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Neoclassical physics in full distribution function gyrokinetics

G. Dif-Pradalier,1,a) P. H. Diamond,1,b) V. Grandgirard,2 Y. Sarazin,2 J. Abiteboul,2

X. Garbet,2 Ph. Ghendrih,2 G. Latu,2 A. Strugarek,2 S. Ku,3 and C. S. Chang3,c)
1Center for Astrophysics and Space Sciences, UCSD, La Jolla, California 92093, USA and Center
for Momentum Transport and Flow Organisation, UCSD, La Jolla, California 92093, USA
2CEA, IRFM, Saint-Paul-lez-Durance, F-13108, France
3Courant Institute of Mathematical Sciences, New York University, New York 10012, USA

(Received 3 March 2011; accepted 2 May 2011; published online 30 June 2011)

Treatment of binary Coulomb collisions when the full gyrokinetic distribution function is evolved
is discussed here. A spectrum of different collision operators is presented, differing through both
the physics that can be addressed and the numerics they are based on. Eulerian-like (semi-
Lagrangian) and particle in cell (PIC) (Monte-Carlo) schemes are successfully cross-compared,
and a detailed confrontation to neoclassical theory is shown.VC 2011 American Institute of Physics.
[doi:10.1063/1.3592652]

I. INTRODUCTION

From a thermodynamics standpoint, a tokamak plasma
is best understood as an open system, exchanging heat, mat-
ter, and momentum with its environment. Therefore, given
both a distribution of sources and sinks and evolution laws
for the plasma internal dynamics, one of the more central
questions one may ask translates as “What will an attracting
fixed point for the dynamics look like?” Mounting evidences
suggest that the ability to describe self-organisation at meso-
scales and larger is the key to answering the latter question
and certainly represents a new challenging problem for
gyrokinetics.

Beyond its academic interest, this question has impor-
tant practical consequences on our understanding of flow
organisation,1 of the hierarchy of shears,2 and of the nature
of transport itself. These facts have been emphasised both
theoretically: through the description of avalanching and
spreading,3–9 through the characterisation of nonlocal, non-
diffusive behaviour1,10–12 and experimentally through some
yet-to-be-understood experimental jigsaws: deep inconsis-
tencies with a (fixed gradient) local and diffusive modeling
have indeed been reported in perturbative (either hot or cold
pulse) experiments,13–17 off-axis heating experiments,19,20 or
whilst reporting Bohm-like scalings of the energy confine-
ment time.18

An accurate description of such dynamics requires the
simultaneous and self-consistent treatment of the full gyroki-
netic distribution function (full–f modeling), in full-torus
(global) tokamak geometry and for a prescribed distribution
of sources and sinks (flux-driven description). The first two
allow for a self-consistent interplay of the dynamics at all
scales, from the quickly evolving microscale of the turbu-
lence to the slow macroscale evolution of neoclassical (NC)

(collisional) processes and of the background profiles, while
the latter allows for a realistic description of the fuelling and
sustainment processes within the plasma.

This paper focuses on a subset of this global picture and
aims at discussing collisional processes within a full–f gyro-
kinetic formalism.21 NC theory22 was earlier coined to
describe the effects of binary Coulomb collisions in an inho-
mogeneous toroidal magnetic field. Though hot plasmas are
usually very weakly collisional and transport in tokamaks is
rarely neoclassical—it is dominantly turbulent, an accurate
accounting of collisional processes is nonetheless of major
importance for modeling activities:

1. Collisions provide an ever-existing background cross-field
transport mechanism, important in cases where the turbu-
lence is quenched or strongly reduced, as happens close to
marginality (for weak drives of the turbulence), in transport
barrier regimes (pedestal region in H-mode, gradient region
in Internal Transport Barriers) or in stellarators.

2. The inclusion of collisional processes is indispensable to
realising a statistical steady-turbulent state whilst satisfy-
ing an H–theorem;21 on more practical grounds, the dissi-
pation of the short-scale structures in velocity space23,24

is also beneficial for improving numerical stability.
3. The so-called zonal and mean flows,25 well known to sur-

vive the collisionless linear Landau damping process,26 are
damped through collisions alone27 in the linear regime.
The fundamental importance of such sheared E! B flows
for an accurate prediction of the level of transport has long
been emphasised; neoclassical processes, through shear
flow regulation, may thus participate in the saturation of
the turbulence and in the plasma dynamics.2,28–30

4. An increasing number of experimental observations31–35

insists on the central role of plasma rotation (toroidal and
poloidal) for the onset and control of enhanced confine-
ment regimes and often report strong departures of poloidal
rotation from its oft-expected neoclassical prediction—
possibly due to the turbulence2,36,37—either before, at, or
enduring past the transition to an enhanced confinement
state.
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5. Collisions at last contribute to define the long-time statis-
tical equilibrium whilst providing, as well-known, an
effective return force “towards Maxwellianity”.

This latter point has important practical implications for
a newer generation of gyrokinetic codes which resolve the
full distribution function,38–44 amongst which the GYSELA

38

and XGC145 codes featured here. Self-consistent evolution
of the distribution function is key to these models. The long-
time equilibrium distribution function for the collisional
gyrokinetic system is non-trivial, is not tied to an initial—of-
ten Maxwellian—choice, and realises in practice a compro-
mise between a Maxwellian and an arbitrary function of the
motion invariants.46–48

Two appreciably different choices of collision operators
allowing to carefully compute neoclassical processes for the
full distribution function in global magnetic geometry and
with comparable precision are now presented; one best
suited for Eulerian or semi-Lagrangian numerical schemes
(implemented in GYSELA), the other one for Monte-Carlo
processes and particle-in-cell (PIC) schemes (implemented
in XGC1). This study also provides a successful cross-vali-
dation of both codes, especially interesting before moving to
the more physically relevant open lands of turbulence and
neoclassical interplay2,49 for which a comprehensive theoret-
ical background is often found to be lacking.

