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Article

From coarse to fine: The absolute Escherichia coli
proteome under diverse growth conditions
Matteo Mori1 , Zhongge Zhang2, Amir Banaei-Esfahani3 , Jean-Benoît Lalanne4,5 ,

Hiroyuki Okano1, Ben C Collins3,6 , Alexander Schmidt7 , Olga T Schubert8 , Deok-Sun Lee9,

Gene-Wei Li4 , Ruedi Aebersold3,10,*,† , Terence Hwa1,2,**,† & Christina Ludwig11,***,†

Abstract

Accurate measurements of cellular protein concentrations are
invaluable to quantitative studies of gene expression and physi-
ology in living cells. Here, we developed a versatile mass spec-
trometric workflow based on data-independent acquisition
proteomics (DIA/SWATH) together with a novel protein inference
algorithm (xTop). We used this workflow to accurately quantify
absolute protein abundances in Escherichia coli for > 2,000
proteins over > 60 growth conditions, including nutrient limita-
tions, non-metabolic stresses, and non-planktonic states. The
resulting high-quality dataset of protein mass fractions allowed
us to characterize proteome responses from a coarse (groups of
related proteins) to a fine (individual) protein level. Hereby, a
plethora of novel biological findings could be elucidated, includ-
ing the generic upregulation of low-abundant proteins under
various metabolic limitations, the non-specificity of catabolic
enzymes upregulated under carbon limitation, the lack of large-
scale proteome reallocation under stress compared to nutrient
limitations, as well as surprising strain-dependent effects
important for biofilm formation. These results present valuable
resources for the systems biology community and can be used
for future multi-omics studies of gene regulation and metabolic
control in E. coli.

Keywords absolute quantification; Escherichia coli; mass spectrometry;

protein inference; quantitative proteomics

Subject Categories Metabolism; Microbiology, Virology & Host Pathogen

Interaction; Proteomics
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Introduction

Proteins are one of the key molecular players in living cells, directly

affecting cell behavior through myriads of activities. They are

controlled, regulated, and fine-tuned in time and space through vari-

ous mechanisms, including protein synthesis, turnover, post-

translational modifications, and protein–protein interactions. In

comparison to DNA or RNA, proteins represent a more direct read-

out of cellular functions and phenotypes, since proteins are the

biomolecules catalyzing most biochemical reactions. Therefore,

quantitative measurements of proteins, their turnover rates, their

modification, or their interaction status provide direct snapshots of

cellular processes, allowing to associate gene expression to physiol-

ogy and phenotypes. Over the last decades, liquid-chromatography

coupled to tandem mass spectrometry (LC-MS/MS) has matured to

be the method of choice for generating quantitative proteomic data

(Aebersold & Mann, 2003, 2016). A specific challenge for systems-

level studies is the reliable quantification of thousands of proteins,

including proteins at low concentrations, across large sample

cohorts from a variety of different growth conditions, phenotypes,

or strains (Rost et al, 2015). Both relative protein quantification (al-

lowing cross-sample comparisons for the same protein) and abso-

lute protein quantification (allowing cross-protein comparisons in

the same sample) provide crucial information on the activity of
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biochemical and regulation pathways, the stoichiometry of protein

complexes, and the relationship between gene expression and cellu-

lar phenotype (Ludwig & Aebersold, 2014; Schubert et al, 2015;

Schmidt et al, 2016). Furthermore, accurate measurements of abso-

lute protein abundances (e.g., “number of proteins per cell” or

“protein mass fractions”), together with the knowledge of cell

volume, give the cellular protein concentrations (Appendix Note

S1). This can be combined with other omics data to yield detailed

biochemical information. For example, translational efficiencies of

mRNA can be obtained if data on absolute mRNA concentrations

are available (Li et al, 2014), or enzymatic parameters can be inves-

tigated if concentrations of metabolites associated with an enzyme

and the flux it carries are known (Schubert et al, 2015).

The Gram-negative bacterium Escherichia coli is one of the best-

characterized model organism, and a workhorse for microbial genet-

ics, biotechnology, and systems biology, thanks to many decades of

rigorous molecular and physiological studies (Lee, 1996; Neidhardt,

1996; Bremer & Dennis, 2008; Karp et al, 2018). In the past decade,

substantial advancements have been made in the quantitative char-

acterization of the proteome of E. coli, driven in part by elucidating

the cost of protein synthesis and the allocation of proteomic

resources in different growth conditions (Basan et al, 2015a; Hui et

al, 2015; Peebo et al, 2015; Caglar et al, 2017; Erickson et al, 2017).

