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ORIGINAL ARTICLE

Chlorella vulgaris production enhancement 
with supplementation of synthetic medium 
in dairy manure wastewater
Jun Shi1,2, Pramod K. Pandey2,3*, Annaliese K. Franz4, Huiping Deng1 and Richard Jeannotte5,6

Abstract 

To identify innovative ways for better utilizing flushed dairy manure wastewater, we have assessed the effect of dairy 
manure and supplementation with synthetic medium on the growth of Chlorella vulgaris. A series of experiments 
were carried out to study the impacts of pretreatment of dairy wastewater and the benefits of supplementing dairy 
manure wastewater with synthetic medium on C. vulgaris growth increment and the ultrastructure (chloroplast, 
starch, lipid, and cell wall) of C. vulgaris cells. Results showed that the biomass production of C. vulgaris in dairy waste-
water can be enhanced by pretreatment and using supplementation with synthetic media. A recipe combining pre-
treated dairy wastewater (40 %) and synthetic medium (60 %) exhibited an improved growth of C. vulgaris. The effects 
of dairy wastewater on the ultrastructure of C. vulgaris cells were distinct compared to that of cells grown in synthetic 
medium. The C. vulgaris growth in both synthetic medium and manure wastewater without supplementing synthetic 
medium was lower than the growth in dairy manure supplemented with synthetic medium. We anticipate that the 
results of this study will help in deriving an enhanced method of coupling nutrient-rich dairy manure wastewater for 
biofuel production.
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Introduction
The dairy industry in the USA has greater than 9 mil-
lion dairy cows and produces more than 20 million tons 
of manure annually (Smith et al. 2015). The use of dairy 
manure wastewater (DMW) for value-added products 
has the potential to enhance the income of the dairy 
industry substantially. Only a fraction (<4  %) of the 
dairy manure produced in the USA is utilized by anaer-
obic digesters for producing biogas (renewable energy) 
(USEPA 2014). Therefore, the exploitation of nutrient rich 
DMW for algal biomass production and phyco-remedia-
tion is an option for enhancing the sustainability of dairy 
industries as well as controlling the adverse impacts of 
DMW to the environment and to public health (Cantrell 
et al. 2008). The nutrients of dairy manure can be utilized 

to cultivate various strains of microalgae with applica-
tions for biofuel feedstock; however, considerable diffi-
culties exist for fully exploiting the use of dairy manure 
wastewater due to its complex nature (i.e., relatively high 
level of solids and fibers).

Previous studies have shown that various forms of 
dairy, piggery, municipal, digested, and undigested wastes 
can be utilized for cultivating algal biomass and enhanc-
ing energy production (Chiu et al. 2015; Ding et al. 2014; 
Kesaano and Sims 2014; Mandal and Mallick 2011; 
Mulbry and Wilkie 2001; Mulbry et  al. 2008; Qin et  al. 
2014; Wang et al. 2010; Wilkie and Mulbry 2002; Anthony 
et al. 2015; Hena et al. 2015; Kothari et al. 2013; Kumar 
et al. 2010; Passero et al. 2015; Zhou et al. 2014; Johnson 
and Wen 2010). Many of previous studies (Mulbry and 
Wilkie 2001; Mulbry et  al. 2008; Qin et  al. 2014; Wang 
et al. 2010; Wilkie and Mulbry 2002) used anaerobically 
digested dairy manure for assessing the growth of algae. 
As an example, Mulbry and Wilkie (2001) proposed 
the use of dairy manure for growing benthic freshwater 
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algae as a potential alternative to land application of live-
stock manure for crop production. A study by Kothari 
et  al. (2013) described cultivation of Chlamydomonas 
polypyrenoideum integrated with phyco-remediation of 
dairy wastewater showing 50–90 % pollution reduction. 
Wang et  al. (2010) tested a semi-continuous C. vulgaris 
cultivation system for treating diluted (×20) digested and 
undigested dairy manure showing 50–90  % reductions 
of carbon, nitrogen, and phosphorous. Similarly, Wilkie 
and Mulbry (2002) showed that higher dairy wastewa-
ter nitrogen loading rates resulted in elevated nitrogen 
content in algal biomass. The authors also inferred that 
nitrogen uptake of 1430  kg/ha/year can be obtained by 
growing benthic freshwater algae using dairy wastewater 
with only 26  % of the required land area that would be 
needed for using the equivalent nitrogen in a traditional 
cropping system. However, another study by Mulbry 
et  al. (2008) showed no consistent relationship between 
loading rate, type of manure, supplement CO2 sup-
ply and algal biomass fatty acid content (fatty acid con-
tent was 0.6–1.5 % of dry biomass weight). Mandal and 
Mallick (2011) described the cultivation of Scenedesmus 
obliquus for biomass production using poultry litter 
and municipal secondary settling tank discharges. The 
authors reported that biomass production was enhanced 
when these wastes were mixed, and the growth was sig-
nificantly greater than that in a synthetic media (N 11) 
(Mandal and Mallick 2011). A study by Ding et al. (2014) 
described cultivation of microalgae in dairy wastewater 
and reported that dilution of dairy wastewater increases 
the nitrogen and carbon removal by microalgae. Despite 
the considerable research interest in algal biomass pro-
duction and exploring various concepts, substantial limi-
tations in algal culturing exist related to exploiting the 
use of various waste sources for algal biomass production 
(Passero et al. 2015; Gentili 2014; Vardon et al. 2011).