The simulations reported here are thus performed below
the ion temperature gradient (ITG) linear instability thresh-
old, with no turbulence. The accurate computation of Cou-
lomb collisional processes in a hot plasma is notoriously
complex and has not been addressed in full–f modeling until
very recently.2,44,50,51 As well known, the concept alone of a
collision in such a medium is rather subtle, and since colli-
sions between particles depend on their relative velocities,
the overall collisional result is an integrated effect of non-
local interactions between particles of all velocities.

An efficient computation in the Eulerian-like structure of
the GYSELA code (Sec. II A) will greatly differ from a simi-
larly efficient computation in the PIC structure of the XGC1
code (Sec. II B). In each case, the collision operator is pre-
cisely tailored to the specific strengths and shortcomings of
each approach in terms of resolution methods, parallelisation
choices, etc. Model operators21 which allow to recover the
main neoclassical results whilst preserving some interesting
simplicity are thus especially attractive. The physical features
that can be modeled with each collision operator are thor-
oughly discussed in Sec. III. Quantitative confrontation to
conventional neoclassical predictions is presented throughout
Sec. IV. We especially show accurate recovery of the pre-
dicted neoclassical transport, the collisional zonal and mean
flow damping, and the aspect ratio dependence of poloidal
rotation, along with its reversal depending on the collisional-
ity regime.

II. COLLISION OPERATORS IN FULL—FGYROKINETICS

In both approaches, the radial electric field Er, the equi-
librium poloidal vh and toroidal vu flows, and the thermody-
namic forces—through evolution of the mean temperature

profile in turbulent regimes—are self-consistently evolved.
The electrostatic branches—slab, toroidal, and trapped
modes—of the ITG instability are modeled whilst solving
the coupled system of the collisional gyrokinetic equation

@!f

@t
þ vE!B þ vrB þ vcð Þ %r!f þ vkrk!f þ

dvk
dt

@vk
!f

¼ Sð!f Þ þ Cð!f Þ (1)

and quasi-neutrality equation

e

Te
/' h/i½ ) ' 1

neq
r? % mneq

eB2
r?/

h i

¼ 1

neq

ð ð 2pB*
k

m
dvkdl !f ' !f initð Þ (2)

Notations and further details on the system may be found in
Appendix. The electronic response is here assumed to be adi-
abatic: dne=neq ¼ e /' h/i½ )=TeðrÞ, where h/i +

Ð Ð
/;

dhdu=B %rh =
Ð Ð

dhdu=B %rh accounts for the magnetic
flux-surface average of the electric potential / which is ini-
tially a perturbation. The ion Larmor radius is qi, m is the
ion mass, !finit refers to the initial ion gyroaveraged distribu-
tion function, and vk is the velocity along the field lines.
Note that a further simplification of the problem is here con-
sidered since the effects of geometry (elongation and trian-
gularity) are not addressed in the current paper: the magnetic
surfaces are indeed nested, circular, and concentric.

Acknowledging that a tokamak is indeed an open system
which should be described on a statistical basis, sustainment
of a steady-turbulence state only occurs on the basis of com-
pensating for the decay of the plasma free energy (decay of
the mean pressure profile) with an externally imposed heat
flux coming from the environment, Sð!f Þ in Eq. (1). This “flux-
drive” capability51–55 allows for long-lived turbulent simula-
tions, from a collision time up to the energy confinement time,
with a statistically constant drive of the turbulence whilst self-
consistently describing the dynamics of the mean profiles. The
assumption of a “fixed background gradient” is thus relaxed.
This capability will not be used in the present paper; this
source term is thus set to zero for neoclassical simulations,
and the temperature is fixed at the boundaries. It becomes
central in simulations of turbulence and is further discussed in
a forthcoming paper.49 The last term in Eq. (1), the collision
operator Cð!f Þ, is now discussed for both approaches.

A. For Eulerian or semi-Lagrangian schemes

A generic energy and momentum-conserving collision
scheme has recently been derived21 and implemented56 in
GYSELA. It is especially well suited for Eulerian or semi-Lar-
angian numerical schemes in which the full distribution func-
tion f is evolved

Cðf Þ ¼ 1

B?
k
@vk B?

kDkfSM@vk
f

fSM

# $% &
; (3)

where fSM is the shifted Maxwellian fSM ¼ n=ð2pT=mÞ3=2
expð'E=TÞ, m is the ion mass, E is the energy E ¼ m
vk ' Vk
' (2

=2þ lB, and l is the adiabatic invariant. The
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conservation properties are ensured by constraining Dk to
depend on l only and defining the local fluid velocity Vk and
ion temperature T as follows:

pVk ¼
1

B?
k
@vk B?

kmvkDk

) ** +

vkDk
+ ,

' mv2kDk

D E 1

B?
k
@vk B?

kDk

) ** +

(4)

p T ¼ m2v2kDk

D E
Dk
+ ,

' mvkDk
+ ,2

(5)

where h% % %i ¼
Ð
B?
kdldvk!f % % % denotes the integral over ve-

locity space and

p ¼ 1

B?
k
@vk B?

kmvkDk

) ** +

Dk
+ ,

' mvkDk
+ , 1

B?
k
@vk B?

kDk

) ** +

(6)

The latter set of equations reduces to

Vk ¼
hDkvki
hDki

(7)

T ¼ m
hDk vk ' Vk

' (2i
hDki

(8)

in the case where B?
k ¼ B. Note that even though the colli-

sion operator [Eq. (3)] does depend on the energy, the
advection is only performed in the parallel direction. The
neoclassical equilibrium can indeed be accurately recov-
ered, as will be shown in Sec. IV, without a transverse
diffusion operator—an initially Maxwellian distribution
function in the transverse l direction closely remains
Maxwellian as time evolves due to the invariance of l, i.e.,
without involving derivatives with respect to parameter l.
This is especially useful in Eulerian or semi-Lagrangian-
based codes like GYSELA which are gridded on the gyrocen-
ter parallel velocity and adiabatic invariant, as compared
to more usual model operators using pitch angle and
energy variables. The parallelisation in GYSELA is per-
formed in the radial, poloidal, and l directions;57,58 since
the parallelisation over velocity space is here intrinsic, this
approach leads to a high numerical efficiency: each proces-
sor, or set of processors, has distinct values for l and can
thus perform the momentum and energy-conserving
collisions locally, i.e. without involving communications
between sets of processors.