Most of these proteomic studies focused on the absolute abundances

of groups of proteins, e.g., the abundances of all enzymes involved

in glycolysis or in amino acid synthesis. Quantitative data on protein

abundances collected at this coarse-grained level across a spectrum

of relevant growth conditions showed that the cost of protein

synthesis is key to explain a number of ubiquitous microbial

phenomena, e.g., catabolite repression (You et al, 2013; Hui et al,

2015), metabolic overflow (Basan et al, 2015a; Peebo et al, 2015),

and diauxic shift (Erickson et al, 2017). While the accuracy of quan-

titative proteomics at that time was not sufficient for making quanti-

tative statements on the abundances of individual proteins,

abundance estimates based on ribosome profiling were able to

generate insightful quantitative information at the individual protein

level, e.g., in quantitatively assessing the fitness effect of the expres-

sion of a single metabolic protein and on the stoichiometric relation

between enzymes in protein complexes (Li et al, 2014). However,

the elaborate workflow and high costs of ribosome profiling make

this demanding method difficult to apply to a large number of

growth conditions.

A large step in the direction of comprehensive quantitation of E.

coli proteomes was made by Schmidt et al (2016), who calibrated

mass spectrometric protein intensities using quantified external

standards (AQUA peptides) for a subset of 41 proteins expressed at

different abundances. This study investigated proteome allocation,

expression regulation, and post-translational adaptations of E. coli

across a set of 22 different growth conditions. However, despite the

improvement in quantitation, their major findings either only

considered the total abundance of groups of proteins or were not

quantitative in nature. A detailed analysis presented in this work

showed that in fact the accuracy of absolute abundance quantitation

using AQUA peptide calibration is limited. One key challenge for

accurate quantitation of absolute protein abundances in bottom-up

proteomics is that peptides, rather than proteins, are the measured

analytes. Therefore, absolute protein abundance needs to be

inferred from peptide abundances, which is not straightforward—

different peptide precursors from the same protein can yield very

different intensities. Even when external standards, such as AQUA

peptides, are used, they provide only information on proteins from

which the peptides are derived from. Additionally, accurate absolute

quantification with AQUA peptides is very expensive, work inten-

sive, technically challenging, and can still be error-prone (Ludwig &

Aebersold, 2014).

In this study, we described a versatile workflow that accurately

quantifies absolute abundances of thousands of E. coli proteins at

the individual protein level over many conditions. We demonstrated

the usefulness of the generated datasets by providing extensive

biological analyses of numerous individual proteins, which is some-

thing that has not been done previously in proteomic studies of

E. coli. Additional utility at the individual protein level will be

shown in follow-up studies, where we will combine the data gener-

ated here with other omics approaches. Compared to previous stud-

ies, our approach provides high-throughput quantification that is

comprehensive, accurate, and reproducible, and delivers at low

costs and a reasonably fast timescale (1 h per sample). Our pipeline

is based on data-independent acquisition mass spectrometry (DIA/

SWATH (Gillet et al, 2012; Chapman et al, 2014; Ludwig et al,

2018)) for which we generated a tailor-made comprehensive E. coli

spectral library entailing information for 64% of all annotated

E. coli proteins. DIA/SWATH mass spectrometry applied to study

E. coli proteomes has recently been shown to provide excellent

quantitative results in terms of precision, reproducibility, and deep

proteome coverage (Midha et al, 2020).

Further, we established a novel peptide-to-protein inference algo-

rithm, named xTop, which combines intensities from unique

peptides of a given protein across all samples at hand to infer the

intensities of that protein. We showed that xTop is superior in esti-

mating relative protein abundances across samples, compared to

other commonly used algorithms, such as iBAQ (Schwanhausser et

al, 2011) or TopPepN (Silva et al, 2006; Ludwig et al, 2012; Rosen-

berger et al, 2014). We benchmarked these protein inference meth-

ods, along with ribosome profiling, for their estimate of absolute

protein abundances against a set of spiked-in reference peptides

(AQUA), as well as by using a number of internal references offered

by protein complexes with known stoichiometry. We established

that absolute protein abundances inferred from ribosome profiling

data are superior in accuracy. We therefore calibrated the relative

protein abundances provided by proteomics and xTop to the abso-

lute abundance obtained from ribosome profiling, hence obtaining

accurate protein abundances across a vast number of samples.

Finally, we applied our workflow to explore the E. coli proteome

across ~ 60 growth conditions. Here we extended well beyond nutri-

ent limitation (carbon, phosphate, oxygen) and included anaerobic

growth, various non-metabolic stresses (high temperature, hyperos-

molarity, acetate, ethanol, oxidative), and conditions favoring non-

planktonic growth, such as biofilm and colony growth. A total of

2,335 proteins were detected from 66 samples across these condi-

tions. This comprehensive dataset allowed us to characterize

proteome responses at the global level and, crucially, for individual

proteins at unprecedented detail. At the level of protein sectors

(groups of proteins exhibiting similar response patterns under meta-

bolic limitations or antibiotic inhibition), the responses by abundant

proteins were found to match what was previously seen for sector

aggregates (Peebo et al, 2015; Schmidt et al, 2016; Caglar et al,
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2017). However, a large number of newly detected, low-abundant

proteins exhibited distinct responses unresolved in previous studies.

