occurs in moiré systems is
lattice reconstruction. Lattice reconstruction is a process consisting of periodic local
deformations in the layers comprising the moiré. This process occurs because of the
differences in interlayer energy between the atomic stacking orders found throughout
the superlattice111–115. In the case of TBL-Gr, AA-type sites have higher stacking
energy than AB-type sites (EAA − EAB = 3.44 meV/Å2) due to greater repulsion
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between the π clouds of the two graphene layers (Fig. 1.6a)112. Similarly, in twisted
bilayers of the Group VI TMDs discussed in Section 1.2.2 (e.g., H -phase MoS2), sites
with maximal overlap of the chalcogen pz orbitals (MMXX sites in the P configuration
and XX sites in the AP configuration) are higher in energy than sites where the
chalcogens are staggered and there is instead more favorable overlap between the
chalcogen pz orbitals and transition metal dz2 orbitals (XM or MX regions in the P
configuration and XMMX regions in the AP configuration) (Fig. 1.6a)92,114. To lower
the overall stacking energy, the layers spontaneously deform to increase (decrease)
the total area of regions with the lowest (highest) stacking energy, forming extended
low-energy domains as shown in Fig. 1.6b,c111–115.

A few models have been proposed for how moiré reconstruction occurs on an
atomic scale. In moirés formed by a rotational offset between lattices, reconstruction
is predicted to occur through periodic rotations that either increase or decrease the
local twist angle89,111,112,116. Given the inverse relationship between the twist angle θm
and periodicity λ shown earlier in Equation 1.1, further increasing the local rotation
reduces the size of a given region while decreasing local rotation has the opposite effect
(Fig. 1.7a). On the other hand, in moirés formed by a lattice constant difference
between layers (in the case of heterobilayers), reconstruction is predicted to occur
through periodic changes in the local lattice mismatch116–118. Again referring to
Equation 1.1, there is an inverse relationship between the lattice constant mismatch δ
and λ (Fig. 1.7b). Therefore increasing the local mismatch between layers (meaning

Figure 1.7: Plots illustrating the dependence of the moiré periodicity on a, twist
angle and b, lattice mismatch, generated using Equation 1.1 with lattice constants
of 0.246 nm and 0.315 nm for graphene and MoS2, respectively. During lattice recon-
struction, locally increasing (decreasing) θm or δ can similarly decrease (increase) the
area of a particular stacking site.
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the larger lattice expands slightly and the smaller lattice shrinks slightly) reduces
domain size while decreasing the local mismatch increases domain size.

The energetic trade-off for lowering the total stacking energy through these local
in-plane structural transformations is the introduction of intralayer strain. For twisted
bilayers, simulations predict that there will be a shear-type strain in the boundaries
between locally rotating stacking regions92,111,112. For heterobilayers, a volumetric
strain is expected within the stacking domains117,118. Part of this strain can be relieved
by additional out-of-plane corrugation, but an appreciable amount remains89,111,117.
The final relaxed structure balances the reduction in stacking energy and gain in
strain energy92,112 and is therefore dependent on the geometry of the moiré pattern
(dictated by the interlayer twist angle and lattice constant difference).

Ultimately, lattice reconstruction plays a crucial role in determining the properties
of moiré systems and must be taken into account when modelling these structures
and interpreting their emergent properties. For both graphene- and TMD-based
moiré materials, reconstruction is expected to affect flat band formation. Notably, in
TBL-Gr, calculations suggest that in-plane rotation-driven reconstruction suppresses
flat band formation at all originally predicted magic angles except for the largest one
around 1.05◦113. As discussed in Section 1.2, out-of-plane relaxation in TMD-based
moirés creates an inhomogeneous interlayer hybridization pattern that increases the
localization of charge carriers and spurs band flattening in both P and AP struc-
tures89,92. Exactly how the band gap varies throughout the superlattice depends on
this interlayer hybridization; therefore the specific stacking sites where electrons and
holes will localize and the strength of this localization are intertwined with out-of-
plane deformation89,92,119. At the same time, generation of lateral strain from in-plane
deformations is also crucial to consider in TMD moirés because strain further modifies
the local band gap throughout the superlattice92,119. Theoretical studies propose that
in-plane reconstruction strain in AP-stacked TMD moiré bilayers generates distinc-
tive triangular potential wells in the superlattice that strongly confine charge carriers
in quantum dot-like states, producing several isolated, ultraflat bands at the conduc-
tion and valence band edges. In contrast, this phenomenon does not occur in the P
configuration based on its stacking energy landscape and corresponding reconstruc-
tion strain distribution. In this case, flat bands exist but are wider and only found
near the valence band edge92. In addition to affecting flat band formation, the band
gap modifications from both out-of-plane and in-plane reconstruction can substan-
tially increase the depth of the moiré potential. For example, the predicted moiré
potential depth in WSe2/MoSe2 increases from ∼ 10 meV without reconstruction to
up to ∼ 300 meV when both out-of-plane and in-plane reconstruction are taken into
account119.

Knowledge of how lattice reconstruction impacts the band structure of moiré ma-
terials has helped to explain many experimental results. For example, reconstruction-
driven suppression of flat bands in TBL-Gr at other predicted magic angles explains
why correlated phases have only been experimentally observed in TBL-Gr with twist
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angles around 1.05 ± 0.1◦77,79,113. The fact that reconstruction deepens the moiré
potential in TMD systems leads to longer moiré exciton lifetimes and has enabled
observation of these features with spectroscopc probes at higher temperatures than
would be possible otherwise120,121. The observation of ultraflat bands in AP TBL-
WSe2 by scanning tunneling spectroscopy has also been explained by reconstruction
effects122.

1.3.2 Strain effects

As mentioned in the previous section, strain plays a critical role in affecting the
properties of moiré materials. Strain effects can be split into two main categories:
intrinsic strain arising from lattice reconstruction and extrinsic strain, or strain arising
from external factors. Here we focus on extrinsic strain effects. In particular, uniaxial
heterostrain, where one layer is slightly stretched relative to the other layer along one
axis, has been predicted to have a substantial impact on the electronic bands in
moiré systems. While the electronic structure of moiré materials has been shown to
be relatively insensitive to moderate homostrains123, where both layers are stretched
in sync (Fig. 1.8b), a rather small heterostrain (< 1%) can change the relative atomic
positions in the two layers enough (Fig. 1.8c) to have clear effects on the interlayer
hybridization and resulting band structure. For example, calculations on TBL-Gr
with θm = 1.25◦ indicate that even a 0.35% heterostrain can eliminate the Dirac
points at the mini Brillouin zone corners and induce band flattening at other nearby
energies123. Another theoretical study on TBL-Gr with θm ∼ 1◦ reported an increase
in the energy gap between the conduction and valence flat bands with increasing
heterostrain magnitude (from 0.1–0.7%), showing that heterostrain can be used as
a tuning knob to control the energies at which peaks in the DOS profile (called van
Hove singularities, VHS) occur124. In fact, it has been suggested that for TBL-Gr with
θm ∼ 0.75–1.15◦, near the largest magic angle, the energies of the VHS are even more
sensitive to a small heterostrain than to the change in twist angle124, highlighting
strong competition between moiré engineering and strain engineering. Heterostrain
is typically introduced unintentionally during the vdW heteroepitaxy process because
the weak vdW forces between layers allow the layers to readily stretch independently
of one another. However, intentional application of heterostrain has been proposed
as a way to dynamically tune the electronic properties of moiré superlattices125.

The flat bands in TMD-based moirés are purportedly less sensitive to heteros-
train than graphene-based systems126. On the other hand, the fact that uniaxial
heterostrain can effectively generate a one-dimensional (1D) moiré potential127 leads
to modulation of the energetic landscape for excitons and affects their overall behav-
ior128,129. Bai et al. report that in WSe2/MoSe2 heterobilayers, unstrained samples
exhibit circularly polarized excitonic features whereas samples containing uniaxial
strain exhibit linearly polarized excitonic features128.
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Figure 1.8: Schematics of a, an unstrained twisted bilayer compared to twisted
bilayers with equivalent magnitudes of uniaxial b, homostrain and c, heterostrain.
White arrows indicate the uniaxial straining axis.

1.3.3 Disorder effects

The last main category of structural perturbations that affects moiré systems is disor-
der. Disorder, such as twist angle disorder and strain disorder, is randomly introduced
quite often during the sample fabrication process130. As a result, moiré devices tend
to be quite inhomogeneous and there can be a lot of nano- to microscale variability
from one device to the next. Given the strong dependence of observed optical and
electronic properties on twist angle as well as strain, as discussed in the previous
sections, the presence of disorder (typically variations of 0.1◦ for θm and 0.1–0.7%
for heterostrain) presents experimental difficulties, particularly for the reproducibil-
ity of electronic transport behavior130,131. For example, Uri et al. reported that the
presence of a gradually changing twist angle can effectively generate an in-plane elec-
tric field across a device, substantially affecting features in transport measurements
for magic angle TBL-Gr131. Methods to controllably fabricate clean, ordered moiré
heterostructures are actively being investigated132,133. Heterobilayers also tend to be
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more homogeneous than twisted structures since the moiré periodicity is less sensi-
tive to changes in lattice mismatch than twist angle (Fig. 1.7); this leads to more
robust and reproducible correlated electronic phases in heterobilayers130. However,
structural disorder is currently one challenge that still plagues the field of twistronics.

1.4 Structural characterization of moiré materials

using diffraction-based imaging

1.4.1 Project goals

It is clear that the properties of moiré materials are governed by their structures, both
through well-controlled parameters such as global twist angle and choice of materials,
and through spontaneous or random perturbations such as lattice reconstruction,
strain, and disorder. Detailed experimental characterization of moiré structures is
then critical both for validating or modifying currently proposed structural models
and for ultimately understanding and controlling the unique physics and chemistry
offered by this class of 2D heterostructures. Based on this, the overarching goal of
the work presented in this dissertation is two-fold. The first goal is to investigate
the intrinsic structures of moiré materials, the spontaneous deformations that give
rise to these structures, and how these structures can be systematically perturbed by
external variables. The second is to develop imaging frameworks that are conducive to
the study of a variety of moiré heterostructure geometries and can enable correlative
structure–property measurements.

1.4.2 Background on the experimental approach

A variety of characterization methods have been employed for imaging moiré super-
lattices113–115,134. Out of the techniques that have been reported, dark-field transmis-
sion electron microscopy (DF-TEM), a diffraction-based technique, stands out as an
approach that is particularly well-suited for imaging moiré superlattices stacked in
multi-component heterostructures113, enabling study of moiré samples with different
arrangements (for example, encapsulated versus free-standing) and aligning with the
second goal outlined above.

To understand how DF-TEM is used to observe moiré superlattices within a het-
erostructure, first consider the general principles of electron diffraction in a thin 2D
crystal. As illustrated in Fig. 1.9a, when an incoming electron beam (a plane wave
with wave vector kincident oriented perpendicular to the sample) strikes the crystal,
two things can occur. One possibility is that that the electron passes through the
crystal with no change to its wave vector (kincident = kunscattered). The second pos-
sibility is that the electron is scattered due to interactions with the lattice. In the
case of elastic scattering, where crystal momentum is conserved, the scattered and
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Figure 1.9: a, Schematic depicting the Laue condition for elastic scattering (Equa-
tion 1.8), which produces peaks in intensity in an electron diffraction pattern. b,
Illustration of the first two rings of diffraction peaks for a hexagonal lattice. b1 and
b2 are basis vectors defining reciprocal lattice vectors G. c, Sets of lattice planes in
real space corresponding to the diffraction peaks shown in b. The magnitude of G
is inversely proportional to the periodicity d of the corresponding set of planes and
is oriented perpendicular to these planes, as shown by the gray arrow. Equivalent
Miller indices describing each set of planes are listed in the format (hkil). 1̄ = −1 and
2̄ = −2. d–g, Schematics of the real space (d,f) and reciprocal space (e,g) structures
with a rotation (d,e) and lattice constant mismatch (f,g) between layers.

unscattered wave vectors are related by the Laue condition:

G = kscattered − kunscattered (1.8)

where G is a reciprocal lattice vector. Points in reciprocal space where the Laue
condition is met correspond to peaks in intensity, producing an electron diffraction
pattern. An illustration of the first two rings of a diffraction pattern are shown in
Fig. 1.9b for a prototypical hexagonal structure, which includes all of the materials
studied in this dissertation (graphene, hBN, and TMDs). In Fig. 1.9b, b1 and b2 are
reciprocal lattice basis vectors. All other G vectors are a linear combination of these
basis vectors:

Gm,n = mb1 + nb2 (1.9)

In real space, each reciprocal lattice vector corresponds to a set of periodically
spaced planes in the crystal lattice. Each G vector is oriented normal to a particular
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set of planes (Fig. 1.9c) and has a magnitude

|G| = 2π

d
(1.10)

where d is the distance between planes. In the diffraction pattern, a particular diffrac-
tion peak position is then dependent on both the spacing and orientation of the cor-
responding set of planes in the real space lattice. For a hexagonal lattice, each set of
planes is labeled with Miller indices (hkil) where h = m, k = n, i = −(m + n), and
l = 0 for periodicities in the xy plane (Fig. 1.9c).

When a second hexagonal lattice is stacked on top of the first but with an in-
terlayer twist (Fig. 1.9d), the planes in the two lattices are rotated in real space
and, subsequently, the diffraction peaks are rotated by the same angle (Fig. 1.9e).
Similarly, if a second material with a different lattice spacing is stacked on top of
the first (Fig. 1.9f), the diffraction peaks are radially offset by an amount inversely
proportional to the lattice mismatch (Fig. 1.9g). This azimuthal and/or radial offset
of the diffraction peaks provides the foundation for DF-TEM imaging.

Figure 1.10: Ray diagrams describing formation of a, bright-field and b, dark-field
TEM images.

A schematic of a typical bright-field (BF) TEM imaging setup is shown in Fig.
1.10a. The incident electron beam, widely spread over the sample, passes through the
sample where the electrons are cleanly transmitted (black lines) or elastically scattered
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(blue and yellow lines for electrons scattered by materials 1 and 2, respectively).
These electrons are focused by an electromagnetic objective lens and converge into
diffraction peaks in the back focal plane of the lens. By centering a physical aperture
(the objective aperture) around the unscattered diffraction peak (the peak in the
center of the pattern), one can block out signal from the scattered electrons and
form what is called the bright-field image. On the other hand, by instead positioning
the aperture to isolate one of the scattered peaks, a dark-field image is formed (Fig.
1.10b). In practice, this can be done by either moving the aperture itself, as shown in
Fig. 1.10b, or by tilting the incident beam such that the diffraction peak of interest
is centered in the objective aperture. The results shown in the following Chapters
use the latter method.

With this picture in mind, it is now possible to see how DF-TEM can be used
to isolate diffraction signal and form images from specific components of a vdW het-
erostructure. For example, moiré samples are often encapsulated with hBN to improve
sample stability, and functional moiré devices may contain hBN and graphite slabs
as a dielectric layer and electrical contacts, respectively. As long as these additional
components are adequately offset in real space (either by a relatively large rotational
misalignment, > 5–10◦, or lattice mismatch, > 10%), signal from the moiré layers,
which are only marginally offset in real space, can be isolated to view the superlattice
without extraneous contributions from the other layers.

It is important to note that the atomically thin nature of 2D materials in real space
also gives their diffraction peaks an extended structure along the kz axis in reciprocal
space (Fig. 1.11a). The three-dimensional structure of these extended diffraction
rods depends closely on stacking order, as shown for AA-, AB-, and BA-type stacking
orders in bilayer graphene (BLG, Fig. 1.11b). Further, the measured intensity of each
peak in the resulting diffraction pattern depends on the magnitude (width) squared
of the diffraction rod at its intersection with the Ewald sphere (approximated as the
black horizontal line in Fig. 1.11b), which can produce contrast between regions of
a sample with different stacking orders. In cases where two stacking orders have the
same diffraction intensities when the sample is perfectly horizontal in the xy-plane
(that is, positioned on the [0001] zone axis), as in the case of AB- and BA-BLG,
diffraction contrast can be obtained by tilting the sample so that the Ewald sphere
intersects a different part of the diffraction rods (Fig. 1.11c). In the case of moiré
superlattices, this tilt-induced diffraction contrast can be quite useful. For example,
Yoo et al. distinguished AB and BA regions of hBN-encapsulated, reconstructed
TBL-Gr superlattices in this way113 (Fig. 1.11d,e).
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Figure 1.11: a, 3D structure of extended diffraction rods, shown for AB-stacked
bilayer graphene (BLG). Rod color and width indicate phase and magnitude, respec-
tively. b, Side view comparison of diffraction rod structures for three BLG stacking
orders. The black line indicates the diffraction plane/the Ewald sphere in the absence
of sample tilt, in which case this plane lies horizontal at kz = 0. c, Effect of a non-zero
sample tilt. The Ewald sphere is depicted in blue for an electron accelerating voltage
of 200 keV (a standard TEM operating condition), and in red for an accelerating
voltage of 0.3 keV (shown as an exaggeration). Panels a–c were reproduced with per-
mission from Sung, S.H. et al. Phys. Rev. Mater. 3, 064003 (2019). Copyright 2019
by the American Physical Society. d,e, DF-TEM images of TBL-Gr with θm = 0.1◦

(d) and 0.4◦ (e) showing how a sample tilt of ∼ 5◦ produces contrast between AB
and BA domains. Panels d,e were reproduced with permission from Yoo, H. et al.
Nat. Mater. 18, 448–453 (2019). Copyright 2019 by Springer Nature.
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Figure 1.12: a, Schematic of a 4D-STEM experiment where a converged electron
beam is rastered across a grid of positions (x,y) in the sample. The convergence
angle of the beam (α) controls the diffraction disk diameter. b, Illustration of an
array of CBED patterns acquired in a 4D-STEM scan. Integrating the intensity in
a particular disk (circled in black) across the data set yields c, a virtual DF image
where the intensity of each pixel corresponds to the integrated disk intensity for the
local CBED pattern.

Dark-field images can also be generated using another diffraction-based technique
called four-dimensional scanning transmission electron microscopy (4D-STEM)135.
The efforts reported in this dissertation involve the first application of this imaging
method to the characterization of moiré structures and will therefore be described
in detail in Chapters 2–4. However, a brief summary of dark-field image generation
from 4D-STEM is provided here. A typical 4D-STEM experiment is illustrated in
Fig. 1.12a. Here, a converged electron beam is rastered through the sample and
a convergent beam electron diffraction (CBED) pattern is collected at each beam
position. The converged geometry of the beam causes the diffraction peaks to spread
out into larger disks in the CBED pattern (Fig. 1.12b), and the size of the disk
can be modified by changing convergence angle (α) of the beam. A virtual dark-
field image can be constructed by integrating the intensity of the pixels within a
given diffraction disk for each CBED pattern in the 4D-STEM scan, equivalent to
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virtually placing an objective aperture. An illustration of this process is provided in
Fig. 1.12b,c, where each pixel in the virtual DF image in Fig. 1.12c corresponds to
the integrated disk intensity for the CBED pattern collected at that particular beam
position. The advantage of generating a DF image using 4D-STEM rather than DF-
TEM is that intensity information is simultaneously collected for all diffraction disks
whereas DF-TEM requires separate image acquisition for each diffraction peak. A
second advantage is that spreading the diffraction intensity out over more pixels (that
is, into a disk rather than a sharp peak) makes it easier to control the imaging and
acquisitions conditions such that the measured intensities are not saturated. 4D-
STEM imaging can therefore be used for quantitative intensity measurements that
reveal a wealth of structural information, as shown in the following Chapters. DF-
TEM is still advantageous for faster image acquisition and over a larger field of view,
which is highly beneficial for operando imaging, such as imaging during application
of an external stimulus.

1.5 Overview of remaining chapters

This Chapter has highlighted the fundamental background of moiré engineering,
the importance of drawing connections between theory, property measurements, and
structural characterization of moiré materials, and the general utility of momentum-
resolved diffraction-based electron microscopy for imaging moiré structures. Chapters
2–4 now detail the application of both DF-TEM and a new 4D-STEM-based method-
ology, Bragg interferometry, for the study of four different groups of moiré mate-
rials – twisted bilayer graphene, twisted bilayer MoS2, MoS2/WSe2 heterobilayers,
and twisted trilayer WSe2. To start, Chapters 2 and 3 studies delve into measuring
the spontaneous structural deformations that underlie lattice reconstruction in the
twisted bilayer and heterobilayer systems. Chapter 4 then pivots to explore electric
field-driven structural deformations in twisted trilayers that possess an interfacial po-
larization. Finally Chapter 5 summarizes the conclusions from this body of work and
offers broader perspective on future directions.
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Chapter 2

Interferometric imaging of lattice
reconstruction in twisted bilayer
graphene

Parts of this chapter were reproduced or adapted from: Kazmierczak, N.P.*, Van
Winkle, M.*, Ophus, C., Bustillo, K.C., Carr, S., Brown, H.G., Ciston, J., Taniguchi,
T., Watanabe, K. & Bediako, D.K. Strain fields in twisted bilayer graphene. Nat.
Mater. 20, 956–963 (2021). (*These authors contributed equally.)

Author Contributions: N.P.K., M.V.W., C.O., K.C.B., H.G.B. and D.K.B.
conceived the study. M.V.W. designed and fabricated the samples. M.V.W., K.C.B.
and J.C. developed the experimental methodology and acquired the 4D-STEM data.
N.P.K., C.O. and H.G.B. created the data analysis code. S.C. carried out the band
structure calculations and finite-element modelling. T.T. and K.W. provided the bulk
hBN crystals. N.P.K. and M.V.W. processed the data. N.P.K., M.V.W. and D.K.B.
analyzed the data and wrote the manuscript. All the authors contributed to the
overall scientific interpretation and edited the manuscript.

2.1 Abstract

Van der Waals heteroepitaxy allows deterministic control over lattice mismatch or az-
imuthal orientation between atomic layers to produce long-wavelength superlattices.
The resulting electronic phases depend critically on the superlattice periodicity and
localized structural deformations that introduce disorder and strain. In this study
we used Bragg interferometry to capture atomic displacement fields in twisted bilayer
graphene with twist angles < 2◦. Nanoscale spatial fluctuations in twist angle and
uniaxial heterostrain were statistically evaluated, revealing the prevalence of intrin-
sic short-range disorder in moiré heterostructures. By quantitatively mapping strain
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tensor fields, we uncovered two regimes of structural relaxation and disentangled the
electronic contributions of constituent rotation modes. Further, we found that applied
heterostrain accumulates anisotropically in saddle-point regions, generating distinc-
tive striped strain phases. Our results establish the reconstruction mechanics un-
derpinning the twist-angle-dependent electronic behavior of twisted bilayer graphene
and provide a framework for directly visualizing structural relaxation, disorder and
strain in moiré materials.

2.2 Introduction

Stacking two-dimensional (2D) van der Waals (vdW) bilayers with dissimilar lat-
tice constants and/or slight rotational misalignment produces a moiré superlattice
with a periodicity that is inversely related to the magnitude of the interlayer mis-
match75,136. The moiré pattern superimposes a nanoscale periodic potential on the
vdW material and can dramatically alter the electronic band structure of the sys-
tem71. As such, moiré materials assembled from vdW layers are versatile platforms
for designing electronic band structures57,77,80,93,99,100,137–139. For example, twisted bi-
layer graphene (TBL-Gr) displays a host of correlated electronic phases75,77,80,137,138

associated with the formation of ultraflat electronic bands near an interlayer “magic”
angle (MA) of 1.1◦. However, the band structures of moiré materials are fragile and
easily manipulated by small structural deformations in the superlattice. As discussed
in Chapter 1, one of the most consequential structural modifications is an intrinsic
intralayer lattice reconstruction process111–115,140–143. In TBL-Gr, this reconstruction
introduces intralayer strain111,142,144 and frustrates flat band formation at other the-
oretically predicted magic angles71 below 1.1◦. In addition, disorder from spatial
variations in twist angle131,145 and symmetry breaking due to extrinsic uniaxial het-
erostrain123,124,146 strongly alter the observed electronic phases in magic-angle twisted
bilayer graphene (MA-TBL-Gr).

Although visualizing the structure and strain fields of moiré materials is paramount
to understanding and controlling emergent phases, directly mapping the reconstruc-
tion mechanics in these systems has been elusive. One challenge is the presence of
hexagonal boron nitride (hBN) multilayers, typically used as capping layers in sample
fabrication77,80,137,138. Various microscopy techniques have been used to image moiré
bilayers114,115,134,140,146, but these require the bilayer to be exposed or fully suspended.
Conventional dark-field transmission electron microscopy (DF-TEM) can indirectly
probe reconstruction in encapsulated samples113, but remains limited in its ability
to extract critical structural details near the MA. Although 2D strain tensors have
been measured in lateral heterostructures147, strain measurements in moiré materials
have been restricted to determinations of one-dimensional (1D) strain144 and uniaxial
heterostrain146.
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This Chapter discusses the development of Bragg interferometry, an imaging
methodology based on four-dimensional scanning transmission electron microscopy
(4D-STEM)135,148,149 that can be used to directly visualize the nanoscale deforma-
tions underlying spontaneous reconstruction in moiré systems. We demonstrate ap-
plication of this technique for mapping the structure of TBL-Gr at high resolution,
notwithstanding hBN capping layers, and quantifying localized 2D strain tensor fields
in the moiré.

Figure 2.1: a,, Cross sectional schematic and b, optical micrograph of an hBN/TBL-
Gr heterostructure (outlined in b) on a holey silicon nitride (Si3N4) TEM support.
Locations used for imaging are labelled in b c, DF-TEM images of the regions labelled
in b, obtained using the [011̄0] and [112̄0] graphene diffraction peaks, showing various
twist angles (θm) in the different regions. d, Atomic force microscopy of the sample
shown in b,c.
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Figure 2.2: Initial exploration of imaging parameters for mapping strain in TBL-Gr.
At a convergence semi-angle of 0.55 mrad, Bragg disk positions for the two graphene
layers (marked by orange and pink arrows) could be distinguished at large twist angles
(a) but not in the small twist angles of interest (b). Decreasing the convergence semi-
angle further to 0.14 mrad (i.e., a nearly parallel beam) still could not resolve the
two sets of graphene Bragg reflections (c). Only hBN Bragg disks (marked by blue
arrows) were detectable when using a 10µm bullseye-patterned C2 aperture (d).

2.3 The development of Bragg interferometry

4D-STEM is a well-established technique for mapping structural transformations and
deformations across a sample135. In a 4D-STEM experiment, a focused electron beam
is rastered in a 2D array across a sample and a full convergent beam electron diffrac-
tion (CBED) pattern is collected at each probe position, yielding a 4D dataset. This
technique is also often referred to as scanning nanobeam diffraction. Monitoring
changes in the collected CBED patterns across a dataset yields rich information about
variations in phase150, crystallographic orientation151, and strain147,152, for example,
throughout a material135. With this in mind, we set out to map the intrinsic structural
deformations and 2D strain fields present in TBL-Gr using this technique.

TBL-Gr samples were fabricated with an encapsulating hBN layer using the tear-
and-stack dry transfer method (Fig. 2.1a, see Section 11 for Experimental Details),
introducing interlayer twist angles, θm, ranging from 0.1 to 1.6◦ between the graphene
sheets. Since we found that samples produced using the tear-and-stack method are of-
ten inhomogeneous, we collected DF-TEM images of the prepared samples to identify
regions of interest prior to 4D-STEM imaging. An optical micrograph of an exem-
plar hBN/TBL-Gr heterostructure and corresponding DF-TEM images are shown in
Fig. 2.1b,c. Atomic force microscope images, presented in Fig. 2.1d, show that het-
erostructures were bent slightly over the edges of the holes in the TEM support, but
were nearly flat over the majority of the regions of interest (the centers of the holes).

In the initial phase of this study, we attempted to calculate strain in the TBL-
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Gr moiré using the conventional approach, which involves tracking changes in the
diffracted Bragg disk positions (corresponding to changes in local lattice constant)
across a dataset135,147,152. However, this method presented major challenges for the
study of TBL-Gr samples because the large overlap between Bragg disks from the two
graphene layers (due to the marginal twist angle between the lattices in real space)
coupled with the low signal-to-noise ratio in the individual graphene Bragg disks
precluded accurate registration of disk positions (Fig. 2.2a–c). We tried to overcome
this challenge by using a patterned bullseye aperture, which produces bullseye shaped
Bragg disks in the diffraction pattern to enable more precise recognition of Bragg disk
centers153. However, in our samples the use of a patterned aperture substantially
reduced the measured diffraction intensity in the graphene Bragg disks even further
to the point where the disks were not detectable over the noise threshold (Fig. 2.2d).

In light of this, we developed Bragg interferometry, which is also based on 4D-
STEM but utilizes diffraction intensities rather than disk positions to map moiré
structures (Sections 2.4 and 2.5) and to measure their intralayer strain fields (Sec-
tions 2.6–9). Figure 2.3a shows a schematic of the experiment. Overlapping Bragg
disks from the two graphene layers are discernible in Fig. 2.3b. We determined that
the total intensity, Ij, in the overlapping region of the j th interfering Bragg disk pair
corresponding to a graphene reciprocal lattice vector, g, is given by:

Ij = Ajcos
2(πgj · u) (2.1)

Here, u = (ux, uy) is the local displacement vector from an atom in the first graphene
layer to the nearest atom in the same sublattice in the second graphene layer and
Aj is a scaling factor representing the average number of pixel counts at maximum
diffraction intensity (see Appendix, Section 1 for the full derivation). A collection
of CBED patterns for a TBL-Gr sample are shown in Fig. 2.3c, illustrating the
relationship between the interlayer displacement vector u and the intensity in the
overlapping graphene Bragg disks.

2.4 Visualization of displacement maps

Using Equation 2.1, the arrangement of atomic stacking regions in the TBL-Gr layers
is determined by measuring Ij for all ⟨1010⟩ and ⟨2110⟩ reflections and fitting a local
u assignment for each pixel in the real space scan. An overview of this procedure is
summarized here and in Fig. 2.4a,b; more information can be found in the Appendix,
Section 2. First, the background scattering is fitted and removed from each CBED
pattern to avoid biasing the Bragg disk intensities. Next, the overlap regions between
each pair of ⟨1010⟩ and ⟨1210⟩ TBL-Gr Bragg disks are manually defined and all pixel
intensity values in each region are summed, converting each CBED pattern into a 12-
component vector. A displacement vector is then calculated by non-linear regression,
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Figure 2.3: a, Schematic of 4D-STEM of an hBN/TBL-Gr heterostructure. Here
r1, r2, and r3 refer to electron beam positions. b, Magnified images of the [21̄1̄0]
and [101̄0] hBN and graphene Bragg disks showing overlap between disks from az-
imuthally misaligned graphene layers. These images were produced by summing all of
the CBED patterns within a 4D-STEM dataset to improve visibility of the graphene
Bragg disks. c, High-symmetry bilayer graphene stacking orders with the correspond-
ing displacement vectors (u) depicted with arrows. A representative CBED patterns
is shown below each stacking type. hBN Bragg disks have been obscured for clarity
in c
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using Equation 2.1 as the fitting function. Although the prefactor coefficients Aj are
not known a priori, they are also fitted by a multistep non-linear regression procedure,
as discussed in Appendix, Section 2. Repeating the fit for each real space pixel (that
is, each individual CBED pattern) produces the displacement maps shown in Fig.
2.4c. Note that this fitting process produces some bias due to the finite probe width,
which can be later removed by a filter (see Appendix, Section 3 for details).