In order to utilize various wastewaters for algae bio-
mass production, pretreatment of the waste stream 
seems to be inevitable (Passero et al. 2015; Passos et al. 
2014). Pretreatments such as hydrothermal (Passero et al. 
2015), microwave (Passos et  al. 2014), and UV irradia-
tion (Kesaano and Sims 2014; Qin et al. 2014) have been 
proposed for treating various waste streams, includ-
ing dairy manure wastewater, to enhance algal biomass 
production; however, additional understanding is still 
needed to make pretreatment a viable solution for algae 
production at a large scale. Enhancing the understanding 
of how various forms of dairy wastewater, with and with-
out pretreatments, can be utilized still requires further 
exploration. In addition, dairy wastewater contains ele-
vated levels of animal waste borne bacteria compared to 
other wastewater (Pandey and Soupir 2011; Pandey et al. 
2015) and greater understanding of the effects of animal 

waste-borne bacteria on algal growth is needed. Pretreat-
ment methods such as waste sterilization and centrifu-
gation can reduce the bacterial biomass in dairy waste 
substantially; however, it is not clear how these processes 
affect algal growth and biomass productivity.

The goal of this study is to assess the cultivation of 
Chlorella vulgaris using flushed dairy manure waste-
water (FDMW) as an alternate source of dairy waste. 
While previous studies have explored the use of vari-
ous forms of dairy wastes and the effluent of anaerobic 
digesters for algae cultivation (Ding et  al. 2014; Kumar 
et al. 2010; Anthony et al. 2015), the use of FDMW has 
not been explored previously. While some previous 
studies have utilized flushed dairy manure (Mulbry and 
Wilkie 2001; Wilkie and Mulbry 2002), the flushed waste-
water was treated by anaerobic digesters before using it 
for algae production. In existing practices, FDMW from 
dairy barns is passed through a solid separator to remove 
manure solids and the remaining liquid fraction is stored 
in lagoons. Subsequently, both the nutrient-rich manure 
solids and liquid fraction can be applied onto cropland 
as fertilizers. Therefore, the exploitation of nutrient rich 
FDMW for cultivating algal biomass is an important 
option for enhancing the sustainability of dairy indus-
tries as well as controlling the adverse impacts of FDMW 
to the environment and to public health (Cantrell et  al. 
2008; Wilkie and Mulbry 2002). This study also compares 
the impact of two treatment methods (centrifugation and 
sterilization) of dairy wastewater and the effect of sup-
plementation with synthetic medium (SM). The growth 
of C. vulgaris in raw flushed dairy manure wastewater 
(RFDMW) (i.e., centrifuged) and sterilized flushed dairy 
manure wastewater (SFDMW) was compared to under-
stand the impacts of fecal borne bacteria on algal biomass 
production. Transmission electron microscopy (TEM) 
of algal biomass grown in RFDMW, SM, and SFDMW 
is used to understand the ultrastructure of C. vulgaris 
under different growth conditions. Additionally, we have 
compared the growth of C. vulgaris in FDMW obtained 
from three different dairies to understand the poten-
tial changes in algal biomass productivity with changing 
sources of dairy manure wastewater.