A more detailed examination of individual proteins in nutrient limi-

tation, stress conditions, and for various commonly used media and

genotypes revealed several surprises, including the commonality of

the response to growth on different carbon sources, the impact of

micronutrients in growth medium, the lack of proteome-wide

response to non-metabolic stresses, and factors affecting motility

and biofilm formation. These findings shed new light on physiologi-

cal responses of E. coli to environmental and genetic perturbations,

and generate a variety of interesting hypotheses to be further exam-

ined by follow-up studies.

Results

Workflow development

We developed a versatile workflow for relative and absolute quan-

tification of E. coli proteomes across many samples using DIA/

SWATH mass spectrometry. For the peptide-centric analysis of DIA/

SWATH data, a “spectral library” encapsulating prior knowledge

about chromatographic and mass spectrometric behavior of peptides

is required. We generated a comprehensive E. coli spectral library

from a diverse set of E. coli proteomes. Further, we developed a

novel protein inference algorithm, termed xTop, and tested its

performance in comparison to other commonly used inference algo-

rithms, such as iBAQ (Schwanhausser et al, 2011) and TopPepN

(Silva et al, 2006; Ludwig et al, 2012; Rosenberger et al, 2014).

Spectral library generation
To generate a comprehensive E. coli spectral library for peptide-

centric DIA/SWATH data analysis, we followed the workflow illus-

trated in Fig 1A. To detect as many peptides and proteins as possi-

ble, including those proteins that are expressed only under specific

growth conditions, we grew E. coli cells in 34 diverse growth condi-

tions, including exponential, stationary, and biofilm-forming condi-

tions, exposure to a spectrum of stresses (high and low pH,

hyperosmolarity, high temperature, oxidative stress), as well as a

wide range of nutrient sources (Datasets EV1 and EV2). All 34

samples were measured by DDA-based mass spectrometry on a

quadrupole-time-of-flight mass spectrometer (TripleTOF 5600,

Sciex). To further increase proteome coverage, a pooled sample was

fractionated by peptide off-gel electrophoresis (OGE) into 13 frac-

tions, which were measured individually by DDA proteomics. This

approach allowed us to increase the peptide coverage from ~ 10,000

for a typical DDA measurement to a total of 26,285 unique peptide

sequences, corresponding to 2,770 unique E. coli proteins (64% of

all annotated E. coli proteins) (Fig 1B). About ¾ of the identified

proteins have been detected with more than three peptides (Fig 1C).

The resulting spectral library is freely available through the

SWATHAtlas repository in different formats (PASS01421) and can

be used by the mass spectrometric community as a comprehensive

resource for acquiring and analyzing mass spectreometic data from

the model organism E. coli.

From peptides to proteins: the xTop algorithm
Next, we developed a novel quantitative protein inference algo-

rithm, termed “xTop”, which exploits and combines information

A B

C

Figure 1. Spectral library generation to target the Escherichia coli proteome.

A Workflow employed to generate a comprehensive E. coli spectral library. Step 1: A wide range of E. coli cells from various strains grown under different conditions
were generated, including different time points of sampling, growth media, high and low pH, aerobic and anaerobic growth, temperatures, high and low osmotic
conditions, and different nutrition additives. Peptide fractionation by off-gel electrophoresis (OGE) was performed on a “MixAll” sample. Step 2: All samples were
measured in data-dependent acquisition (DDA) mode on a TripleTOF 5600 instrument. In total, 53 MS injections were performed. Step 3: MS2 spectra were matched
to the canonical E. coli proteome, and a consensus spectral library was generated.

B Numbers of proteins, peptides, precursors, and transitions entailed in the E. coli spectral library. Given are the statistics for the unique proteins and peptides only, as
well as for all entries, including also shared peptides, iRT peptides as well as 9 control proteins not from the organism E. coli.

C Distribution of detectable unique peptides per protein.
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from all peptides of a given protein detected across all samples to

infer the absolute protein intensity in each sample. Salient features

of the xTop algorithm are illustrated in Fig 2A. For each protein, the

intensities of its peptide precursors p across each sample s are repre-

sented as a matrix element Ips. This matrix is modeled as the

product of two components, the sample-dependent xTop intensity

IxTops , and the peptide-specific detection efficiency ϵp. These two

components are determined from the data matrix Ips from their

maximum a posteriori probability (MAP) estimators (summarized in

Figure N2.2 within Appendix Note S2). Importantly, the xTop

protein intensity is obtained as a weighted average of all peptide

precursors intensities. Peptides whose intensities display a large

degree of mutual consistency across samples contribute the most to

the intensity IxTops , while peptides weakly correlated with the others

contribute the least. Therefore, this method mitigates the impact of

missing or noisy peptide precursors on the inferred protein intensi-

ties. An in-depth description of the method and of its implementa-

tion is provided in Appendix Note S2.