Figure 2.4c shows representative displacement vector maps for TBL-Gr samples
with θm ranging from 0.16 to 1.37◦. Each pixel depicts the local displacement vector
according to the displacement-space half-hexagon shown in Fig. 2.4b. By using
information from 12 Bragg disk pairs simultaneously, the displacement vector field
provides a more comprehensive picture of the TBL-Gr structure than the DF-TEM
images shown in Fig. 2.1c, allowing quantitative visualization of the reconstructed
superlattice over many moiré wavelengths.

2.5 Geometric measurements and quantification

of intrinsic disorder in TBL-Gr

Many details about the intrinsic moiré structure can be derived from the displacement
maps. To start, we discuss how these maps enable a geometric analysis of the local
variations in twist angle and heterostrain at the resolution of individual AB/BA
domains. Local twist angle and heterostrain values were calculated using a model
previously reported by Kerelsky et al.146 (see Appendix, Section 8). To summarize,
it is assumed that one layer of the TBL-Gr sample remains unstrained while the
other bears uniaxial tensile heterostrain, εH , at some angle relative to the lattice.
This model then provides three degrees of freedom for the distorted moiré geometry:
the moiré angle θm, the heterostrain magnitude εH , and the angle of heterostrain
application θh. By measuring the lengths of the three sides of each moiré triangle in
the displacement maps, these three variables can be fit uniquely and plotted for the
triangulated moiré geometry. Figure 2.5a,b exemplifies these analyses for the region
shown in Fig. 2.4c with θm = 1.37◦. Mapping local θm for four ostensibly uniform
samples near the MA, we found standard deviations to be approximately constant at
around 0.03◦ (Fig. 2.5c). Likewise, mapping εH revealed an average εH of around
0.2% and standard deviations between 0.06 and 0.09% (Fig. 2.5d).

When quantifying structural disorder based on local changes in the moiré geome-
try, it is important to ensure that the variations observed do not arise simply from the
uncertainty in the geometric fit of the AA sites (the vertices of the moiré unit cells).
To this end, we performed bootstrapping154 on three AA regions for θm = 1.37◦. The
standard error of the AA region (x,y) coordinates was 0.08 nm. Numerical error prop-
agation simulations show this corresponds to a standard deviation of about 0.01◦ in
the calculated twist angle distribution arising from fitting error. As the measured θm
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Figure 2.4: a, Schematic of the routine for fitting Bragg disk intensities, Ij, to local
displacement vectors u. b, 2D hue–value colorization scheme used to produce the
displacement maps shown in c from the fitted displacement vectors. The displacement
vectors in Fig. 2.3c correspond to u = (ux, uy) displacement points in the half-
hexagon and are colored accordingly, where the pixel hue and value correspond to
the displacement vector direction and magnitude, respectively. c, Displacement field
maps for TBL-Gr at various moiré twist angles, θm.
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Figure 2.5: a,b, Maps of local twist angle θm (a) and uniaxial heterostrain εH (b)
determined from AA-triangulated moiré domains over a region with an average twist
angle of 1.37◦ (from the displacement map shown in Fig. 2.4c). c,d, Intrinsic local
twist angle (c) and heterostrain (d) disorder for four 100 nm × 100 nm datasets of
samples around the magic angle. Mean values are noted with standard deviations
given in parentheses.

distribution standard deviations are in excess of this value, around 0.03◦ (Fig. 2.5c),
we conclude that the observed twist angle disorder is a real effect. Furthermore,
spatially-localized twist angle disorder is visible from the displacement maps. Anal-
ogous error propagation simulations show that AA registration uncertainty produces
a heterostrain of 0.05% and a standard deviation of 0.026%. The non-zero value of
heterostrain due to only AA registration uncertainty arises because the heterostrain
triangulation model146 is a biased estimator (that is, it is impossible to have a negative
heterostrain value under this model, only positive heterostrains oriented in different
directions can occur). Consequently, our measured heterostrain distributions could
be systematically inflated, though we expect by < 0.05%, given the above calcula-
tions. Again, since the experimental spread in heterostrain (0.06–0.09%, Fig. 2.5d)
is about three times greater than what could be explained by AA registration error
alone (0.026%), we can conclude this heterostrain disorder is likewise a real effect.
Because the band structure is highly sensitive to supercell size and geometry131,145,
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the spatial fluctuations and distributions in both θm and εH that were resolved within
these apparently homogeneous 100 nm × 100 nm regions may provide a gauge of the
intrinsic short-range structural disorder to be expected from MA-TBL-Gr. The phys-
ical mechanism of the disorder remains unclear and requires further investigation.

Figure 2.6: Domain size variation as a function of θm for measured samples (mark-
ers) and the simulated rigid moiré superlattice (solid lines). Vertical error bars rep-
resent 95% confidence intervals in domain size and horizontal error bars represent
standard deviations of θm. Dashed lines are polynomial fits to the experimental data,
drawn as visual guides to the overall trends.

These displacement maps also enable measurement of the geometric properties of
the AA and saddle-point (SP) stacking regions (Fig. 2.6). The AA region radii were
calculated by curve fitting the displacement amplitude to a 2D Gaussian function
with equal variances and no correlation. Pixels with strong SP character were re-
moved from the fit so as not to bias the background AB/BA displacement amplitude.
The reported radii are for the circular level curve of the Gaussian at a displacement
amplitude140 of 0.71 Å. The SP region widths were calculated on the basis of the
displacement vector angle with the origin before phase unwrapping. Each pixel was
assigned an angle score between 0 (displacement angle equivalent to precise AB/BA
stacking) and 1 (angle equivalent to precise SP stacking). The angle scores were
interpolated perpendicularly to the boundary of the SP region, and the angle score
threshold of 0.5 was used to determine the width of the SP region. Both AA and SP
geometry fits were performed without TGV filtering of the data. The results of this
analysis provide qualitative validation of trends previously predicted from multiscale
modelling142,143. However, our measurements show larger AA region diameters and
thinner SPs than those predicted from previous simulations, providing insights for
future modelling.
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Figure 2.7: a, θR and b, γmax maps for TBL-Gr with various values of θm. The
overlaid dashed lines depict the moiré unit cell geometry from the displacement maps
shown in Fig. 2.4c. The θR maps display the combined reconstruction rotation of
both layers at each pixel and the γmax maps represent the average strain per graphene
layer at each pixel.

2.6 Strain field mapping

Since strain is a measure of the gradient of the displacement field155,156, maps like
those in Fig. 2.4c allow us to determine the complete 2D strain tensor describing all
directions of in-plane deformation in TBL-Gr at each pixel as a function of θm (see
Appendix, Sections 4–9 for more information). Consequently, we can measure both
interlayer azimuthal rotations and intralayer deformation mechanics. The interlayer
component is the total “fixed-body” rotation155 field, θT , from which the local recon-
struction rotation field, θR, can be determined by removing θm:

θT = θR + θm (2.2)

The maximum shear (also called principal shear) field, γmax, provides the maximum
amount of intralayer “engineering” shear strain in any direction experienced by the
material155,156. Neither θR nor γmax require definition of a local tensor coordinate
system.
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Figure 2.7 shows maps of θR (Fig. 2.7a) and γmax (Fig. 2.7b) for several θm
values. The maps of θR provide direct experimental evidence for a reconstruction
mechanism predicted by theoretical studies111,141–143 and indirectly suggested by elec-
tron diffraction data113: all maps display substantial positive θR in AA regions and
negative θR in AB/BA domains. Positive θAA

R (rotation in the direction of θm) shrinks
the area of the higher-energy AA regions; negative θAB

R (counteracting θm) brings the
AB domains closer to commensurate, low-energy Bernal stacking. The effects of θm
on rotational reconstruction can be visualized in regions of the sample possessing θm
varying rapidly from 1.7 to 0.6◦ owing to a nearby tear in one of the graphene layers
(Fig. 2.8). We plot θT instead of θR in Fig. 2.8 because of the variation in θm over
the field of view.

Figure 2.8: a,b, θT for two TBL-Gr regions in the vicinity of a tear in one of the
graphene layers. c,d, Corresponding maps of the displacement fields and e,f, the
moiré twist angle.

Figure 2.9 shows θAA
T and θAA

R as a function of θm based on 20 twist angle-
homogeneous images and two additional datasets over regions with a nearby tear
(from the regions shown in Fig. 2.8). The two types of dataset show excellent agree-
ment, with greater precision from the homogeneous maps. As θm nears zero, θAA

R

approaches a limiting value of approximately 1.2◦. For θm < 0.5◦, reconstruction
keeps approximately constant. Extrapolation of θAA

R to large θm suggests that the
onset of reconstruction begins below θm ∼ 2◦. We note that all reported twist angle-
dependent strain and rotation trends were obtained through an region of interest
(ROI)-based approach. Based on the geometry registration obtained during the dis-
placement field unwrapping process (see Appendix, Section 4), masks were built by
selecting all pixels within a given distance of the registration position. For the AA
regions, all pixels within 1 nm of the AA center were included. For the SP regions
(discussed later), all pixels within 1 nm of the line down the center of the region were
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Figure 2.9: Total (blue, pale blue circles) and reconstruction (red, pink triangles)
rotation in AA domains as a function of θm. The filled markers indicate average
values obtained from homogeneous twist angle regions with a fields of view of ≥50
nm × 50 nm. The open markers indicate individual AA domains from two datasets
with rapidly changing θm due to a nearby tear (Fig. 2.8). The solid line represents
the moiré rotation. For the homogeneous regions, horizontal error bars represent
standard deviations of the moiré angles, reflecting the distribution of all triangulated
moiré unit cells within each dataset. Vertical error bars are 95% confidence intervals
obtained from the variance across multiple domains measured within the image (for
instance, multiple AA mask regions). For datasets acquired near a tear in one of the
graphene layers, this approach cannot be followed because the twist angle is changing
rapidly. Instead, each AA region is assigned an effective twist angle by averaging
the triangulated moiré twist angles for all immediately adjacent moiré unit cells.
Horizontal error bars are given as the standard deviation of these moiré angle values.
Vertical error bars are given as the standard deviation of the quantity of interest for
all pixels within the individual AA mask.
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included, excepting a mask of variable size that prevented the AA region from being
used. For the AB/BA domains, first the AA and SP regions were removed with wide
masks, and then the remaining area was used as the AB region. Therefore, transi-
tional pixels between two domains were not included in these calculations. Within
each masked region, all pixels were averaged to produce the calculated value for that
specific domain, and then all domains were averaged together to produce the single
reported value for the dataset.

Figure 2.10: Variation in local reconstruction rotation across an AA region in a
TBL-Gr sample with a moiré twist angle 0.26◦ via two paths shown in the inset
schematic.

The maps of the rotational reconstruction mechanics in Fig. 2.7a explain the ob-
served distribution of intralayer shear strain in Fig 2.7b. Despite the large rotational
reconstruction taking place at all of the θm values sampled (Fig. 2.7a), γmax decreases
rapidly upon approaching the core of the AA region (Fig. 2.7b) due to the bivariate
Gaussian radial profile of θAA

R (Fig. 2.10)140,143; near the center of the AA region,
the approximately constant θAA

R produces no intralayer strain. For θm = 0.16◦ and
0.26◦, the AB domains also exhibit no intralayer strain over an extended region (Fig.
2.7b), consistent with the constant θAB

R observed (Fig. 2.7a). Conversely, at twist
angles near and greater than the MA θAB

R changes more rapidly through space (Fig.
2.7a), as extended Bernal domains have not formed. Consequently, intralayer strain
in MA-TBL-Gr appears less localized than strain at smaller twist angles, relative to
the moiré unit cell size. In general, the γmax maps (Fig. 2.7b) show that the in-
tralayer strain is largely localized at the SP for all values of θm, with peak values
of γmax exceeding 0.8%. Additionally, although some regions of the maximum shear
strain maps for θm = 1.03◦ and 1.37◦ show nearly six-fold symmetric SP strain, other



CHAPTER 2. INTERFEROMETRIC IMAGING OF LATTICE
RECONSTRUCTION IN TWISTED BILAYER GRAPHENE 37

regions display more striped features similar to that for the region with θm = 0.63◦

in Fig. 2.7b, an observation that we shall return to. The changing directions of the
principal strain156 axes (Fig. 2.11) reveal that reconstruction does not generate global
strain.

Figure 2.11: Orientation of the maximum principal strain component in two TBL-
Gr samples with moiré twist angles of a, 0.26◦ and b, 1.03◦. Overlaid dashed lines
depict the moiré unit cell geometry from displacement maps, showing the strain di-
rection is nearly uniform within each SP domain. Angles are computed relative to
the positive x -axis displayed.

In addition to γmax, SP strain can also be understood in terms of simple shear
strain:

syx = ∂uy/∂x (2.3)

sxy = ∂ux/∂y (2.4)

The quantity syx, used in previous 1D analysis of shear soliton walls144, considers
the displacement change parallel to a soliton wall140,157. Here, both sxy and syx were
directly obtained from our 2D strain measurements. Figure 2.12a shows that as θm
decreases through the MA, sxy is larger and increases more rapidly than syx until
a maximum at around θm = 0.8◦, after which an inversion in syx and sxy occurs at
∼ 0.5◦. The plot of γmax versus θm shows that the average intralayer shear strain
loading in MA-TBL-Gr is substantially greater than that suggested by syx or sxy
alone, and comparable to that at smaller θm, with a limiting mean γmax of ∼ 0.7%.
We note that the simple shear strain trends in sxy and syx shown in Fig. 2.12a were
obtained as averages over all three SP directions. For each SP direction, the sxy
and syx values were computed in the right-handed tensor coordinate system with the
x -axis perpendicular to the SP direction and the y-axis parallel to the SP direction.



CHAPTER 2. INTERFEROMETRIC IMAGING OF LATTICE
RECONSTRUCTION IN TWISTED BILAYER GRAPHENE 38

Figure 2.12: a, Three metrics for shear strain in SP domains (γmax, sxy and syx)
as a function of θm. b, Local SP reconstruction rotation as a function of θm showing
crossover in rotation direction near θm = 0.5◦. Horizontal error bars depict the
standard deviations of moiré angles and vertical error bars depict 95% confidence
intervals. The dashed line is a polynomial fit, drawn as a visual guide.

The magnitudes of syx and sxy in the SP domains cross at θm = 0.5◦ because simple
shear strain combines intralayer pure shear with interlayer fixed-body rotation (see
Appendix, Section 6)155. Figure 2.12b shows plots of local rotation in the SP regions
(θSPR ) as a function of θm. We see that θSPR undergoes a sign change from negative
to positive as θm decreases, consistent with the changing relative magnitudes of syx
and sxy in Fig. 2.12a. Plots of θSPR as a function of distance from the center of the
SP region (traversing the path AB → SP → BA) are shown in Fig. 2.12c for two
regions with θm = 0.26◦ and 1.03◦, showing that the reconstruction rotation varies
as a bell curve across the SP region in both cases but the change is much smaller
for θm = 1.03◦ than θm = 0.26◦ due to weakening reconstruction. These plots also
illustrate the sign change of θSPR in the center of the SP region as θm varies.

Considering the AB/BA regions, Fig. 2.13a shows θAB
R as a function of θm. Al-

though θAB
R is negative over the entire range of θm, it varies non-monotonically with

θm, reaching a minimum value of θAB
R ∼ −0.35◦ at θm ∼ 0.8◦. Fully commensurate

AB stacking is achieved for θm < 0.2◦, when θAB
R = −θm. Using these values of θAB

R ,
we calculated the induced displacement on each side of the AB boundary (that is,
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near the SP regions). In the limit of θm < 0.2◦, AB reconstruction in TBL-Gr may
be simplistically modelled as rotation of large fixed plates in the opposite direction
of the moiré angle. As all AB plates rotate in the same direction, the boundary of
any two plates experiences a shearing mechanic due to the reconstruction, leading
to the observed concentration of γmax in these regions. The displacement induced at
such a boundary may be calculated geometrically using the moiré triangle side length
L = a/|θm|, where a = 2.461Å is the lattice constant of graphene. The distance from
the center of the triangular AB domain to the boundary point is a/2

√
3|θm|. Under

the small angle approximation, the displacement arising from rotation of one AB do-
main is |s| = r|θAB

R | = a|θAB|/(2
√
3|θm|), where θAB

R is the reconstruction rotation in
a single layer of graphene. The adjoining AB domain contributes an equal amount of
displacement in the opposite direction. The total in-plane displacement in one layer
of graphene at an AB/BA boundary is therefore |ubound| = 2|s| = a|θAB

R |/(
√
3|θm|).

The induced displacement in a single layer of graphene is plotted according to this
formula in Fig. 2.13b.

Notably, the shear-induced displacement on the AB boundary grows as θm de-
creases and accelerates for θm < 0.5◦, despite this diminution in the magnitude of
θAB
R . To explore the physical significance of this trend, we first plot the displacement
change both parallel (∆uy) and perpendicular (∆ux) to a line traversing a SP using
the displacement maps from Fig. 2.4c. As shown in Fig. 2.13c,d for θm values of both
0.26◦ and 1.03◦, ∆uy is negligible, indicating that the displacement in SP regions is
of the shear type as expected144. Interestingly, ∆ux displays a sigmoidal profile for
θm = 0.26◦ (Fig. 2.13c), but a linear profile for θm = 1.03◦ (Fig. 2.13d). The former
is expected for a true shear-type soliton wall144, while the latter is expected for a rigid
moiré. The formation of soliton walls directly relates to the more rapid increase in
induced displacement observed for θm < 0.5◦ in Fig. 2.13b.

We now rationalize the origin of these soliton walls. When traversing a shear
soliton wall perpendicular to the direction of the wall, the total stacking order dis-
placement change is a/

√
3. If the rotation in the two graphene layers is equal and

opposite and all of the stacking order change is produced by AB reconstruction rota-
tion, then there must be a simple shear displacement of |ubound| = a/(2

√
3) in both

the top and bottom layer to satisfy the soliton wall boundary condition. Equat-
ing this with the displacement formula derived in the previous paragraph, we have
a|θAB|/(

√
3|θm|) = a/(2

√
3). This simplifies to just |θAB| = |θm|/2, which is also the

angle at which the AB reconstruction exactly cancels out the moiré rotation to form
commensurate Bernal-stacked AB domains. Indeed, as θm goes to zero, we see |θAB|
approaching |θm|/2 (Fig. 2.13a) and the induced displacement in the SP region of a
single graphene layer approaching a/(2

√
3), about one-half the C–C bond length (Fig.

2.13b). Overall, this demonstrates that AB reconstruction not only improves the in-
terlayer stacking energy, but it also produces the correct boundary displacement for
thin soliton walls as θm decreases. This displacement change is sufficient to explain
the formation of thin shear solitons in their entirety, indicating that reconstruction
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rotations in AB domains are a mechanism for generating soliton walls.

Figure 2.13: a, Local AB reconstruction rotation as a function of θm. The AB com-
mensurability criterion θAB

R = −θm (grey line) is met for θm < 0.2◦. Horizontal error
bars depict the standard deviations of moiré angles and the vertical error bars depict
95% confidence intervals. The dashed line is a polynomial fit to the experimental data,
drawn as a visual guide. b, Reconstruction-induced displacement on the boundary of
two counter-rotating AB domains. c,d, Variation in displacement components, ∆ux
and ∆ux, across an SP region in TBL-Gr samples with moiré twist angles of 0.26◦ (c)
and 1.03◦ (d) from the datasets shown in Fig. 2.4c. An illustration of path followed
in traversing across the SP region is shown in e, with the directions of the x- and y-
axes labelled. Sigmoidal variation in displacement, as expected in a true shear soli-
ton wall144, is observed at θm = 0.26◦ (c) due to AB/BA-dominated reconstruction.
Meanwhile, linear shear-induced displacement is observed at θm = 1.03◦ (d) due to
weak AB reconstruction at this angle. The observed linear variation in displacement
is due to the underlying moiré pattern.
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2.7 Dual regimes of reconstruction mechanics in

TBL-Gr

To explore how the twist angle-dependent trends in local strain and rotations impact
the overall structure of TBL-Gr, Fig. 2.14a shows the extracted area percentages of
different stacking orders. These stacking area trends were determined by partitioning
the displacement vectors into three stacking order categories (AA, SP and AB/BA),
as depicted in Fig. 2.14a (inset) and 2.14b. All displacement vectors with amplitude
less than 0.71 Å were assigned to AA stacking140, whereas the remaining vectors were
assigned to whichever pure stacking order was closer in displacement space (AB/BA
or SP). To avoid the influence of outliers, this calculation was performed on TGV-
filtered data.

Figure 2.14: a, Variation of the relative stacking order areas with twist angle. The
solid horizontal lines show the constant stacking area in the case of a rigid moiré (no
reconstruction) for comparison. Horizontal error bars depict the standard deviations
of moiré angles. b, Stacking assignments for regions with a series of representative
moiré twist angles. Assignments were made using the three-category partition of
displacement vectors shown in the inset of a.

We again find two regimes in the stacking area trends with a crossover point near
θm = 0.5◦, the same angle where θSPR changes sign (Fig. 2.12b) and the induced dis-
placement in the SP regions increases more quickly (Fig. 2.13b). For θm > 0.5◦, the
AA region fractions shrink steadily as θm decreases, driven by increasing θAA

R . In this
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regime, as θm decreases, both the AB and SP areas increase, consistent with a dom-
inant reconstruction process that does not distinguish between these arrangements.
Conversely, the AB and SP areas diverge for θm < 0.5◦; the AB domains increase
in size, whereas the SP regions decrease in relative area fraction, despite increasing
in absolute width (Fig. 2.6) as they form true shear soliton walls bordering the AB
domains at small angles. Even though the AA regions have approximately constant
radii in this regime (Fig. 2.6), their area fraction continues to decrease because of the
expanding moiré wavelength.

A second stacking area analysis was also conducted using a five-category partition
to consider intermediate stacking categories (Fig. 2.15). Here, the AA region was
divided into an inner AA region (displacement |u| < 0.35Å) and an outer AA region
(0.35 < |u| < 0.71Å). In addition to the pure AB/BA and SP stacking orders, an
“SP/AB transitional” stacking order was defined at exactly the average of the AB/BA
and SP stacking order displacement vectors. All non-AA displacement vectors were
assigned to the closest of these three stacking orders (Fig. 2.15a,c). We note that while
there are several potential ways to define a five-category partition, this example serves
as an illustration of the effect of intermediate stacking orders. As in Fig. 2.14a, the
twist-angle-dependent stacking area percentage was analyzed (Fig. 2.15b). Between
θm = 1.4◦ and 0.5◦, decreasing θm leads to a decrease in both the inner and outer
AA stacking area percentage, while SP, AB/BA, and AB/SP transitional stacking
areas each increase slightly. Below the critical angle of θm = 0.5◦, SP and AB/SP
transitional stacking areas reverse trends and decrease in area percentage as the twist
angle decreases, while AB/BA stacking increases sharply in area percentage. This
behavior is the same as in the original partition in Fig. 2.14a, in which SP stacking
area rose from θm = 1.4◦ to 0.5◦ and decreased below θm = 0.5◦, while AB/BA
stacking rose modestly from θm = 1.4◦ to 0.5◦ and sharply below θm = 0.5. This
suggests that AA transitional stacking (“AA outer”) diminishes as AA reconstruction
takes place from θm = 1.4◦ to 0.5◦, while AB/SP transitional stacking diminishes as
AB reconstruction takes place below θm = 0.5◦. These results are in agreement
with intuitive expectations regarding reconstruction, and can be confirmed visually
by examining the real-space stacking order assignment images (Fig. 2.15c). Overall,
the same two regimes of reconstruction are visible regardless of the stacking partition
employed.

To further understand these two reconstruction regimes we analyzed the recon-
struction mechanics of TBL-Gr entirely through maps of simple shear strain (Fig.
2.16a,b) using local axis rotations (see Appendix, Section 7), establishing a con-
ceptual picture of TBL-Gr reconstruction as an interplay between AA and AB/BA
rotation (Fig. 2.16c). Again, positive θAA

R dominates for θm > 0.5◦ (Fig. 2.16c), and
thus the primary simple shear is perpendicular to the SP region path between closely
spaced AA regions (sxy > syx in Fig. 2.12a). Although AB counter-rotation does
occur, the induced displacement change is minimal (Fig. 2.13b) because the moiré
wavelength is small. Further, the SP fixed-body rotation produced by AA simple
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Figure 2.15: a, Schematic illustrating a five-category partition of the displacement
space and b, corresponding plot of variation of the relative stacking order areas with
twist angle. Horizontal error bars depict the standard deviations of moiré angles. c,
Stacking assignments for regions with a series of representative moiré twist angles. As-
signments were made using the five-category partition of displacement vectors shown
in a.

shear is expected to be negative (Fig. 2.16c, right), explaining the observed negative
θSPR for θm > 0.5◦ (Fig. 2.12b). For θm < 0.5◦, θAB

R dominates. Because the AA
rotation field decays quickly away from the AA core (Fig. 2.7a) and only a small θAB

R

is required to counteract the small θm, θ
AB
R alone serves to maintain true soliton walls

in this regime. Adjoining AB–BA domains rotating in the same direction (with nega-
tive θAB

R ) generate dominant simple shear parallel to the soliton wall, demonstrating
the case where syx > sxy in Fig. 2.12a and θSPR is expected to be positive (Fig. 2.12b
and Fig. 2.16c, left). When AA and AB simple shear forces are balanced in the SP
domains, θSPR = 0◦ because the SP experiences a pure shear force (Fig. 2.16c, center).
This occurs near θm = 0.5◦, the critical angle separating the two regimes.
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Figure 2.16: a,b, Simple shear decompositions for TBL-Gr at θm = 1.03◦ (a) and
0.14◦ (b). The red and blue arrows give the directions and relative magnitudes of the
two simple shear components (see Appendix, Section 7). c, Schematic of the AA- and
AB-dominated reconstruction regimes for TBL-Gr, explaining the observed changes
in simple shear and SP reconstruction rotation.
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2.8 Predicted effects of local rotations on

electronic structure

The two-regime model provides a useful framework for examining the perturbation
of the electronic structure by reconstruction and the destruction of ultraflat bands at
smaller angles. We examined the effects of the two relaxation modes on the electronic
structure of TBL-Gr using high-quality ab initio electronic tight-binding models70 and
a simple parameterized atomic reconstruction model based on our experimental strain
maps, which allows selective implementation of θAA

R - or θAB
R -dominated reconstruction

(see Appendix, Section 12 for details). We considered three values of θm: 0.35, 0.5 and
1.15◦. θm = 0.5 and 0.35◦ approximate the second and third magic angles predicted
for a rigid (no reconstruction) TBL-Gr moiré71. For 0.35◦ (Fig. 2.17a), application
of θAB

R alone removes the large number of low-energy bands and frames the lowest
four by two pairs of neighbouring bands on each side, but in the process the extreme
flatness is lost. In contrast, including only θAA

R retains band flatness, but does not
remove as many low-energy bands. By including both rotations, a set of four nearly
flat bands and two pairs of parabolic bands that touch the flattened bands at the
Γ point emerge, reminiscent of the band structure of MA-TBL-Gr71,113, albeit more
dispersive in nature. At 0.5◦ (Fig. 2.17b), the results for the application of either
θAA
R or θAB

R alone initially appear similar, although θAB
R noticeably produces more

dispersive bands and θAA
R alone preserves some flatness. At 1.15◦ (Fig. 2.17c), θAA

R

alone more closely replicates the flat band structure of the full reconstruction and
opens gaps at the Γ point both above and below the flat band. It is impossible to
exactly ascribe features of the doubly rotated band structure to individual rotation
modes, but the trends observed in Fig. 2.17a–c imply that θAA

R helps define the flat
low-energy modes, whereas θAB

R ensures that only four such bands exist at low energy
and encourages a more dispersive band structure.

These qualitative observations of electronic modifications (Fig. 2.17a–c) arise be-
cause the band structure of TBL-Gr is predominantly described by the variation in
interlayer electronic tunnelling over the moiré superlattice71, which is highly sensi-
tive to atomic reconstruction158,159. Figure 2.17d shows that the relative importance
of θAA

R and θAB
R for interlayer tunnelling indeed changes with θm. At θm = 1.15◦,

sole application of θAA
R yields better agreement of the calculated interlayer tunnelling

with the fully reconstructed structure than pure θAB
R . For θm < 0.5◦, the converse

is true, and at θm = 0.5◦, the influence of both rotations is almost balanced. This
quantitative result agrees with qualitative comparisons between the full electronic
interlayer tunnelling functions (see Appendix, Section 12). Thus, the relative con-
tributions of the separate relaxation modes to the fully relaxed electronic structure
(Fig. 2.17d) agree with our two-regime concept (Fig. 2.16c), providing the fun-
damental connection between the reconstruction-modified electronic band structures
and our two-regime model developed from strain field mapping. This full-rotation
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model also provides bands that are in good agreement with those obtained by realis-
tic finite-element simulations, which relax the atomic structure self-consistently141,143,
but cannot interrogate the impact of individual rotation mechanics as permitted by
our model.

2.9 Effect of heterostrain on reconstruction

strain fields

Returning to the region in the vicinity of a tear (Fig. 2.8a), we estimated the uniaxial
heterostrain (εH) over the field of view (Fig. 2.18a), revealing regions with nearly
identical θm near the MA, but possessing εH varying between 0.1 and 1%. Figure
2.18b shows that MA-TBL-Gr regions with minimal εH (box 1) exhibit a fully six-
fold symmetric strain pattern with localized, isolated pockets of shear strain on each
individual SP. By contrast, regions with large εH (box 2) display striking striped
features in γmax. Additionally, SP shear strain fields are magnified both in value and
in extent in the heterostrained region, suggesting that the extra strain loading from
heterostrain localizes in the SP regions. We confirmed that the observed distortions
are in fact due to heterostrain rather than a sample drift effect during data acquisition
(see Appendix, Section 11).