Materials and methods
RFDMW, SFDMW, and SM
FDMW was collected from three manure storage lagoons 
located in three different dairy farms in Merced, Glenn, 
and Tulare Counties of California, USA. These dairy 
farms house ≈3000–5000 dairy cows including both 
milking and non-milking cows. In these dairy farms, the 
FDMW passes through a solid separator before enter-
ing into the lagoon. Once collected from the lagoon, 
the FDMW was stored at 4  °C prior to starting the 
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experiment. The FDMW average total nitrogen (TN), 
total solid, carbon, and pH were 2950 (± 429) mg/L, 1.27 
(± 0.74) %, 0.36 (± 0.20) %, and 7.7 (± 0.05), respectively. 
Total phosphorous (TP) of FDMW in wastewater of simi-
lar lagoons in the same regions are reported to vary from 
141 to 3263  mg/L (with median of 972  mg/L) (Petty-
grove 2010). The FDMW was centrifuged (ThermoFisher 
Sci.: Sorvall Legend X1R) at 10,000  rpm for 15  min. 
Subsequently, the supernatant was used as RFDMW 
feedstock for growing C. vulgaris. The TN and TP of 
initial RFDMW were 156.4 and 12.7  mg/L, respectively. 
RFDMW was sterilized at 121 °C for 15 min to inactivate 
manure-borne microbial population, and this sterilized 
manure was used as SFDMW feedstock for growing C. 
vulgaris. The TN and TP of initial SFDMW were 56.6 and 
12.7  mg/L, respectively. Established procedures (APHA 
1999) were used for observing TN and TP.

To test the effect of supplementation with SM on C. 
vulgaris, we used a blue-green medium (BG-11), a recipe 
commonly used for growing freshwater algae including 
C. vulgaris (FACC 2014; UTEX 2014). The BG-11 (i.e., 
SM) was prepared by mixing 958  mL of distilled water, 
NaNO3 (0.25 g), K2HPO4·3H2O (0.075 g), MgSO4·7H2O 
(0.075 g), CaCl2·2H2O (0.025 g), KH2PO4 (0.175 g), NaCl 
(0.025  g), 40  mL of soil extract solution, FeCl3·6H2O 
(0.005  g), 1.0  mL of Fe-EDTA solution, and 1.0  mL of 
A5 solution. The SM was autoclaved and stored in 4  °C 
before using it for growing C. vulgaris. To prepare soil 
extract solution for mixing into SM, we used 200 g unfer-
tilized garden soil and 1000 mL distilled water, heating in 
a water bath (at 100 °C) for 3 h, and then cooling for 24 h. 
Then the solution was filtered (0.45 µm) and supernatant 
was used as a soil extract solution. The Fe-EDTA solution 
was prepared by mixing 50 mL distilled water, Na2EDTA 
(1.0 g), FeCl3·6H2O (81 mg) and 0.1 N HCl (50 mL). The 
composition of the A5 solution was H3BO3 (2.86  g/L), 
MnCl2·4H2O (1.86  g/L), ZnSO4·7H2O (0.22  g/L), 
Na2MoO4·2H2O (0.39 g/L), CuSO4·5H2O (0.08 g/L) and 
Co(NO3)2·6H2O (0.05 g/L).

Experiment design
The growth of C. vulgaris was assessed in RFDMW, 
SFDMW, and SM using 500 mL conical flasks under con-
trolled temperature conditions (25 ± 1 °C). The strain of C. 
vulgaris (UTEX-2714) was obtained from the culture col-
lection of algae, University of Texas, Austin, USA. The pre-
cultured C. vulgaris (OD 680 ≈ 0.355) was inoculated into 
a 300  mL volume of medium (in 500  mL conical flasks) 
with a proportion of 20  % (v/v) under sterile conditions. 
In order to avoid the potential ambient contamination, 
the experiments were conducted in a biological con-
trolled environment (i.e., inside a bio-safety cabinet level 
II (SterilGARD Hood, Baker Company)). The bio-safety 

cabinet was converted into a photo-bioreactor by equip-
ping it with controlled light (two 4  ft. T12 40-w Cool 
White Supreme (4100  K) Alto Linear Fluorescent Light 
Bulb with brightness of 2600 lumens) and a temperature 
control facility. The temperature of bio-reactor was con-
trolled using a heating/cooling tower (Dyson-AM09 Fan, 
Model: 302198-01) equipped with a sensor for controlling 
heating and cooling precisely. The growth of C. vulgaris in 
RFDMW, SFDMW, and SM was monitored over 10 days 
at 25 ±  1  °C. The growth experiment was conducted in 
dark (12 h) and light (12 h) cycle conditions using 300 mL 
of growth media in 500 mL conical flasks. The experiment 
was continued to 30 days, but no increase in cell density 
was observed beyond 10 days. Previous studies have used 
a similar growth period of 10 days for assessing the growth 
of algal biomass in various wastewater sources (Hena et al. 
2015; Kothari et al. 2013; Passero et al. 2015). The light and 
dark conditions were controlled using an electric timer 
(CUTNSTK624, Prime). To mix the growth environment, 
intermittent shaking was performed twice a day (by hand) 
for the first 6 days of cultivation.