Though the above operator Eqs. (3)–(6) is now of com-
mon use in GYSELA,56 we will here consider a slightly simpli-
fied collision scheme while relaxing the constraints Eqs. (4)
and (5)

Cðf Þ ¼ @vk D@vk f ' Vf
n o

; (9)

the operators D and V (see Fig. 1), respectively, modeling a
diffusion and a drag

D ¼ 3

ffiffiffi
p

p

2

v3T!
3=2

qR0
"?

UðvÞ ' GðvÞ
2v

(10)

V ¼ '
vk
v2T

D (11)

Here vT ¼ ðT=mÞ1=2 denotes the thermal velocity, q the
safety factor, R ¼ R0 þ r cos h the major radius, and ! ¼ r=R
the inverse aspect ratio. The ion–ion collision frequency

"ii ¼
4

ffiffiffi
p

p

3

n e4 logK

ð4p!0Þ2 m2 v3T
(12)

is expressed in terms of the dimensionless ion–ion collision-
ality parameter "?:

"? ¼
qR0

vT

"ii
!3=2

(13)

where !0 is the permittivity of free space, logK , 17 the
Coulomb logarithm, and n the ion density. Explicit expres-
sions for Eqs. (10) and (11) involve the error function U

UðvÞ ¼ 2ffiffiffi
p

p
ðv

0

e'x2dx (14)

U0ðvÞ ¼ 2ffiffiffi
p

p e'v2 (15)

and the Chandrasekhar function G

GðvÞ ¼ UðvÞ ' vU0ðvÞ
2v2

(16)

Relaxing the constraints Eqs. (4) and (5) practically means
when running a gyrokinetic code that Vk and T need not to
be calculated at each time step and updated back into the col-
lision scheme. Such an operator [Eq. (9)] thus introduces an
additional friction in the parallel direction. A collisional en-
tropy production rate can nonetheless still be computed21

which leads to a generalised force balance equation with a
vanishing ion toroidal velocity and otherwise correct values
of the neoclassical poloidal velocity, heat diffusivity, and
collisional damping of axisymmetric flows, as would be cal-
culated by a full Fokker–Planck operator. The above model,

FIG. 1. (Color online) Parallel velocity dependance of the diffusive and
convective operators D and V in Eqs. (10) and (11).
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whilst preserving some attractive simplicity, thus allows for
the exact recovery of the conventional features of neoclassi-
cal theory in the low (banana) and intermediate (plateau)
tokamak-relevant collisionality regimes. Further discussion
on this subject may be found in Sec. III.

The first piece in Eq. (9) accounts for a diffusion in par-
allel velocity D ¼ hDv2ki=2 generated by the Coulomb binary
interactions. It is essentially responsible for the neoclassical
diffusive transport and models the resonant enhancement of
collisional effects in the presence of local trapping. The sec-
ond piece is often referred to as a “dynamic friction” and is
also reminiscent of the Fokker–Planck structure of the colli-
sion operator: V ¼ hDvki. It is an average time rate of change
of parallel velocity due to the scattering effects of collisions
and accounts for the poloidal flow damping obtained from
neoclassical theory.

Using Eq. (11), one can trivially see that the solution for
the full–f collisional problem is the local Maxwellian
fM ¼ fSMðVk ¼ 0Þ for both the bulk equilibrium and the fluc-
tuations, which allows one to write Eq. (9) in the compact
form—to be compared to Eq. (3)

Cð f Þ ¼ @vk DfM@vk
f

fM

# $% &
(17)

D still being given by Eq. (10). The following Sec. III will
discuss the physics both models Eqs. (3), (9), or (17) can
address before assessing in Sec. IV their accuracy for com-
puting neoclassical phenomena.

B. A linearised df collision operator—best suited for
Monte Carlo-based schemes

Coulomb collisions in the full–f XGC1 code are mod-
eled by a well-known particle, momentum, and energy con-
serving linearised Monte-Carlo scheme,59–62 which uses the
df concept of approximating by a Maxwellian the back-
ground field particles; the accuracy of the collision operator
therefore degrades when the majority of the particles around
the thermal energy are highly non-Maxwellian. Since XGC1
is a PIC code, each marker particle experiences the conven-
tional energy-dependent Monte-Carlo scattering63 in energy
and pitch-angle against the local Maxwellian background
which is evaluated through a local averaging of the marker
particles. The conservation properties of this scheme are
ensured by adjusting the particle weights.59 In a full–f simu-
lation, these weights are invariant during the time advance
process—corresponding to the Vlasov part of the Fokker-
Planck equation—but are allowed to evolve during the colli-
sional process.

The actual form of the Monte-Carlo collision operator
used here pertains to the larger class of Lorentz collision
operators, written in the pitch-angle coordinate k ¼ vk=v,

Cðf Þ ¼ "d
2

@

@k
1' k2
' ( @f

@k
(18)

where "d is the deflection collision frequency

"d ¼
3

2

ffiffiffi
p
2

r
"ii

Uð!vÞ ' Gð!vÞ
!v3

(19)

and "ii is the ion–ion collision frequency [Eq. (12)], U the
error function [Eq. (14)], G the Chandrasekhar function [Eq.
(16)] and !v ¼ v=

ffiffiffi
2

p
vT . The following Secs. III and IV com-

plement the existing studies of neoclassical physics in the
plasma edge64–66 whilst providing a successful cross-com-
parison between this Monte-Carlo scheme and the previously
detailed Eulerian-based operators implemented in GYSELA.