Figure 2.18c captures the heterostrain-induced modification in a sample at θm =
0.63◦, where the regions are more zigzag in nature and the unstrained AB domains
are consequently offset away from the shortened SP region angles. Finite-element
relaxation simulations of heterostrained TBL-Gr (Fig. 2.18d, see Appendix, Section
12 for details) show excellent agreement with the experimentally extracted strain
distributions and help to explain the formation of these quasi-1D strain features on
geometric grounds. By changing the moiré cell geometry, heterostrain leads to a
decrease in the angle between at least two pairs of SP regions, mandating a more
rapid change in displacement. This ‘displacement pinching’ implies the need for a
connected shear strain field in the decreased SP angle area to maintain reconstruc-
tion. Rather than shrinking or bending to avoid contact, the SP strain fields retain
an approximately constant width under heterostrain, blending near the shortened SP
region angles to break rotational symmetry and form striped regions. The tendency
for TBL-Gr to generate this strain field rather than lessening reconstruction points
to the importance of stacking energy over intralayer strain energy for driving recon-
struction mechanics. This model also explains the observation of pronounced 1D
striped regions in MA-TBL-Gr in comparison with TBL-Gr at smaller twist angles
(Fig. 2.7b).
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Figure 2.17: a–c, Calculated band structures for TBL-Gr at θm = 0.35◦ (a), 0.5◦

(b) and 1.15◦ (c) under various rotation assumptions. The band structure effects
caused by AA (AB) rotation are highlighted in red (blue). d, The similarity in
the ab initio calculated electronic interlayer scattering between the application of
singular rotations (either θAA

R or θAB
R ) and the full reconstruction (both θAA

R and θAB
R )

is indicated by the generalized ‘angle’ β. A smaller angle indicates better agreement
with full reconstruction. This similarity was assessed for interlayer scattering between
similar (βω0) and dissimilar (βω1) orbitals for both θ

AA
R only (red) and θAB

R only (blue)
relaxation assumptions. (ω corresponds to the interlayer coupling strength.)
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Figure 2.18: a, Map of the heterostrain, εH , determined from AA triangulation
(see Methods) over the sample shown in Fig. 2.8a. Boxes 1 and 2 highlight two areas
with similar θm (∼ 1.1◦), but possessing a relatively large difference in εH . b, Map of
γmax (average per layer) over the region in a, showing six-fold symmetric SP strain
patterns in box 1 (minimal εH) and striped strain features in box 2 (εH ∼ 0.7%). c,
Map of γmax (average per layer) over a homogeneously heterostrained (εH ∼ 0.45%)
sample with θm = 0.63◦, showing pronounced zigzag features. The overlaid dashed
lines depict the moiré pattern based on the displacement field maps. d, Calculations
of relaxation by a finite-element method using parameters extracted from density
functional theory (see Appendix, Section 12) for thetam = 1.1◦ without (left) and
with (right) uniaxial heterostrain (εH = 0.7%). The solid lines depict the moiré
supercell.



CHAPTER 2. INTERFEROMETRIC IMAGING OF LATTICE
RECONSTRUCTION IN TWISTED BILAYER GRAPHENE 49

2.10 Conclusions

Our Bragg interferometry methodology and analysis have made it possible to image
moiré superlattices in MA-TBL-Gr, notwithstanding the real space colocalization of
hBN multilayers. The visualization of stacking distributions at the level of individual
AB/BA domains enables evaluation of the intrinsic superlattice disorder145 in TBL-
Gr. In previous studies131, electronic effects from “long-range” variations in θm were
considered as though, locally, each moiré superlattice represented an ideal twisted
bilayer at a given θm, with an angle that varies in space. Accordingly, on the scale
of micrometers, samples would possess patches of different electronic states, compli-
cating transport measurements. In contrast, the “short-range” θm and εH disorder
visualized here would cause fundamentally different effects145: the local ideal band
structure is modified owing to spatial fluctuations in θm from one AB domain to an-
other, and regions with the same effective θm could also present different electronic
behavior due to disorder in εH

123,124. A combination of microscale variations in θm
and local nanoscale fluctuations in θm and εH may help explain the large variation in
the observed low-temperature phases in MA-TBL-Gr.

Two-dimensional strain field mapping unveiled a rich landscape of structural me-
chanics. We found two reconstruction regimes in TBL-Gr involving competition
between AA and AB/BA local rotations that are balanced near a moiré angle of
0.5◦. The greater influence of AB counter-rotation at small angles compared with
the dominance of AA rotation at 1.1◦ helps explain why flat bands are disrupted
by reconstruction at smaller angles, whereas they persist at 1.1◦. Our strain field
maps and displacement-pinching model also show how mesoscale heterostrain in TBL-
Gr is translated into localized, symmetry-breaking nanoscale features through the
anisotropic amplification and deformation of SP regions into 1D strain structures
that may be relevant to recently found nematic phases146.

Bragg interferometry is also applicable to non-moiré heterostructures with colo-
calized reciprocal lattice vectors and may be performed in a manner compatible with
in situ mechanical straining. Although our methodology considers only displacements
and strain in the lateral plane, emerging holography techniques may provide a route
towards obtaining complementary z-axis information160,161. The investigation of a
wide range of moiré materials by this methodology will elucidate the complex inter-
play between intrinsic reconstruction strain, extrinsic uniaxial strain and a diverse
array of physical phases, including correlated electronic states.
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2.11 Experimental Details

2.11.1 Sample preparation

TBL-Gr samples were fabricated using the common tear-and-stack technique162,163.
First, monolayer graphene (from Kish graphite, Graphene Supermarket) and ∼ 5
nm thick hBN (grown by collaborators T.T. and K.W.) were mechanically exfoliated
from bulk crystals onto SiO2/Si substrates and selected using optical microscopy
and atomic force microscopy. For graphene, an SiO2 thickness of 285 nm was used
and for hBN an SiO2 thickness of 90 nm was used. A polybisphenol-A-carbonate/
polydimethylsiloxane stamp was used to pick up the hBN. The hBN was then engaged
with half of a monolayer graphene crystal and the edge of the hBN was used to tear
the graphene in half. The substrate was then rotated by θm prior to picking up the
remaining half of the graphene monolayer. During this stacking process, the hBN
and graphene lattices were deliberately misaligned by > 10◦ using the straight edges
of the crystal layers as guides to prevent overlap of the hBN and graphene diffraction
disks during 4D-STEM. Finally, the hBN/TBL-Gr stack was stamped onto a 50 nm
thick Si3N4 TEM membrane (Norcada) with 2 µm holes for imaging.

2.11.2 Electron microscopy imaging

Electron microscopy was performed at the National Center for Electron Microscopy
facility in the Molecular Foundry at Lawrence Berkeley National Laboratory. Low-
magnification DF-TEM images were acquired using a Gatan UltraScan camera on
a Thermo Fisher Scientific Titan-class microscope operated at 60 kV. Three frames
each with an acquisition time of 5 s were summed to produce each dark-field image.
These dark-field images (Fig. 2.1c) were used as references for selecting regions of
interest for 4D-STEM.

4D-STEM datasets were acquired using a Gatan K3 direct detection camera lo-
cated at the end of a Gatan Continuum imaging filter on a TEAM I microscope
(aberration-corrected Thermo Fisher Scientific Titan 80–300) operated in energy-
filtered STEM mode at 80 kV with a 10 eV energy filter centered around the zero-loss
peak (to reduce background signal from inelastic scattering). In general, two sets of
acquisition conditions were used, namely convergence semi-angles of 1.71 mrad (con-
dition A) and 3 mrad (condition B), both of which allowed a sufficient signal-to-noise
ratio and avoided overlap between the hBN and graphene diffraction disks. The beam
current was 62–65 and 68 pA for conditions A and B, respectively. By fitting the cen-
ter lobe of the STEM probes in real space using a 2D Gaussian function, we measured
the full-width at half-maximum values to be 1.3 (A) and 0.8 nm (B). Diffraction pat-
terns were collected using a step size of 0.5 nm with 100 × 100 to 300 × 300 scan
positions covering an area of 50 nm × 50 nm to 150 nm × 150 nm. The K3 camera
was used in full-frame electron counting mode with a binning of 4 × 4 pixels and
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an energy-filtered STEM camera length of 800 mm. Each diffraction pattern had an
exposure time of 10–13 ms, which is the sum of multiple counted frames.

2.11.3 Computational implementation

4D-STEM image processing and analysis were conducted in MATLAB (version ≥
2016b, MathWorks) on a personal computer. TGV denoising was conducted according
to a published algorithm164,165. All other code for the analysis of 4D-STEM data in
this project was custom-written166.
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Chapter 3

Mapping rotational and dilational
reconstruction in TMD moiré
bilayers
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3.1 Abstract

Lattice reconstruction and corresponding strain accumulation play a key role in defin-
ing the electronic structure of two-dimensional moiré superlattices, including those of
transition metal dichalcogenides (TMDs). Imaging of TMDmoirés has so far provided
a qualitative understanding of this relaxation process in terms of interlayer stacking
energy, while models of the underlying deformation mechanisms have relied on simu-
lations. Here, we use interferometric four-dimensional scanning transmission electron
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microscopy to quantitatively map the mechanical deformations through which recon-
struction occurs in small-angle twisted bilayer MoS2 and WSe2/MoS2 heterobilayers.
We provide direct evidence that local rotations govern relaxation for twisted homo-
bilayers, while local dilations are prominent in heterobilayers possessing a sufficiently
large lattice mismatch. Encapsulation of the moiré layers in hBN further localizes
and enhances these in-plane reconstruction pathways, suppressing out-of-plane cor-
rugation. We also find that extrinsic uniaxial heterostrain, which introduces a lattice
constant difference in twisted homobilayers, leads to accumulation and redistribution
of reconstruction strain, demonstrating another route to modify the moiré potential.

3.2 Introduction

Moiré architectures comprised of semiconducting transition metal dichalcogenides
(TMDs) are of considerable fundamental and technological interest because they ex-
hibit distinctively tunable optoelectronic features, such as inter- and intralayer moiré
excitons and trions97–101,104,118,139,167–169, as well as relatively robust correlated elec-
tronic phases93,95,170–174. While the electronic band structure of a moiré superlattice is
closely linked to the crystallographic misalignment between constituent layers, intrin-
sic lattice reconstruction also plays an underlying yet substantial role in controlling
the emergent behavior in these systems113–117,175. Reconstruction of the superlattice
and the development of intralayer shear strain subsequently lead to reconstruction
of the electronic band structure, affecting features such as the depth of the moiré
potential119, the ‘flatness’ of low-energy bands92,122, and the real-space localization of
charge carriers89,176,177.

Group VI (Mo- and W-based) H -phase TMDs, which are non-centrosymmetric in
the monolayer limit, have two distinct reconstructed forms with unique band struc-
tures depending on whether there is a parallel (P, 3R-like, near 0◦) or anti-parallel
(AP, 2H-like, near 60◦) orientation between layers. Scanning probe115,117,119 and elec-
tron microscopy114 techniques have provided a qualitative picture of reconstruction
in TMD moiré homo- and heterobilayers, understood in terms of the variation in
interlayer stacking energy throughout the superlattice. However, the physical mech-
anisms by which reconstruction occurs have thus far only been simulated. In this
Chapter we use Bragg interferometry161,175, the imaging methodology developed in
Chapter 2, to directly map the intralayer mechanical deformations driving recon-
struction in TMD moiré systems. We identify distinct reconstruction mechanisms for
moiré homobilayers versus heterobilayers and examine their twist angle dependence,
distinguishing the relative importance of local lattice rotations and dilations in both
systems as well as the critical role that encapsulation layers play in affecting the
balance between these in-plane deformations and out-of-plane corrugations. We also
measure reconstruction-induced strain fields and demonstrate how application of an
external mechanical force, e.g. heterostrain, can be leveraged to manipulate strain
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distributions.

3.3 Interlayer displacement mapping

We prepared MoS2/MoS2 moiré homobilayers and WSe2/MoS2 moiré heterobilayers
that were capped with thin (5–10 nm) hexagonal boron nitride (hBN). Twisted ho-
mobilayers were fabricated using the tear-and-stack method162 to introduce a desired
interlayer moiré twist angle (θm) (Fig. 3.1). Heterobilayers were made by stacking
separate WSe2 and MoS2 monolayers with straight flake edges aligned. For the het-
erobilayers, the relative crystallographic orientation (P or AP) of stacked WSe2 and
MoS2 monolayers cannot be pre-determined during fabrication or distinguished from
optical micrographs or dark-field TEM (DF-TEM) images (Fig. 3.2a–h). Instead, the
stacking orientation was assigned using polarization-resolved second harmonic gener-
ation (SHG) spectroscopy (Fig. 3.2i,j). In the case of P (AP) stacking, SHG intensity
in the heterobilayer is greater than (less than) the sum of intensities from the two
isolated monolayer regions178 (see Section 9 for additional Experimental Details).

Figure 3.1: (a,b) Optical micrographs of example hBN/MoS2/MoS2 heterostruc-
tures on silicon nitride TEM grids. (c,d) Corresponding DF-TEM images, collected
using the [12̄10] and [101̄0] TMD diffraction peaks, respectively.
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Figure 3.2: a–d, Optical micrographs of AP- and P-stacked hBN/WSe2/MoS2 het-
erostructures on PC/PDMS stamps (a,c) and on silicon nitride TEM grids (b,d).
e–h, Corresponding DF-TEM images and i,j, polarization-resolved SHG measure-
ments. DF-TEM images were collected using the [101̄0] TMD diffraction peaks.
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To image the moiré structures, we performed Bragg interferometry (Fig. 3.3a),
based on four-dimensional scanning transmission electron microscopy (4D-STEM). As
detailed in Chapter 2, the guiding principle of this imaging technique is that electron
waves diffracted by the two TMD layers interfere with one another; in reciprocal
space this leads to a modulation of the intensity measured in the overlapping regions
of the TMD Bragg disks that depends on the local stacking sequence. Given a certain
convergence angle of the incident beam, the amount of Bragg disk overlap is controlled
by moiré twist angle (θm) for homobilayers (Fig. 3.3b) and both twist angle and lattice
constant percent difference (δ) for heterobilayers (Fig. 3.3c).

Figure 3.3: a, Schematic of Bragg interferometry measurement. Here (x1, y1),
(x2, y2), (x3, y3) refer to electron beam positions. TMD1 and TMD2 are MoS2 for
homobilayers or MoS2 and WSe2 for heterobilayers. Dashed box and correspond-
ing inset illustrate formation of a moiré superlattice between TMD1 and TMD2.
Axis labels x, y and kx, ky indicate real space and reciprocal space coordinate sys-
tems, respectively. b,c, Average convergent beam electron diffraction patterns for
a MoS2/MoS2 moiré homobilayer and WSe2/MoS2 moiré heterobilayer, respectively,
with moiré twist angle θm and lattice constant percent difference δ. Overlapping
TMD Bragg disks are highlighted in the insets.
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The intensities in the regions of Bragg disk overlap can be used to determine the
average interlayer atomic displacement vector at each beam position, providing struc-
tural information about the superlattice as demonstrated for twisted bilayer graphene
in Chapter 2. For non-centrosymmetric systems and heterobilayers, which do not nec-
essarily possess centrosymmetry, our methodology requires an expansion of the fitting
function used for the twisted bilayer graphene case to relate Ij, the overlap intensity
in the jth Bragg disk pair, and u = (ux, uy), the local displacement vector that de-
scribes the interlayer offset between the TMD lattices (see the Appendix, Section 1
for a full derivation of the fitting function):

Ij = Aj cos
2(πgj · u) +Bj cos(πgj · u) sin(πgj · u) + Cj (3.1)

Again, although the hBN encapsulation layers are colocalized with the TMD layers in
real space, the hBN Bragg disks are sufficiently offset from those of the TMD layers
in reciprocal space and thus do not impede the structural analysis using Bragg inter-
ferometry. This 4D-STEM approach is therefore not restricted by buried interfaces,
as in the case of scanning probe methods (which often require the sample surface
to be exposed) and conventional real-space electron imaging methods (that can be
obscured by encapsulating layers).

Example displacement maps for P and AP moiré bilayers are provided in Fig.
3.4a,b (see the Appendix, Section 2 for details on the displacement fitting process).
For the P case, the high-symmetry stacking orders include MMXX, XM, MX, and SP
(saddle point), as described in Fig. 3.4c. In comparison, the stacking orders in the AP
case include XMMX, MM, XX, and SP, shown in Fig. 3.4d. It is of particular note
that in Fig. 3.4a,b, each pixel color encodes quantitative information about the local
displacement vector (illustrated as arrows in Fig. 3.4c,d) within the displacement
zone depicted in Fig. 3.4e. We observe sharp triangular features in the displacement
map for the P moiré homobilayer and a hexagonal structure for the AP orientation,
similar to what has been previously reported114,115. The moiré pattern is much smaller
for the heterobilayer cases, considering the maximum possible periodicity is ∼ 8
nm for δMoS2/WSe2 = 3.96%. Notably, while the heterobilayer displacement fields
appear more like that of a rigid moiré lattice (Fig. 3.4f), ostensibly suggesting that
reconstruction is relatively weak compared to the twisted homobilayers, the strain
mapping and geometric analyses that follow show that reconstruction remains strong
even in these cases.
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Figure 3.4: a,b, Representative displacement maps for moiré bilayers with paral-
lel (P) and anti-parallel (AP) orientations, respectively. The moiré twist angle and
heterostrain are labelled as θm and εH . c,d, High-symmetry stacking sequences and
corresponding displacement vectors for P and AP H-phase TMD moiré bilayers. Sad-
dle point stacking abbreviated as SP. Metal and chalcogen denoted as M and X,
respectively. e, 2D displacement hexagon legend for the displacement field maps in
a and b, signifying the magnitudes and directions of the local displacement vectors
in pixel hues and values, respectively. Here ux and uy represent interlayer displace-
ments in the x and y directions. SP1, SP2, and SP3 represent the three unique saddle
point stacking directions. f, Simulated displacement fields for a rigid twisted homobi-
layer (left) and rigid untwisted heterobilayer (right). The lattice vector a1 is oriented
along the x -axis, leading to SP1 solitons oriented along the y-axis and x -axis for the
twisted homobilayers and untwisted heterobilayers, respectively, as discussed in the
Appendix, Section 5.
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3.4 Rotational reconstruction in homobilayers

As discussed in Chapter 2, by taking the gradient of these displacement vector
fields, we can calculate the intralayer 2D strain tensor at each position in the sam-
ples155,156,175,179. From the strain tensor, we then derive information about local in-
tralayer fixed-body rotations and deformations in the moiré bilayer (see Appendix,
Sections 4–6 and 8–9), which provides insight into the reconstruction mechanisms in
these systems.

First we will consider the MoS2 moiré homobilayers. The intralayer reconstruction
rotation (θR), shown in Fig. 3.5a–c, indicates the difference between the pre-imposed
interlayer moiré twist angle (θm) and the measured total fixed-body rotation (θT ) in
each TMD layer: θR = θT − (θm/2) (Equation 2.2, derived in the Appendix, Section
6). For the P orientation (Fig. 3.5a) we observe a reconstruction rotation field that is
reminiscent of the triangular rotation field we observed in twisted bilayer graphene175

(Fig. 2.7a). By plotting the average reconstruction rotation as a function of inter-
layer displacement (ux, uy) (Fig. 3.5d–f), we observe that regions with the highest
calculated stacking energy (MMXX, 59.1 meV/M vs. XM/MX114,180, see Appendix,
Section 13 for calculation) have θR > 0◦, which increases the local total rotation,
θMMXX
T , and consequently shrinks the MMXX stacking domain, while regions with
low stacking energy (XM and MX) have θR < 0◦ and expand into commensurate
triangular domains (Fig. 3.5d). For AP moiré homobilayers, a similar principle ap-
plies, but the calculated relative energies of the various high-symmetry stacking orders
present changes. Here, XX regions have the highest stacking energy (58.8 meV/M vs
XMMX114,180), thus θR > 0◦, while XMMX regions have the lowest stacking energy
and θR < 0◦ (Fig. 3.5e,f). Plots like those shown in Fig. 3.5d–i were obtained by
averaging the strain quantities from all pixels in the real-space maps whose displace-
ment vectors were within the same a0/25 by a0/25 bins where a0 is the average lattice
constant for the two TMD layers.

To determine whether other deformation mechanisms contribute to the recon-
struction process, we also calculated dilations from the measured local strain tensors.
Dilation, also referred to as dilatation or an in-plane volumetric strain155,156,179, de-
scribes the local change in volume relative to that of the rigid moiré for a given θm.
Referring again to infinitesimal strain theory, dilation can be approximated as the
sum of the normal strains155:

Dil =
∆V

V
= ϵxx − ϵyy (3.2)

In the case of moiré bilayers the dilation effectively represents the change in the rel-
ative lattice constants of the two TMD layers (that is, a 1% dilation implies a 1%
increase in the lattice constant difference, thereby shrinking the local stacking do-
main). Fig. 3.5g–i show the average dilation as a function of interlayer displacement.
In contrast to the reconstruction rotations, we do not measure any systematic trends
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Figure 3.5: a–c, Maps of local reconstruction rotation (θR) for P-stacked
MoS2/MoS2 with θm = 1.23◦ (a) and AP-stacked MoS2/MoS2 with θm = 0.77◦ (b)
and 1.69◦ (c). εH indicates average heterostrain. d–f, Average reconstruction rota-
tion (⟨θR⟩) and g–i, average dilation (⟨Dil⟩) as a function of interlayer displacement
(ux, uy). The overlaid dashed lines correspond to the moiré unit cell geometry, deter-
mined from the displacement maps.
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in dilation based on the local stacking order for the moiré homobilayers (both P and
AP cases). These data reveal that intralayer volumetric strains do not significantly
contribute to reconstruction of the homobilayer lattices. Instead, variations in the
distribution of local fixed-body rotations drive the reconstruction and are responsible
for the stark morphological differences between reconstructed P and AP moiré homo-
bilayers. This result may be intuitively rationalized considering the lattice mismatch
in moiré homobilayers arises almost entirely from rotational misalignment rather than
a lattice constant difference for samples measured (see Section 7 for further discussion
on heterostrain considerations).

These rotation-driven lattice reconstruction mechanisms would be expected to
generate intralayer strain as an inherent property of the moiré superlattice111,112,175.
These inhomogeneous, intrinsic, intralayer strain fields are thought to be particularly
important in AP moiré homobilayers, where they are implicated in the tight confine-
ment of charge carriers in triangular quantum dot-like potential wells and subsequent
formation of ultraflat electronic bands92,176. In the case of rotation-driven recon-
struction, shear is the predominant type of strain present and has been theoretically
predicted to occur at the boundaries between stacking domains92. To visualize and
measure the reconstruction strain fields, we calculated the engineering shear strain
(γmax, also called principal shear) at each point in the moiré superlattice. This γmax

value indicates the maximum amount of intralayer shear strain present in any direc-
tion155,156,179 (see Appendix, Section 6 for more information). Indeed, we measure
a concentration of shear strain in the saddle point (SP) areas (i.e., soliton/domain
walls) between regions with the same sign of θR (Fig. 3.6a–f). The measured shear
strain fields align closely with those we obtain from simulations using a rotational
reconstruction field (see Appendix, Section 13), corroborating the assertion that local
rotations are the dominant type of mechanical deformation in TMD moiré homo-
bilayers, spontaneously generating these intralayer shear strain fields. Schematics
depicting the rotation-driven reconstruction model and accumulation of shear strain
at domain boundaries are provided in Fig. 3.6g–i.

Figure 3.7 shows how the relative stacking areas and average θR vary with twist
angle for each type of high-symmetry stacking order. The plotted values were obtained
by assigning each real-space pixel to a stacking order according to the displacement
space partitions shown in Fig. 3.8 and then averaging the strain quantity of interest
for each set of pixels with the same stacking assignment. Notably, there are two
regimes of reconstruction observed for the AP moiré homobilayers. While θXMMX

R

is consistently < 0◦ and θXX
R > 0◦ for all θm measured, θMM

R switches sign at a
critical twist angle (θc) around 1.25–1.5◦ (Fig. 3.7a). Although MM regions are
higher energy than XMMX regions for group VI TMDs, the difference is relatively
small (13.8 meV/M vs. XMMX114,180). As a result, at larger θm (> θc) we observe
a slightly negative θR in the MM regions, allowing some local domain expansion
(Fig. 3.7b). Meanwhile as θm decreases, MM regions instead shrink (θR > 0◦) to
accommodate rapid expansion of XMMX into large hexagonal domains (Fig. 3.7a,b).
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Figure 3.6: a–c, Maps of maximum shear strain (γmax) for P-stacked MoS2/MoS2

with θm = 1.23◦ (a) and AP-stacked MoS2/MoS2 with θm = 0.77◦ (b) and 1.69◦

(c). εH indicates average heterostrain. The overlaid dashed lines correspond to the
moiré unit cell geometry, determined from the displacement maps. d–f, Average γmax

(⟨γmax⟩ as a function of displacement. g–i, Rotation-driven reconstruction schematics
for a P-stacked and two AP-stacked moiré homobilayer cases (θm < θc and θm > θc,
where θc is the critical twist angle separating two reconstruction regimes). Yellow
indicates accumulation of shear strain (γmax > 0) and blue indicates no shear strain.
Arrows illustrate the measured direction of θR, with counterclockwise rotation defined
as θR > 0. Arrow sizes depict relative growth or shrinkage of local stacking domain,
not drawn to scale.
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Figure 3.7: a,c) Average reconstruction rotations and (b,d) relative stacking areas
as a function of twist angle (θm) for AP and P stacking orientations. Horizontal
colored lines in b,d indicate the relative stacking areas in a rigid moiré based on
the chosen partitioning of the displacement space (see Fig. 3.8). Horizontal error
bars represent standard deviations and vertical error bars represent standard errors.
Dotted trend lines are polynomial fits to the experimental data, included as visual
guides.
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Only one reconstruction regime was observed for P homobilayers (Fig. 3.7c,d).
Comparing how reconstruction evolves with twist angle in the P and AP moiré

homobilayers, it appears that the P orientation is more strongly reconstructed overall.
When θm ∼ 2◦, the relative stacking area of the MMXX regions is 36% of that
expected in a rigid P moiré, while the relative stacking area of the XX regions is
79% of that in a rigid AP moiré, indicating that the AP structure is nearing the
rigid case by that point but the P structure is still markedly relaxed, in line with
what has been theoretically computed previously114. These results point to the fact
that, although the P and AP moiré configurations have similar ranges of interlayer
stacking energies114,180 (see Appendix Fig. A.24), fewer stacking sequences in the AP
case correspond to the energy extremes. While reconstruction in a P moiré bilayer
is driven by a preference for both MX and XM stacking over MMXX, reconstruction
in AP moiré bilayers is driven predominantly by a preference for XMMX over XX
stacking with relatively little preference for size of MM regions. This produces a
stronger driving force for reconstruction in the P moiré bilayer.

Figure 3.8: Schematic depicting classification of stacking type in a rigid moiré
bilayer. Following the three-region partition used for twisted bilayer graphene (Fig.
2.14), displacement vectors with |u| < a0

2
√
3
were classified as MMXX (XMMX) stack-

ing, where a0 is the average lattice constant of the two TMD layers. The remaining
displacements were classified as MX (XX), XM (MM), or SP type stacking according
to their angular offset from vertical ϕ. For example, SP1 regions are defined as having
a value of ϕ within ±π/12 of 0 or π, SP2 regions as having a ϕ within π/12 of π/3 or
4π/3, and so on as shown. The expected stacking area percentages for a rigid (that
is, not reconstructed) moiré are then calculated geometrically as 30.2%, 38.5%, and
31.3% for XMMX (MMXX), XX+MM (XM+MX), and SP regions, respectively.
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Figure 3.9: Relative stacking area percentages for a, AP (θm = 0.13◦), b, AP
(θm = 1.07◦), and c, P (θm = 0.80◦) WSe2/MoS2. Light blue-gray bars indicate
stacking areas calculated for the rigid (not reconstructed) moiré, and dark blue bars
represent experimentally measured values.

3.5 Dilational reconstruction in heterobilayers

We next turn our attention to the moiré heterobilayers, composed of WSe2 and MoS2.
In these systems, the lattice constant difference between the two dissimilar TMD
layers, rather than (or in addition to) global interlayer rotation, generates the moiré
pattern. Based on the displacement fields shown in Fig. 3.4a,b, it initially appears
as though there is minimal lattice reconstruction in the heterobilayers. However,
comparing the relative areas of the different stacking sequences to those expected for
a rigid moiré superlattice (again calculated using the partition shown in Fig. 3.8),
it becomes evident that there is an overall expansion of lower-energy XM/MX (P)
and XMMX (AP) regions and contraction of higher-energy MMXX (P) and XX (AP)
regions (Fig. 3.9), signifying that reconstruction has indeed occurred.

Real-space local dilation maps and corresponding average dilations as a function
of displacement vector are provided for both AP (Fig. 3.10a,b and d,e) and P (Fig.
3.10c,f) heterobilayer cases. Unlike moiré homobilayers, these heterobilayers show
prominent stacking order-dependent dilation patterns. Namely, there are positive
dilations in the XX (AP) and MMXX (P) regions and negative dilations in XMMX
(AP) and XM/MX (P) regions. There are relatively small dilations in the MM regions
of the AP superlattice due to a decreased preference for the size of these domains, sim-
ilar to what was observed in the AP twisted homobilayers in Fig. 3.7a,b. Altogether,
these measurements show that the lattice constant mismatch decreases (increases) in
domains with low (high) stacking energy to cause local volumetric expansion (con-
traction) of these domains, as depicted in the schematics in Fig. 3.10j.
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Figure 3.10: a–c, Maps of local dilations for the same heterobilayer samples an-
alyzed in Fig. 3.9. The overlaid dashed lines correspond to the moiré unit cell
geometry, determined from the displacement maps. d–f, Corresponding 2D plots of
average dilation (⟨Dil⟩) and g–i, average reconstruction rotation (⟨θR⟩) as a function
of interlayer displacement (ux, uy). g, Schematics of dilation-driven reconstruction
and accumulation of volumetric strain. Orange indicates a positive dilation and pur-
ple indicates a negative dilation. Arrows illustrate volumetric expansion (pointing
outward) or compression (pointing inward). Arrow sizes represent relative relative
growth or shrinkage of the local stacking domain, not drawn to scale.
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Next we consider the effects of introducing an interlayer twist angle on hetero-
bilayer reconstruction mechanisms. While the average local reconstruction rotations
are relatively weak and independent of stacking order for the AP heterobilayer with
a near zero-degree twist angle (Fig. 3.10g, θm = 0.13◦), these rotations strengthen
in the AP heterobilayer with a larger interlayer twist (Fig. 3.10h, θm = 1.07◦) and
their distribution resembles that of the AP twisted homobilayer (Fig. 3.5f). Thus,
moiré heterobilayers can host a combination of rotational and dilational relaxation
given that the imposed moiré twist angle is sufficiently large. Interestingly, we do not
observe stacking-dependent rotations in the P heterobilayer with non-zero twist (Fig.
3.10i, θm = 0.80◦). This could be due to a couple of factors. First, the twist angle
in the sample measured might be below the threshold for substantial contributions
from rotational relaxation. A second possibility is that out-of-plane corrugations in
the layers have weakened and delocalized the rotational reconstruction, as we will
discuss next. Simulated dilation and rotation fields for P and AP heterobilayers are
provided in the Appendix, Section 13.