The growth of C. vulgaris in RFDMW and SM was 
assessed for 10  days. During the 10  day cultivation 
period, samples of C. vulgaris were collected daily for 
biomass analysis. Biomass analysis was used to compare 
the growth of C. vulgaris in RFDMW and SM. Subse-
quently, a series of experiments was conducted to deter-
mine the effect of supplementing RFDMW with SM. 
Three mixtures with RFDMW and SM ratio (volumetric 
basis) of 20:80, 40:60 and 70:30 were used to evaluate the 
effect of C. vulgaris biomass production. To assess the 
impacts of animal waste-borne microbial population on 
C. vulgaris growth, we compare the growth of C. vulgaris 
in RFDMW and SFDMW in identical growth conditions. 
Further, a series of experiments (as described previously 
for RFDMW) was conducted to identify the optimal 
growth environment for SFDMW feedstock.

Algal growth and biomass
The growth of C. vulgaris was monitored by measuring 
the OD at a wavelength of 680 nm using previously pub-
lished approaches (Mulbry and Wilkie 2001; Mulbry et al. 
2008; Wang et  al. 2010). Colored dissolved organic mat-
ter (CDOM) occurs naturally in wastewater because of 
tannins released from decaying matter. Both CDOM and 
chlorophyll a absorb in the same spectral range, which 
poses challenges in differentiating absorbance caused by 
chlorophyll a and wastewater. In order to resolve this issue, 
we have used controls of each level of RFDMW, SFDMW, 
and SM prior to measurement. First, the OD of these con-
trols were measured and zeroed, and then the OD of actual 
sample was measured. This process resolved the differen-
tiation issue of CDOM and C. vulgaris optical density.
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For algal biomass analysis, a 10 mL sample volume was 
centrifuged at 8000 rpm for 10 min, and the centrifuged 
pellets were washed twice with distilled water to remove 
the salts and solids. Subsequently, each pellet was resus-
pended in distilled water and filtered through a 47  mm 
membrane filter (HAWG047S6, Millipore). The C. vul-
garis biomass retained in the filter was dried overnight 
at 60 °C and the final biomass weight was measured. An 
empirical equation (Eq. 1) was developed (R2 = 0.98) for 
calculating the biomass using OD 680 readings where 
BMd is biomass dry weight (g/L). 

In addition to BMd, volumetric biomass productivity 
(Pb) (g/L/d) and specific growth rate (µ) (1/d) were esti-
mated using the reported methods (Blair et al. 2014). 

where, X1 and X2 are the biomass concentration (g/L) on 
days t1 and t2, respectively.

Ultrastructure analysis of C. vulgaris using TEM
To understand the impacts of RFDMW, SFDMW, and 
SM on the ultrastructure of C. vulgaris, we used TEM 
analysis. The pellets of C. vulgaris were fixed in 2 % para-
formaldehyde + 2.5  % glutaraldehyde in 0.1  M sodium 
phosphate buffer. Subsequently, the pellets were rinsed 
in buffer and then fixed in 2 % OsO4 in the same buffer 
for 1.5 h. The samples were then dehydrated in a graded 
series of acetone in PBS (10, 30, 50, 70, and 90  %) for 
10  min at each level of acetone. Subsequently, at 100  % 
acetone, samples were dehydrated for 30 min. A mixture 
of acetone and resin (1:1) was used for 1 h resin infiltra-
tion, which was followed by overnight infiltration with 
100 % resin. The next day, fresh resin (100 %) was used 
for a 2 h infiltration before final embedding and polymer-
ization. Ultrathin sections (50 nm thick) were cut using a 
Diatome diamond knife and picked up onto copper (car-
bon coated) grids (200 mesh) then stained with 0.5 % ura-
nyl acetate for 2 h and 3 % lead citrate for 5 min before 
viewing in a Philips CM120 electron microscope. An 
accelerating voltage of 80 kV and magnification of 13.90 
kx were used for examining the specimen.