III. DISCUSSION: WHICH PHYSICS CAN WE
ADDRESS?

The physics one can address is usefully discussed in the
framework of fluid theory. In the absence of sources of both
momentum and particles, the momentum flux conservation
reads:

mn dtVi ¼ enðEþ Vi ! BÞ 'rpi 'r %P
' mn "ieðVi ' VeÞ; (20)

where subscript “e” (resp. “i”) denotes electron (ion) quanti-
ties, and fluid (kinetic) quantities are written in uppercase
(lowercase) letters. Writing I as the unit tensor, P ¼

Ð
d3vm

ðvv' Ijv' Vj2=3Þf is the viscous stress tensor, which
reduces at leading order to the parallel viscous stress. Focus-
ing on the poloidally symmetric part of the latter equation,
its equilibrium parallel projection simply reads

enEk ' mnlii Vhi ' VNC
hi

' (
' mn "ieðVki ' VkeÞ ¼ 0 (21)

where hb % ðr %PÞih , mnlii Vhi ' VNC
hi

' (
, VNC

hi ¼ K1
rT
eB is

the neoclassical prediction for the poloidal velocity, h%ih
stands for the poloidal average, and lii is the neoclassical ion
viscous damping frequency, which can be approximated in
the low-collisionality banana and plateau regimes67 by:
lii , 0:78

ffiffi
!

p
"ii=ð1þ 044"?Þ. Let us first concentrate on this

term. We adopt the notation used in Ref. 68, where K1 pri-
marily depends on the charge of the species, the aspect ratio
and reverses sign depending on the collisionality regime.
Practically, one correctly gets the poloidal flow damping as
soon as the viscous stress tensor is correctly modeled. Physi-
cally, it means that both magnetic pumping due to the poloi-
dal inhomogeneity of the magnetic field and Coulomb
collisional interactions between trapped and passing particles
are correctly accounted for. Both effects combine to enslave
the ion poloidal velocity to the temperature gradient, or
equivalently, to the ion diamagnetic velocity. This physics is
an essential part of neoclassical theory and is intrinsically
embedded in all model operators described here in Eqs. (3),
(9), (17), or (18) which allow to exactly recover the neoclass-
ical viscous stress tensor in the banana and plateau
regimes—see e.g., details in Ref. 21.

Moving to the last term in Eq. (21), attention is drawn
to the momentum-conserving properties of the collision
operator. This friction term accounts for the inter species
electron–ion transfer of momentum. Since momentum con-
servation between species is central in neoclassical theory,
recovering conventional neoclassical equilibrium is delicate
whilst the electron response remains adiabatic. In this case,
the inter species friction needs to be replaced by a like-spe-
cies friction: mn "iiVki, which tends to damp out the parallel
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flow. Provided Galilean invariance is maintained, as should
be, the solution of the collisional problem is a shifted Max-
wellian: fSMðvkÞ ¼ fMðvk ' VkiÞ and the correct amount of
parallel friction forces is accounted for. The collision
schemes Eqs. (3) and (18) have been coined so as to allow
for the expected momentum and energy conservation proper-
ties. From a practical point of view, this approach consists in
performing the collisions locally, in the rest frame of the
moving ions. It also means that when running a gyrokinetic
code, Vki and T must be calculated at each time step and
fuelled back into the collision operator.

Interestingly though, even if crucial for the correct mod-
eling of parallel friction forces, accurate satisfaction of Gali-
lean invariance has little influence (i) on the radial structure
and the magnitude of the poloidal flows which depend on the
modeling of the viscous stress tensor and (ii) on the heat trans-
port, as demonstrated in Refs. 21 and 62 and Figs. 3–6. A sim-
plified collision operator such as the one in Eq. (9) or (17)
thus also accurately models the collisional radial cross-field
heat transport, as a complete Fokker–Planck operator would.
It would not be able though to account for the correct amount
of parallel viscosity for it introduces an additional friction
force in the toroidal direction which would lead to (i) overesti-
mating the momentum loss of circulating ions and electrons—
especially in the banana regime, thus underestimating the
bootstrap current while also (ii) overestimating the particle
fluxes.62 This would be of major concern while modeling mul-
tiple species and accounting for inter-species friction; on the
other hand, the simplifying approach of Eq. (9) or (17) may
accordingly be appropriate to modeling the neoclassical equi-
librium in the case of an adiabatic electron response.

This point is easily understood while looking at the
transverse equilibrium of Eq. (20)—the classical radial force
balance equation:

Er ' vuBh þ vhBu ¼ rp

ne
: (22)

Neoclassically, poloidal rotation vNCh ¼ K1rT=eB is tied to
the temperature gradient, as verified in Figs. 3 and 4. On the
other hand, the accurate computation of the self-consistent
radial electric field is a known central problem for full–f
gyrokinetics,21,69 part of it being due to the following degen-
eracy, intrinsic in neoclassical theory: prediction in an axi-
symmetric system is on the combination Er ' vuBh, which is
degenerate in the absence of toroidal symmetry-breaking
mechanisms, should they be (i) of geometric nature —rip-
ple,70,71 error fields— or should they appear (ii) through the
onset of the turbulence —E! B shear,72 turbulent Reynolds
stresses,73–75 or intensity gradients— or (iii) through the
inclusion of sources of toroidal momentum. The restriction
of the conventional neoclassical equilibrium in Eq. (9) to its
sub-class associated with a vanishing mean toroidal velocity
therefore allows to relax this degeneracy and unambiguously
relate the radial electric field to the poloidal rotation and the
thermodynamic forces whilst accurately modeling the exact
cross-field transport and flow generation mechanisms in the
radial–poloidal plane as a more general Galilean-invariant
Fokker–Planck operator would. On the other hand, this sim-

plified collision operator is of course not suitable for address-
ing the important question of the generation of toroidal
momentum—the observed spontaneous toroidal spin-up.76–78

In that case, the Galilean-invariant versions Eqs. (3) and (18)
are required; a dedicated study of intrinsic rotation with both
GYSELA and XGC1 is to be reported elsewhere.79,80

A careful accounting of collisions is also important to
correctly describe the residual level of the low frequency tur-
bulence-induced axisymmetric sheared E! B mean and
zonal flows. The importance of such flows, linearly damped
through collisions alone and which dynamically participate
in turbulence self-regulation has long been emphasised.25

Collisions may thus impact the level of turbulent transport,
especially close to marginality,2,28–30 in regimes were turbu-
lent transport is expected to be most sensitive to E! B flow
regulation. A strong commitment for any collision operator
is thus to accurately model the collisional damping of such
flows,27 as shown in Fig. 8.