3.6 Effects of encapsulation layers on

reconstruction

Theoretical calculations and scanning tunneling microscopy topography measure-
ments have suggested that heterobilayer systems can relax through out-of-plane cor-
rugations, where there is a stacking order-dependent variation in the interlayer spac-
ing117,119,181. Such corrugations have been invoked as critical to relaxation and the
resulting electronic properties. However, to the best of our knowledge, there have
been no experimental studies that directly compare reconstruction in encapsulated
and suspended structures. To investigate this point, we prepared WSe2/MoS2 heter-
obilayers with three regions: fully encapsulated (hBN on top and bottom), partially
encapsulated (hBN on top), and suspended (no hBN). Example convergent beam
electron diffraction patterns from the three regions with varying extents of encapsu-
lation are provided in Fig. 3.11a–c for an AP sample with a moiré twist angle near
0.8◦. Figures 3.11d–f, g–i show the corresponding average reconstruction dilations
and rotations, respectively, for these three regions in both the 0.8◦ sample and a sim-
ilar sample with θm ∼ 0.1–0.2◦. Corresponding real-space maps are provided in Fig.
3.12. Comparing the real-space dilation and reconstruction maps demonstrates that
full encapsulation of the moiré layers dramatically increases the homogeneity of the
reconstructed superlattice. Notably, in the 2D histograms (Fig. 3.11d–i), it is evident
that hBN encapsulation layers affect the magnitude and extent of localization of the
reconstruction rotation and dilation fields for both twist angle ranges. Specifically, the
fully encapsulated regions show the strongest, most localized dilations and rotations,
while these deformations are weakest and most delocalized in the fully suspended
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Figure 3.11: a–c, Example convergent beam electron diffraction patterns for an AP
WSe2/MoS2 sample with three regions: fully encapsulated with hBN (a, θm = 0.78◦),
encapsulated on one side with hBN (b, θm = 0.85◦), and freely suspended (c,
θm = 0.82◦). Dashed and solid boxes highlight representative hBN and TMD diffrac-
tion disks, respectively. d–f, Average dilations (⟨Dil⟩) as a function of interlayer
displacement (ux, uy) for fully capped (d, θm = 0.10◦, 0.78◦), partially capped (e,
θm = 0.10◦, 0.85◦), and suspended (f, θm = 0.17◦, 0.82◦) AP WSe2/MoS2 samples.
g–i, Corresponding 2D plots of plots of average reconstruction rotation (⟨θR⟩) as a
function of displacement.

regions. These observations suggest that hBN encapsulation suppresses out-of-plane
relaxation, in turn enhancing in-plane reconstruction pathways.

To verify the hypothesis that hBN suppresses out-of-plane corrugation, it is impor-
tant to first consider the effects that such a corrugation would have on the measured
in-plane projections of the displacement vectors. A pictorial representation of this
scenario is shown in Fig. 3.13a and further mathematical details are provided in
the Appendix, Section 14. In Fig. 3.13a, pink and blue vertical lines represent the
projected positions of the atoms in layers 1 and 2, respectively, of an exemplar heter-
obilayer system with an interlayer lattice constant mismatch. The projected distance
between an atom in layer 1 to its nearest neighbor in layer 2 reflects the measured
local displacement vector. Based on this picture, it is clear that out-of-plane bend-
ing of the layers reduces both the apparent lattice constant of each layer and the
magnitude of the interlayer displacement vectors in the projection. This effect is



CHAPTER 3. MAPPING ROTATIONAL AND DILATIONAL

RECONSTRUCTION IN TMD MOIRÉ BILAYERS 69

Figure 3.12: Maps of local dilations and reconstruction rotations for a–d, fully
capped, e–h, partially capped, and i–l, suspended AP WSe2/MoS2 at with two sets
of moiré twist angles. The overlaid solid lines correspond to the moiré unit cell
geometry, determined from the displacement maps.
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Figure 3.13: a, Schematic (exaggerated) depicting the effects of out-of-plane cor-
rugation on projected interlayer displacements. Magnified pictures of select regions
are provided in boxes 1 and 2. b, Difference in dilation (∆Dil) as a function of
stacking parameter for suspended versus fully encapsulated (dark blue-gray curve)
and suspended versus partially encapsulated (light blue-gray curve) structures with
θm ∼ 0.1–0.2◦. Dilation values for each case obtained by taking line cuts through the
average dilation plots in Fig. 3.11d–f, shown as green dashed lines. Shading indi-
cates standard error. Gray dashed line represents the theoretically calculated ∆Dil
comparing the corrugated versus rigid heterobilayer.

most pronounced in the boundary region between two high-symmetry stacking orders
where the interlayer spacing is changing most rapidly (highlighted in boxes 1 and 2).
Ultimately, this corrugation produces a perceived reduction in the interlayer lattice
mismatch, analogous to a negative dilation, even in the absence of any actual changes
in intralayer bond lengths. With this conceptual framework in mind, we calculate the
theoretical apparent dilations as a function of stacking parameter for a corrugated
AP-stacked WSe2/MoS2 using interlayer spacing variations determined from DFT
(see Appendix, Sections 13 and 14). The results of this calculation are plotted as the
gray dashed line in Fig. 3.13b.

We then quantitatively compare the dilations in the three regions of the sample
with θm ∼ 0.1–0.2◦, a twist angle range where rotational reconstruction is minimal
and can effectively be ignored. To do so, we take line cuts through the average
dilation plots (shown as green dashed lines in Fig. 3.11d–f) and then calculate the
difference in measured dilation (∆Dil) between both the suspended and encapsulated
(no hBN − hBNT/B) and suspended and partially encapsulated (no hBN − hBNT )
regions as a function of stacking parameter, as shown in Fig. 3.13b. The experimen-
tal ∆Dil profile for the encapsulated versus suspended case displays clear similarities
to that for the theoretical corrugated structure, indicating that the suspended het-
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erobilayer has undergone a combination of in-plane and out-of-plane reconstruction
while the fully encapsulated structure is reconstructed almost entirely in-plane. The
residual differences between the experimental and theoretical curves suggest that some
out-of-plane corrugation may remain in the encapsulated structure since the thin hBN
is not perfectly rigid; however, overall the corrugations have been largely suppressed
by the presence of hBN on both sides. Meanwhile, the ∆Dil profile for the partially
encapsulated versus suspended case differs more substantially from that of the corru-
gated model due to further mixing of in-plane and out-of-plane reconstruction when
only one side of the heterobilayer is encapsulated.

Taken together, these results show that hBN encapsulation layers markedly affect
the balance between in-plane rotational and dilational reconstruction and out-of-plane
corrugation. In addition, it is directly established that a considerable portion of the
dilations we observe in the heterobilayer systems are from actual local lattice stretch-
ing and compressing in the constituent monolayers, rather than corrugation alone,
which has until now only been theoretically predicted or assumed to occur117–119.
The thickness of the hBN used in fabrication may also allow for some control over
the extent of corrugation; thicker hBN slabs would be more rigid and should frus-
trate corrugations more (thus augmenting in-plane dilations and overall disorder in
the sample) in comparison to thinner hBN. Such encapsulation effects may therefore
be used to further tune the physics of TMD moirés. Although these encapsulation
studies were only performed for the AP heterobilayer, the trends observed should
be applicable to both the P heterobilayer and P/AP twisted homobilayer cases. For
example, the reconstruction rotations measured for P/AP twisted bilayer MoS2 in
Fig. 3.5a–f, which were measured for partially encapsulated structures, are likely
systematically smaller than those in analogous fully encapsulated structures.

3.7 Heterostrain effects

Moiré heterobilayers are prepared using two dissimilar TMD materials. However,
introduction of a heterostrain, wherein one TMD layer is stretched relative to the
other, also creates a lattice constant difference in moiré homobilayers, making them
heterobilayer-like. This raises the question of how rotational and dilational recon-
struction compete in heterostrained moiré homobilayers. To investigate these relax-
ation dynamics, we performed Bragg interferometry on P and AP moiré homobilayers
with varying amounts of uniaxial heterostrain. Fig. 3.14a–c and 3.15a–c show the
average θR, dilation, and γmax as a function of ux and uy for the P and AP cases,
respectively. The results show that increasing heterostrain up to typical values of
∼ 1.4% does not substantially increase the prevalence of dilational reconstruction
in twisted homobilayers. Instead, local rotations remain overwhelmingly dominant
in governing relaxation. The effective lattice constant mismatch in a heterostrained
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Figure 3.14: a–c, Average reconstruction rotation (⟨θR⟩), dilation (⟨Dil⟩), and
maximum shear strain (⟨γmax⟩) as a function of interlayer displacement (ux, uy) for P
MoS2/MoS2 moiré homobilayers with varying amounts of heterostrain. d–f, Corre-
sponding maps of maximum shear strain (γmax). The overlaid dashed lines correspond
to the moiré unit cell geometry, determined from the displacement maps. White ar-
rows indicate moiré unit cell extension (e) or compression (f).
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Figure 3.15: a–c, Average reconstruction rotation (⟨θR⟩), dilation (⟨Dil⟩), and max-
imum shear strain (⟨γmax⟩) as a function of interlayer displacement (ux, uy) for AP
MoS2/MoS2 moiré homobilayers with varying amounts of heterostrain. d–f, Corre-
sponding maps of maximum shear strain (γmax). The overlaid dashed lines correspond
to the moiré unit cell geometry, determined from the displacement maps. White ar-
rows indicate moiré unit cell extension (e) or compression (f). Scan regions affected
by sample charging during data acquisition have been removed for clarity in d–f.
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moiré homobilayer can be calculated using the expression:

δ = (εH − ρεH)/2 (3.3)

where δ is the lattice mismatch, εH is the percent heterostrain, and ρ is the Poisson
ratio (0.234 for MoS2) (see Appendix, Section 9 for details). The effective mismatch
for the samples studied is at most 0.5% (for εH = 1.4%), nearly an order of magnitude
smaller than that of the WSe2/MoS2 system discussed in Fig. 3.10–12. Thus, while
there is a lattice constant difference present owing to heterostrain, our measurements
reveal that the resulting mismatch is not large enough to induce substantial dilational
reconstruction. These results suggest that similar reconstruction mechanisms may
therefore be expected in moiré heterobilayers with a small lattice constant percent
difference (e.g. WSe2/MoSe2, δ = 0.3%).

Instead of inducing dilational reconstruction, our strain mapping reveals that the
primary effect of heterostrain is the reorganization of the intralayer shear strain fields
arising from rotational reconstruction. So although heterostrain is applied uniformly,
it is anisotropic in its manifestation; it is localized in the SP regions and both am-
plifies and distorts the existing shear strain. In addition, the primary direction of
the heterostrain has significance. Fig. 3.14d–f and 3.15d–f show γmax for P and AP
moiré homobilayers, respectively, with the heterostrain axis stretching versus con-
tracting the moiré unit cell. Each of these scenarios yields a distinct strain field,
including stripe (Fig. 3.14e, 3.15f), square (Fig. 3.14f), and triangular patterns (Fig.
3.15e). In all cases, reconstruction rotations strongly persist and shear strain contin-
ues to concentrate in the domain walls, demonstrating that it is thermodynamically
preferable to continue reducing interlayer energy by accumulating and shifting the
distribution of elastic energy (see Appendix, Section 13 for simulations).

3.8 Conclusions

In summary, here we have extended the Bragg interferometry methodology for imag-
ing non-centrosymmetric and heterobilayer systems, enabling us to directly probe
intralayer mechanical deformations in TMD moiré bilayers. We demonstrate that it
is variations in the symmetry of fixed-body rotation fields that are responsible for
the morphological differences that have previously been observed in relaxed P and
AP moiré homobilayers. The presence of an extrinsic heterostrain preserves these
rotation fields and can be used to redistribute intralayer shear strain that is local-
ized in domain boundaries, yielding a diversity of strain patterns. Since intralayer
strain affects the positions of the conduction and valence band edges throughout the
moiré unit cell119 and can generate an in-plane piezopotential,89,176 manipulating the
arrangement and magnitude of reconstruction strain via extrinsic application of uni-
axial heterostrain should have important implications for changing the moiré potential
landscape and localization of charge carriers. For example, 1D moiré potentials have
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led to linearly polarized exciton emission in uniaxially strained heterobilayers.128 In
addition, we find that when the lattice constant mismatch is further increased, peri-
odic dilation patterns become the primary route through which reconstruction occurs,
though contributions from local rotations are also present as the interlayer twist an-
gle increases. The general twist angle and lattice mismatch-dependent reconstruction
trends we observed should be widely applicable to moiré bilayers comprised of other
TMDs (e.g., H -phase MoTe2, WS2, etc.) and even magnetic 2D moiré superlat-
tices consisting of CrI3 bilayers.107 As a diffraction-based imaging technique, Bragg
interferometry is also distinctively compatible with both freely suspended and en-
capsulated moiré structures. Leveraging this capability, we found that hBN capping
layers suppress out-of-plane relaxation modes and subsequently promote in-plane de-
formations, implicating critical connections between sample design, substrate effects,
and emergent properties in moiré systems. The versatility of this methodology also
enables extension to more complex, multi-component vertical heterostructures, such
as those containing gate electrodes (see Chapter 4). This could open avenues for direct
correlative measurements, such as investigations of the relationship between lattice
reconstruction and electrically controllable emergent (opto)electronic phenomena.

3.9 Experimental Details

3.9.1 Sample preparation

Moiré homobilayers were prepared using the tear-and-stack technique162. Briefly,
monolayers of MoS2 (HQ Graphene) and ∼ 5–10 nm thick hBN (grown by collabo-
rators T.T. and K.W.) were mechanically exfoliated from bulk crystals onto SiO2/Si
substrates (285 nm SiO2 for MoS2 and 90 nm SiO2 for hBN) and selected using opti-
cal microscopy and atomic force microscopy. To make each twisted heterostructure,
a polybisphenol-A-carbonate/polydimethylsiloxane stamp was used to pick up the
hBN first. The hBN was then engaged with part of a MoS2 monolayer, tearing and
picking up half of the monolayer. The monolayer MoS2 half remaining on the SiO2/Si
substrate was then rotated by θm before being picked up. For P-stacked samples
0◦ ≤ θm ≤ 2◦. For AP-stacked samples 57◦ ≤ θm ≤ 60◦; however, we report θm as the
rotation away from 60◦ for simplicity (e.g., 57◦ = 3◦ for AP samples). Lastly, each
heterostructure was directly stamped onto a TEM grid from Norcada (200 nm silicon
nitride with 2 µm holes for imaging).

Heterobilayers were prepared using a similar transfer technique, but using separate
MoS2 and WSe22 (HQ Graphene) monolayers with straight flake edges aligned to
target an interlayer twist angle close to 0◦ (or 60◦). For hBN encapsulation studies
(Section 3.6), two heterobilayer samples were prepared, each of which contained three
regions – one with top and bottom hBN, one with top hBN, and one with no hBN
– to ensure that the twist angle was approximately constant over the three areas. In
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all heterobilayer samples, the orientation (P or AP) between MoS2 and WSe22 layers
was confirmed using polarization-resolved SHG spectroscopy with an 800 nm Ti:Sa
excitation source, an incident power of 1.3–2.6 mW (using a 100 x objective), and a
1◦ step size with an exposure time of 1 s per point.

3.9.2 Electron microscopy imaging

Electron microscopy was performed at the National Center for Electron Microscopy in
the Molecular Foundry at Lawrence Berkeley National Laboratory. Low-magnification
DF-TEM images were collected to identify regions of interest prior to 4D-STEM mea-
surements. DF images were acquired using a Gatan UltraScan camera on a Thermo
Fisher Scientific Titan-class microscope operated at 60 kV. Three frames with an
exposure time of 5 s per frame were used to generate each image.

Four-dimensional STEM datasets were acquired using a Gatan K3 direct detec-
tion camera located at the end of a Gatan Continuum imaging filter on a TEAM I
microscope (aberration-corrected Thermo Fisher Scientific Titan 80–300). The mi-
croscope was operated in energy-filtered STEM mode at 80 kV with a 10 eV energy
filter centered around the zero-loss peak, an indicated convergence angle of 1.71 mrad,
and a typical beam current of 40–50 pA depending on the sample. These conditions
yield an effective probe size of 1.25 nm (full-width at half-maximum value). Diffrac-
tion patterns were collected using a step size of either 0.5 nm or 1 nm with 50 x 50
to 300 x 300 beam positions, covering an area ranging from 25 nm x 25 nm to 300
nm x 300 nm. The K3 camera was used in full-frame electron counting mode with
a binning of 4 × 4 pixels and an energy-filtered STEM camera length of 800 mm.
Each diffraction pattern had an exposure time of 13 ms, which is the sum of multiple
counted frames175.

3.9.3 Computational implementation

All processing and analyses of 4D-STEM data were performed using Python on a per-
sonal computer, using published modules for Bragg disk detection, image processing
and optimization165,182–185. All other code was custom-written by the authors186.
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Chapter 4

Operando imaging of electric
field-induced transformations in
twisted trilayers

Parts of this chapter were reproduced or adapted from: Van Winkle, M., Dowlat-
shahi, N., Khaloo, N., Iyer, M., Craig, I.M., Dhall, R., Taniguchi, T., Watanabe, K.
& Bediako, D.K. Engineering polarization switching in van der Waals multilayers.
Nat. Nanotechnol. (2024).

Author Contributions: M.V.W. and D.K.B. conceived the study. M.V.W.,
N.D., and N.K. designed and fabricated the samples. M.V.W. and R.D. acquired
TEM and 4D-STEM data. M.I. and M.V.W. performed multislice simulations with
input from I.M.C.. I.M.C. wrote the code used for generation of color-coded virtual
dark-field images. T.T. and K.W. provided the bulk hBN crystals. M.V.W. processed
and analyzed the data. M.V.W. and D.K.B. wrote the manuscript with input from
all co-authors.

4.1 Abstract

In conventional ferroelectric materials, polarization is an intrinsic property limited by
bulk crystallographic structure and symmetry. Recently, it has been demonstrated
that polar order can also be accessed using inherently non-polar van der Waals mate-
rials through layer-by-layer assembly into heterostructures, wherein interfacial inter-
actions can generate spontaneous, switchable polarization. Here, we show that intro-
ducing interlayer rotations in multilayer vdW heterostructures modulates both the
spatial ordering and switching dynamics of polar domains. The engendered tunability
is unparalleled in conventional bulk ferroelectrics or polar bilayers. Using operando
transmission electron microscopy, we illustrate how alterations of the relative rota-
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tions of three WSe2 layers produce structural polytypes with distinct arrangements
of polar domains that exhibit either a global or localized switching response. Fur-
thermore, the presence of uniaxial strain generates structural anisotropy that yields
a range of switching behaviors, coercivities, and even tunable biased responses. The
results also provide evidence of mechanical coupling between the two interfaces of the
trilayer, a key consideration for the control of switching dynamics in polar multilayer
structures more broadly.

Figure 4.1: Illustrations of different stacking orders in bilayer WSe2. The naturally
occurring 2H -type (or ABBA) stacking is non-polar due to centrosymmetry. The
3R-type stacking has a net out-of-plane polarization, the direction of which depends
on the in-plane translational offset between layers (–P for AB and +P for BA).

4.2 Introduction

Chapters 2 and 3 discussed how moiré architectures spontaneously deform through
the lattice reconstruction process. In this Chapter we explore the structural transfor-
mations that take place in polar moiré materials when subjected to an external electric
field. Ferroelectric (FE) materials with three-dimensional lattices have been employed
in an array of applications, including nonvolatile memory, actuators, and sensors, for
decades187,188. However, further miniaturization of electronic devices relies on the
realization and manipulation of polar order in atomically thin crystals, such as two-
dimensional van der Waals (vdW) materials. While many bulk, layered vdW crystals
are naturally centrosymmetric and therefore non-polar, layer-by-layer assembly of in-
dividual vdW layers has been used to build non-centrosymmetric 2D heterostructures
possessing an out-of-plane, interfacial polarization that can be switched via sliding of
one layer (Fig. 4.1). This bottom-up approach greatly expands the number of poten-
tial 2D FE candidates and has been both predicted and experimentally demonstrated
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for various common vdW materials, including hexagonal boron nitride (hBN)189–192

and transition metal dichalcogenides (TMDs)189,192–199.
Much of the work in the field thus far has centered on polar bilayer heterostruc-

tures195,196,199; however, recently it was demonstrated that interfacial polarization is
cumulative in multilayer systems, enabling access to a ladder of polarization states de-
pending on the number of layers and the translational offsets between them192,197,198.
In this study, we use operando dark-field transmission electron microscopy (DF-TEM)
to investigate how controlling the relative rotations between atomic layers in twisted
trilayer tungsten diselenide (TTL-WSe2) dictates the arrangement of polar domains in
the resulting structure, offering control over a global versus local switching response.
It is also observed that uniaxial strain engineers a range of switching dynamics, includ-
ing moiré anti-ferroelectric, ferroelectric, and distinctively, biased responses. Further,
interactions between the two interfaces of the trilayer are observed through coupling
between intralayer strain and consequent switching behavior as well as pinning be-
tween commensurately stacked domain walls, providing insight into the cooperative
nature of polarization switching in multilayer heterostructures and enabling electrical
control over interlayer twist angle in moiré superlattices.

Figure 4.2: a, Schematic of TTL-WSe2 device on a silicon nitride (Si3N4) membrane
for operando TEM studies (cross-section view). b, Optical micrograph of a full Pro-
tochips electrical e-chip. Region with silicon nitride membrane and holes for electron
microscopy imaging is boxed in white. c–f, Optical micrographs of the devices used
in this work. Device components are outlined in various colors as a visual guide.
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4.3 Polar domain order in TTL-WSe2 polytypes

Samples were prepared using a dry transfer method and consist of the twisted tri-
layer (stacked with a parallel, or R-type, orientation betweenWSe2 layers) sandwiched
between thin hBN dielectric sheets (each < 15 nm thick) and few-layer graphite elec-
trodes (Fig. 4.2). The full heterostructures are thin enough for transmission of an
incident electron beam, enabling TEM imaging of the devices while simultaneously
applying an out-of-plane electric field across the sample (see Section 8 for Experi-
mental Details). Due to the presence of a rotational offset between the WSe2 layers
in the prepared heterostructures, there is a spatial variation in the crystallographic
stacking order, a moiré superlattice, throughout the trilayer. Similar to the bilayer
structures discussed in Chapters 2 and 3, the trilayer moiré undergoes an analogous,
though arguably more complex200, spontaneous relaxation process. After relaxation,
four configurations with the lowest stacking energy comprise the majority of the moiré
trilayer structure. Of these, the ABC and CBA stacking types have equal and op-
posite non-zero net polarization due to uncompensated charge transfer at the two
stacked interfaces, while the ABA and BAB stackings have no net polarization due
to mirror symmetry (Fig. 4.3).

The spatial arrangement of these polar and non-polar domains depends on the
relative rotations between the WSe2 sheets. In the A-twist-A′ (AtA′) polytype, the
outer layers (layers 1 and 3) are nearly aligned (0◦ < θ13 < 0.1◦) while the middle layer
(layer 2) is rotated further (θ12 > θ13, Fig. 4.4a). In the twist-A-B′ (tAB′) polytype

Figure 4.3: Low-energy atomic stacking configurations for parallel-stacked trilayer
WSe2, with the out-of-plane polarization direction (+P or –P) at each interface in-
dicated by arrows. ABC and CBA configurations have equal and opposite non-zero
net polarizations, while ABA and BAB configurations have no net polarization.
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Figure 4.4: a,b, Illustrations of two main TTL polytypes, AtA′-type and tAB′-type,
respectively. c,d, DF-TEM images of AtA′ and tAB′ WSe2 devices, respectively,
obtained using the [101̄0] Bragg reflection. In the image of the tAB′-type device,
twisted bilayer (TBL) and twisted trilayer (TTL) regions of the sample are marked.

the bottom and middle layers are nearly aligned (0◦ < θ12 < 0.1◦) while the top
layer is rotated further (θ23 > θ12, Fig. 4.4b). We image the moiré structure in these
two polytypes using dark-field TEM (DF-TEM), which is a diffraction-based imaging
technique that can be used to filter signal in multi-component structures113,201, making
it well-suited for the observation of buried interfaces. As shown in the DF-TEM
images in Fig. 4.4c,d, the AtA′ and tAB′ polytypes produce distinct moiré patterns.
In the AtA′ polytype, we see a kagome-like pattern superimposed on a triangular
superlattice (Fig. 4.4c). Since θ12 > θ13, the longer lengthscale kagome structure is
attributed to the moiré between the outer layers and the shorter triangular structure
to the moiré between the outer layers and middle layer. In the tAB′ polytype there are
two superimposed triangular superlattices; the superlattice with the longer (shorter)
periodicity comes from the bottom and middle (middle and top) layers since θ23 > θ12
(Fig. 4.4d). The diffraction contrast observed in the DF-TEM images arises from
differences in local stacking and from the presence of a global tilt of the sample away
from the zone axis202 (see Chapter 1, Section 4 for more details).
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Figure 4.5: a, Average CBED pattern from a 4D-STEM data set (Device 2). Select
WSe2 Bragg disks from the first and second diffraction rings are circled in white.
Other disks present include hBN, graphite, and additional WSe2 reflections. b, Vir-
tual DF images produced from a selection of first and second ring WSe2 Bragg disks
for the AtA′ sample pictured in Fig. 4.4c and c, corresponding composite virtual DF
image.

Next we identify regions of these moiré structures that possess a net polariza-
tion using interferometric four-dimensional scanning transmission electron microscopy
(4D-STEM). As detailed in Chapters 2 and 3, this imaging technique relates the in-
tensities in interfering electron diffraction disks to the local translational offset be-
tween layers and therefore can be used to map out the stacking order throughout
the moiré161,175,200,203. An exemplar 4D-STEM convergent beam electron diffraction
(CBED) pattern for a TTL-WSe2 device is shown in Fig. 4.5a. By integrating over
the regions where the Bragg disks from the three WSe2 layers overlap and plotting this
value for each real space beam position, virtual DF images are generated, as shown
in Fig. 4.5b. The pixel intensities in the virtual DF images for the first (⟨1010⟩) and
second (⟨1210⟩) order WSe2 Bragg disks are then normalized and summed to gener-
ate composite virtual DF images (Fig. 4.5c). Since sample tilt affects the measured
Bragg disk intensities, regions used for 4D-STEM iamging are aligned onto or near
(≤ 2◦ from) the [0001] zone axis prior to data acquisition (additional information on
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sample tilt effects is provided in the Appendix, Section 16).

Figure 4.6: a,b, CBED patterns generated using multislice simulations for the WSe2
ABA/BAB and CBA/ABC stacking orders, respectively. c–f, Corresponding experi-
mental CBED patterns for the AtA′ and tAB′ trilayer samples shown in Fig. 4.4c,d.
Bright hBN disks have been obscured for clarity. Experimental CBED patterns shown
are the sum of 4 x 4 pixels in the 4D-STEM scan array, equal to an area of a 8 nm2.
White arrows mark first and second ring WSe2 Bragg disk positions.

To assign the local stacking sequence in each region of the composite virtual DF
images, we compare the experimental ⟨1010⟩) and ⟨1210⟩ diffraction intensities in
each CBED pattern to computed values. First, we perform multislice simulations for
various high-symmetry stacking orders (defined in Section 8, Table 4.2) in both poly-
types using the published software package ABTEM204. A selection of simulated and
experimental CBED patterns are provided in Fig. 4.6. The disk intensities in the first
and second rings in the resultant theoretical diffraction patterns are then summed,
normalized and translated into RGB values, and plotted on a bivariate color legend
(Fig. 4.7a,b) according to the procedure and rationale applied in Ref. [200]. To
summarize, the red (R), blue (B), and green (G) channels defining the color of each
pixel correspond to the normalized cumulative intensities in the first ring of WSe2
Bragg disks, second ring of WSe2 Bragg disks, and a combination of these two values,
respectively, as described by Equation Set 4.1. In these equations, the intensities from
the first and second diffraction rings are weighted differently in the green channel for
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the AtA′ and tAB′ cases in order to generate two distinct color schemes. Applying the
same bivariate color scheme to the experimental 4D-STEM data, we produce colored
virtual DF maps illustrating spatial variations in local stacking order (Fig. 4.7c,d).

R = I1 = I0110 + I0110 + I1100 + I1100 + I1010 + I1010
B = I2 = I2110 + I2110 + I1210 + I1210 + I1120 + I1120
GAtA′ = 0.7 ∗ I1 + 0.3 ∗ I2 , GtAB′ = 0.3 ∗ I1 + 0.7 ∗ I2

(4.1)

Figure 4.7: a,b, Color legends for AtA′- and tAB′-type trilayers, relating pixel color
to the normalized cumulative first and second ring Bragg disk intensities (ΣI⟨1010⟩ and
ΣI⟨1210⟩) obtained from the experimental CBED patterns. Plotted points indicate
simulated values (normalized) for high-symmetry stacking configurations, calculated
using multislice simulations. ASPA, ASP*A, SPAB, and SP*AB correspond to dis-
tinct saddle point (SP) type stacking sequences found in the boundaries between
high-symmetry stacking domains. c,d, Corresponding 4D-STEM virtual DF images
from boxed regions of the samples shown in Fig. 4.4c,d. Arrows indicate the local
direction of polarization at the two trilayer interfaces. In d, the yellow dotted line
marks the division between the TBL and TTL regions of the sample and the white
dashed lines mark the domain walls of the large moiré. The multislice calculations
pertain only to the twisted trilayer regions of the samples shown.
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From this analysis, we find that in the AtA′ polytype, the ABC and CBA (that is,
polar) domains are localized in the kagome-like structures, alternating in the points
of each star, and on either side of elongated domain walls, the origin of which will be
discussed later. Meanwhile the tAB′ polytype is divided into large sections containing
either ABC or CBA stacking domains in periodic triangular arrangements. We note
that interferometric 4D-STEM is purely a structural diagnostic and therefore can
not be used to measure the local polarization (P) direction (i.e., net +P versus -P);
however, the polarization direction in each domain can be confirmed by observing the
response to an applied electric field, which is discussed next.