Assessment of xTop performance
In order to validate the xTop method and benchmark it against vari-

ous other commonly used protein inference methods (TopPep1/3
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Figure 2. xTop protein quantification and comparison to other methods.

A xTop is a protein inference algorithm which models for each protein the intensities of peptide precursors as the product of the xTop protein intensity IxTops in
sample s, and a detection efficiency ϵp for each peptide precursor p relative to the peptide with the largest intensity (Top1). This allows to integrate consistently
the information from the whole dataset and minimizes the impact of missing peptides on the inferred protein intensity.

B We collected 3 biological samples of E. coli K-12 MG1655 (EQ353) in glucose minimal media, matching strain, and condition from Li et al (2014). Two of the three
biological replicates were injected 3 times, for a total of 7 proteomics “calibration” datasets. These samples were used for testing the reproducibility of the
proteomics measurements and the absolute quantification.

C Peptide precursor intensities measured for the RseA protein across the seven calibration samples. Different symbols and colors indicate different unique peptide
precursors. Peptide-level intensities are reported in Datasets EV4 and EV5.

D–G Protein intensities (red open diamonds) obtained from the data in panel (C) (also shown in these panels as smaller symbols) computed with four protein inference
algorithms: TopPep1, TopPep3, iBAQ, and xTop (Dataset EV6).

H Variance in the log-ratio of protein intensities between technical (samples F1-1 and F1-2) or biological (samples A1-1 and F1-1) replicates using the same proteins
(N = 1,631) quantified in all samples by each method (see also Appendix Fig S2).

I For each protein, the coefficient of variation (CV) of the protein intensities was computed across the seven calibration samples using the same N = 1,939 proteins
excluding non-detected proteins. The bar graph shows the median CV for each of the four methods employed.

J–L Scatter of CV computed from TopPep1, TopPep3, and iBAQ against that of xTop. An excess of points is visible above the diagonal (blue line) especially for TopPep3
and iBAQ.
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and iBAQ), we grew three replicate cultures of E. coli K-12 MG1655

(sub-strain EQ353) cells in minimal medium (MOPS + glucose) in

exponential growth (Fig 2B). These “calibration samples” (A1, C1,

F1) were measured by DIA/SWATH mass spectrometry using a 64

variable SWATH window acquisition method (Collins et al, 2017).

For two out of the three calibration samples (A1 and F1), we addi-

tionally performed three technical MS injection replicate measure-

ments. We analyzed the data from these 7 calibration samples in a

peptide-centric way using the E. coli spectral library described above

and the OpenSWATH software (Rost et al, 2014). We obtained

quantitative intensity values for 18,731 peptide precursors (Datasets

EV4 and EV5). Peptide intensities were strongly correlated between

technical and biological replicates, with Pearson coefficients (r)

above 0.987 and 0.966 for technical and biological replicates,

respectively (Appendix Fig S1A). The median coefficient of variation

(CV) for technical and biological replicates was 5.5 and 10.8%,

respectively (Appendix Fig S1B and C).

To illustrate the effect of missing peptides on the inferred protein

intensities, we considered the protein RseA, an anti-sigma factor. As

shown in Fig 2C, four peptide precursors (open symbols of different

colors) are detected in the seven replicates of the calibration condi-

tion. However, not all of them are detected across all 7 samples. In

particular, the peptide precursor with the highest intensity (yellow

circles) is not detected in the three replicates of sample A1, while

peptide precursors represented by the green up-triangle and blue

down-triangles are not uniformly detected across the technical repli-

cates. These variabilities strongly impact the protein intensities

inferred by the TopPep1/3 and iBAQ algorithms as shown in

Fig 2D–F: First, the TopPep1 algorithm only provides a protein

intensity in the four samples in which the top peptide has been

detected (Fig 2D, red diamonds). This protein is declared as “not

detected” in the other three samples. For both TopPep3 and iBAQ

(Fig 2E and F, respectively), the missing peptides lead to a consider-

able scatter in the inferred protein intensities (red diamonds), even

though the scatter in the intensities of each of the detected peptides

is much smaller. The xTop algorithm combines the intensities of all

the detected peptides across these samples; its inferred protein

intensities (Fig 2G, red diamonds) show little scatter across all repli-

cates compared to those generated by TopPep1/3 and iBAQ.