From a terminological point of view, the “mean” field of
quantity x stands throughout this paper for the temporal aver-
age hxit over a collision time (or above), in a statistical
steady state with a constant drive of the turbulence, i.e., with
a constant heat flowing across the system. Mean fields are of
course profiled both in real and velocity spaces. Inversely,
any quantity x' hxit which is dynamically faster than a col-
lision time will be called “zonal”. Especially, mean and
zonal flows are such that: x + @r/00.

Note that the above distinction is largely irrelevant from
an experimental point of view: the distinction between
“zonal” and “mean” flows is indeed based on the possibility
to record a temporal series of instantaneous flow profiles,
with a sampling frequency well below the ion–ion collision
time. In other words, one needs both a fine enough spatial
and fast enough temporal resolution to disentangle the
“mean” from the “zonal” part in an actual measurement.
These are constraints difficult to match with current experi-
mental apparatuses; “zonal flows” thus indistinctly refer in
experiments to both the “mean” and the “zonal” parts in the
above sense. However difficult to disentangle experimen-
tally, this distinction is easily made in a modeling activity. It
is also of prime importance in modeling as both components
are likely driven by different physical mechanisms.

From a physics perspective, existence of a perennial
non-vanishing “mean” quantity with a nontrivial radial pro-
file and self-consistent turbulence-induced evolution of the
background mean profiles are two sides of the same coin.
Both approaches translate the underlying dynamics that hap-
pens at intermediate meso-scales. Therefore, the ability to
describe self-organisation at meso-scales and larger is the
more relevant problem.1 It is an acknowledgment of the fact
that a tokamak is indeed an open system in which self-organ-
isation plays a dominant role. This translates numerically in
self-consistently evolving the mean profiles [the full distribu-
tion function of the system] due to the combined action of
the turbulence, of the neoclassical dynamics and of an exter-
nal distribution of sources and sinks. Much debate has lately
been triggered comparing the relative merits of the so-called
“flux-tube,” “df ,” and “fixed gradient” approaches to so-
called “global,” “full–f,” and “flux-driven” models. A further
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detailed discussion of these topics can be found in a separate
publication.49

At last, let us emphasise that the collisional systems
described here do intrinsically satisfy an H-theorem, as shown
from an entropy extremalisation principle21 for operators
Eqs. (3), (9), and (17). Due to this entropy principle, the full
distribution function is guaranteed to relax towards a Maxwel-
lian whilst most model operators only act on the perturbed
distribution function, making the approaches here most appro-
priate when calculating the complete collisional equilibrium,
including both the perturbed and the unperturbed problem.
The net positive entropy production rate mostly originates
from the dissipation processes occurring at the interface
between the trapped and the passing regions in phase space.
As a diffusive boundary layer, this interface gets increasingly
localised as "? diminishes. Within this layer, the dynamics of
the collisions is accurately modeled by a friction force
between the trapped and the untrapped particles with a fav-
oured direction along the magnetic field lines; a qualitative
discussion in this respect may be found in Fig. 7.

In summary, operator Eq. (9) or (17) is not suited for
studying the generation of parallel momentum whereas oper-
ators Eqs. (3) and (18) are. All operators Eqs. (3), (9), (17),
and (18) on the other hand accurately describe (i) the colli-
sional damping of the mean and the zonal flows, (ii) the neo-
classical heat transport processes and (iii) the plasma
poloidal rotation in the banana and plateau regimes whilst
remaining numerically efficient.

IV. RECOVERING THE NEOCLASSICAL RESULTS

An accurate calculation of the radial electric field is of
prime importance in full–f computations,48 especially so as
not to generate artificial equilibrium flows which could
hinder the onset of the neoclassical equilibrium. It is there-
fore important, as preliminary tests, to appraise the system’s
behaviour with regard to simple constrained tests: let us con-
sider the following simplest yet non trivial equilibrium state
of the collisional gyrokinetic problem

f0 ¼
N

2pT0=mð Þ3=2
e'H=T0 (23)

e/0

T0
¼ ' log

n0
N

# $
þ c1K0 þ c2I0 (24)

Here H ¼ mv2k=2þ lBþ e/0 is the hamiltonian, N is a con-
stant, so is T0 the temperature, /0 is the initial (and equilib-
rium) electric potential depending on the radial coordinate
only, n0 is the density profile, K0 and I0 are the modified Bes-
sel functions of the first type and c1 and c2 are complex coef-
ficients such that /0 vanishes at the radial boundaries. This
special choice Eq. (23) is obviously both (i) a motion invari-
ant and (ii) satisfies Cðf0Þ ¼ 0, henceforth being a general so-
lution of the collisional gyrokinetic system. In the case of a
constant temperature T0 the usual force balance Eq. (22) trivi-
ally reduces to: er/=T0 ¼ 'rn=n: the electric field balanc-
ing the density gradient. When initialising GYSELA with Eqs.
(23) and (24) we indeed find that the long-time stationary

equilibrium solution for the electric field is as expected Eq.
(24) within a few percent precision, validating the stability of
the computation. Further checks have included assessing the
sensitivity of the results to the choice of the initial state: ei-
ther a local Maxwellian or a canonical Maxellian:46–48 as
should be, no dependence other than transient is found, the
same statistical results being robustly obtained from different
initialisations. In the remainder of this paper, GYSELA is ini-
tialised with a canonical Maxwellian and XGC1 with a local
Maxwellian.