Results
Growth of C. vulgaris in RFDMW and SM
Figure  1 shows the growth of C. vulgaris in RFDMW 
and SM indicating the considerable higher biomass dry 
weight obtained with RFDMW compared to SM. As 

(1)BMd = 0.3386 · OD680.

(2)Pb =

X2 − X1

t2 − t1

(3)µ =

ln [X2/X1]

t2 − t1
.

shown in Fig. 1, the growth of C. vulgaris in SM remained 
steady while a spike in the growth of C. vulgaris was 
observed after 2 days of cultivation in RFDMW. The ini-
tial biomass of C. vulgaris in RFDMW (24.7  mg/L) and 
SM (25.4  mg/L) was comparable. At the end of 10  days 
cultivation time, C. vulgaris biomass weight in RFDMW 
was 155.1  mg/L, while biomass weight in SM was 
102.0 mg/L, about 34 % less than the RFDMW.

Supplementation of RFDMW with SM
In order to determine the effects of supplementing 
RFDMW with SM for enhancing the growth of C. vul-
garis, a comparative growth analysis of C. vulgaris was 
performed using various mixtures of RFDMW and SM 
(20:80, 40:60 and 70:30). As shown in Fig. 2, the growth 
of C. vulgaris observed using the 20:80 and 40:60 mix-
tures of RFDMW/SM was higher than the growth in 
the 70:30 mixture RFDMW/SM, or when using only 
RFDMW. The average of growth in all RFDMW and SM 
mixtures is shown as green line (with error bars). On day 
1, the average biomass of C. vulgaris in RFDMW was 
24  mg/L. On day 10 of cultivation, C. vulgaris biomass 
increased to 332.6, 302.8 and 166.6  mg/L, respectively. 
The production on day 10 at 40:60 mixture (RFDMW/
SM) was 48.8 and 66.3 % greater than RFDMW and SM, 
respectively. Compare to this recipe, the combination 
of 20:80 (RFDMW/SM) produced slightly better results 
in raw manure water. As an example, the production on 
day 10 was 69.3 and 53.4 % greater than that of RFDMW 
and SM, respectively. The 10  days average biomass dry 
weight for SM, 20:80, 40:60, 70:30, and RFDMW were 
63.9 (±27.8), 193.4 (±105.8), 195.5 (±98.8), 121.0(±49.6), 
122.5(±47.9), respectively. These results demonstrate 
that supplementation of RFDMW with SM can enhance 
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the growth of C. vulgaris relative to SM, and a prelimi-
nary comparison indicates that both the 40:60 and 20: 
80 mixtures of RFDMW/SM are effective ratios. When 
SM was mixed with RFDMW, the growth was relatively 
higher than that of SM alone, which indicates that that 
the RFDMW influences the growth of C. vulgaris posi-
tively, however, instead of growing C. vulgaris in only 
RFDMW, a recipe combining dairy wastewater with 
synthetic growth medium can provide optimal condi-
tions for the growth of C. vulgaris. The average biomass 
growth of all mixture of RFDMW is shown in Fig.  2 as 
solid red line. During 10 days growth period, the average 
biomass growth of all mixtures of RFDMW varied from 
24 (±1.3) to 239.3 (±91.5) mg/L.

Comparison of C. vulgaris growth on SFDMW and SM
Figure  3 shows the growth of C. vulgaris in SFDMW 
compared to SM, and also in mixtures of SM and 
SFDMW at various ratios (20:80, 40:60 and 70:30). As 
seen in Fig.  3a, the growth of C. vulgaris in SFDMW 
affords higher biomass dry weight compared to RFDMW 
and SM. The initial biomass (day 1) of C. vulgaris in 
SFDMW and SM were 30.4 and 25.4 mg/L, respectively, 
and at the end of 10 days cultivation time, C. vulgaris bio-
mass weight in SFDMW reached 401.1  mg/L, while in 
SM the biomass only reached 101.9 mg/L (approx. 76 % 
less than SFDMW). As seen in Fig. 3b, the growth of C. 
vulgaris using a mixture of 40:60 SFDMW/SM was rela-
tively higher compared to growth in other SFDMW/SM 
ratios (i.e., 20:80, 70:30 and 100:0), and all are higher than 
growth in SM alone. The initial C. vulgaris biomass iso-
lated on day 1 was 24.7, 24.4, 29.1 and 30.5 mg/L at ratios 