Proteome-wide results confirm the expectations from the exam-

ple above. First, TopPep1 detects on average 1,780 proteins across

the calibration samples, about 100 less than the other algorithms

(which detect between 1,885 and 1,893 proteins). Both technical

and biological replicates are found to be strongly correlated

(r < 0.98) (Appendix Fig S2A and D). However, a clear improve-

ment of xTop over the other methods is seen when comparing the

variance of the ratio of intensities between pairs of replicates, as

summarized in Fig 2H (see also Appendix Fig S2B and E). When

using either technical and biological replicates, xTop shows the least

scatter, while TopPep3 and iBAQ show the most. The improvement

of xTop over the other algorithms is also evident when computing

the median CV of protein intensities across the seven samples, as

shown in Fig 2I, with xTop displaying a CV of 6.8%, about only

two-thirds of the CVs compared to TopPep3 and iBAQ (11 and

11.2%, respectively). The additional scatter observed for the

TopPep1/3 and iBAQ protein intensities is clearly seen in Fig 2J–L,
where we plotted the CV computed from these methods against

those computed with xTop. In all cases, an overabundance of points

above the diagonal blue line can be seen, indicating proteins whose

intensities are more precisely determined by xTop (i.e., lower CV)

than the other methods. As shown in Appendix Fig S2C and F, the

increased scatter for TopPep3 seen when comparing pairs of repli-

cates was mostly due to proteins for which some peptide intensity

values were missing in one of the samples. iBAQ is similarly

affected since it makes use of the sum of all peptide intensities. This

issue is overcome by the xTop algorithm thanks to the peptide

weighing strategy described above.

Quantification of absolute protein abundance
Next, we computed absolute protein abundances as fractions of total

protein mass in the sample. For that we multiplied the protein inten-

sities for each of the four algorithms tested by the known protein

molecular weight and normalized to unity (see Appendix Note S1).

These absolute protein mass fractions were evaluated against a set

of 29 proteins whose absolute protein abundances had been

measured with one representative stable isotope-labeled synthetic

peptide per protein (AQUA peptides (Gerber et al, 2003); Dataset

EV7). The determined absolute protein abundances spanned about

3 orders of magnitude. As shown in Appendix Fig S3A–D, all four
protein inference algorithms showed good correlations to the abun-

dances determined using AQUA peptides (r > 0.92). On average, we

observed a slight 20 to 30% reduction in the median protein abun-

dances that might reflect a discrepancy in the estimation of total

protein amount in the sample. When looking at the ratios between

the inferred protein mass fractions and the AQUA peptide-derived

abundances, we saw that 50% of the data lies in a 2.5-fold range

(Fig 3A, red bars), except for iBAQ having the smallest scatter (1.5-

fold). Note that 27 of these 29 proteins had been detected with 8 or

more peptide precursors, suggesting a minimal impact of fluctua-

tions in the number of detected peptides, which cause most of the

scatter in Fig 2.

As our “calibration samples” (A1, C1, F1) were done for the

exact same sub-strain (EQ353) of MG1655 and growth condition

(MOPS glucose medium) as that analyzed in a previous study (Li et

al, 2014) by ribosome profiling, we also compared protein abun-

dances against those inferred from Li et al (2014) where they deter-

mined the protein synthesis rates for more than 96% of all E. coli

proteins. Since protein degradation is negligible for the vast majority

of proteins in exponentially growing E. coli cells (Koch & Levy,

1955; Mandelstam, 1958; Pine, 1970; Goldberg & St John, 1976;

Erickson et al, 2017), synthesis rates are proportional to absolute

protein copy numbers. In turn, these can be converted to absolute

protein mass fractions (Appendix Note S1). To test whether the

synthesis rates obtained via ribosome profiling can be used to obtain

absolute protein mass fractions, we compared the mass fractions of

the 29 proteins to the AQUA data. We found that ribosome

profiling-derived mass fractions correlated with AQUA-measured

proteins as strongly as those derived from iBAQ, with 50% of the

genes within a 1.5-fold interval (Fig 3A, blue bar and symbols;

Appendix Fig S3E). This suggests that ribosome profiling provides

good absolute protein quantification.

As an independent test for the accuracy of absolute quan-

tification, we investigated the performance of proteomics- and ribo-

some profiling-based quantification on proteins expected to

participate in protein complexes with known stoichiometric ratios,

such as ribosomes, ATP synthase complex (atp operon), and NADH
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dehydrogenase (nuo operon). For each method, we computed

the concentration of each protein in the complex (assuming a

total protein concentration of 3 × 106 proteins per µm3, see

Appendix Note S1) and divided by the stoichiometric coefficient of

each protein, obtaining for each protein an estimate of the concen-

tration of the protein complex. If proteins are indeed produced in

stoichiometric abundances, the scatter in these ratios should

predominantly reflect the error in absolute abundance determina-

tion by each method. Fig 3B–E shows the resulting ratios. We

observed that ribosome profiling yielded considerably less scatter

compared to the other proteomics methods, in particular for the

cases of ATP synthase proteins (Fig 3B) and the ribosomal large

subunit (Fig 3E).