Neoclassical theory is tested whilst running below the lin-
ear ITG instability threshold: R=LT¼ 3 and R=Ln¼ 2.2, where
Lx ¼ 'x=rx is the gradient length for quantity x. As a result,
all the simulations reported in this section do not exhibit any
turbulence nor turbulent transport. Other parameters are repre-
sentative of core tokamak plasmas and locally read at mid ra-
dius r¼ 0.5a: ! ¼ r=R ¼ 0:17, Ti=Te¼ 1, q¼ 1.4 and
s¼ (r=q) dq=dr¼ 0.78. In the current section, the neoclassical
problem is axisymmetric and the grid size respectively
involves (i) for GYSELA at q? ¼ qi=a ¼ 1=256 over 109 grid
points on a half-torus ðr; h;/; vk; lÞ ¼ ð256; 256; 8; 128; 16Þ
mesh and (ii) above 1:025! 109 particles on 10 258 process-
ors for XGC1 at q? ¼ 1=184. Here, a is the minor radius, !
the inverse aspect ratio, Ti and Te the ion and electron temper-
atures, q the safety factor and qi the ion Larmor radius.

The ability of full–f codes to accurately compute the
mean radial electric field Er—differently speaking, the long
wavelengths of the electric potential /—has recently been
questioned.69 Figure 2 shows an accurate recovery of the ra-
dial force balance Eq. (22) in both approaches, on the basis
of conventional first order gyrokinetic equations, regardless
of differences in the boundary conditions and details of the
temperature profiles. This behaviour robustly holds in either
neoclassical or turbulent regimes, for all investigated colli-
sionalities spanning throughout the banana and plateau
regimes. The poloidal velocity is here calculated by two
means: (i) by means of the force balance: rp=ne' Er

þvuBh, each of the latter terms being independently plotted
and (ii) self-consistently within GYSELA: vGYSh or XGC1:
vXGCh from the distribution function as the sum Eq. (25) of
the poloidal components of the E! B Eq. (A7), grad–B
Eq. (A8), curvature Eq. (A9), and parallel flows in addition
to the curl of the magnetisation Eq. (26):

vh ¼
1

n

ð ð
m2B*

k dvkdl vE!B þ vrB þ vc þ vkb
' (

% eh f

þ vmag % eh
(25)

vmag ¼
1

ne
r! b

ð ð
m2B*

k dvkdl l!f
# $

(26)

Here eh denotes the unit vector in the poloidal direction. The
response of the electric potential, which always adjusts so as
to satisfy Eq. (22), is as expected significantly different in
the banana Fig. 2(a) and the plateau regimes Figs. 2(b) and
2(c) since the poloidal velocity itself strongly depends on "?
(see Fig. 3 below).
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In the banana regime, the radial electric field mainly
compensates the density gradient, whereas in the plateau re-
gime, the poloidal velocity is smaller and the radial electric
field increases so as to mainly compensate the pressure gra-
dient. Hence the different behaviours observed for Er in
Figs. 2(a), 2(b), and 2(c), whilst the global force balance
remains satisfied within a few percent precision. Also, the
small discrepancy noted in Fig. 2(c) between q ¼ 0:2 and

0.4 in normalised radius may be explained as the combina-
tion of both the higher collisionality: at smaller “banana”
collisionalities a closer satisfaction of the radial force bal-
ance is found and of the nature of Fig. 2(c) as an instantane-
ous snapshot: a time averaged equivalent plot would further
smooth out this discrepancy as the Monte Carlo fluctuations
would be reduced. Shown here is thus an upper-bound limit
of the instantaneous deviation from radial equilibrium.

The neoclassical prediction vh ¼ K1ð"?; !ÞrT=eB is
essentially twofold: the analytical prediction on K1 is (i)
accurate in the asymptotic banana and Pfirsch–Schlüter
regimes, whilst only approximate in the plateau regime; also,
regardless of the precise transition between regimes (ii) vh
should reverse sign with the collisionality: it is predicted to
rotate in the electron diamagnetic direction in the Pfirsch–
Schlüter regime and in the ion diamagnetic direction in the
banana regime.68 A consistent agreement with this prediction
is found with both GYSELA and XGC1 in the asymptotic ba-
nana regime in which this prediction is valid; the rotation re-
versal as collisionality increases is also confirmed,81 with a
transition from the banana to the plateau regime around
"b'p
? , 1. Nonetheless, the theory in Ref. 68 is rather inaccu-
rate in predicting the critical value "c? for which the ion poloi-
dal rotation vanishes on average; a quantitative comparison
to our results is therefore impossible in the plateau regime. In
the case of a large radial electric field shear, the poloidal
flow velocity is well-known to possibly increase well above
these neoclassical values and become a significant fraction of
the ion diamagnetic velocity.82 This orbit squeezing correc-
tion is plotted in Fig. 3 [green (small squares) curve] but
since the radial electric shear in all simulations is low, its
effect is here subdominant.

A widely used expression for the poloidal rotation in the
banana regime is vh ¼ 1:17rT=eB. This result is indeed the
neoclassical prediction in the limit of infinite aspect ration
tokamaks ! ! 0. At intermediate values of !, it should be
noted that a more accurate prediction exists in the banana

FIG. 2. (Color online) Test of the accuracy of the force balance equation
(22) in the banana "? ¼ 0:1 (a) and the plateau "? ¼ 10 and 66 (b)–(c)
regimes. The poloidal velocity is evaluated by two means: either consis-
tently evolved within GYSELA: vGYSh Bu or XGC1: vXGCh Bu or as the sum:
rp=ne' Er þ vuBh. Excellent agreement is found, regardless of the precise
moment in the simulation.

FIG. 3. (Color online) Neoclassical poloidal velocity normalised to the tem-
perature gradient (coefficient K1 in Ref. 68) as a function of the collisionality
"? (! ¼ 0:17 and h ¼ p). The definition of the collisionality parameter in Ref.
68 is slightly different to the one we use here and has thus been renormalised
to the value in Eq. (13). This result is robustly obtained for various q? values.
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regime,68 as shown in Fig. 4 and that the 1.17 pre-factor can
be significantly modified.

To investigate this, we performed three different neo-
classical simulations at "? ¼ 0:08 corresponding to three dif-
ferent values of the parameter !. The results show a good
agreement with the neoclassical prediction, confirming the
significant importance of the aspect ratio dependence in the
evaluation of the neoclassical poloidal rotation.