4.4 Polarization switching in the AtA′ polytype

The distinct arrangements of polar domains in the AtA′ and tAB′ trilayers suggest
that these two polytypes will behave differently in an applied field. We first investi-
gate the structural response in the AtA′ polytype. Fig. 4.8a shows how one of the star
structures from the sample in Fig. 4.7c distorts under application of an electric bias.
At zero field, the ABC (↓↓) and CBA (↑↑) regions are approximately the same size
because they are energetically degenerate. As a negative (positive) bias is applied,
this degeneracy is lifted and the ABC (CBA) regions grow while the CBA (ABC)
regions shrink. To quantify this change, we define an order parameter, dA, which is
the normalized relative area of the ABC and CBA domains, described by Equation
4.2:

dA =
ACBA − AABC

ACBA + AABC

(4.2)

Figure 4.8: a, DF-TEM images and b, corresponding plot of normalized net po-
larization (dA) as a function of applied field (E ) for an AtA′ kagome-like structure.
White arrows indicate local polarization at the two trilayer interfaces. Light blue
lines mark regions used for analysis.
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Previous studies have demonstrated that this order parameter can be used as a
proxy for net polarization.199 The variation in dA in the star structure is plotted as a
function of field (E ) in Fig. 4.8b, showing an approximately linear relationship with
minimal structural hysteresis or remnant net polarization. In polar twisted bilayers,
this behavior has been referred to as a moiré anti-ferroelectric response (MAFE)199

and is a direct consequence of the moiré structure, wherein the topology of the moiré
domain wall network precludes complete switching of polar domains.144,205,206 We do
not observe substantial structural distortions in the surrounding non-polar regions
(Fig. 4.9). While the non-polar regions encircled by polar domains do show a small
increase in the size of BAB (↑↓) regions compared to ABA (↓↑) regions at negative
field values, this is likely a consequence of the deformation of the surrounding polar
regions. Still, the variation in dA in the non-polar domains is at least an order of
magnitude smaller than in the nearby polar domains pictured in Fig. 4.8.

Figure 4.9: a, DF-TEM image of an AtA′ WSe2 trilayer. Select non-polar domains
surrounded by polar domains and further isolated from polar domains that were used
for analysis in b are outlined in purple and dark blue, respectively. b, Corresponding
plots of the relative area of BAB (↑↓) domains versus ABA (↓↑) domains (dA) as a
function of field (E ). Here, dA = (ABAB − AABA)/(ABAB + AABA).

It is also common for moiré structures to acquire heterostrain during sample fab-
rication, where one or more layers are uniaxially stretched relative to the adjacent
layer(s)123,130,207. In the case of an AtA′-type TTL, introducing a unixial heterostrain
between the top and bottom layers (ϵ13) causes a transition from a kagome-like moiré
structure to a polar domain wall (PDW) structure, as illustrated in Fig. 4.10a. To
estimate the amount of heterostrain necessary to observe this transition, we consider
three representative AtA′ structures, shown in Fig. 4.10b. The moiré unit cell geom-
etry in each of these superlattices can be defined by three variables: the interlayer
twist angle θm, the magnitude of uniaxial heterostrain ϵ, and the angle at which
the heterostrain is applied θs. The values of these variables are uniquely determined
by measuring the lengths of the three sides of each triangular moiré unit cell and
inputting those side lengths in a triangulation model described in Ref. [146] and
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Appendix, Section 8. Using this model, we calculate the interlayer twist angle, where
θm = θ13, and the heterostrain (ϵ13) for each of the three superlattices pictured. In
this case, θ13 ∼ 0.1◦ for all three example structures; however, it is clear that even a
relatively small increase in ϵ13 of around 0.1% substantially changes the moiré struc-
ture and generates extended polar domain walls. Intuitively, this makes sense since
atomic scale strain is magnified in moiré systems127, particularly when the moiré pe-
riodicity is large like in the samples studied in this work. The small non-zero value of
ϵ13 for the un-strained system picture in Fig. 4.10b results from error in the positions
of the moiré unit cell vertices, which were manually defined.

Figure 4.10: a, Schematic illustrating the transition from a kagome-like structure
to a polar domain wall structure as heterostrain in introduced between the top and
bottom layers of an AtA′ moiré superlattice. b, AtA′ structures with θ13 ∼ 0.1◦

but a variation of roughly 0.1% heterostrain, calculated using the side lengths of the
triangular moiré unit cells shown in orange. In a and b, black triangles have an ABC
or CBA stacking and gray triangles have an ABA or BAB stacking.
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Figure 4.11: Low-magnification DF-TEM image of a slightly heterostrained (<
0.03%) AtA′ WSe2 sample with PDWs. The moiré unit cell used for the calculation
of θ13 and ϵ13 is pictured in blue. Using the triangulation model described in Chapter
2, the upper bounds for θ13 and ϵ13 are estimated to be 0.03◦ and 0.03%, respectively.
Image produced from the [101̄0] Bragg reflection.

A DF-TEM image of an AtA′-type sample with a very slight misalignnment be-
tween the outer layers (θ13 < 0.03◦) and an estimated heterostrain (ϵ13) < 0.03%
is shown in Fig. 4.11. Compared to the sample in Fig. 4.8a, this sample contains
extended PDWs in the longer lengthscale moiré rather than a kagome-like pattern.
Similar elongated domain walls have also been observed in heterostrained twisted tri-
layer graphene200. Interestingly, in this heterostrained sample we observe two groups
of PDWs with different responses to an applied field. The first type displays a grad-
ual response to the field (Fig. 4.12a,b) where the ABC (↓↓) and CBA (↑↑) domains
steadily grow and shrink during biasing. However, the second type has a much sharper
response where the polar domains rapidly flip between ABC and CBA stacking (Fig.
4.12c,d), similar to an untwisted polar heterostructure but on a much shorter length-
scale (10s rather than 100s of nm). Additionally, this second domain wall type has
structural hysteresis and a remnant net polarization at zero field, a FE response. In
the PDW shown in Fig. 4.12c,d, the coercivity is relatively small due to the small
domain size; however some FE PDWs, discussed in the next section, exhibit a larger
coercivity. Uniquely, the polar domains in the heterostrained twisted trilayer struc-
tures shown here are not confined by the same topology as either a twisted bilayer or
a non-heterostrained twisted trilayer, enabling a true ferroelectric response in a moiré
material.
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Figure 4.12: a–d, DF-TEM images and corresponding plots of dA versus E for
two types of PDWs. Colored stars mark initial positions and dashed arrows show
scan directions. e, Low-magnification DF-TEM image of the slightly heterostrained
AtA′ sample with PDW orientations (θPDW ) overlaid in color. White numbered boxes
highlight regions analyzed in a–d. f, PDW polarizability (d(dA)/dE ) versus average
PDW orientation. Horizontal error bars indicate the s.d. of the individual domain
orientations in each PDW section analyzed (see Fig. 4.13). Shading highlights two
groups of PDWs, one with gradual (Type I) and one with sharp (Type II) switching.
Asterisks in e,f mark a special PDW case exhibiting sequential switching, analyzed
further in Fig. 4.18. White and black arrows in a,c indicate local polarization at the
two trilayer interfaces. Light blue lines in a,c mark regions used for analysis in b,d,
respectively. All DF-TEM images produced from the [101̄0] Bragg reflection.
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To understand the origin of the different switching responses exhibited by these
two groups of domain walls, we calculate the polarizability for various PDW segments
with different orientations within the sample. Here, polarizability, the ease with which
the net polarization switches, is equivalent to the slope of dA versus E (d(dA)/dE ).
Fig. 4.12e illustrates the orientation of the PDWs in the sample (θPDW ) and Fig. 4.12f
relates the polarizability of a selection of these PDWs to their average orientation.
Images of all polar domain walls (PDWs) analyzed to produce Fig. 4.12f are provided
in Fig. 4.13 with corresponding plots of dA versus E. The orientation of each PDW
section shown in Fig. 4.13 is defined as the average angle (0◦ ≤ θPDW ≤ 90◦) of
the constituent domain wall segments with respect to the x -axis of the image. The
reported error for this measurement indicates the standard deviation. In general, the
angle of each domain wall segment was measured using the relevant edge of the local
polar domain (marked by the colored lines in Fig. 4.13c–n). In some cases where two
polar domains share an edge (for example, Fig. 4.13e,i), the domain orientation was
defined diagonally across the polar domain as an average. Polar domain areas (used
for calculation of dA) were determined either 1) by applying intensity thresholds
to the DF-TEM image from the [101̄0] Bragg reflection (in regions with sufficient
contrast between polar domains and surrounding non-polar regions) or 2) by manual
tracing the outline of the polar domains on the DF-TEM image from the [1̄21̄0] Bragg
reflection (in regions with poor contrast between polar and non-polar domains). For
the sample shown in Fig. 4.13, Method 2 was used to analyze PDWs 2 and 11 and
Method 1 was used to analyze all other PDWs. The linear fits used to calculate
the polarizability, d(dA)/dE, of each PDW are marked as orange dotted lines in Fig.
4.13c–n. For PDWs with more than one major polarization switching event (Fig.
4.13j–n) the reported value of d(dA)/dE is an average of the fits pictured. PDWs
1–7 are classified as Type I and PDWs 8–12 are classified as Type II in Fig. 4.12f.
Based on the results in Fig. 4.12f and 4.13, it is evident that, for this sample, PDWs
oriented around 60-90◦ relative to the x -axis have a polarizability that is roughly 3-4
times lower than PDWs oriented closer to 0◦.
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Figure 4.13: a,b, DF-TEM images of a heterostrained AtA′ trilayer formed from
the [101̄0] and [1̄21̄0] Bragg reflections, respectively. Analyzed PDWs are numbered
and boxed in green. c–n, Magnified images of the labeled PDWs with the orientation
of each PDW segment with respect to the x -axis (θPDW ) overlaid and corresponding
plots of dA versus E. Reported values of θPDW indicate the average orientation of
the segments in each PDW shown (error is standard deviation). d(dA)/dE is the
polarizability determined from the linear fits plotted as orange dashed lines.

Knowing that domain polarizability is affected by domain anisotropy in twisted bi-
layers199,208, the phenomenon we observe could be attributed to uniaxial heterostrain
present in the superimposed small moiré, which is oriented on average around 72◦

relative to the x -axis in this sample (Fig. 4.14). This heterostrain introduces global
structural anisotropy in the trilayer, as seen by the distortion of the triangular moiré
unit cells, which could produce a preferential sliding axis for domain switching, anal-
ogous to an easy axis for spin reorientation in magnetic systems209,210. To explore this
idea further, we consider how application of a uniaxial strain would affect the possi-
ble pathways for sliding between layers and subsequent polarization switching. First,
when there is no strain present in the unit cells of the small moiré pattern (that is, the
polar domains are symmetrical), polarization switching across the domain wall can be
achieved through a set of interlayer sliding pathways that are structurally equivalent

Figure 4.14: Maps of a, heterostrain magnitude (ϵ12) and b, heterostrain direction
(θs12) between an outer and middle layer of an AtA′ sample, indicating an average
ϵ12 of 0.56 ± 0.32% and an average θs12 of 72 ± 24◦ relative to the x -axis. Reported
errors indicate s.d..
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regardless of the PDW orientation, as shown in Fig. 4.15a–d. On the other hand,
when uniaxial strain is present, the polar domains, and underlying atomic lattices,
become asymmetrically distorted such that four structurally inequivalent sliding path-
ways emerge (Fig. 4.15e–h). These four paths can be distinguished by two factors: (i)
whether sliding traverses the long or short axis of the distorted atomic lattice and (ii)
the orientation of the sliding axis with respect to the domain edge across which the
sliding occurs. Based on published theoretical work on interlayer sliding in uniaxially
strained transition metal carbides,211 we intuitively rationalize that these structurally
distinct sliding pathways in the uniaxially strained system correspond to distinct en-
ergy landscapes that could lead to the different switching responses we observe in the
Type I versus Type II PDWs. While the illustrations in Fig. 4.15e–h and the strained
sample used in our experiments exhibit the effects of a shear-type strain, we expect a
similar rationale to be applicable for any type of symmetry-breaking uniaxial strain,
including a normal strain (Fig. 4.16). Full understanding of the effects of uniaxial
strain, whether shear or normal, on the interlayer sliding mechanisms and validation
of the hypotheses presented here warrants future computational efforts. However,
overall, it is clear that polarization switching in the AtA′ trilayer is influenced by the
uniaxial strain fields in all three WSe2 layers collectively.
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Figure 4.15: Schematics illustrating polarization switching via interlayer sliding
across PDWs with a–d, no strain and e–h, uniaxial shear strain. Solid arrows in a
indicate polarization of the two interfaces in each triangular domain. Dashed arrows
in each panel indicate the axis along which layer 1 (pink) slides to switch between
polarization states I and II. In a–d, all sliding axes (black dashed arrows) are struc-
turally equivalent. In e–h, four structurally distinct sliding pathways (orange, green,
purple, and blue dashed arrows) are predicted.
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Figure 4.16: Schematics illustrating polarization switching via interlayer sliding
across PDWs with normal strain applied along the a–d, zigzag and e–h, armchair
directions of the hexagonal crystal lattice. Solid arrows in a indicate polarization of
the two interfaces in each triangular domain. Dashed arrows in each panel indicate
the axis along which layer 1 (pink) slides to switch between polarization states I
and II. Three structurally distinct sliding pathways (orange, green, and blue dashed
arrows) are predicted for each case.
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Figure 4.17: a,b, Maps of heterostrain in the smaller moiré (ϵ12), c,d, DF-TEM
images at different applied fields, and e,f, plots of normalized net polarization (dA)
as a function of applied field (E ) for two PDWs, one with θ12 = 0.23◦(a,c,e) and
the other with θ12 = 0.52◦(b,d,f). Vertical dashed lines in e,f highlight shift of
the center of the hysteresis loop away from 0 V/nm for each biasing cycle pictured.
ϵL : ϵR indicates the heterostrain ratio between small moiré domains on the left (L)
and right (R) side of the PDW. In c,d white and black arrows indicate polarization
at the two interfaces of select domains and light blue lines mark polar regions used for
calculation of dA. DF-TEM images were produced from the [101̄0] Bragg reflection.

4.5 Heterostrain control of polarization bias

Some PDWs run through a heterostrain gradient where the small moiré is consider-
ably more distorted on one side of the domain wall than the other. For example, in
the regions shown in Fig. 4.17a,b, the magnitude of heterostrain between layers 1
and 2 (ϵ12) is approximately twice as large on the left side of the PDW compared to
the right side (ϵL : ϵR = 1.9). In both regions, which have different interlayer twist
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angles between the outer and middle layers (θ12 = 0.23◦ and 0.52◦), we observe that
the polar domains localize on the less heterostrained half of the PDW at zero field
(Fig. 4.17c,d). It has been demonstrated that the presence of anisotropic strain in
multilayer graphene further increases the energy of the rhombohedral (ABC/CBA)
stacking types relative to the Bernal (ABA/BAB) stacking212. Presuming that WSe2
behaves similarly, we rationalize that the observed preferential alignment of polar
domains at zero field arises from an intrinsic thermodynamic bias generated by the
appreciable difference in heterostrain between the sides of the PDW. Plotting dA
versus E (Fig. 4.17e,f) over two or three biasing cycles, we see that this energetic
preference toward one polarization state at zero field ultimately shifts the hysteresis
curve along the electric field axis. We note that the enhanced coercivity of these two
PDWs compared to that shown in Fig. 4.12d likely stems from a combination of
structural factors, such as domain size, local distortions of the small moiré after po-
larization switching, and random variations in structural pinning sites at the ends of
the domain wall segments pictured194,199. Nevertheless, it is evident that the heteros-
train gradient effectively pins the polar domains along one scan direction to produce
a consistently biased FE response.

Remarkably, this asymmetry in the polarization curve can be systematically tuned
down to the length scale of an individual polar domain. To demonstrate, we consider
a PDW in a continuously varying heterostrain gradient. Fig. 4.18a illustrates that ϵ12
is smaller on the bottom side of the PDW than on the top for domains 1–4 and vice
versa for domains 5–6. Based on this variation in the direction of the heterostrain
gradient, at zero field polar domains 1–4 align on the bottom side of the PDW and
polar domains 5–6 align on the top, as shown in Fig. 4.18b. As a field is applied, each
domain responds independently in a domino-like fashion (Fig. 4.18b), where the field
necessary for polarization switching is directly correlated to the magnitude and direc-
tion of the local heterostrain gradient. Specifically, increasing the magnitude of the
local heterostrain gradient increases the magnitude of the field required for switch-
ing, and changing the direction of this gradient (e.g., ϵB : ϵT > 1 versus ϵB : ϵT < 1)
changes the direction of the field required for switching (Fig. 4.18c). These results
demonstrate that coupling strain engineering213–215 with moiré engineering could offer
a route for precise, spatially localized manipulation of interfacial polarization.
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Figure 4.18: a, Map of ϵ12 and b, DF-TEM images at different applied fields for a
PDW with a variation in ϵ12 along the length of the domain wall (average θ12 = 0.41◦).
c, Plots of dA as a function E for each of the six polar domains pictured in a,b.
ϵB : ϵT indicates the heterostrain ratio between small moiré domains on the bottom
(B) and (T) of the PDW. In b white and black arrows indicate polarization at the two
interfaces of select domains. Light blue lines mark polar regions used for calculation
of dA. DF-TEM images were produced from the [101̄0] Bragg reflection.
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Figure 4.19: DF-TEM images for a tAB′-type WSe2 trilayer over a series of applied
fields, produced by overlaying images from the [101̄0] and [11̄00] Bragg reflections. b,
Normalized relative area of light versus dark domains (dA) as a function of applied
field (E ), describing deformation of the large and small moiré of the twisted trilayer
(TTL) shown in a (θ12 < 0.05◦ and θ23 = 0.25◦) compared to analagous twisted
bilayer (TBL) structures (θ ∼ 0.03◦ and θ = 0.31◦). The area used for analysis of the
small moiré in the TTL is boxed in white in a. The full sample area in a was used
for analysis of the TTL large moiré.

4.6 Polar domain switching in the tAB′ polytype

Next we discuss how the tAB′ polytype responds to an applied field. Whereas the AtA′

polytype had a highly localized polarization switching response, the tAB′ structure
globally deforms under application of an electric field (Fig. 4.19a). The tAB′ polytype
is quite similar structurally to a twisted bilayer considering that both the large and
small moiré patterns in the tAB′ trilayer relax into triangular domains113,175,200. With
this in mind, we analyze the field-dependent structural distortions in both moiré
lengthscales of the tAB′ structure and compare them to analogous twisted WSe2
bilayers in Fig. 4.19b. We do not observe marked differences in behavior between
the smaller moiré in the trilayer (θ23 = 0.25◦) and a twisted bilayer with a similar
interlayer rotation (θ = 0.31◦). Interestingly, the larger moiré in the trilayer (θ12 <
0.05◦), has a considerably lower polarizability than its twisted bilayer counterpart
(θ ∼ 0.03◦).

DF-TEM images of the tAB′ structure show that the domain walls of the larger
moiré are roughly commensurate with the domain walls in the smaller moiré, and
as a field is applied, these two sets of domain walls appear to be pinned to one
another (Fig. 4.20a). At one point, around -0.01 V/nm, the domain wall of the
large moiré de-pins from that of the small moiré and jumps to an adjacent domain
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Figure 4.20: a, Magnified DF-TEM images showing pinning of a domain wall in the
large TTL moiré to domain walls in the smaller moiré as a field is applied. Images
produced from the [11̄00] Bragg reflection. b,c, Plots tracking evolution of side
length (λ) and local twist angle (θ23) for a row of small moiré domains shown in a
over three cycles of biasing. Side lengths used for b are marked with orange lines in
a. d,e, Corresponding average values of λ and θ23, respectively, over the course of
three biasing cycles (demarcated by yellow, red, and blue shading and described by
the applied field profile illustrated in f). Averages values plotted in d and e were
calculated using the regions between the white dashed lines in b and c, respectively.

wall in the small moiré, leading to the S-shaped polarization curve in Fig. 4.19b.
To quantitatively analyze this pinning effect, we track how the side lengths (λ) of
the triangular domains in the small moiré (from Fig. 4.20a) evolve as a function
of field along the length of one of the large moiré domain walls over three cycles of
biasing. The results illustrate that the small moiré domains stretch anisotropically as
the large moiré deforms in response to the field, particularly at positive field values
(Fig. 4.20b). This increase in the periodicity of the small moiré could be facilitated by
either a reduction in the local interlayer rotation in these domains or by a reduction in
local lattice mismatch. Considering that one or more layers are sliding and stretching
in response to the applied field, it is unlikely that the local lattice mismatch between
layers is decreasing (we would expect the converse instead), and therefore we conclude
that changes in local rotational offset between the middle and top layers (θ23, Fig.
4.20c) drive the observed deformation of the small moiré domains. Fig. 4.20d,e shows
how the average values of λ and θ23 evolve for a group of domains from the region
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in Fig. 4.20a over three biasing cycles (field profile in Fig. 4.20f), showing that the
small moiré length increases and the local twist angle decreases by up to a factor
of two as a result of pinning between the domain walls across the two interfaces.
The local change in θ23 is most closely related to the position of the small moiré
domain along the length of the large moiré domain wall and therefore depends on the
curvature of the large moiré domains in response to the field (Fig. 4.21). Importantly,
these results indicate that the interfaces in polar multilayer heterostructures are not
decoupled from one another and cooperative effects can influence observed switching
dynamics, such as the reduction in polarizability observed in Fig. 4.19b. Notably,
the results in Fig. 4.20 also demonstrate an electrical route to controlling superlattice
wavelength in moiré structures.

Figure 4.21: Plots describing change in local twist angle of small moiré domains
pictured in Fig. 4.20a (∆θ23) as a function of a, position along the length of the large
moiré domain wall, b, initial local twist angle (θ23) at zero field, and c, initial local
heterostrain (ϵ23) at zero field. ∆θ23 depends most closely on domain position rather
than θ23 or ϵ23.

4.7 Conclusions

Two-dimensional vdW materials have exhibited promise as FE components in emerg-
ing technologies216,217 due to their robustness to depolarization at atomic thick-
nesses218–224, their compatibility with silicon-based device schemes, and their ability
to be stacked into multi-component heterostructures with sought-after functionalities,
such as FE field-effect transistors (FE-FETs)225 and multiferroic devices226,227. Here,
using a combination of complementary diffraction-based electron microscopy tech-
niques, we have revealed that a diverse range of polarization switching dynamics can
be accessed in twisted trilayer heterostructures due to the presence of more than one
moiré periodicity as well as interactions between all three layers, as summarized in
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Fig. 4.22. Namely, changing relative rotations between layers and intralayer uniaxial
strain fields leads to a variety of polar domain structures with different polarizabilities,
coercivities, and intrinsic thermodynamic biases. This work highlights how polariza-
tion switching and structural dynamics can be engineered in polar multilayer systems,
particularly as developments in 2D heterostructure fabrication and strain engineering
continue to advance. For example, variations in the arrangements of polar domains in
the AtA′ versus tAB′ structures as well as the highly localized, strain-tunable nature
of preferential polarization states in the AtA′ polytype opens avenues for the design
of structures and surfaces with deterministically patterned polarization and could
have utility for neuromorphic computing. Even in untwisted polar vdW multilayers,
manipulation of intralayer strain could afford control over consequent switching dy-
namics. In moiré multilayers comprised of semiconducting vdW materials, including
WSe2, such variability in polar order and switching responses could also lead to the
emergence of exotic, electrically-tunable moiré exciton responses, beyond those that
have been previously observed in bilayer heterostructures104.

Figure 4.22: Summary of the various types of polar domain structures studied in
this work and their respective switching responses.
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4.8 Experimental Details

4.8.1 Sample preparation

Monolayer WSe2 (HQ Graphene), 2–5 layer graphite (Graphene Supermarket Kish
graphite) and < 15 nm-thick hBN (grown by collaborators T.T. and K.W.) were me-
chanically exfoliated onto SiO2/Si substrates and selected using optical microscopy.
VdW heterostructures were then fabricated using the cut-and-stack dry transfer
method162. Briefly, a tungsten scanning tunneling microscope tip was first used to
cut each WSe2 monolayer into three pieces. A polybisphenol-A-carbonate/ poly-
dimethylsiloxane (PC/PDMS) stamp was then used to pick up the top graphite (Gr)
electrode followed by the top hBN and the first third of a pre-cut WSe2 monolayer.
The remaining WSe2 portions were then sequentially rotated and picked up with a
parallel, or R-type, orientation between WSe2 layers to construct the desired trilayer
structure, followed by pick-up of the bottom hBN and finally the bottom graphite.
The final stacks were stamped onto Protochips electrical e-chips with 5 µm wide holes
and Au pre-patterned electrodes in a four-point configuration and were then annealed
under vacuum at 350◦C to improve adhesion to the substrate. Lastly, custom elec-
trical contacts were made from the pre-patterned electrodes to the top and bottom
graphite sheets using e-beam lithography followed by reactive ion etching and thermal
evaporation of Cr/Au (2 nm/100 nm).

A list of all samples used in this study is displayed in Table 4.1. The hBN thick-
nesses shown were measured using atomic force microscopy and the graphite thick-
nesses were determined by optical contrast. The WSe2 thickness was approximated
using the bulk lattice constant of 2H-WSe2 obtained from HQ Graphene. We note
that Device 2 had hBN only on the top but shows similar behavior to the other de-
vices which have hBN on both sides of the WSe2. Device 3 contained trilayer and
bilayer WSe2 regions, as indicated by the two values provided for the WSe2 thickness.
These thickness values were used to calculate the electric field (E ) generated across
the WSe2 at a given applied voltage, V, as shown in Equation 4.1199. Here, d and ϵ
represent the total thickness and relative permittivity, respectively, of hBN and WSe2
in each device (ϵhBN = 3.76, ϵWSe2 = 7.7)228:

E =
V

ϵWSe2

ϵhBN
dhBN + dWSe2

(4.3)
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Table 4.1: List of trilayer WSe2 devices.

Device Appearance
in text

top Gr
(layers)

bottom Gr
(layers)

top
hBN
(nm)

bottom
hBN
(nm)

WSe2
(nm)

1 TBL with θ =
0.03◦ in Fig.
4.19b

2 2 4.8 3.0 1.3

2 Fig. 4.4c,
4.5, 4.6(c,d),
4.7c, 4.8, 4.9,
4.17(a,c,e)

3 2 7.3 – 1.9

3 Fig. 4.11–14,
4.17(b,d,f),
4.18

5 2 4.0 10.6 1.9

4 Fig. 4.4d,
4.6(e,f), 4.7d,
4.19–21

3 4 12.4 5.6 1.9/1.3

4.8.2 Electron microscopy imaging

Electron microscopy was performed at the National Center for Electron Microscopy
in the Molecular Foundry at Lawrence Berkeley National Laboratory. Dark-field
TEM images were collected using a Gatan UltraScan 1000 camera on a Thermo
Fisher Scientific Titan-class microscope operated at 60 kV. Three frames each with
an acquisition time of 5 s were summed to produce each dark-field image. A bias
voltage was applied between top and bottom graphite electrodes of each device during
imaging using a Protochips Aduro double-tilt biasing holder connected to a Keithley
2650 sourcemeter. Selected area electron diffraction patterns were collected on the
same microscope at 60 kV using a Gatan Orius 830 camera, summing 16 frames with
an exposure time of 0.1 s each.

4D-STEM datasets were acquired using a Gatan K3 direct detection camera lo-
cated at the end of a Gatan Continuum imaging filter on a TEAM I microscope
(aberration-corrected Thermo Fisher Scientific Titan 80–300). The microscope was
operated in energy-filtered STEM mode at 80 kV with a 10 eV energy filter cen-
teredd around the zero-loss peak (to reduce background from inelastic scattering), an
indicated convergence angle of 1.71 mrad, and a beam current of 40–50 pA. These
conditions yield an effective probe size of 1.25 nm (full-width at half-maximum value).
Diffraction patterns were collected using a step size of 2 nm with 200 x 200 beam po-
sitions, covering an area of 400 nm x 400 nm. The K3 camera was used in full-frame
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electron counting mode with a binning of 4 × 4 pixels in each diffraction pattern
and an energy-filtered STEM camera length of 800 mm. Diffraction patterns were
acquired with an exposure time of 13 ms per pattern, which is the sum of multiple
counted frames.175

4.8.3 4D-STEM Data Analysis

Analysis of 4D-STEM data was performed using the pyInterferometry186 framework
on a personal computer. This analysis incorporated published modules165 for Bragg
disk detection and integration to yield virtual dark-field images. Multislice simula-
tions were carried out using the ABTEM204 software package with an acceleration
energy of 80 keV, convergence semi-angle cutoff of 4.0 mrad, a rolloff of 0.5, and a
potential sampling of 0.2Å. The infinite projection scheme was used for all calcula-
tions. The trilayer stacking sequences used in the mutlisice simulations are defined
in Table 4.2.

Table 4.2: Translational offsets between vertically stacked lattices in various tri-
layer stacking sequences, as defined for multislice simulations. Values are provided in
Cartesian coordinates, where a0 is the lattice constant for WSe2 and the x- and y- axes
are along the zigzag and armchair directions of the hexagonal lattice, respectively.

Stacking Order (3-2-1) Offset 1 ([x , y]) Offset 2 ([x , y])

AAA Layers 1 , 2 = [0 , 0] Layers 1 , 3 = [0 , 0]
ASPA Layers 1 , 2 = [a0/2 , 0] Layers 1 , 3 = [0 , 0]
ASP*A Layers 1 , 2

= [0 , a0(2
√
3)−1]

Layers 1 , 3 = [0 , 0]

ABB (BAA) Layers 1 , 2 = [0 , 0] Layers 2 , 3
= [0 , a0/

√
3]

ABA (BAB) Layers 1 , 2
= [0 , −a0/

√
3]

Layers 2 , 3
= [0 , −a0/

√
3]

ABC (CBA) Layers 1 , 2 = [0 , a0/
√
3] Layers 2 , 3

= [0 , −a0/
√
3]

SPAB Layers 1 , 2 = [0 , a0/
√
3] Layers 2 , 3 = [a0/2 , 0]

SP*AB Layers 1 , 2 = [0 , a0/
√
3] Layers 2 , 3 = [0 ,

a0(2
√
3)−1]
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Chapter 5

Conclusions and Perspective

5.1 Summary

Bringing things full circle, one of the central aims of nanoscience, and materials
science more broadly, is the controlled design of structures and their properties. A
chief component in the actualization of this objective is the development of structural
characterization tools that are well-suited for a particular system of interest. The
nascent field of moiré engineering, or twistronics, has frequently operated as a black
box thus far, where the properties of functional devices are measured and interpreted
based on assumptions about their nano- to microscale structure. While these studies
have generated an impressive body of literature, the fact that the emergent properties
of moiré systems are so sensitive to structural perturbations that may or may not be
withing user control means that substantial advancement of the field hinges on efforts
toward correlative structure–property measurements within a given device. These
types of experiments will also enable deeper understanding of how both structure
and property can be systematically tuned through external factors, such as an applied
strain or electric field.