Taken together, the results in Fig 3A–E suggest that ribosome

profiling provides consistently better absolute quantification than

the proteomics methods explored here. Using ribosome profiling as

genome-wide standard for evaluating the absolute protein abun-

dances from the various proteomics methods, we found that the

> 1,700 proteins measured by DIA/SWATH in the “calibration”

samples correspond to about 97% of the total protein mass (as
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Figure 3. Relative and absolute quantification.

A Ratio of protein mass fractions computed with several protein inference algorithms (x-axis labels) and mass fractions quantified with spiked-in labeled peptides
(AQUA) for a set of 29 proteins spanning more than 2 orders of magnitude (see Appendix Fig S3, Dataset EV7). The red boxes and symbols represent four
proteomics-based protein inference algorithms (TopPep1/3, iBAQ, and xTop). The blue box and symbols correspond to ribosome profiling-derived mass fractions.
The boxes and whiskers include 50 and 90% of the data, respectively, while the central line represents the median.

B–E Estimated concentration of protein complexes from various protein inference algorithms and ribosome profiling. Individual points are the estimated concentrations
for individual proteins in the complex, divided by the number of copies in each complex. Individual concentrations were estimated from the observed protein
number fractions assuming a total protein concentration of 3 × 106 proteins/μm3 (Appendix Note S1). The boxes and whiskers include 50 and 90% of the data,
respectively, while the central line represents the median.

F The bar chart summarizes the multilinear analysis described in Appendix Note S3. The total height of the bar is the variance in the log-ratio of proteomics-based
and ribosome profiling-based mass fractions. Colored components represent the fraction of variance explained by each factor (red, protein size; blue, only one
peptide precursor detected; light blue, only 2 peptide precursors detected). TopPep1/3 and xTop protein mass fractions display a bias toward large proteins;
TopPep3 and iBAQ systematically underestimate the abundance of proteins with 1 or 2 detected peptides.

G–J Scatter plot of fold change between reference and carbon-limited conditions (growth rates 0.91/h and 0.35/h, respectively) in mass spectrometry-based
(ϕC� lim

i =ϕref
i , y-axis) and ribosome profiling-based protein mass fractions (ρC� lim

i =ρrefi , x-axis). The blue line represents equal changes in the two quantities; the
dashed lines represent a 2-fold discrepancy.

K Fraction of proteins showing a > 2-fold discrepancy in panels (G–J).
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estimated by data from ribosome profiling) and captured most

proteins with mass fractions above 10−5 (Appendix Fig S4A).

However, comparisons with ribosome profiling also revealed system-

atic biases in the absolute quantification for each of the protein infer-

ence methods, which were quantified by a multilinear regression of

the log-ratio of proteomics and ribosome profiling-derived protein

mass fractions, denoted as ϕi and ρi respectively, as described in

Appendix Note S3. The amount of bias (explained variance) is

summarized in Fig 3F: TopPep3 and iBAQ are found to underestimate

the abundances of proteins detected with only one or two peptide

precursors (blue and light blue in Fig 3F). As the number of detected

peptide precursors is typically very low for proteins with mass frac-

tion below 10−4 (Appendix Fig S4B and C), this bias leads TopPep3

and iBAQ to underestimate the abundance of low-abundant proteins

compared to ribosome profiling or xTop/TopPep1 (Appendix Figs

S4D–E and S5). On the other hand, TopPep1/3 and xTop are seen to

overestimate the absolute abundances of larger proteins, leading to

systematic difference of 2- to 3-fold between large and small proteins

(red color in Fig 3F; Appendix Fig S4E–G). As a consequence, proteo-

mics algorithms tend to overestimate the covered protein concentra-

tion range in a given organism (difference between the measured

concentrations of the highest and lowest abundant protein).

Quantification of relative protein abundance
The systematic biases in absolute quantification displayed above do