of 20:80, 40:60, 70:30 and 100:0, respectively. On day 10 
cultivation, C. vulgaris biomass levels increased to 293.0, 
448.8, 364.1 and 401.0  mg/L, respectively. The average 
biomass over 10  days for SM was 60.5 (±29.7)  mg/L. 
The values for 20:80, 40:60 and 70:30 (SFDMW/SM) 
mixes were 164.9 (±90.2), 250.4 (±148.7), and 184.8 
(±114.5)  mg/L, respectively. Comparison indicates that 
40:60 mixture (SFDMW/SM) performed better than 
other mixtures. The average growth of all SFDMW mix-
tures (shown in Fig. 3b) varied from 27.2 (± 3.1) to 376.7 
(± 65.7) mg/L. The observed higher biomass productiv-
ity in both SFDMW and RFDMW compared to only SM 
further emphasizes the utility of nutrient-rich FDMW for 
growing C. vulgaris (Mulbry and Wilkie 2001; Mulbry 
et al. 2008).

The overall results suggest that the biomass production 
of C. vulgaris using SFDMW is better than compared 
to using SM and RFDMW (Fig.  4a, b). Figure  4 shows 
an initial comparison biomass productivity and specific 
growth rate of C. vulgaris in RFDMW (Fig. 4a) SFDMW 
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(Fig.  4b), and SM under various mixture conditions. 
As shown (Fig.  4a, b), C. vulgaris growth using 40  % 
SFDMW afforded the highest productivity with a specific 
growth rate of 0.3  day−1. With non-autoclaved condi-
tion, the specific growth rate and biomass productivity 
using 20 and 40 % RFDMW are relatively similar (Fig. 4a), 
while in autoclaved condition the 40 % RFDMW afforded 
higher biomass production compared to other mix-
tures. In 10-day cultivation time, 40 % SFDMW yielded 
the largest biomass growth of 47.2  mg/L/day, which 
was 80.8 % greater than the productivity observed using 
SM (9.0  mg/L/day) and 12.7  % greater than using only 
SFDMW (41.1 mg/L/day) (Fig. 4b). In 40 % RFDMW, bio-
mass growth (20.6 mg/L/day) was 70.9 and 53.3 % greater 
than that of SM and RFDMW, respectively. The specific 
growth rate in 40 % RFDMW (0.28 day−1) was 43.6 and 
27.9  % greater than SM and RFDMW, respectively. In 
40  % SFDMW, specific growth rate of 0.32 (day−1) was 
50.7 and 11.5 % greater than that of SM and SFDMW.

Discussion
Impact of RFDMW on ultrastructure of C. vulgaris
Using TEM, we compared changes in the ultrastruc-
ture of C. vulgaris grown in RFDMW, SFDMW and 

SM conditions (Fig. 5). The use of TEM to observe cell 
structures of C. vulgaris have been reported previously 
(Yu et al. 2015). Cellular organelles such as the chloro-
plast, thylakoid, granules, and cell wall are clearly visi-
ble using TEM (Fig. 5). The micrographs of C. vulgaris 
cells grown using SM (Fig. 5a), 40 % SFDMW (Fig. 5b), 
and 40  % RFDMW (Fig.  5c) are shown. Numerous 
intact C. vulgaris algae cells and their lysate were vis-
ible for each condition with cell diameters ranging 
from 1 to 6 µm. Previous studies (Zhao et al. 2014; Yu 
et al. 2015) used TEM to illustrate lysates inside of the 
microalgae cells, which influences microalgae lipid 
yields. The cell lysis (i.e., cell disruption) releases solu-
ble organic compounds including lipids from microal-
gae cells (Ahn et al. 2002; Huang et al. 2014). Previous 
studies have shown that increased lipid extraction 
occurs as a result of cell lysis of microalgae (Ali and 
Watson 2015; Balasubramanian et  al. 2011). Ruptur-
ing of cell walls results in oil (i.e., lipids) release from 
the cells (Mercer and Armenta 2011). The localization 
of the lipid bodies near the cell walls facilitate their 
release once the cell walls are ruptured (Cravotto et al. 
2008; Wei et al. 2008).