In this vein, the portfolio of work presented in this dissertation demonstrates how
diffraction-based TEM and STEM can be used to paint valuable nanoscale pictures
of both spontaneous and stimulus-driven structural deformations in moiré materials
that can then enhance our interpretation of their emergent properties. Chapters 2
and 3 focused on the development of a new imaging framework, Bragg interferometry,
using a well-established tool, 4D-STEM, for mapping structure, strain, and disorder
in moiré materials. The results revealed a two-regime model for lattice reconstruc-
tion in twisted bilayer graphene that, coupled with electronic structure calculations,
explains the suppression of flat bands in reconstructed TBL-Gr with smaller twist
angles < 0.5◦ but not larger twist angles of 0.5–2◦, a range that includes the largest
predicted magic angle at 1.05◦ (Chapter 2). Distinct reconstruction mechanisms, one
driven by local rotations and one by local dilations, were also uncovered when ap-
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plying Bragg interferometry to twisted bilayer and heterobilayer TMD-based moirés,
respectively, validating proposed theoretical models (Chapter 3). The amenability
of Bragg interferometry to different heterostructure geometries enabled further mea-
surement of how encapsulation layers affect in-plane and out-of-plane reconstruction
in heterobilayers, showing that hBN encapsulation not only suppresses out-of-plane
reconstruction but also increases in-plane reconstruction and overall structural order
(Chapter 3). Studies on both twisted bilayer graphene and twisted bilayer MoS2 also
illustrated the interplay between intrinsic reconstruction strain fields and heteros-
train, showing how heterostrain redistributes reconstruction strain. This relationship
could contribute to the generation of anisotropic electronic features in twisted bilayer
graphene and may guide efforts to modulate the moiré potential experienced by moiré
excitons in TMD-based systems.

Chapter 4 extended the use of Bragg interferometry to the study of functional
moiré-based devices for the first time, revealing twist and strain-tunable spatial ar-
rangements of polar domains in twisted WSe2 trilayers. Building on this insight,
the fast acquisition speed, large field of view, and relatively high spatial resolution
afforded by DF-TEM enabled observation of the structural responses of the twisted
trilayers during application of an electric field. Simultaneous imaging of the moiré
structure and approximation of net polarization unveiled a rich array of structure-
dependent polarization switching dynamics, underscoring the versatility of multilayer
moiré structures for use as atomically thin ferroelectric components and providing a
clear example of the value of correlative measurements. Going forward, the work pre-
sented here can inspire efforts in a number of areas that are currently at the forefront
of twistronics, a sampling of which are highlighted below to conclude.

5.2 Outlook

5.2.1 Ferroelectrics

While, at this time, the concept of moiré-tunable interfacial polarization switching
has only been explored in vdW materials with hexagonal lattices194,195,197,199, such
as H -phase WSe2 (Chapter 4), a growing number of vdW compounds with other
symmetries can also possess a spontaneous, switchable interfacial polarization216,229.
The Td-phase group VI TMDs, namely Td-WTe2 and Td-MoTe2, are one such group
of materials that could be readily studied using the methods discussed in this disser-
tation. Both of these compounds have a distorted octahedral structure that yields
an orthorhombic rather than hexagonal atomic unit cell and are semimetals in the
atomic limit rather than semiconductors, distinguishing them from the TMDs stud-
ied in Chapters 3 and 4. Uniquely, despite their metallicity, both Td-WTe2 and
Td-MoTe2 retain an out-of-plane polarization at atomic thicknesses and behave as
sliding/interfacial ferroelectrics down to the bilayer limit222,223,230,231. In fact, coupled
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ferroelectric and superconducting transitions have even been reported in natural bi-
layer Td-MoTe2. In this system, the spontaneous interfacial polarization of the MoTe2
generates an internal electric field that can drive a superconducting transition at low
temperatures; the superconducting state can then be controllably turned on and off
by switching the polarization direction with an applied electric field231. Very little
is known about the intrinsic structures of of small-angle twisted bilayer232 or trilayer
Td TMDs or their polarization switching dynamics; however, a combination of Bragg
interferometry and DF-TEM could provide insight into how moirés built from these
non-hexagonal materials reconstruct as well as how these systems switch between po-
larization states in comparison to the untwisted counterparts. Further, the ability to
perform these structural measurements in tandem with transport measurements may
reveal how moiré engineering affects the electronic phases of these materials, such
as the intriguing field-driven superconductivity observed in MoTe2. The Td-phase
transition metal ditellurides are also highly air sensitive231–233 and require full encap-
sulation with other air stable vdW materials for typical measurements, making them
great candidates for imaging with diffraction-based methods.

Recently, the idea of using interfacial twisting to control polar order has even
been extended to thin films of conventional ferroelectrics materials, namely per-
ovskite oxides. Barium titanate (BaTiO3) is a well-studied perovskite oxide com-
pound that has an intrinsic, switchable polarization at room temperature arising
from displacement of the Ti4+ ions away from the center of the atomic unit cell234.
Although BaTiO3 is an ionic compound rather a layered vdW material, in 2024
Sánchez-Santolino et al. demonstrated that thin films of this material could be epi-
taxially grown and then re-stacked with a controlled interlayer twist to form moiré
heterostructures235. Notably, using depth-sectioning atomic resolution high-angle an-
nular dark-field (HAADF) STEM they observed that sufficiently thin layers (8–15 nm
thick) could stabilize a unique polarization pattern consisting of alternating clockwise
and anti-clockwise vortices and anti-vortices resulting from twist-induced, periodic
intralayer shear strain gradients in the BaTiO3 slabs. In particular, clockwise and
anti-clockwise polarization vortices were observed in sites with minimal shear strain
(AA- and AB-type sites), while antivortices were observed in soliton-type sites where
there is a concentration of shear strain, suggesting a flexoelectric coupling235. While
this work focused on moiré heterostructures with relatively large twist angles (3–50◦)
where lattice reconstruction is relatively weak, it would be very interesting to examine
how twisted BaTiO3 relaxes at smaller angles and how this enhanced reconstruction
affects polar order. Intuitively, one could posit that the substantial geometric changes
in stacking domain shapes and shear strain patterns that accompany strengthening
reconstruction in the small-twist regime could have pronounced effects on the ob-
served polarization texture. It is also unclear whether polarization (anti)vortices will
persist, or perhaps even be stabilized further, as thickness of the twisted BaTiO3

slabs is reduced to the limit of two atomic unit cells (a bilayer), and how these vor-
tices will respond to an applied field. Bragg interferometry could again be applied to
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explore these questions, particularly if coupled with ongoing efforts to use 4D-STEM
for polarization mapping236 and developments in multislice methods for mapping the
structure of thicker samples237.

5.2.2 Optoelectronic and photonic materials

As mentioned in Chapters 1 and 3, semiconducting TMD-based moirés have been very
actively studied for their unique optical properties over the past several years97,104.
During this time, the importance of being able to spatially correlate the moiré struc-
ture with local optoelectronic features has been recognized. For example, Andersen
et al. used channeling modulated secondary electron imaging in a scanning electron
microscope (SEM) to map the structure of reconstructed twisted bilayer WSe2 and
directly connected the spatial moiré-scale inhomogeneity to variations in excitonic fea-
tures observed in photoluminescence measurements238. Since this method of imaging
is SEM-based, it is limited in its spatial resolution compared to (S)TEM-based imag-
ing. Bragg interferometry could be used for similar types of correlative measurements
but with higher spatial resolution and with additional information about local strain,
which also has important effects on emergent optoelectronic behavior. Additionally,
interesting gate-tunable excitonic features have been observed in moiré bilayer sys-
tems169. The variety of structural responses we observed in twisted WSe2 trilayers
during polarization switching (Chapter 4) then raises questions about how different
spatial organizations of polar domains and their respective switching dynamics might
imbue unique excitonic behavior in moiré trilayers and multilayers upon application
of an electric field, calling for future work combining microscopy and optical mea-
surements of these structures incorporated in gated devices.

Moving to the realm of photonics, moiré engineering is also a route for design-
ing structures with exotic polaritonic features (light–matter interactions) that have
promise for applications ranging from sub-diffraction imaging239 to molecular sens-
ing240. For example, previous studies have shown that hyperbolic phonon–polaritons
(light coupled to lattice vibrations) in monolayer hBN can hybridize with surface
plasmon-polaritons (light coupled to collective oscillations of electrons) in graphene
when the two materials are stacked together, resulting in unique hyperbolic plasmon-
phonon resonances43,241. Some open questions include how the local polaritonic dis-
persion varies spatially with local atomic stacking order in these hBN/graphene su-
perlattices and how lattice reconstruction affects both local and global polaritonic
features. Correlative structural and spectroscopic measurements using Bragg inter-
ferometry and STEM electron energy loss spectroscopy (STEM-EELS)242 could shed
light on how moiré engineering can be used to tune the hybrid polaritonic phenomena
in such systems.
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5.2.3 Charge density wave materials

Another set of moiré materials that could be interesting to study using Bragg interfer-
ometry are those comprised of compounds that can host charge density wave (CDW)
states. CDWs are spontaneous periodic lattice distortions that occur due to innate
electronic instability in a material243. Transition from a normal state to a CDW state
is accompanied by a change in material resistance and has thus been proposed as
an avenue for non-volatile phase change memory244,245. In addition to moiré-induced
band hybridization, one may also expect lattice reconstruction and intrinsic strain
in moiré superlattices to play an important role in controlling CDW behavior and
transition temperatures. This idea has already received some attention both experi-
mentally and theoretically. In 2022, Zhao et al. experimentally demonstrated using
scanning tunneling microscopy that small-angle parallel-stacked 1T -TiTe2/1T -TiSe2
heterostructures exhibit a moiré-trapped CDW state with alternating domains of a
1× 1 normal state and 2× 2 CDW state in the TiTe2 layer

246. They attributed both
the spatial segmentation of the CDW state and the persistence of this state at room
temperature (compared to a transition temperature of 92 K for an isolated TiTe2
monolayer) to lattice reconstruction and local intralayer strain distributions. Recent
calculations on CDW behavior in twisted structures, such as twisted bilayer NbSe2

247,
also suggest that variations in interlayer stacking order, the presence of reconstruction
strain, the presence of a P versus AP stacking between layers, and the atomic scale
CDW superstructure (for example, formation of a 2 × 2 versus

√
3 ×

√
3 superlat-

tice), should all affect the tiling of CDW domains (the commensuration network) in a
moiré247,248. Simultaneous mapping of interlayer stacking order, reconstruction strain
fields, and CDW ordering (based on superlattice peaks visible in diffraction249,250)
using variable temperature Bragg interferometry could be very useful for more de-
tailed exploration of the effects of lattice reconstruction on the emergence of CDW
phases (and vice versa) and for investigation of how the behavior observed in 1T -
TiTe2/1T -TiSe2 translates to moirés comprised of other CDW materials and with
other symmetries. Operando imaging studies of the electrical tunability244,245,249 of
CDW order in moiré devices could also be very interesting and have not yet been
reported; however, the development of instrumentation to simultaneously cool and
apply an electrical bias to (S)TEM samples is still in its early stages, placing some
practical limitations on the feasibility of this type of experiment in the immediate
future.

5.2.4 Moiré magnets

Lattice reconstruction has also been invoked as a factor influencing the emergent
magnetic properties of moiré structures. So far, work in this space has primarily
focused on twisted heterostructures of chromium triiodide (CrI3), a layer-by-layer
anti-ferromagnet. Studies have shown that the local magnetic texture in twisted bi-
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layer CrI3 is highly sensitive to the local twist angle as well as disorder and structural
deformations251,252. Therefore, performing both spatially-resolved magnetic measure-
ments, such as nitrogen-vacancy scanning magnetometry251, and detailed structural
characterization, such as Bragg interferometry, on a given set of samples would be
very informative for fully understanding the measured magnetic behavior. Beyond
twisted bilayers, twisted double bilayers (TDBL) of CrI3 also exhibit unusual twist
angle-dependent magnetic behavior252,253. In 2022, Xie et al. observed that at small
angles the magnetic properties of the TDBL tended toward those of natural four-layer
CrI3, and at large angles they resembled those of two isolated bilayers. Meanwhile
at intermediate twist angles they measured an anomalous net magnetization in the
TDBL, which the authors propose could be driven by spin frustrations in the moiré
that may destabilize the typical layered anti-ferromagnetic ordering in favor of other
spin textures and magnetic ground states253. Xie et al. suggest that further calcula-
tions that incorporate reconstruction effects are necessary to unravel the origins of the
novel magnetic behavior they observed253. Such calculations will undoubtedly benefit
from experimental measurements of the twist angle-dependent lattice reconstruction
mechanics, as demonstrated in our study of twisted bilayer graphene in Chapter 2.
One challenge in analyzing the reconstruction mechanisms in these structures that
consist of twisted bilayer to multilayer slabs will be distinguishing the deformations
at each interface. A similar problem will be encountered when imaging the twisted
BaTiO3 structures mentioned earlier. Addressing this broader challenge of applying
Bragg interferometry to multilayer systems or relatively thick samples will require
substantial modification of the data analysis framework and potentially creative het-
erostructure designs, but will nevertheless be quite insightful for understanding how
deformations at a twisted interface propagate vertically through the rest of a material
and will greatly expand the number of problems that can be interrogated with this
technique in years to come.

Last but not least, work from our group and others has recently shown how inter-
calation of vdW materials with magnetic ions offers a versatile route for designing 2D
magnetic compounds47. For example, Husremović et al. reported robust ferromag-
netism in iron-intercalated 2H -Tas2 down to the bilayer limit254. There have been
no reports to date of a moiré magnet produced by intercalation, but design of such a
structure could be achievable soon with emerging synthetic schemes254,255. This begs
the question of how filling the interstitial space between twisted layers will affect the
moiré structure and reconstruction of the host lattice. One may also wonder how
the intercalant ions will order on both the atomic and moiré length scales, which
will impact the coupling between them and the global magnetic behavior, and how
this ordering can be tailored by adjusting the intercalant identity of stoichiometry.
All of these questions are ripe for multi-modal investigations bridging Bragg interfer-
ometry with techniques for mapping elemental distributions, such as STEM energy
dispersive x-ray spectroscopy (STEM-EDS) or STEM-EELS, and magnetotransport
measurements.
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Nature 597, 350–354 (2021).

97. Mak, K. F. & Shan, J. Semiconductor moiré materials. Nat. Nanotechnol. 17,
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254. Husremović, S. et al. Hard ferromagnetism down to the thinnest limit of iron-
intercalated tantalum disulfide. J. Am. Chem. Soc. 144, 12167–12176 (2022).

255. Jia, Y. et al. Surface-confined two-dimensional mass transport and crystal
growth on monolayer materials. Nat. Synth. 3, 386–393 (2024).
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Appendix A

Supplementary Information

A.1 Derivation of the Bragg interferometry

fitting function

In order to arrive at our expression for modulation of the Bragg disk overlap intensity
as a function of interlayer displacement, we first assume that we have a generic bilayer
structure in which each of the two layers is represented by a projected electrostatic
potential V1(r) and V2(r). We denote the interlayer displacement between the atomic
coordinates of the two layers in the xy plane as u = (ux, uy) and assume the gap
between the layers is negligible such that the outgoing electron beam wavefunction is
well-described by a phase shift due to the total electrostatic potential V1(r) + V2(r)
(i.e. we are assuming that diffraction takes place within a single plane). Accounting
for the offset between layers, the total projected potential is then given by the sum
V1(r− u/2) + V2(r + u/2). This convention is consistent with our choice to work in
the coordinate system defined by the average of the two monolayer lattices. Since the
bilayer thickness (< 1–2 nm) is much smaller than the depth of field of the electron
probe (> 100 nm for an 80 keV probe with 1.71–3.00 mrad convergence semi-angle)
and the incident electron wave function ψ0(r) will only be weakly scattered by the two
layers comprising the moiré, we may express the scattered electron probe wavefunction
ψ(r) to a very good approximation using the weak phase object approximation256:

ψ(r) = eiσV1(r−u/2)+iσV2(r+u/2)ψillum(r)

≈ (1 + iσV1(r− u/2) + iσV2(r+ u/2))ψ0(r)
(A.1)

where σ is the relativistic interaction parameter. We also assume a fully focused probe
such that the contrast transfer function (and thus the more complex interference
fringes encountered in holographic approaches161,257) does not appear.
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The Fourier space intensity (i.e. the measured intensity in the region of Bragg
disk overlap) I(k) is then given by the following, in which ⊛ denotes convolution.

I(k) = |ψ(k)|2 = |(δ(k) + iσ
∑
g

δ(k− g)(V1(g)e
iπg·u + V2(g)e

−iπg·u))⊛ ψ0(r)|2

(A.2)

Assuming that the convergence semi-angle is chosen to ensure that Bragg disks within
a single layer do not overlap, we arrive at the following expression.

I(k) = |ψ0(k)|2 + σ2
∑
g

|ψ0(k− g)|2(|V1(g)|2 + |V2(g)|2 + 2Re(V1(g)V
∗
2 (g)e

2iπg·u))

(A.3)

This is equivalent to the following, in which we defined A(g) = 4Re(V1(g)V
∗
2 (g)),

B(g) = 4 Im(V1(g)V
∗
2 (g)), and C(g) = (|V1(g)|2 + |V2(g)|2 − 2Re(V1(g)V

∗
2 (g))).

I(k) = |ψ0(k)|2 + σ2
∑
g

|ψ0(k− g)|2(A(g) cos2(πg · u)

+B(g) cos(πg · u) sin(πg · u) + C(g))

(A.4)

At each real space coordinate r, we therefore have the following relationship between
the projected displacement vector u and the modulation in intensity Ij for a set of
selected Bragg disks at positions gj, where Aj = A(gj), Bj = B(gj), and Cj =
C(gj) are the coefficients that we treat as fitting parameters which may in general be
different for each region of overlap.

Ij = Aj cos
2(πgj · u) +Bj cos(πgj · u) sin(πgj · u) + Cj (A.5)

Equation A.5 is a general expression that is compatible with bilayer structures includ-
ing those that lack inversion symmetry and heterobilayers, as described in Chapter
3. However, we note that when the projected real space potentials are symmetric
with respect to inversion (in the plane perpendicular to the electron beam), it is
straightforward to show that the Fourier space potentials are necessarily purely real.
As a consequence, Bj = 0 in materials whose in-plane projections preserve inversion
symmetry. Further, Cj vanishes in homobilayer structures when V1 = V2. Therefore,
for inversion symmetric homobilayers such as twisted bilayer graphene (see Chapter
2), Equation A.5 can be simplified to the following:

Ij = Aj cos
2(πgj · u) (A.6)
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A.2 Displacement fitting procedures

A.2.1 Displacement fitting for twisted bilayer graphene

Here we outline the procedure used in Chapter 2 to assign each region of the TBL-Gr
samples to a particular interlayer stacking order. First the unwanted background scat-
tering is removed by fitting the averaged diffraction pattern to a Lorentzian function
after masking off all Bragg disks and the beamstop. The residuals of the background
fit are then interpolated radially through the Bragg disks from the center of the
CBED pattern, and both the fit and the interpolated residuals are subtracted from
each CBED pattern. This correction removes unwanted scattering contributions from
the CBED intensities. Next, the overlap regions between each pair of TBL-Gr Bragg
disks are manually defined, and all pixel intensity values in each region are summed.
Because we use all first order TBL-Gr Bragg reflections in the fitting procedure, this
converts each CBED pattern into a twelve-component vector characterizing the local
interferometry pattern. Shifts in the Bragg disk positions contribute no information
in this method. Therefore, the manually defined summation region may be centerd
on the reciprocal lattice vector from either graphene layer, as long as the summa-
tion region lies entirely within the Bragg disk overlap region. In general, we place
the summation region on the centre of the CBED overlap region, corresponding to
the average of the reciprocal lattice vectors from each layer. This procedure allows
visualization of the virtual dark-field images from each TBL-Gr reflection pair. Note
that this technique is superior to sequentially acquiring twelve separate conventional
DF images for each reflection, as it eliminates systematic/correlated errors due to
sample drift in-between acquisitions, does not incidentally incorporate signals from
adjacent hBN diffraction disks owing to the typical sizes of selected area diffraction
apertures, and enables measurement of a wide range of twist angles without changing
microscope parameters.

The twelve “virtual” DF datasets are then converted into a single displacement
map by nonlinear regression (Fig. A.1) using Equation 2.1 (A.6), where the Ij values
for each of the twelve reflections (j ∈ ⟨1100⟩, ⟨2110⟩) are the response variables and
the two-component displacement vector u is the predictor variable. We confine u to
the half-hexagon fitting region shown in Fig. 2.4b so that each u predicts a unique
interferometry pattern. This region contains all possible shortest vectors from a
lattice site in graphene layer 1 to graphene layer 2 or vice-versa, modulo inversion
through the origin. This 180◦ phase ambiguity implies that AB and BA regions give
identical interferometry patterns for on-zone-axis experiments (see Chapter 1, Section
4 for a discussion on sample tilt effects). Subject to these constraints, the nonlinear
regression finds the unique u that best predicts the intensity values for each pixel.



APPENDIX A. SUPPLEMENTARY INFORMATION 132

Figure A.1: Schematic of the fitting process showing how the TBL-Gr interferometry
intensity in one CBED pattern is fit to extract a single displacement vector (shown
here for an AA site). In the final steps, the entire 4D data set is assembled into a
displacement field map for a region with θm = 1.23◦.
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Figure A.2: Sequence of fitting, refinement, and filtering used to reconstruct a
displacement field map a TBL-Gr sample with θm = 0.63◦.

To account for the unknown prefactor coefficients Aj, a three-step fitting process
is followed to obtain the optimized Aj values (Fig. A.2). First, the Aj values are
estimated by manually defining an AB/BA-stacked region and averaging all virtual
dark-field intensities within for each disk. Equation 2.1 predicts that the AB/BA
stacking order gives ⟨1100⟩ overlap regions of 0.25Aj and ⟨2110⟩ overlap regions of
simply Aj (see relative intensities in Fig. 2.3c). This is only an initial estimate,
chosen because AB/BA regions are the most readily spotted from superimposition
of the virtual dark-field images. In the first regression, the Aj calculated this way
are held constant while the u is optimized separately for each pixel. Multiple local
minima can arise on the optimization surface because of the trigonometric fitting
function; therefore, twelve gradient-based optimization runs are initiated from differ-
ent locations in the fitting region to ensure global convergence for each pixel (referred
to as a multistart process). The initial estimate of the displacement map obtained
this way is typically already quite good (Fig. A.2). In the second fit, the Aj are
allowed to optimize simultaneously with all u for each pixel, using the displacement
map obtained in the first fit as a starting guess. Owing to the large scale of this
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regression, the multistart optimization strategy employed in the first fit cannot be
used. Finally, the first pixel-by-pixel fit is performed again, but this time using the
optimized values of the Aj prefactors from the second fit. The displacement vectors
from this third fit are lightly filtered to remove outliers on the basis of amplitude, via
deviations from the median value in a 5 × 5 moving pixel window. Where possible,
replacements are made from alternate displacement vector convergence locations (i.e.
local minima) arising from the multistart displacement fit. Where no good multistart
candidates exist, outlier displacement values are replaced by the median value in the
moving window. The proportion of displacement vectors modified by outlier filtering
is typically fewer than 5% for any given dataset. We use the results of the filtered
third fit as the displacement map for each dataset in Chapter 2.

A.2.2 Displacement fitting for TMD moiré bilayers

The local in-plane interlayer displacement vectors u for the TMD moiré bilayers
(Chapter 3) were extracted from the 4D-STEM datasets following a procedure gener-
alized from that used for TBL-Gr. To start, the average diffuse scattering was fit to a
Lorentzian profile and removed for each CBED pattern (associated with an individual
real space pixel). Similar to the TBL-Gr analysis, the overlap regions in the twelve
first-order TMD Bragg disks were then used to obtain the optimal interlayer displace-
ments u and coefficients Aj, Bj, Cj via a least squares fitting procedure with Eq. 3.1
as the fitting function. In this process, it was assumed that the coefficients remained
constant over the sample field of view, resulting in 36 total coefficient variables and
nxny displacement variables for a nx by ny scan.

To summarize the fitting process, first we normalized Ij, assumed Aj = 1, Bj =
0, Cj = 0, and determined the optimal displacement vector independently at each
pixel using a quasi-Newton non-linear least squares optimization (specifically the trust
region reflective algorithm as implemented in scipy)185. We used a uniform grid of 9
initial guesses (i.e., a multistart procedure) for u to decrease the chance of obtaining
local minima. The values of u were constrained to reside within a single unit cell such
that u = c1a1 + c2a2 with |c1| ≤ 1/2, |c2| ≤ 1/2, where a1, a2 are the average of the
monolayer real space lattice vectors rotated into a convenient basis (see Appendix,
Section 5 for notes on rotation calibration). We subsequently determined the optimal
coefficients Aj, Bj, Cj given this u independently for each of the twelve Bragg disk
intensities Ij using linear least squares. These two steps were then repeated, where
subsequent iterations used the previous iteration u in the pixel of interest and all four
directly adjacent pixels as starting conditions instead of the uniform grid. Fitting
the displacements and coefficients in tandem, rather than simultaneously as done
for our study of TBL-Gr, allowed us to both parallelize the procedure and to use
a linear optimization for the coefficients, improving efficiency. We found that the
u values converged within 5 iterations of this procedure. To avoid over-fitting and
for computational speed, we also found it effective to first bin the displacement field
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(using an L2 norm and a bin width of 2) and perform the aforementioned procedure
to obtain the coefficients and ubin. The raw u were then fit using ubin as starting
conditions and the coefficients deemed optimal for the binned data, which were held
fixed. The final u were converted from dimensionless units assuming lattice constants
a0 of 0.315 and 0.328 nm for MoS2 and WSe2 (values from HQ Graphene) respectively
as the data acquisition was not set up to ensure an unbiased estimate of these values.
An overview of the optimized fitting procedure is shown in Fig. A.3.

Figure A.3: General computational workflow for the displacement fitting procedure
used in Chapter 3.
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A.3 Evaluation of fitting bias

Displacement histograms obtained through Bragg interferometry frequently show ge-
ometric patterns, in which some displacement values cluster together and some dis-
placement values are avoided, as seen in Fig. 2.4a, bottom left. To investigate the
origins of this, we performed a simulation mimicking the effects of a finite probe ra-
dius (Fig. A.4). The displacement half-hexagon fitting region was populated with
a grid of points representing true probe positions. For each point, the interferome-
try patterns for all displacements within a 0.2 Å radius were calculated according to
Equation 2.1 and averaged. The averaged pattern was then re-fit to a displacement
vector using Equation 1. The discrepancy between the original probe position in
displacement space and the final fitted displacement estimates the bias introduced
from a finite probe width. Note that this a simplified model, not accounting for the
radial intensity profile of the probe or the effects of reconstruction, which will pro-
duce a non-uniform density of points in displacement space. Fig. A.4 shows that
probe averaging induces bias matching the clustering pattern in the displacement
histogram shown in Fig. 2.4a (bottom left). The “avoided regions” with large biasing
correspond to high symmetry interferometry patterns. For example, Equation 2.1
predicts an SP pattern will have 8 of 12 disks with zero intensity. Many of these
disks will be nonzero for intermediate stacking orders surrounding pure SP stacking.
Probe averaging thereby obtains an interferometry pattern that does not quite look
like pure SP stacking, leading to the bias. Despite these effects, the design of the data
analysis procedure renders the strain maps robust against biasing artifacts. When
the displacement histogram is unwrapped for strain mapping (see Appendix, Section
4), the avoided regions manifest themselves as losses in continuity at the boundaries
between moiré unit cells. Application of a total generalized variation (TGV) filter
removes these discontinuities, essentially eliminating the bias through interpolation.
The strain filter parameters thus set the systematic uncertainty on the calculated
strain values, as discussed in Section A.6.
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Figure A.4: Simulation of bias induced by the finite probe width. Purple markers
represent beam positions in displacement space. Predicted interferometry patterns
are averaged in a 0.2 Å radius circle around each point; the averaging radius is shown
with a red circle for one probe position as an example. Fitted displacement values
are shown with green markers, with a black arrow connecting the fitted displacement
values to the true probe position.
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A.4 Displacement field unwrapping

A.4.1 Unwrapping procedure for twisted bilayer graphene

The displacement fitting procedure produces vectors contained entirely within the
half-hexagon fitting region, which displays discontinuities at the edges. Before dif-
ferentiation can occur, the displacement data must therefore be unwrapped to both
eliminate the 180◦ ambiguity258 and also establish a continuous vector field between
adjacent moiré domains. This multidimensional vector field unwrapping problem
presents a problem for standard algorithms, which typically can handle either 180◦

ambiguity or multidimensional unwrapping, but not both. To overcome this problem,
we developed a geometry-based approach. The AA, AB and SP regions were algo-
rithmically detected from their characteristic displacement vectors, and the stacking
order change from crossing each SP region was stored. An initial reference displace-
ment was assigned to a starting AB domain centroid, and then a reference displace-
ment vector was assigned to each neighbouring AB centroid by finding the vectors
that satisfy the SP stacking order change criteria. Each AB centroid was assigned
recursively. Next, each individual real space pixel was assigned to an AB centroid
through geometry domain registration, so that each pixel had a reference vector indi-
cating the approximate region where its unwrapped displacement vector should fall.
The precise vector was obtained by choosing the new displacement vector that (1)
produced an equivalent interferometry pattern to that of the original displacement
vector in the half-hexagon fitting region and (2) was as close as possible to the refer-
ence vector. The unwrapped displacement field was then refined by a 3 × 3 moving
window that interchanges displacement vectors to maximize local continuity. After
applying the moving window ten times, the remaining discontinuities at the AA and
SP boundaries were eliminated. Note that the displacement unwrapping process did
not change the model fit to the virtual dark-field images because each unwrapped
displacement vector predicts the same interferometry pattern as the original vector.
The unwrapping process converted a single half-hexagon fitting region into a series of
continuously connected fitting regions amenable to differentiation, as shown in Fig.
A.5. The unwrapped displacement field was denoised (Fig. A.6) by total general-
ized variation (TGV)109,164 and differentiated to produce the strain maps. We note
that the calculated strain and rotation values can change by around ±10%, depend-
ing on the exact TGV filter settings used, implying some systematic uncertainty in
the exact magnitude of the reconstruction strain. However, filter settings were kept
consistent so that the twist angle trends were not impacted and the good agreement
between finite-element method simulations and experiment provided support for the
filter settings used.
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Figure A.5: Displacement unwrapping and TGV filtering of the displacement field
converts the displacement half-hexagon into a continuous vector field between adja-
cent moiré domains that is amenable to differentiation.