not necessarily impact relative quantification. In particular, protein-

specific biases such as that toward protein size can potentially be

“fixed” by a condition-independent scaling factors (Appendix Note

S3). To assess the relative quantification capabilities of xTop,

TopPep1, TopPep3, and iBAQ, we performed additional ribosome

profiling measurements in both glucose minimal medium and

carbon-limited growth for E. coli NCM3722 strain, for which we also

have performed proteomics analysis (Dataset EV10). We then

compared the fold change in protein mass fractions estimated from

proteomics ðϕC� lim
i =ϕref

i Þ to that estimated from ribosome profiling

ðρC� lim
i =ρrefi Þ, as shown in Fig 3G–J. Proteins lying on the diagonal

(blue line) had matching fold changes in proteomics and ribosome

profiling mass fractions. Red dashed lines indicate 2-fold differences

between the two. Among the four proteomics methods investigated,

xTop showed the strongest correlation with ribosome profiling

(r = 0.865). TopPep1 displayed a slightly lower correlation than

xTop (r = 0.833), and 10% less quantified proteins (1,616 for

TopPep1 vs 1,757 for xTop). TopPep3 and iBAQ had the lowest

correlation coefficients (r = 0.778 and 0.801, respectively). The

degree of scatter is quantified in Fig 3K, which represents the frac-

tion of proteins for which the fold change in proteomics ϕC� lim
i =ϕref

i

differs from that of ribosome profiling ρC� lim
i =ρrefi by more than 2-

fold (red dashed lines in Fig 3G–J). For both TopPep3 and iBAQ, the

fraction is 12 and 11%, respectively, twice of that obtained for the

other two methods (~ 6%). The additional scatter is likely caused

by the missing peptides (Fig 2E, Fig N2.1 in Appendix Note S2) and

the nonlinear dependence on protein abundance (Appendix Figs

S4D–E and S5), which both impact relative quantification.

A versatile workflow for absolute abundance quantification across
many conditions
The above analysis suggested that the xTop algorithm is superior to

TopPep1/3 and iBAQ algorithms in inferring protein intensities and

in capturing the relative protein abundance across conditions.

However, ribosome profiling is superior to the proteomics-based

methods in quantifying absolute protein abundances in E. coli, i.e.,

an organism for which protein degredation can be neglected under

exponential growth. Given the costs and efforts of performing ribo-

some profiling across many conditions, we developed a workflow

combining the accuracy of ribosome profiling with the versatility of

mass spectrometry. As illustrated in Appendix Fig S6, we used DIA/

SWATH-based proteomics to measure all our E. coli samples and

xTop to obtain protein abundances relative to the 7 calibration

samples, for which ribosome profiling data are available (Li et al,

2014). We then used this ribosome profiling data to rescale the rela-

tive proteomic data to absolute protein mass fractions. Note that the

use of a calibration sample allows different proteomics datasets to

be combined in a consistent way, as long as each dataset includes

the same “calibration” condition. In this workflow, there might be

additional sources of error, for example, for membrane-associated

or periplasmic proteins. These proteins can be problematic since

they translocated across membranes and protein extraction efficien-

cies might not be 100% and vary across conditions. However, a

comparison of the absolute protein mass fractions determined by

ribosome profiling and xTop showed that the ratio was centered

around 1 for different classes of membrane and periplasmic proteins

(Appendix Fig S7). This indicates that at least in the conditions

tested extraction efficiencies of membrane-associated proteins are

not an issue.

Our generated data, including the comprehensive E. coli spectral

library and the absolute protein mass fractions obtained through

xTop, provide accurate quantitative estimates for thousands of indi-

vidual proteins across > 60 growth conditions, a task which is not

practical to achieve by ribosome profiling. For other conditions and

organisms (e.g., slow-growing bacteria, or eukaryotic cells), the

impact of protein degradation and protein translocation might not

allow the use of ribosome profiling to calibrate relative protein

abundances. In these cases, our versatile workflow can be adapted

to use different quantities for the calibration of absolute protein

abundances (see Appendix Note S3, section “Bias removal via cali-

bration of protein abundances”).

Biological analysis of E. coli proteomes

The workflow outlined above allowed us to analyze E. coli

proteomes over 66 different samples representing an array of dif-

ferent treatments, strains, and growth conditions. The resulting

absolute protein abundances are expressed in “protein mass frac-

tions”, i.e., mass of a given protein over the total mass of all

detected proteins, which can readily be converted to cellular protein

concentration (Appendix Note S1). Assuming typical proteins to be

300-residues in length, 0.1% of proteome mass is equivalent to

about 2,400 proteins per µm3 of cellular volume in E. coli. Note that

the frequently used absolute unit “protein copies/cell” is avoided

here, as cell size is highly variable across growth conditions (Basan

et al, 2015b; Si et al, 2017). Instead, protein mass fractions allow

direct conversion to protein concentrations, which can then be

compared across conditions (Milo, 2013).

Altogether, we obtained absolute mass fractions for a total of

2,335 distinct proteins across all samples, covering the vast majority

of the expressed E. coli proteome. The 66 samples analyzed can be
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divided into three groups. First, seven samples correspond to the

“calibration” samples discussed above. Second, 27 samples define

three “growth limitation” series, in which cells were growing expo-

nentially in glucose minimal medium, with various means of titra-

tion to implement gradual growth limitation in catabolism,

anabolism, and protein synthesis as done previously (Hui et al,

2015). This dataset is used to define “protein sectors”, which

provide a coarse-grained view of changes in the E. coli proteome.

Third, 30 samples are analyzed to reveal the proteome response to

various stresses, during transition from exponential growth to

stationary phase, and away from planktonic state, e.g., for growing

colonies in biofilm-forming conditions. All sample descriptions are

listed in Datasets EV2 and EV3, while the absolute protein mass

fractions are reported in Datasets EV8 and EV9.