This parameter also influences transport, as displayed in
Fig. (5). The same three simulations at "? ¼ 0:08 are dis-
played in Fig. 5. They show the normalised ion heat diffusiv-
ity Li (Ref. 83) at five different radii plotted against !,

Li ¼
vi
2 vb

(27)

where vb reads: vb ¼ mvT=ehBið Þ2qvT"?=R0, vT ¼ T=mð Þ1=2
and hBi is flux-surface averaged. Whilst the reduced Hirsh-
man–Sigmar operator84 underestimates the ion energy flux
by about 10% in all aspect ratio regimes, we confirm81 that
in the intermediate aspect ratio regime the widely used
Chang–Hinton model85 overestimates by about 25% the ion
thermal diffusivity vi. A good agreement is found with the
more accurate Taguchi83 banana regime model.

At low values of !, the ion thermal diffusivity as derived
by Chang and Hinton86 provides an interpolation between
the banana, plateau and Pfirsch–Schlüter regimes in the limit
of a vanishing impurity contribution and no Shafranov shift:

vCHi
q2ixc

¼ 2
ffiffiffi
2

p qvT
xcR

"?
066þ 188

ffiffi
!

p
' 1:54 !

1þ 1:03
ffiffiffiffiffi
"?

p þ 0:31"?
Ib'p

%

þ 0:59 ! "?
1þ 0:74 !3=2"?

Ib'p ' IPS
' (&

: (28)

The 2
ffiffiffi
2

p
coefficient comes from our definition of the ther-

mal velocity: vT¼ (T=m)1=2. This relation Eq. (28) is dis-
played in Fig. 6. A good agreement is found with both
GYSELA and XGC1 throughout the entire banana and plateau
regimes.

The Ib–p term represents the neoclassical contributions
from the banana and plateau regimes and describes the transi-
tion between them: Ib'p ¼ 1þ 3!2=2. Similarly, the IPS term
represents the Pfirsch–Schlüter contribution when "?!3=2 > 1:
IPS ¼ 1' !2ð Þ1=2. At finite aspect ratio (! ¼ 0:17), the dis-
crepancy observed at low collisionalities between the GYSELA

results and the Chang–Hinton prediction is consistent with
the above discussion in Fig. 5; we again find that at interme-
diate aspect ratios, the Taguchi model is more accurate in the
banana regime.

As compared to early classical theories87 in which the
spatial variation of the magnetic field has no influence on the
transport, neoclassical theory is deeply connected to reso-
nance phenomena that occur through particle trapping in
inhomogeneities of the magnetic field. Collisions contribute
to regularising the trapping singularities through a broaden-
ing of the otherwise highly localised region of phase space
which delineates the trapped region from the passing. The
broadening of this region with increasing collisionality is
displayed in Fig. 7.

Due to the spatial nonuniformity of the magnetic field,
iso-contours of the distribution function display the typical
“cat-eye” shape in phase space, revealing particle trapping.
Starting from the canonical Maxwellian,48 the initial

FIG. 4. (Color online) Neoclassical poloidal velocity normalised to the tem-
perature gradient (coefficient K1) as a function of ! ("? ¼ 0:08).

FIG. 5. (Color online) Normalised neoclassical ion heat diffusivity (coeffi-
cient L) as a function of ! ð"* ¼ 0:08Þ.

FIG. 6. (Color online) Neoclassical heat diffusivity normalised to its Bohm
value as a function of collisionality "? (! ¼ 0:17).
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distribution function is a motion invariant, i.e., an exact solu-
tion of the collisionless gyrokinetic equation but not a solu-
tion of the collisional problem. It is singular at the vicinity of
the trapping boundary (sometimes also referred to as the
“loss cone”), as clearly illustrated by the transverse plot of
the distribution function at h ¼ 0 (red curve). The dissymme-
try in vk comes from the choice of the canonical Maxwellian.
Let us concentrate on this right-hand side of Fig. 7. The two
simulations at "? ¼ 10 and "? ¼ 0:01 are compared at the
same time, i.e., after respectively 10 collisions and 0.1 colli-
sion. As expected, as the collisionality increases the full dis-
tribution function (i) is increasingly regularised and (ii)
relaxes towards a local Maxwellian. The form of the distri-
bution function, while relaxing (blue squares), achieves a
compromise between a function of the motion invariants
(black diamonds) and a local Maxwellian (solid red). On the
iso-contour plot, as best seen close to ðh; vk=vTÞ ¼ ð0; 3Þ, the
initial highly localised region delineating the trapped domain
from the untrapped broadens as collisionality increases (dia-
mond contours).

This regularisation occurs predominantly transversely to
the island, providing a heuristic argument as to why the cor-
rect neoclassical equilibrium could be accurately recovered in
collision operators Eqs. (3), (9), or (17) without a transverse

diffusion operator (advection in vk only). It connects to the
well-known result22 that in the banana regime this boundary
layer provides the dominant contribution to the heat transport
coefficient. At the root of neoclassical transport, a perturbed
hamiltonian—i.e., particle trapping—enhances collisional
transport due to the resonant interaction21 occurring in this
region between the particles and this perturbation. A correct
modeling of this boundary layer is therefore the crucial piece
of physics which allows to recover the correct neoclassical
transport displayed in Fig. 6.