Figure A.6: Unwrapped and TGV denoised displacement maps for the datasets
shown in Fig. 2.4c. A border of ≤ 30 nm is lost in the unwrapping–denoising process
compared to the original displacement maps.
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A.4.2 Unwrapping procedure for TMD moiré bilayers

The displacement unwrapping procedure was modified for our study of TMD moiré
bilayers. To summarize, the new procedure amounts to finding the optimal (n,m,s)
at each pixel location given ufit such that the Euclidean distance of uunwrap from
its neighbors is minimized. This yields a continuously varying uunwrap amenable
to differentiation. While it is in principle possible to circumvent such a procedure
through accounting for the degeneracy of u in the differentiation process, we found
approaches along these lines less robust to noise due to the decreased ability to smooth
the data prior to differentiation.

uunwrap = sufit + na1 +ma2 n,m ∈ Z, s = ±1 (A.7)

Instead, we chose to first partition the data into zones expected to have the same
offsets n and m. For most of the data sets we used the Watershed segmentation
algorithm182 on |u|, which proved effective in unwrapping displacement fields with
decently large regions of u ≈ 0 stacking separated by thin boundaries (all but the
parallel stacked homobilayers). For the parallel stacked homobilayers, which con-
tained small u ≈ 0 stacking regions, a Voronoi partition185 instead proved more
robust to noise. After segmentation, the zone offsets (n,m) of each region were deter-
mined based on the region’s connectivity, as shown in Fig. A.7. For instance, in our
convention, regions connected by SP1(SP2) soliton walls have the same m(n) offset
and a n(m) offsets differing by ±1, allowing us to successively assign all zones with
a breadth first search (starting from the region closest to the center of the data).
Large sample deformations will result in the breakdown of this simple algorithm, al-
though we did not find more elaborate approaches necessary for this study. The s of
each pixel was then chosen to maximize the local curl in data sets for which Bj ≈ 0
introduced a sign ambiguity.

Given these estimates for the displacement orientation and lattice vector offsets,
we then used an integer program to optimize the parameters along the zone bound-
aries. The optimization of (n,m,s) along the zone boundaries was accomplished using
the following procedure, which proved sufficient for obtaining smoothly varying dis-
placement fields in this work. Before using a more costly integer program, we first
chose the (n,m,s) offsets that gave a uunwrap closest to the region local mean u within
a 2 x 2 pixel moving window propagated outwards from the center of the data. Both
previously assigned pixels and those assigned with confidence in the geometric parti-
tion (within 1% of the maximum distance from a region center) were held constant.
Each 2 x 2 region after the initial solve was chosen to contain at least one previously
assigned pixel. Following this, we identified contours in the data associated with
uunwrap discontinuities where adjacent pixels had a uunwrap difference larger than
what could be obtained by choosing locally optimal (n,m,s). These contours were
then used to form a convex mask associated with large regions that had been opti-
mized to a different global offset. For all convex regions of 5 or more pixels, we then



APPENDIX A. SUPPLEMENTARY INFORMATION 141

Figure A.7: Region offsets determined geometrically for a twisted homobilayer struc-
ture (left) and untwisted heterobilayer structure (right). The integer offsets (n,m)
of each zone are shown in the black centers of each hexagonal region, and the cor-
responding offset vectors na1 + ma2 are depicted as black arrows. In practice, the
heterobilayer displacement fields were first rotated (changing only the lattice vector
convention) so that they could be processed similarly to the twisted displacement
fields and then rotated back to obtain the diverging displacement field expected for
a heterobilayer.

used an integer program to successively re-assign the optimal (n,m,s) offsets within
these regions, working inwards from their boundaries using a moving 2 x 2 window.
This entire process was iterated until the total number of pixels in the convex regions
stopped improving. We then used the same integer program to optimize the offsets
in a 3 x 3 moving window for areas where the identified discontinuity regions were 5
pixels or fewer. Throughout, the integer program searched for n and m within ±2
of the offsets determined from the geometric partitioning. The objective minimized
was the sum of all L2 norms between neighboring pixels, equally weighting both the
fixed and variable cells within the region of interest. In practice we optimized s for all
datasets (implemented as s′ = 2s− 1 for convenience in constraints), as we found the
sign of u was more susceptible to experimental noise than its magnitude. The result-
ing quadratic integer program was solved using APOPT interfaced by GEKKO.183,184

The optimized unwrapping procedure is summarized in Fig. A.8. The unwrapped
displacement fields u were then smoothed with a Gaussian filter (σ = 2 pixels per a0
where a0 is the average lattice constant for the two layers) and differentiated numeri-
cally using a centered 3-pt finite difference stencil to obtain the strain maps shown in
Chapter 3. We note that the Gaussian smoothing, finite difference stencil, and finite
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width of the electron beam (see Appendix, Section 3) may soften the observed strain
and stacking features but do not affect the overall trends or conclusions drawn.

Figure A.8: General computational workflow for displacement field unwrapping,
used in Chapter 3.

A.5 Rotational calibration

Prior to obtaining the strain tensor via differentiation of the displacement field, we also
need to account for the rotational offset between the displacement vector coordinate
system and the 4D-STEM scan axes. This rotational offset is controlled by two factors.
The first is a rotation between the diffraction pattern and the scan direction inherent
to the instrument. For our study of TBL-Gr, we calibrated this rotational offset by
obtaining defocused images of gold nanoparticles165, determining that the diffraction
pattern is rotated 199◦ (or, equivalently, 19◦) clockwise from the STEM image. We
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performed the same calibration for the study of the TMD systems, measuring a
rotation of 191◦ (or equivalently 11◦) from comparison of a STEM image of a straight
edge in one of the samples and the corresponding unscattered beam in the diffraction
pattern using a defocused STEM probe. The variation in these two measurements
could be a result of re-mounting of the camera sensor in the microscope in the time
between the two studies. The second rotational offset is one of convenience that arises
because we rotated the y-axis to align with the 11̄00 overlap region (corresponding
to orienting the x -axis along the average of the two layers’ real space lattice vectors)
in order to simplify the mathematics for the fitting and unwrapping procedures.

After accounting for these two factors, samples with moiré patterns controlled only
by interlayer twist should have a y-axis oriented along SP1 soliton walls, samples with
moiré patterns controlled only by lattice mismatch or heterostrain should have an x -
axis oriented along the SP1 solitons, and moirés formed from a combination should
have soliton orientations somewhere in between, as depicted in Fig. A.9. To justify
this claim mathematically, we first define a1 and a2 as the average of the monolayer
real space lattice vectors (defined as b1, b2 for layer 1 and c1, c2 for layer 2) with
a1 oriented along the x -axis (Fig. A.9a). For a generic heterostructure, with an
interlayer twist of θ and a lattice mismatch of δ = 1 − aS/aL (where aS and aL are
the smaller and larger lattice constants of the two layers, respectively), we define k
vectors k1, k2 in the first Brillouin zones for the two layers, as shown in Equation A.8.
These k vectors are rotated with respect to each other due to the interlayer twist in
real space and the vector associated with the larger lattice is scaled by 1/(1 + δ) due
to the lattice mismatch in real space.

k1 =
2π

a(1 + δ)

(
cos

(
θ

2

)
,−sin

(
θ

2

))
k2 =

2π

a

(
cos

(
θ

2

)
, sin

(
θ

2

)) (A.8)

We also define km as a k vector in the moiré Brillouin zone. The size and orientation
of km can be determined from the difference between k1 and k2 (Fig. A.9b–d):

km = k1 − k2

km =
2π

a

(
cos

(
θ

2

)(
1

1 + δ
− 1

)
, sin

(
θ

2

)(
− 1

1 + δ
− 1

))
(A.9)

Using a geometric analysis to compute the angle φ between the x -axis and km yields
the following expression:

φ = tan−1

(
−(δ + 1)−1 + 1

(δ + 1)−1 − 1
tan

(
θ

2

))
(A.10)
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In Equation A.10, φ corresponds to the target orientation of the SP1 soliton walls for
self-consistency in our chosen coordinate system. From this expression it is evident
that φ = 90◦ (SP1 oriented along y-axis) for θm > 0◦ and δ = 0, φ = 0◦ (SP1 oriented
along x -axis) for θm = 0◦ and δ > 0, and 0◦ < φ < 90◦ (SP1 oriented between the x -
and y-axes) for θm > 0◦ and δ > 0.

Figure A.9: a, Real space orientation of two atomic layers with an abitrary twist
angle (θ) and lattice mismatch (δ). Vectors a1, a2 are defined as the average of the
real space vectors from the two layers (b1, b2 for layer 1 and c1, c2 for layer 2). The
x -axis is parallel to a1. b–d, Reciprocal space orientation of moiré Brillouin zone for
a moiré homobilayer (b) , a lattice constant mismatch-driven moiré (c) , and a moiré
superlattice resulting from both twist and lattice constant mismatch (d). k vectors
are shown in the first Brillouin zone for each atomic lattice (shown in red in blue for
layers 1 and 2, respectively) and for the moiré supercell (depicted in black/gray).
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A.6 Strain mapping

After unwrapping and performing rotational calibration, the displacement fields were
differentiated according to infinitesimal strain theory155,156,259 to obtain the strain
fields presented in Chapters 2 and 3. Here we provide an overview of this process.
We first draw a distinction between the interlayer displacement field uinter(x, y) as
opposed to the single-layer or intralayer displacement field uintra(x, y). The experi-
mentally measurable quantity is uinter(x, y), which determines the lattice plane offset
giving rise to the interferometry signal. However, to obtain strain quantities that
relate to the deformation experienced by a single atomic layer, it is useful to consider
a reference state in which both layers have AA-type commensurate stacking, reaching
their final positions by some equal-and-opposite combination of rotation and defor-
mation. Because rotations are ≤ 2◦, the small-angle approximation implies that
uintra(x, y) = uinter(x, y)/2. In its present form, Bragg interferometry analysis is un-
able to independently resolve strain fields in the top and bottom layers of the moiré.
As such, uintra(x, y) is the best quantity to use to determine the average deformation
of a single atomic layer. In homobilayers, the assumption that the deformations are
equally partitioned between the two layers is enforced by symmetry. While this may
not in principle hold true for all heterobilayers, simulations suggest that the relax-
ation magnitudes in MoS2 and WSe2 (studied in Chapter 3) differ by only 13% (See
Appendix, Section 13) .

A vector-valued displacement field, u(x, y), has four associated derivatives arising
from the gradients of the scalar-value x and y displacements. The elements of the
strain tensor can then be calculated from the displacement field derivatives as follows:

ϵxx =
∂uintra,x
∂x

=
1

2

(
∂uinter,x
∂x

)
(A.11)

sxy =
∂uintra,x
∂y

=
1

2

(
∂uinter,x
∂y

+ θm

)
(A.12)

syx =
∂uintra,y
∂x

=
1

2

(
∂uinter,y
∂x

− θm

)
(A.13)

ϵyy =
∂uintra,y
∂y

=
1

2

(
∂uinter,y
∂y

)
(A.14)

ϵxy =
1

2
(sxy + syx) (A.15)

The strain tensor is formally composed of the normal strains ϵxx and ϵyy for the
diagonal elements along with the tensorial pure shear strain ϵxy on the off-diagonal
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elements. The difference between the normal strains represents volumetric strain, or
dilation:

Dil =
∆V

V
= ϵxx − ϵyy (A.16)

The terms sxy and syx are referred to as simple shear strains155. These terms contain
information about both strain and fixed body rotation. To analyze the simple shear
quantities arising from reconstruction, we first removed the moiré rotation, θm, so
that only reconstruction rotation would be included. The rotation θm was estimated
from the moiré superlattice geometry through triangulation (see Appendix, Section
8 for details). This procedure has no effect on the strain tensor itself, as the θm
terms cancel out in the sum for calculating ϵxy (Equation 2.15). Note that ϵxy is the
correct term to use for the strain tensor to perform correct tensor rotations, but is not
directly comparable in magnitude to the normal strains ϵxx and ϵyy. It is therefore
useful to define the ‘engineering’ pure shear strain as follows155,156,259:

γxy = sxy = syx = 2ϵxy (A.17)

The quantity γxy exerts the same magnitude of deformation per unit strain as ϵxx and
ϵyy.

The quantities ϵxx, ϵyy, sxy. syx, and ϵxy (and therefore γxy) are each dependent
on the coordinate axes chosen to visualize the strain tensor (Fig. A.10–12). This
makes it challenging to compare strains between different SP regions in one image.
To overcome this, it is useful to employ the principal strain equations156:

εmax =
ϵxx + ϵyy

2
+

√√√√(ϵxx − ϵyy
2

)2

+ (ϵxy)2 (A.18)

εmin =
ϵxx + ϵyy

2
−

√√√√(ϵxx − ϵyy
2

)2

+ (ϵxy)2 (A.19)

These equations correspond to local rotations of the tensor coordinate system to
express the strain at each pixel entirely in terms of normal strain. The tensor rotation
angle is known as the principal angle, θP

156:

tan(2θP ) =
2ϵxy

ϵxx − ϵyy
(A.20)

The principal angle describes the orientation of the rotated x -axis (that is, the
orientation of εmax) relative to the starting coordinate system of the tensor. By
convention, we chose the direction perpendicular to the SP1 regions as the x -axis
starting coordinate system. The direction of maximum shear is located 45◦ counter-
clockwise from θP . Thus, for an SP region undergoing shear strain due to rotations in



APPENDIX A. SUPPLEMENTARY INFORMATION 147

surrounding stacking regions, θP should be offset by 45◦ from the direction of the SP
region. For TBL-Gr, we found this indeed to be the case, confirming that the strain
in SP regions is predominantly characterized by shearing (Fig. 2.10).

The maximum shear strain (also known as the principal shear strain), γmax, occurs
at a 45◦ angle from the εmax coordinate axis at each pixel, and is given by the difference
in principal strains156:

γmax = εmax − εmin (A.21)

Because the intralayer strain in the atomic layers arises almost entirely from shear-
ing processes, γmax is a natural quantity to summarize the strain mechanics of a sam-
ple in one image. As noted in Chapter 2, Section 6, γmax does not require definition
of a local tensor coordinate system, unlike the elements of the strain tensor defined
in Equations 2.11–15.

In the evaluation of the magnitude of simple strains sxy and syx as a function of
θm in Fig. 2.12a, for each displacement field map at a particular θm, the axes of the
simple shear strains were rotated three times for maximum compatibility with each
of the three SPs, and then the sxy and syx values from these three tensor rotations
were averaged to plot the result as a function of θm.

All equations described thus far consider the average intralayer strain experienced
when a single layer of graphene deforms due to reconstruction. When analyzing
rotation, however, it is more natural to consider the effect of both layers simultane-
ously to obtain the relative rotational misalignment. The relationship between simple
shear and interlayer reconstruction rotation, θR, is therefore given by the following
expression:

θR = syx − sxy (A.22)

The fixed-body rotation equation normally has a factor of one-half; however, here,
we multiplied by two to emphasize that we have gone from intralayer quantities sxy
and syx to the interlayer quantity θR. The total rotation, including the moiré rotation,
can be expressed directly in terms of the interlayer displacement field:

θT =
1

2

(
∂uinter,y
∂x

− ∂uinter,x
∂y

)
(A.23)

We employed this expression when the moiré angle changed rapidly over the field
of view, such as near a tear or defect in the sample (Fig. 2.8). The moiré angle and
the reconstruction angle are related as follows:

θT = θm + θR (A.24)
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Figure A.10: Maps of normal strains, ϵxx andϵyy, engineering pure shear strain, γxy,
and simple shear strains, sxy and syx, produced with tensor rotations wherein the
x -axis is successively aligned perpendicular to the three SP directions. These maps
arise from the same dataset with θm = 0.26◦ shown in Fig. 2.4c and 2.7.
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Figure A.11: Maps of normal strains, ϵxx andϵyy, engineering pure shear strain, γxy,
and simple shear strains, sxy and syx, produced with tensor rotations wherein the
x -axis is successively aligned perpendicular to the three SP directions. These maps
arise from the same dataset with θm = 0.63◦ shown in Fig. 2.4c and 2.7.
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Figure A.12: Maps of normal strains, ϵxx andϵyy, engineering pure shear strain, γxy,
and simple shear strains, sxy and syx, produced with tensor rotations wherein the
x -axis is successively aligned perpendicular to the three SP directions. These maps
arise from the same dataset with θm = 1.03◦ shown in Fig. 2.4c and 2.7.



APPENDIX A. SUPPLEMENTARY INFORMATION 151

A.7 Simple shear decomposition

Simple shear strain from local stacking domain rotations constitutes the dominant
strain mechanic in twisted bilayer reconstruction, incorporating both pure strain and
fixed-body rotation as discussed previously. Although the maximum shear strain,
γmax, is commonly used to isotropically visualize the strain component, we sought a
similar metric for visualization of both the strain and rotation effects found in simple
shear. We constructed a simple shear decomposition to show the magnitude and
direction of simple shear, by analogy to the principal strains technique for normal
strain. In principal strain, the coordinate system is rotated to diagonalize the strain
tensor, thereby completely eliminating shear strain156:

[
εmax 0
0 εmin

]
=

[
cos(θP ) sin(θP )
−sin(θP ) cos(θP )

] [
ϵxx ϵxy
ϵxy ϵyy

] [
cos(θP ) −sin(θP )
sin(θP ) cos(θP )

]
(A.25)

Here, θP is the principal angle, defining the rotated coordinate system. Analogously,
we could seek to ‘off-diagonalize’ the ‘strain–rotation’ tensor to obtain a simple shear
strain description:

[
0 s′1
s′2 0

]
=

[
cos(θs) sin(θs)
−sin(θs) cos(θs)

][∂uintra,x

∂x

∂uintra,x

∂y
∂uintra,y

∂x

∂uintra,y

∂y

] [
cos(θs) −sin(θs)
sin(θs) cos(θs)

]
(A.26)

This equation has one free variable (θs, the simple shear angle), but two variables on
the diagonal to eliminate (denoted ϵ′xx and ϵ′yy). Thus, the equation will in general
not have an exact solution, but we could solve for θs in the least-squares sense to
minimize ϵ′2xx + ϵ′2yy. By performing this least-squares regression for each pixel, we
obtained the best possible simple shear representation of the strain field, which we
refer to as the simple shear decomposition. Thus, θs obtained in this way has a 90◦

phase ambiguity, which can make visualization challenging. To obtain components
of a continuous simple shear vector field, we examined the rotated tensor value, s′2,
for both θs and θs +90◦, and chose the simple shear angle that maximizes the signed
value of s′2. When plotted as a vector field quiver plot with two-headed arrows, the
components s′1 and s′2 take on the natural interpretation of simple shear strain. For
the case of TBL-Gr in Chapter 2, this simple shear strain is produced by AA and
AB/BA reconstruction rotation (Fig. 2.16a,b).
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A.8 Twist angle, lattice mismatch, and

heterostrain calculations

Uniaxial heterostrain, local twist angle, and local lattice constant mismatch can be
measured through their effects on the moiré pattern. For instance when one of two
layers has been twisted by θm and subjected to a uniaxial heterostrain εH along the
direction θs from the x -axis, the set of three experimentally accessible real space moire
wavelengths λi can be expressed in terms of θm, θs, εH , the unstrained monolayer
reciprocal lattice vectors ki, and the Poisson ratio ρ as follows146:

λi =
4π√
3

∣∣∣∣[cos(θm − θs) − sin(θm − θs))
sin(θm − θs) cos(θm − θs)

] [ 1
1+εH

0

0 1
1−ρεH

] [
cos(θs) − sin(θs)
sin(θs) cos(θs)

]
ki − ki

∣∣∣∣−1

(A.27)

We used a ρ of 0.16 for graphene260 in Chapter 2 and 0.19261 for WSe2 in Chapter 4.
In Chapter 3, we used a ρ of 0.23 and 0.25 for P and AP MoS2 respectively

262. These
values assume the elastic response of each material is roughly equivalent to that of the
most energetically favorable stacking order. While this choice neglects the variation
in stacking order throughout the moiré, we found that using alternative estimates of
ρ has a minor effect on the obtained θm and εH values.

For homobilayers, we obtained the local twist angle and heterostrain by triangu-
lating using the centers of the AA (for TBL-Gr), MMXX (for P TMDs), or XMMX
(for AP TMDs) regions and fitting the resultant moiré wavelengths λi to Equation
A.27 using with nonlinear least squares. A similar approach was used for the twisted
trilayers, as shown in Fig. 4.10, 4.11 and 4.14. However, heterobilayer systems have
an added complication, where the difference in material responses of the two layers
results in an under-determined set of equations. This prohibits us from relating any
asymmetry in the three moiré wavelengths to a well-defined heterostrain for these
systems. Further, the average real space moiré wavelength λ in heterobilayer samples
is set by both the twist angle and local lattice constant mismatch57 δ = 1 − aS/aL
(see Equation A.28), both of which can vary throughout a given sample. Again, here
aS and aL are the smaller and larger lattice constants, respectively:

λ =
(1− δ)aL√

δ2 + 2(1− δ)(1− cos(θm))
(A.28)

In response to this, we calculated the local lattice constant mismatch of the heter-
obilayer samples by assuming a constant twist angle for a given dataset, which was
obtained from the average CBED pattern for each dataset. To control for heterostrain
effects and twist angle heterogeneity, we then narrowed our analysis to heterobilay-
ers samples displaying both minimal asymmetry in the three moiré wavelengths and
minimal λ variation.
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A.9 Rigid moiré subtraction

For our study of TBL-Gr in Chapter 2, we calculated the reconstruction rotation (θR)
and simple shear strains by subtracting the average moiré twist angle obtained from
triangulation (described in Appendix, Section 8) from the total fixed-body rotation
(Equations 2.2 and A.24). For our study of TMD moiré bilayers in Chapter 3, we
updated this procedure to also account for lattice mismatch and uniaxial heteros-
train. In order to assess the local rotation and dilation due to reconstruction in these
samples, we subtracted off the rotation and dilation expected from a rigid moiré with
the same interlayer twist angle, lattice constant mismatch, and/or heterostrain (again
obtained from the model described in Appendix, Section 8). Assuming an interlayer
twist of θm and a heterostrain of εH in the direction θs from the x -axis, we can re-
late the atomic positions of the two layers rtopij and rbottomij as follows, where ρ is the
material’s Poisson ratio (see Appendix, Section 8 for values used):

rtopij =

[
cos(θm − θs) − sin(θm − θs)
sin(θm − θs) cos(θm − θs)

] [
1 + εH 0

0 1− ρεH

] [
cos(θs) − sin(θs)
sin(θs) cos(θs)

]
rbottomij

The interlayer displacement of the top layer utop associated with each atom in
the rigid moiré is therefore given by utop

ij = (rtopij − rbottomij )/2 at each pixel location

defined in reference to the bottom layer rbottomij = a0(xi, yj) where a
bottom
0 is the lattice

constant of the bottom layer. Example calculated rigid displacement maps are shown
in Fig. 3.4f. Computing the local total rotation and dilation from this displacement
field, in accordance with the strain mapping procedure outlined in Appendix, Section
6, results in (to first order in θm) a θtopT of (2 + εH − ρεH)θm/2 and a dilation of
(εH − ρεH)/2, both irrespective of θs and given in units of abottom0 .

Similarly, a twisted heterobilayer with an interlayer twist of θm and a lattice
constant mismatch of δ results in the following displacements.

rtopij =

[
cos(θm) − sin(θm)
sin(θm) cos(θm)

] [
1 + δ 0
0 1 + δ

]
rbottomij

This is the same expression as the heterostrained homobilayer with ρ = −1, εH = δ,
and θs = 0 such that the interlayer dilation ∇ · utop = δ and total intralayer rotation
θtopT = (1 + δ)θm/2. We therefore see that, in terms of local rotations and dilations,
heterostrained samples act like heterobilayers with an effective lattice constant mis-
match of (εH−ρεH)/2. For the strain maps presented in Chapter 3, these rigid values
were subtracted from the obtained local rotations and dilations to obtain the reported
interlayer reconstruction rotation and dilation. We note that this analysis (and that
of the twist angle and lattice mismatch extraction) is carried out using one of the two
layers as a reference configuration rather than their average. This slightly modifies
the obtained rigid values (by less than 1%) with negligible impact on the resulting
analysis.
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A.10 Uncertainty in strain measurements

In order to estimate the percent uncertainty and detection limit of the reported strain
calculations, we calculated the residuals between the raw disk intensities Iraw(gj)
and the predicted Ifit(gj) following the displacement fitting procedure described in
Appendix, Section 2. The mean and standard deviations of the residuals in the
normalized intensities were on the order of -0.05 and 0.15 respectively, representing
systematic bias and root mean squared error (RMSE) respectively. We note that this
RMSE uncertainty in the intensities will reflect a larger displacement uncertainty in
the u ≈ 0 domains in which the dependence of u on intensity is steeper. The small
negative systematic bias in the intensity residuals is larger for samples with more
background noise and reflects the fact that the high frequency noise not captured
by the fitting function increases the average normalized intensity of the raw data.
We believe the error from the fit procedure originates primarily from 1) experimental
noise (carbon contamination, sample defects, and variation in tilt) causing a deviation
from the expected intensity variation, 2) the validity of the approximations used in
the fitting function derivation, and 3) the optimization procedure. We note that some
of these effects may not be reflected in the obtained residuals and instead result in
a good fit to a biased displacement value, which is difficult to quantify. Through
collecting and averaging over strain values obtained at many different pixel locations,
we are able to obtain a significantly lower standard error than through propagating
the intensity uncertainties within a single pixel. The standard error measured is on
the order of 0.1% dilation and a 0.1◦ rotation as seen in the presented strain values
obtained across samples, which is associated with dilation and rotation detection
limits roughly three times as large.

A.11 Distinguishing heterostrain from sample

drift

A distorted moiré image alone is insufficient evidence to conclude the presence and
magnitude of heterostrain, as sample drift could induce similar distortions. To esti-
mate the amount of sample drift present, we collected replicate images at different
STEM scan angles of two twist-angle-homogeneous regions that exhibited heterostrain
in the DF-TEM images (Fig. A.13). Because sample drift is typically determined by
the orientation of the sample holder and not the STEM scan direction, the distortions
produced by two subsequent scans should be different for different scan directions rela-
tive to the true moiré geometry263. We computed the average angles between different
SP regions to quantify the change in unit cell distortion. For both pairs of images,
the change in angle with STEM scan direction was no greater than 2◦, whereas the
difference between the smallest and largest SP region angles was greater than 20◦

(Fig. A.13 and Table A.1). Furthermore, the 1D shear strain features discussed in
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Chapter 2 (Fig. 2.18b,c) rotated consistently with the STEM scan direction (Fig.
A.13). We conclude, therefore, that the moiré superlattice distortions seen in our
images can be reliably attributed to heterostrain. This conclusion is further corrob-
orated by (1) conventional DF-TEM images of the 4D-STEM scan areas (Fig. 2.1c),
which also revealed these same distortions, and (2) the strong variations observed
within individual scans, particularly near a tear in one graphene layer (Fig. 2.8 and
Fig. 2.18b).

Figure A.13: Displacement field (top) and maximum shear strain (bottom) maps.
Replicate pairs of images at different STEM scan directions in twist angle homoge-
neous regions with θm = 0.64◦ (a,b) and θm = 0.65◦ (c,d). STEM scan directions
are 210◦ (a), 180◦ (b), 270◦ (c), and 210◦ (d). These regions are in close proximity
(within ≈50 nm of each other) and exhibit heterostrain in DF-TEM images (region 3
of Fig. 2.1c). These maps have been counterrotated by the scan direction. Since the
displacement field and strain amps are aligned in both sets of images (a aligns with
b and c aligns with d), we conclude that drift is negligible and cannot be responsible
for the observed heterostrain. Analysis of SP intersection angles (Table A.1) and the
DF-TEM images provides additional corroboration.
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Table A.1: Effect of STEM scan direction on observed moiré distortions. Reported
values indicate the average measured angle between the listed SP types.

270◦ Scan
(θm = 0.65◦)

210◦ Scan
(θm = 0.65◦)

210◦ Scan
(θm = 0.64◦)

180◦ Scan
(θm = 0.64◦)

Purple–Red 71.8◦ 73.5◦ 68.5◦ 67.6◦

Red–Orange 61.9◦ 60.2◦ 66.1◦ 68.2◦

Orange–Purple 46.3◦ 46.3◦ 45.4◦ 44.2◦

A.12 Relaxation simulations for twisted bilayer

graphene

A.12.1 Reconstruction model

To enable band structure calculations considering the effects of AA and AB recon-
struction separately, a simple parameterized model was developed. AA reconstruction
was modelled by a 2D Gaussian rotation field centred on each AA region. AB recon-
struction was modelled by including a constant rotation field within each triangular
AB domain. The AB domain edges were drawn at a buffer distance bAB from the lines
connecting two AA regions, and the edges were then smoothed by a Gaussian filter.
Consequently, the AB reconstruction rotation is constant within the centre of the AB
domain and tapers off near the edges, matching our experimental observations. The
reconstruction parameters used for the band structure calculations are given in Table
A.2. Note that the maximum applied rotation angle in the individual AA and AB
domains (αAA and αAB) are not mathematically the same as the fixed-body rotation
of the sample in the AA and AB regions (θAA

R and θAB
R ), owing to the overlap between

rotation fields centred on multiple AA and AB domains within this model. Recon-
struction parameters were chosen to give a good match to the sample geometry and
θAA
R , θAB

R values within the constraints of the model.

A.12.2 Band structures of relaxed TBL-Gr from a continuum
model

For evaluation of the interlayer electronic tunnelling functions, we use a tight-binding
model extracted from DFT calculations70. We follow an electronic continuum model
prescription264, updated to allow for atomic relaxations. The relaxations are included
by evaluating the Fourier transform of the interlayer tight-binding coupling at the
relaxed configurations, t̃(b+u(b)), instead of the bare configurations, t̃(b) (see below).
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Table A.2: Parameters used in the simplified TBL-Gr reconstruction model. Here
αAA and αAB give the applied rotation field centered on each individual AA or AB
domain, σAA and σAB give the Gaussian standard deviations for AA rotation decay
and the AB smoothing kernel, and bAB gives the buffer distance for defining the AB
rotation field area.

θm(◦) αAA(
◦) αAB(

◦) σAA (Å) σAB (Å) bAB (Å)

1.15 0.65 -0.20 45 15 10
0.50 0.65 -0.35 50 25 15
0.30 0.85 -0.30 50 25 15

The continuum model for the band structure of TBL-Gr71 can be extended to in-
clude arbitrary relaxations158,159. The central idea is to extract the effective interlayer
scattering terms between momenta qi and qj, usually notated as Tij, by Fourier trans-
forming the interlayer orbital-to-orbital couplings, t(b), where b is the configuration
(relative distance between the pairs of carbon atoms) and quickly falls to zero within
5 Å. Generally, the T matrices take the form:

Tij =

(
ω0e

iϕ11
ij ω1e

iϕ12
ij

ω1e
iϕ21

ij ω0e
iϕ22

ij

)
(A.29)

Here, the phases ϕmn
ij depend on the position of the orbitals and the choice of

origin, and the ω0 ≡ ωAA and ω1 ≡ ωAB correspond to the effective interlayer cou-
pling strength between similar and dissimilar orbitals of opposite layers, respectively.
Relaxations, defined by a vector field u for interlayer relaxation, modify the rela-
tive displacement of each pair of atoms, and so we need to consider the transform
of the object t(b + u(b)). For simplicity, we ignore out-of-plane corrugations of the
two lattices, and consider only local rotations around AA and AB stacking sites as
discussed in the Reconstruction Model section (Section A.9). We also ignore in-plane
corrections to the Hamiltonian caused by modifications to the (intralayer) couplings
of monolayer graphene under shearing strain. These corrections require in-plane mo-
mentum scattering based on the Fourier coefficients of the relaxation pattern and, for
the assumptions of Gaussian rotations, do not take simple analytic forms.