In each TEM (2  µm) we detected nine C. vulgaris 
cells (Fig. 5a, b, c). The cells grown in RFDMW (Fig. 5c) 
show distinct changes in ultrastructure compared to 
SFDMW and SM. For cells cultivated using SM or 40 % 
SFDMW conditions, the entire cell is enclosed by a cell 
wall and the plasma membrane remains close to the 
cell wall. However, for cells cultivated in 40 % RFDMW, 
the plasma membrane was observed to be detached 
from the cell wall (Fig. 5c). The shrinkage of cytoplasm 
(with nucleus and membrane) suggests that cell dam-
age is occurring with RFDMW growth conditions. 
This cell damage was apparent in the micrographs for 
all cells cultivated in RFDMW medium. Bacterial cells 
were also observable in RFDMW micrographs (Fig. 5c). 
Similar cell damage has been observed by Passero et al. 
(2015) using TEM, when a freshwater algae (Oocystis 
sp.) was grown under thermal pretreatment conditions. 
Another study by Anthony et  al. (2015) utilized TEM 
to monitor the changes in ultrastructure for C. vul-
garis over the various growth periods. This study also 
reported similar intracellular damage upon exposure 
to UV light. Therefore, there is a common cell dam-
age associated with the cell wall that is observed when 
microalgae are exposed to UV light, thermal treat-
ment, or dairy wastewater. Notably, these previous 
studies (Anthony et  al. 2015; Passero et  al. 2015) also 
demonstrate that there is a correlation between dam-
aged cell walls in microalgae cells and increased lipid 
accumulation.
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Fig. 4 a C. vulgaris productivity and specific growth rate in SFDMW 
with 10 days cultivation. b C. vulgaris productivity and specific growth 
rate in RFDMW with 10 days cultivation
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Comparison of C. vulgaris growth using wastewater 
from different dairy facilities
The growth of C. vulgaris was compared using flushed 
DMW collected from three dairies (including dairy 
farm #1) with a 40:60 ratio of FDMW/medium for both 
SFDMW and RFDMW (Fig.  6). When comparing the 
growth of C. vulgaris in 40 % RFDMW, the biomass iso-
lated at the end of the 10 day growth period was 302.7, 
572.2, 501.1  mg/L for dairy farm #1,#2 and #3, respec-
tively (Fig. 6a). The average specific growth rate and bio-
mass productivity at 40  % RFDMW were 0.3  day−1 and 
46.0 mg/L/day. The selection of 40 % SFDMW and 40 % 
RFDMW for growth of C. vulgaris was based on our 
previous inference that a 40:60 mixture can serve as an 
optimal combination for increased biomass productivity 

(vida supra). In 40  % SFDMW, the initial biomass 
(day 1) of C. vulgaris was 24.4, 71.1 and 50.8  mg/L for 
dairy farm #1, #2 and #3, respectively. At day 10 of the 
growth period, the biomass increased to 448.6, 494.4, 
453.7  mg/L, respectively (Fig.  6b). The average spe-
cific growth rate and biomass productivity using 40  % 
SFDMW is 0.3 day−1 and 46.3  mg/L/day, respectively. 
Consistent with results presented earlier, growth of C. 
vulgaris using SM alone produced considerably lower dry 
biomass weight compared to all FDMW from all three 
dairy farms.

The average results for all three dairies with both 
RFDMW and SFDMW (Fig.  6c), indicate that the com-
bination of nutrient-rich FDMW with SM provides a bet-
ter environment for the growth of C. vulgaris. A larger 
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Fig. 5 Transmission Electron Micrographs (Chl indicates chloroplast; Sg indicates starch granules; Th shows thylakoid; Cw shows cell wall; plm 
indicates plasma membrane; n indicates nucleus; Ba indicates bacteria: a C. vulgaris ultrastructure in SM. b C. vulgaris ultrastructure in SFDMW. c C. 
vulgaris ultrastructure in RFDMW
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variation was observed using RFDMW with the maxi-
mum biomass productivity observed using RFDMW 
from dairy farm #2 and the minimum biomass produc-
tivity observed using RFDMW from dairy farm #1. Nev-
ertheless, all three tests showed that the growth of C. 
vulgaris was improved when FMDW was mixed with 

SM (Fig. 6). While the SFDMW and RFDMW conditions 
demonstrated the same average biomass production, the 
pretreatment of FDMW was effective to reduce varia-
tions resulting from different dairies, such as different 
levels of animal waste-borne bacteria.
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