At last, Rosenbluth and Hinton predicted26 the existence
of a linearly undamped axisymmetric flow /00 which sur-
vives the collisionless linear Landau damping process. With
collisions though, this residual flow is slowly damped,27

mainly through the collisional friction the trapped particles
exert on the passing particles at the vicinity of the trapping
boundary. A /00 initial perturbation is followed in time in
Fig. 8. The plasma parameters are those in Ref. 27:
"? ¼ 0:04, ! ¼ 0:18, and q¼ 1.4 at mid radius. The observed
decay accurately matches the expected analytical damping
rate; in the analytical model though, time scales are larger
than the ion bounce period so that the transient oscillations
displayed by the gyrokinetic result are not modeled. A Fou-
rier transform of these oscillations shows again as expected a
very close agreement (< 1%) with the Geodesic Acoustic
Mode frequency.88

V. CONCLUSION

The precise description of neoclassical theory is an im-
portant step in the process of modeling the plasma dynamics
as it provides the system with an ever-existing background
cross-field transport, a means to satisfy an H–theorem, a lin-
ear flow damping mechanism for axisymmetric flows, an
effective “return force towards Maxwellianity” and strong
constrains on plasma rotation. The important open question
of how the slow neoclassical equilibrium may interplay with
the faster, smaller-scale turbulence as the system self-organ-
ises is still unsettled. To this end, it is key to design, imple-
ment, and carefully test collision operators acting upon the
full gyrokinetic distribution function of the system so that
the latter interplay may occur, fully consistently.49

FIG. 7. (Color online) Collisional regu-
larisation of the full distribution function
at the boundary layer between the
trapped and untrapped regions of phase
space. This regularisation is essentially
occuring along the magnetic field lines.
The island in ðh; vkÞ space represents iso-
contours of the full distribution function.

FIG. 8. (Color online) Collisional damping of the mean and the zonal flows
confronted to the analytical prediction by Hinton and Rosenbluth (Ref. 27)
without the GAM contribution ("? ¼ 0:04, ! ¼ 0:18). The frequency
obtained with GYSELA agrees within the percent with the precise GAM fre-
quency calculation (Ref. 88).
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A set of such operators has been presented, discussed
and thoroughly verified in the course of this paper for as dif-
ferent numerical architectures as the Eulerian-like structure of
GYSELA and the Lagrangian (PIC) structure of XGC1. In both
cases, as a special mandatory feature of full–f codes, without
an external forcing, the full distribution function is designed
to relax towards a Maxwellian. Numerically speaking, both
approaches are appreciably different: whilst the latter is well
suited for Monte-Carlo processes and written in the more
usual pitch-angle and energy variables, the former features an
efficient parallelisation with respect to the adiabatic variable
and is gridded in the parallel velocity only. As such it takes
advantage of a fixed grid discretisation as present in Eulerian
or semi-Lagrangian approaches whilst avoiding much of the
parallelisation cost inherent to more general operators.

The essential results of neoclassical theory are repro-
duced in both cases, providing an interesting cross-validation
of these two approaches. In particular, the neoclassical trans-
port and poloidal rotation with their collisionality and aspect
ratio dependence, along with the collisional mean and zonal
flow damping are accurately reproduced. Physically, it
means that the correct amount of friction forces between
trapped and passing particles at the trapping boundary is
accounted for. These forces dominantly occur close to the
separatrix, transverse to the magnetic island, and in a direc-
tion that is almost aligned with the magnetic field lines. As
an illustration, regularisation of the distribution function, sin-
gular at the trapping boundary without collisions, is shown
in the parallel direction.

Forthcoming work will focus on the interplay between
the slow, large-scale neoclassical equilibrium, the fast,
small-scale turbulence whilst the thermodynamic forces act-
ing upon the system can self-consistently evolve given an
external distribution of sources and sinks, comparably to
what happens in experiments. Pushing the envelope in these
matters especially means providing answers to the following
open questions: (i) what will the flow patterns look like in
flux-driven statistical steady-state? (ii) how may one charac-
terise an attracting fixed point for the dynamics? A follow-
up on these will appear shortly.
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APPENDIX: STANDARD FULL–F GYROKINETIC
FORMULATION

The electrostatic branches—slab, toroidal, and trapped
modes—of the ITG instability are modeled whilst solving
the coupled system of the collisional gyrokinetic equation

@!f

@t
þ vE!B þ vrB þ vcð Þ %r!f þ vkrk!f þ

dvk
dt

@vk
!f

¼ Sð!f Þ þ Cð!f Þ (A1)

and quasi-neutrality equation

e

Te
/' h/i½ ) ' 1

neq
r? % mneq

eB2
r?/

h i

¼ 1

neq

ð ð 2pB*
k

m
dvkdl !f ' !f initð Þ (A2)

for any gyroaveraged full ion distribution function !f and
electrostatic potential /. The evolution equations of the
gyrocentre coordinates classically read

dx

dt
¼ vkb

* þ vE!B þ vrB þ vc (A3)

m
dvk
dt

¼ 'lrkB' erk !/þ
mvk
B

vE!B %rB (A4)

where

b* ¼ B

B*
k
þ mv
eB*

k

l0J
B

(A5)

B*
k ¼ Bþ

mvk
eB

l0b % J (A6)

and l0J=B ¼ r! b' b!rB=B, with b¼B=B. The paral-
lel and transverse gradients are respectively: rk ¼ b* %r
and r? ¼ r'rkb

*. The three drift velocities evaluated at
the gyrocentre coordinates—respectively the E! B, grad–B,
and curvature drifts—classically read at all orders in the
expansion of the gyroaverage operator

vE!B ¼ 1

B*
k
b!r !/ (A7)

vrB ¼ b

eB*
k
! lB

rB

B

# $
(A8)

vc ¼
b

eB*
k
! mv2k

N

R

# $
(A9)

where N is locally transverse to B the magnetic field,
N=R ¼ r?B=Bþr?p=ðB2=l0Þ, and v is the velocity along
the field lines. Gyroaveraged quantities are represented with
a bar and are either computed through a Padé approximation
in GYSELA

38 or a four-point average technique in XGC1.52

The approximation of the integral over the gyroring by a
sum over four points is rigorously equivalent to considering
the Taylor expansion of the Bessel function at order two in
the small argument limit, namely J0ðk?qsÞ , 1' ðk?qsÞ

2=4,
and to computing the transverse Laplacian at second order
using finite differences.53
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73C. Hidalgo, B. Gonçalves, C. Silva, M. A. Pedrosa, K. Erents, M. Hron,
and G. F. Matthews, Phys. Rev. Lett. 91(6), 065001 (2003).
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