Fig. 2.17a–c shows the band structures under various relaxation assumptions. The
effective interlayer coupling terms (ωAA, ωAB) are provided in Table A.3. Note that
this model has not been explicitly symmetrized, and so some erroneous gaps of order
2 meV are present due to symmetry-breaking errors introduced during numerical
interpolation of the interlayer tunneling. These errors are most noticeable for the
0.35◦ band structure (Fig. 2.17a). The rigid lattice has no moiré superlattice gaps,
but including either the AA or AB relaxation assumption for θm = 1.15◦ opens up
gaps above and below the flat-band manifold (Fig. 2.17c). In general, inclusion of
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either assumption reduces ωAA and increases ωAB. At smaller angles, the AB rotation
plays a larger role than the AA rotation, while near the magic angle the opposite is
true.

Table A.3: Calculated interlayer coupling terms (in meV) for TBL-Gr at three values
of θm under four relaxation assumptions: no reconstruction, AA rotation alone, AB
rotation alone, and full reconstruction (AA and AB rotations).

No reconstruction AA rotation only AB rotation only Both rotations

θm(
◦) ωAA ωAB ωAA ωAB ωAA ωAB ωAA ωAB

0.35 88 88 73 93 45 95 27 95
0.50 88 88 67 95 63 95 39 97
1.15 88 88 78 92 84 90 74 94

A.12.3 Computation of interlayer tunneling functions

The values given in Table A.3 and for (ωAA, ωAB) are only approximate measures
of the effective interlayer electronic tunneling. For a momentum basis centered at
K0 = K1, the K-point of Layer 1’s (bottom layer) Brillouin zone, there are three
highest order scatterings to Layer 2, given by the three smallest values of K0 + G2,
where G2 is any reciprocal lattice vector of Layer 2. These couplings are given by
t̃(K0 +G2), and this is often the value taken to estimate ωAA and ωAB. The general
form of the tunneling is given by t̃(K0+G1+G2), where G1 is any reciprocal lattice of
Layer 1. As long as G1+G2 ≈ 0, the coupling stays near K0, but is now sampled in a
regular grid of the moiré reciprocal lattice. For rigid lattices, t̃ is smooth and non-zero
in the vicinity ofK0, and so the approximation t̃(K0+G1+G2) ≈ t̃(K0) ≡ ωAA = ωAB

is a fairly good choice71. However, for relaxed lattices, this assumption is not always
well justified158,159. The variation in t̃(k) can become quite severe near K0, and can
even be sampled right on a nodal point of the Fourier transform, as in the case of the
fully relaxed AA coupling at θm = 0.5◦, shown in Fig. 2.17b. For this reason, analysis
of the effective ω strengths at the magic-angle does not always generalize easily to
relaxed TBL-Gr at smaller angles. The interlayer tunneling functions for orbitals of
similar type (i.e., A-to-A and B-to-B) for three different twist angles are displayed
in Fig. A.17, A.19, and A.21 respectively. The interlayer tunneling functions for
orbitals of dissimilar type (i.e., A-to-B and B-to-A) are displayed in Fig. A.18, A.20,
and A.22.
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Figure A.14: Absolute values of the interlayer coupling for the fully relaxed TBL-
Gr model at θm = 1.15◦ (i.e., both AA and AB centred rotations included). Top
panels present the real space interlayer coupling after full relaxation, while bottom
panels display their Fourier transform. The black “×” marks indicate the relevant
scattering momenta, K0+G, where K0 is the momentum corresponding to the valley
we are expanding around and G is the reciprocal lattice of untwisted graphene. Left
panels show couplings between similar orbitals (A–A, or ωo), while right panels show
couplings between dissimilar orbitals (A–B, or ω1).
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Figure A.15: Absolute values of the interlayer coupling for the fully relaxed TBL-
Gr model at θm = 0.5◦ (i.e., both AA and AB centred rotations included). Top
panels present the real space interlayer coupling after full relaxation, while bottom
panels display their Fourier transform. The black “×” marks indicate the relevant
scattering momenta, K0+G, where K0 is the momentum corresponding to the valley
we are expanding around and G is the reciprocal lattice of untwisted graphene. Left
panels show couplings between similar orbitals (A–A, or ωo), while right panels show
couplings between dissimilar orbitals (A–B, or ω1).
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Figure A.16: Absolute values of the interlayer coupling for the fully relaxed TBL-
Gr model at θm = 0.35◦ (i.e., both AA and AB centred rotations included). Top
panels present the real space interlayer coupling after full relaxation, while bottom
panels display their Fourier transform. The black “×” marks indicate the relevant
scattering momenta, K0+G, where K0 is the momentum corresponding to the valley
we are expanding around and G is the reciprocal lattice of untwisted graphene. Left
panels show couplings between similar orbitals (A–A, or ωo), while right panels show
couplings between dissimilar orbitals (A–B, or ω1).
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Figure A.17: Absolute value of interlayer A-to-A and B-to-B (ω0) scattering be-
tween the layers (in momentum space) for TBL-Gr at θm = 1.15◦ for all four possible
relaxation assumptions. The black “×” marks indicate the momenta which all rele-
vant scatterings are near, K0 +G.
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Figure A.18: Absolute value of interlayer A-to-B and B-to-A (ω1) scattering be-
tween the layers (in momentum space) for TBL-Gr at θm = 1.15◦ for all four possible
relaxation assumptions. The black “×” marks indicate the momenta which all rele-
vant scatterings are near, K0 +G.
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Figure A.19: Absolute value of interlayer A-to-A and B-to-B (ω0) scattering be-
tween the layers (in momentum space) for TBL-Gr at θm = 0.5◦ for all four possible
relaxation assumptions. The black “×” marks indicate the momenta which all rele-
vant scatterings are near, K0 +G.
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Figure A.20: Absolute value of interlayer A-to-B and B-to-A (ω1) scattering be-
tween the layers (in momentum space) for TBL-Gr at θm = 0.5◦ for all four possible
relaxation assumptions. The black “×” marks indicate the momenta which all rele-
vant scatterings are near, K0 +G.
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Figure A.21: Absolute value of interlayer A-to-A and B-to-B (ω0) scattering be-
tween the layers (in momentum space) for TBL-Gr at θm = 0.35◦ for all four possible
relaxation assumptions. The black “×” marks indicate the momenta which all rele-
vant scatterings are near, K0 +G.
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Figure A.22: Absolute value of interlayer A-to-B and B-to-A (ω1) scattering be-
tween the layers (in momentum space) for TBL-Gr at θm = 0.35◦ for all four possible
relaxation assumptions. The black “×” marks indicate the momenta which all rele-
vant scatterings are near, K0 +G.
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A.12.4 Definition of βω0
and βω1

In Fig. 2.17d, we presented variables βω0 and βω1 as the value of a relative ”angle”

between interlayer couplings (t̃(k⃗)) for θAA and θAB rotations only versus the fully
relaxed interlayer coupling. This is defined by introducing a generalized inner-product
between two different complex interlayer tunneling functionals, f(k⃗) and g(k⃗):

⟨f, g⟩ =
∫
dk⃗f ∗(k⃗)g(k⃗). (A.30)

The relative angle between two interlayer tunneling functionals is then given by:

βfg = cos−1

(
Re (⟨f, g⟩)√
⟨f, f⟩⟨g, g⟩

)
. (A.31)

We define βω0 ≡ βt̃µAA t̃fAA
and βω1 ≡ βt̃µAB t̃fAB

, with t̃µij the interlayer coupling between

orbitals i and j relaxation indexed by µ for θAA or θAB rotation only, and t̃fij the
coupling for the full relaxation model with both rotations.

A.12.5 Finite element relaxation of TBL-Gr

The finite-element relaxation method uses a generalized stacking fault energy (GSFE)
and elastic moduli for bilayer graphene, both of which are extracted from previous
Density Functional Theory (DFT) calculations180,265. The elastic relaxation model
consists of an elastic energy term, capturing the strain energy of each layer, and
a GSFE term, capturing the variations in interlayer binding energy (see below). To
allow for the evaluation of the relaxation for real space superlattices with heterostrain,
we impose an initial spatially-dependent interlayer displacement b0(r) that includes
both rotation and shear. The total energy is then minimized by optimizing the
interlayer relaxation field u⃗(r). The initial constant shear in b0 is added to the
gradients of u in the evaluation of the elastic energy. This allows for the optimization
of the periodic function u, instead of having to explicitly encode the twisted boundary
conditions of the moiré superlattice.

The planar relaxation of twisted 2D bilayers can be well captured by finite-element
approaches with parameters extracted from DFT180,265. The relative displacement
between the layers is given by a spatially-varying interlayer displacement, which will
be a sum of an initial displacement b0(r) and a relaxation field u(r). The moiré
supercell is defined by a pair of lattice vectors, which are columns of the 2×2 matrix:

Asc =

(
m sin(β/2) −n sin(β/2)
m cos(β/2) n cos(β/2)

)
(A.32)

where β is the interior angle of the moiré supercell and m,n are the side lengths of
the cell (β = 60◦ and m = n in the absence of heterostrain). The initial displacement
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between the layers is given by the vector field:

b0(r) = AucA
−1
sc r (A.33)

where Auc is the 2× 2 matrix representing the unit cell of monolayer graphene:

Auc = l/2

(
3 3

−
√
3

√
3

)
(A.34)

where l = 1.42 Å, the nearest-neighbor bonding distance of graphene. The relative
orientations of Asc and Auc ensure that the initial configuration is uniformly dis-
tributed over the supercell, and the shape of the supercell (e.g. the side lengths and
angle β) determines the initial twist angle and heterostrain for the simulation. It also
allows us to introduce a relaxation field that is periodic with respect to the moiré su-
percell as the twisted boundary condition is entirely captured by b0, allowing for the
derivatives of the relaxation field to be evaluated via its Fourier components, instead
of finite-element derivative stencils.

We assume the two layers share the displacement equally, e.g. u1(r) = −u2(r) =
u(r)/2. The elastic (”kinetic”) energy, related to in-plane deformation of a single
layer, is given by:

Eintra(u) =
1

2

∫
K

(
∂ux
∂x

+
∂uy
∂y

)2

+G

[(
∂ux
∂x

− ∂uy
∂y

)2

+

(
∂ux
∂y

+
∂uy
∂x

)2
]
dr

(A.35)
with [K,G] = [69.518, 47.352] eV per unit cell area of graphene180.

To define the interlayer binding energy between the graphene layers, we employ
a generalized stacking fault energy function (VGSFE(b)) which represents the relative
energy of each stacking configuration, as extracted from DFT calculations265. To
respect the symmetries of graphene, we expand VGSFE in terms of its three lowest
even Fourier components180:

VGSFE(b) = c0 + c1(cos v + cosw + cos(v + w))

+ c2(cos(v + 2w) + cos(v − w) + cos(2v + w))

+ c3(cos(2v) + cos(2w) + cos(2v + 2w))

(A.36)

where (
v
w

)
= 2πA−1

uc

(
bx
by

)
(A.37)

and [c0, c1, c2, c3] = [6.832, 4.064,−0.374,−0.095] meV per unit cell area265. The total
interlayer (”potential”) energy is then given by:
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Einter(b) =

∫
VGSFE(b(r))dr (A.38)

To find the relaxed geometry, we initialize the relaxation field u(r) = 0, and then
minimize

E = 2Eintra((b0 + u)/2) + Einter(b0 + u). (A.39)

Here we have used the assumption that the two layers have identical relaxations,
and thus identical strain energy. During entry to Eintra, the gradients of u are evalu-
ated in the Fourier basis and then added to the gradients of b0 (which are constant
throughout the supercell). After optimizing u, the interlayer displacement is given
by uinter = b0 + u, and the effective strain (γmax) is easily extracted.

Figure A.23: Finite-element-relaxed maximum shear strain (γmax) maps for a, θm =
0.14◦, εH = 0.31% and b, θm = 0.63◦, εH = 0.45%.

A.13 Relaxation simulations for TMD moiré

bilayers

A.13.1 Density functional theory

In order to model the atomic relaxation vector fields u of the moiré bilayers via
a continuum elasticity model, three pieces of information are necessary. These are
the crystal lattice parameter a, the bulk and shear strain moduli K and G, and
the stacking-dependent interfacial energy between pairs of layers which is called the
generalized stacking fault energy (GSFE) given by VGSFE(u). For all layers’ strain
moduli, and the VGSFE of MoS2, we use previously computed values from DFT119,180.

For the modeling of the MoS2/WSe2 heterointerface, new DFT calculations were
needed. We used the Vienna ab initio Simulation package (VASP)266, and performed
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slab calculations of the monolayer and heterolayer with a vertical (c) axis of 30 Å to
prevent interaction between periodic images. The electronic structure was optimized
on a Γ-centered k-grid of size 21×21×1, the energy cutoff was set to 500 eV, and the
energy smearing was set to 50 meV. The meta-GGA functional SCAN+rVV10267 was
used alongside the PAW-PBE pseudo potentials for all atoms268. To obtain the VGSFE,
the stacking configurations between the two layers were sampled over a 9× 9 grid of
the unit-cell. Each of these 36 heterolayer calculations fixed the in-plane location of all
atoms, but allowed the vertical positions to relax via a conjugate gradient algorithm.
The five lowest harmonic modes of the VGSFE were then extracted, following the
formula

VGSFE(v, w) =

c0 + c1(cos v + cosw + cos(v + w))

+ c2(cos(v + 2w) + cos(v − w) + cos(2v + w))

+ c3(cos(2v) + cos(2w) + cos(2v + 2w))

+ c4(sin v + sinw − sin(v + w))

+ c5(sin(2v + w2)− sin(2v)− sin(2w))

(A.40)

which uses normalized stacking-parameters (v, w) which are given by the transforma-
tion (

v
w

)
= 2πA−1

1

(
bx
by

)
(A.41)

for b = (bx, by) the stacking configuration of the top layer and A1 the matrix composed
of the lattice vectors of the bottom layer. For both the P (e.g. near 0◦ alignment)
and AP (e.g. near 60◦ alignment) of the MoS2/WSe2 VGSFE, b = 0 was defined as
the highest energy stacking point. For the P configuration, b = 0 corresponds to
where both the metals and chalcogenides are vertically aligned. The lowest energy
stacking (which occurs when v = w = 2π/3) corresponds to where the S and W atoms
are vertically aligned. For the AP configuration, b = 0 corresponds to where the S
and Se atoms are vertically aligned. The lowest energy stacking (which occurs when
v = w = 4π/3) corresponds to where the Mo and Se atoms (also, W and S atoms) are
vertically aligned. The coefficients for the VGSFE are given in Table A.5 and those
which generate the configuration-dependent equilibrium interlayer distance are given
in Table A.6.
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Table A.4: Monolayer parameters extracted from DFT119,180. The lattice parameter
a is given in units of AA, and the shear moduli K and G are given in units of eV.

Material a K G

MoS2 3.17 49.866 31.548
WSe2 3.28 43.113 30.770

Table A.5: Coefficients for VGSFE (Eq. A.40) for the four interfaces modeled in this
work. All values are given in units of meV per unit-cell of MoS2.

Interface c0 c1 c2 c3 c4 c5

P-MoS2/MoS2 27.332 14.020 -2.542 -0.884 0.000 0.000
AP-MoS2/MoS2 30.423 12.322 -2.077 -0.783 2.397 0.259
P-MoS2/WSe2 32.967 13.888 -3.281 -0.748 -1.139 -0.175
AP-MoS2/WSe2 37.233 12.317 -2.691 -0.234 3.535 0.712

Table A.6: Coefficients for the configuration-dependence of the interlayer distance
between metal atoms (using same form as Eq. A.40) for the two heterointerfaces, in
units of Å.

Interface c0 c1 c2 c3 c4 c5

P-MoS2/WSe2 6.561 0.133 0.001 -0.012 -0.001 -0.002
AP-MoS2/WSe2 6.558 0.115 -0.002 -0.019 -0.011 -0.013
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Figure A.24: Generalized stacking fault energies, VGSFE, as given in Table A.5
plotted as a function of a normalized stacking parameter v = w. High symmetry
stacking configurations are labeled.

A.13.2 Continuum elasticity model

The atomic relaxation of two layers is assumed to be smooth and periodic on the
superlattice of the given moiré pattern. It is modeled by two vector fields, u1(r) for
the bottom layer and u2(r) for the top layer, and where r is the location in the moiré
pattern. Note that one can also perform this two-layer relaxation problem in the
configuration basis, e.g. replace r with a pre-relaxation stacking reference b0, which
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is the relative stacking configuration of layer 2 relative to layer 1 before any atomic
relaxations occur (ul = 0). For systems with only one unique moiré interface, these
two approaches are identical, and are related by the linear map which transforms r
to b0:

b0(r) = A1A
−1
sc r (A.42)

where A1 is the 2× 2 matrix consisting of the unit-cell lattice vectors of the bottom
layer, and Asc are the lattice vectors of the moiré superlattice.

In fact, the optimization problem for a given collection of twist angles and het-
erostrain values is completely specified by just the moiré superlattice Asc (and its
angle relative to the unit-cell A1). For clarity, we define the A1 unit cell as:

A1 = a1

(√
3/2

√
3/2

−1/2 1/2

)
(A.43)

where the primitive lattice vectors are given by the columns of A1. For a unit cell
A2 defined relative to A1 by a isotropic heterostrain (e.g. lattice constant difference)
of α, a counter-clockwise twist of θ, and a shear heterostrain of magnitude β at an
angle ϕ from the A1 unit-cell, Asc is given by:

Asc = (SR− I)−1A1,

R =

(
cos θ sin θ
− sin θ cos θ

)
,

S =

(
1 + α + β1 β2

β2 1 + α− β1

)
,

β1 = (β/2) cos(2ϕ+ π/6− θ/2),

β2 = (β/2) sin(2ϕ+ π/6− θ/2),

(A.44)

with I the 2× 2 identity matrix.
For the MoS2 bilayers, we impose a relaxation symmetry assumption that u2(r) =

−u1(r). That is to say, the relaxation of the two layers is equal and opposite at a given
configuration, which ensures the effective change in the stacking, ∆u = u2 − u1, is
evenly split between the two layers to minimize the strain energy. For the MoS2/WSe2
heterobilayer, we minimize both u1 and u2 independently, as the two layers do not
have the same strain moduli.

The total energy is composed of two parts180, the elastic strain of each layer and
the interfacial energy between them:

E = Estrain + EGSFE,

Estrain =
2∑

l=1

∫
dr

1

2
E(∇ul(r))ClE(∇ul(r)),

EGSFE =

∫
drVGSFE (b0(r) + u2(r)− u1(r)) .

(A.45)
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with Cl the rank-4 stiffness tensor (consisting ofKl andGl), and E(M) = (M+MT )/2.
This energy functional and its analytic gradient are implemented as functions which
act on an N ×N grid-sampling ul over Asc, with N = 32. The ul are then optimized
via the Julia OPTIM package269, using the quasi-Newton solver L-BFGS.

Results for the MoS2 moiré bilayer relaxations are shown in Fig. A.25–27. The
reconstruction rotation maps and shear strain fields in Fig. A.25. align well with
the experimental maps provided in Fig. 3.5 and 3.6 (Chapter 3). Fig. A.26 and
A.27 demonstrate the effects of introducing a large heterostrain for P and AP moiré
homobilayers, respectively. Similar to the data provided in Fig. 3.14 and 3.15, we
observe that local rotations still dominate the reconstruction process when heteros-
train is applied. Qualitative differences between the shear strain distributions in the
simulated and experimental data can be attributed to differences in the direction
of the applied heterostrain; in the simulations, heterostrain was applied at precisely
90◦(Fig. A.26d–f and A.27d–f) or 0◦(Fig. A.26g–i and A.27g–i) relative to the moiré
unit cell, whereas the experimental data sets have a heterostrain angle that deviates
from these values.
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Figure A.25: Simulated maps of local reconstruction rotation (θR) and shear strain
(γmax) for (a,b,) P and (c–f,) AP MoS2 moiré homobilayers. θm and ϵ indicate the
moiré twist angle and heterostrain magnitude, respectively.
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Figure A.26: Simulated maps of local reconstruction rotation (θR), shear strain
(γmax), and dilation (Dil) for P MoS2 moiré homobilayers with varying amounts and
directions of applied uniaxial heterostrain. θm and ϵ indicate the moiré twist angle
and heterostrain magnitude, respectively. Maps are shown for cases of (a–c,) no
heterostrain, (d–f,) heterostrain applied at 90◦ relative to the moiré, and (g–i,)
heterostrain applied at 0◦ relative to the moiré.



APPENDIX A. SUPPLEMENTARY INFORMATION 178

Figure A.27: Simulated maps of local reconstruction rotation (θR), shear strain
(γmax), and dilation (Dil) for AP MoS2 moiré homobilayers with varying amounts
and directions of applied uniaxial heterostrain. θm and ϵ indicate the moiré twist
angle and heterostrain magnitude, respectively. Maps are shown for cases of (a–c,)
no heterostrain, (d–f,) heterostrain applied at 90◦ relative to the moiré, and (g–i,)
heterostrain applied at 0◦ relative to the moiré.
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Relaxation simulations for the MoS2/WSe2 heterobilayers are shown in Fig. A.28–30.
Since we extract values for interlayer displacement with the Bragg interferometry
method, the experimental dilation and rotation values in Fig. 3.10–12 in Chapter 3
represent net values for the two TMDs in the heterobilayer. However, in contrast,
the simulated results distinguish between the relaxation in layer 1 (MoS2) and layer
2 (WSe2) (Fig. A.28 and A.29). Based on the simulations, we find that the physical
deformations from the relaxation process are partitioned nearly equally between the
two layers, with relaxation in the WSe2 layer being only 13% stronger than in the
MoS2 layer. To compare directly between the experimental and simulated results, we
calculate the net local dilation and reconstruction rotation as Dilnet = Dillayer2 −
Dillayer1 and θR,net = θR,layer2 − θR,layer1 (Fig. A.30). Consistent with our measure-
ments, the simulations indicate that a combination of reconstruction dilations and
rotations are present when the interlayer twist angle is sufficiently large. The fact
that there are periodic reconstruction rotations in the simulated P heterobilayer with
a non-zero twist but not in our experimental data (Fig. 3.10i) may be attributed to
the difference in twist angle between the two (1.2◦sim vs 0.80◦exp), indicating that the
threshold for rotational reconstruction is above 0.80◦, or to additional out-of-plane
corrugations in the sample, as discussed in Chapter 3, Section 6.

Figure A.28: Simulated maps of local dilation (Dil) and reconstruction rotation (θR)
within each layer of a P MoS2/WSe2 heterobilayer using a lattice constant percent
difference (δ) of 3.35% and a moiré twist angle of (a–d,) 0◦ and (e–h,) 1.2◦.
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Figure A.29: Simulated maps of local dilation (Dil) and reconstruction rotation
(θR) within each layer of an AP MoS2/WSe2 heterobilayer using a lattice constant
percent difference (δ) of 3.35% and a moiré twist angle of (a–d) 0◦ and (e–h) 1.2◦.

Figure A.30: Simulated maps of the net local dilation (Dil) and reconstruction
rotation (θR) in (a–d,) P and (e–h,) AP MoS2/WSe2 heterobilayers. θm and δ
indicate the moiré twist angle and lattice constant percent difference, respectively.
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A.14 Effect of corrugations on volumetric strain

Figure A.31: Single layer displacement along the z -axis as a function of normalized
stacking parameter for a P (left) and AP (right) moiré heterobilayer, excluding any
in-plane relaxation.

To predict the relative effect of corrugations on the measured dilations, we use
the interlayer distance functionals provided in Ref. [20] for MoS2 and in Appendix,
Section 13 for MoS2/WSe2. In both cases, we observe that the single layer displace-
ment along the z-axis (utopz , Fig. A.31) varies on the order of 0.3Å (resulting in a total
interlayer distance of 0.6Å, similar to previously reported values21,22) and has extrema
at MX and MMXX regions (or MM and XX for AP bilayers). From the MoS2/WSe2
interlayer distance functional, we find that the steepest dependence of utopz on the
in-plane displacement is ∂utopz /∂utopx ≈ 0.51 and occurs when the normalized stacking
parameter (see Appendix, Section 13) is around 5.3 for P MoS2/WSe2. The z-axis
displacement will then vary with probe location r = (x, y) through this dependence
on in-plane displacement. We then expand to first order about the location of interest
r0 where v = 5.3. Assuming the moiré is controlled only by lattice mismatch such
that ∂utopx /∂y = ∂utopy /∂x = 0, this results in the following.

utopz (r) ≈ utopz (r0) +
∂utopz

∂utopy

∂utopy

∂y
∆y +

∂utopz

∂utopx

∂utopx

∂x
∆x (A.46)

Around this location where out of plane displacements are expected to be greatest,
local in-plane variations in utop that correspond to a volumetric strain along the x-axis
of ∂utopx /∂x will be accompanied by variations in utopz up to roughly half as large for
P MoS2/WSe2. We can then define the effective lattice compression along the x-axis
between the two layers associated with this change in height such that the intralayer
displacement magnitude in the xz plane |utop|xz is related to its in-plane projection
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utopx via |utop|xz = (1− δcorx /2)utopx . An analagous analysis can be carried out to obtain
the effective compression along the y-axis δcory expected to be on the same order of
magnitude.

δcorx /2 = 1−

(
1 +

(
∂utopz

∂utopx

)2
)−1/2

(A.47)

This corrugation-driven apparent lattice compression will decrease the effective inter-
layer lattice mismatch, δ = 1 − aS/aL (where aS and aL are the smaller and larger
lattice constants respectively), by a factor of 1 − (δcorx + δcory )/2, particularly in re-
gions where the optimal interlayer height is most sensitive to stacking order. These
compressions are therefore only expected in the narrow boundaries between XX and
XMMX or MM regions for AP bilayers (or between MMXX and MX/XM stacking
regions in P bilayers) as seen in Fig. 3.13b for the AP case. Measured dilations with
a magnitude that is greater than the computed values suggest in-plane volumetric
deformations in the underlying atomic lattices.

We note that this result is due to the fact that the dilation is measured in the
sample with respect to a fixed rigid lattice constant. The corrugation-driven lattice
compression will not change the percent lattice mismatch δ when both layers are as-
sumed to deform by the same percent. This is because the corrugation will effectively
compress both aL and aS by the same factor (1− (δcorx + δcory )/2 ) leaving the lattice
mismatch (δ = 1 − aS/aL) and any strain measured relative to (δcorx + δcory )/2)aL
unchanged. However since we measure strain relative to a uniform aL reference, this
effect leads to an apparent decrease in the displacement magnitudes within corrugated
regions, manifesting in a smaller divergence and a perceived negative dilation.

A.15 Dark-field TEM imaging of twisted trilayer

devices

All of the twisted WSe2 trilayers studied in Chapter 4 were encapsulated between
sheets of hBN and graphite to form functional devices. To view the WSe2 moiré
structure without influence from these colocalized hBN and graphite sheets, we per-
formed transmission electron microscopy in dark-field mode (DF-TEM). To do so, we
first viewed the selected area electron diffraction (SAED) pattern. We then placed
a small objective aperture around a WSe2 Bragg peak of interest in the back focal
plane of the microscope and acquired the DF image using the electrons diffracted at
that small range of angles. Example SAED patterns and DF-TEM images collected
using various WSe2 Bragg peaks are provided in Fig. A.32–34.

For 2D materials, Bragg peak intensities are sensitive to multiple factors including
the local stacking order between layers and the sample tilt.113,202 Both of these factors
contribute to the observed contrast between domains within each DF-TEM image.
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Variations in sample tilts, in particular, can lead to different stacking domain contrasts
between different samples, as seen when comparing the images for the AtA′ samples
in Fig. A.32 and A.33.

Figure A.32: a, Selected area electron diffraction pattern for AtA′ WSe2 twisted
trilayer (Device 2). WSe2 Bragg peaks used for DF-TEM imaging are labeled with
green numbers/arrows. b, Corresponding DF-TEM images at zero field.

Figure A.33: a, Selected area electron diffraction pattern for AtA′ WSe2 twisted
trilayer with slight heterostrain between the top and bottom layers (Device 3). WSe2
Bragg peaks used for DF-TEM imaging are labeled with green numbers/arrows. b,
Corresponding DF-TEM images at zero field.
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Figure A.34: a, Selected area electron diffraction pattern for tAB′ WSe2 twisted
trilayer (Device 4). WSe2 Bragg peaks used for DF-TEM imaging are labeled with
green numbers/arrows. b, Corresponding DF-TEM images at zero field.

A.16 Effects of sample tilt on Bragg disk

intensities

Since sample tilt affects the measured Bragg disk intensities, regions used for 4D-
STEM imaging were aligned onto the [0001] zone axis prior to data acquisition. We
note that the experimental CBED patterns for the tAB’ sample (Fig. 4.6e, f) do show
a slight asymmetry in Bragg disk intensities, indicating that a small tilt was present
in that sample when the 4D-STEM data pictured in Fig. 4.7d was collected. To as-
sess the effect of this tilt on the subsequent stacking order assignment, we performed
multislice simulations on several high-symmetry trilayer structures with various sam-
ple tilts (0–5◦ along the x - and y-axes). The resulting CBED patterns are shown
in Fig. A.35a–d and A.36a–d. We then calculated the normalized cumulative first-
and second-order Bragg disk intensities from these simulated patterns and plotted
the results according to the bivariate color scheme used in Fig. 4.7b, as shown in Fig.
A.35e and A.36e). From these results, it is evident that although sample tilt does
have an effect on Bragg disk intensity across the full tilt range sampled, the effects
are most dramatic when there is a tilt that exceeds 2◦. Meanwhile, after normal-
ization, the relative Bragg disk intensities and corresponding pixel color assignments
for the sampled stacking orders are very similar for tilts in the 0–2◦ range. Based
on comparison of the experimental CBED patterns for this sample (Fig. 4.6e, f) to
these simulated patterns, we estimate that the tilt in this sample was < 2◦ during
4D-STEM imaging and therefore does not impact the assignment of stacking order
and identification of polar domains in the sample.
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Figure A.35: a–d, Simulated CBED patterns for a series of high-symmetry stacking
configurations with a sample tilt of 0–5◦ along the x -axis. e, Corresponding bivariate
color legends relating pixel color to the normalized cumulative first and second order
Bragg disk intensities (ΣI⟨1010⟩ and ΣI⟨1210⟩), as determined from the CBED patterns
in a–d.
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Figure A.36: a–d, Simulated CBED patterns for a series of high-symmetry stacking
configurations with a sample tilt of 0–5◦ along the y-axis. e, Corresponding bivariate
color legends relating pixel color to the normalized cumulative first and second order
Bragg disk intensities (ΣI⟨1010⟩ and ΣI⟨1210⟩), as determined from the CBED patterns
in a–d.