Adaptation of coarse-grained protein sectors

Following Hui et al (2015), we applied a variety of steady-state

growth limitations to E. coli K-12 NCM3722 and its derivatives. First,

culturing cells with titratable glucose uptake (strains NQ1243 (Basan

et al, 2015a) and NQ1390; see Dataset EV1 and Extended Experimen-

tal Methods for strain informations) in glucose minimal medium, we

generated a series of 15 samples that grew at a range of growth rates

(0.33–0.91/h); they are referred to as the “C-limitation” series.

Second, culturing cells with titratable glutamate synthesis (NQ393,

Hui et al (2015)) in the same medium (with ammonium as the sole

N-source), we generated a series of seven samples that grew from

0.22–0.84/h due primarily to the effect of glutamate on amino acid

synthesis through trans-amination (Reitzer, 2005). They are referred

to as the “A-limitation” series. Finally, by adding various sub-lethal

doses of chloramphenicol into the growth medium (again, glucose

minimal medium), we generated another seven samples that grew

from 0.36–0.98/h due to limitation of protein synthesis by the ribo-

somes; they are referred to as the “R-limitation” series.

Changes in protein abundances in response to these applied

growth limitations were characterized previously by Hui et al (2015)

using a simple binary classification, which partitions the proteome

into a number of “sectors”. For instance, proteins upregulated in

C-limitation and downregulated in A- and R-limitation define the

“C-sector”. The resulting 23 = 8 possible protein sectors are summa-

rized in Fig 4A, which also shows the number of genes belonging to

each sector. Our data allowed us to associate 1,821 of the 2,335

proteins detected to the eight protein sectors, using only proteins

with at least three data points in each growth limitation series

(Dataset EV11). A high degree of consistency was seen in the classi-

fication of the proteins classified here and in Hui et al (2015)

(Appendix Fig S8). Most discrepancies were due to proteins weakly

dependent on growth rate in at least one of the three growth limita-

tions, which were therefore borderline between pairs of sectors

(Appendix Fig S8H). The total number of proteins classified here

was almost double from that reported in Hui et al (2015), although

the latter represent close to 90% of the total protein mass detected

in this work, indicating that most of the newly classified proteins

were low in abundance. The total abundance of proteins belonging

to each sector, i.e., the sector mass fraction, is given in Fig 4B for

the reference condition (glucose minimal medium).

At a quantitative level, the C-, A-, S-sectors, which are upregu-

lated in response to C- and/or A-limitation, are at about 10% of

proteome mass each in reference condition (glucose minimal

medium) and reach either half or twice the proteome fraction at the

slowest growth rate examined for each limitation (Fig 4C–E). The U-

sector, which is downregulated in all three limitations, ranges

between 20% of the proteome in reference condition to less than

10% at slow growth (Fig 4F). The R-sector, which is the largest

sector in reference condition at 30% of the proteome, is upregulated

under R-limitation reaching about 45% of the proteome (Fig 4G).

These overall patterns of these sector abundances resemble well

those observed in Hui et al (2015).

Following Hui et al (2015), we applied a GO-term enrichment

analysis to proteins in each sector to bring forth common functional

roles (Appendix Note S4). The analysis in Hui et al (2015) focused

on only five of the eight proteins sectors, as these displayed the

largest variation in expression across the different growth condi-

tions: C-sector (C↑A↓R↓, predominantly associated with carbon cata-

bolism and motility), A-sector (C↓A↑R↓, glycolysis and amino acid

biosynthesis), R-sector (C↓A↓R↑, ribosomal, and ribosome-associated

proteins), S-sector (C↑A↑R↓, catabolism and stress response), and

U-sector (C↓A↓R↓, biosynthesis of amino acids and nucleotides). Our

findings were in excellent agreement with the previous analysis,

with similar sector membership (Appendix Fig S8) and functional

roles for each of these five sectors (Dataset EV12).

Proteins not belonging to any of the five sectors above (171

out of 1,034 in Hui et al (2015)) had been previously lumped into

a single group (the “O-sector”). In our study, a much larger

number of proteins (686 out of 1,821 classified), including most

of the newly detected proteins, belonged to this group. While

these proteins comprised a total of 20–30% of the proteome mass

(Fig 4H, 12–20% for the O-sector proteins in Hui et al (2015)),

most of them had low individual abundances, with 95% of them

below 0.01% of the total proteome mass (Appendix Fig S9). This

group of proteins could be further categorized according to their

responses to the three growth limitations into the C’-sector

(C↑A↓R↑, 103 genes), A’-sector (C↓A↑R↑, 211 genes), and S’-sector

(C↑A↑R↑, 372 genes, see Fig 4A and B). Each of these sectors

included proteins which were upregulated under R-limitation and

additionally C- and/or A-limitation. Their abundances across

growth conditions, shown in Fig 4I–K, were dominated by the S’-

sector, which rised from 10% of the proteome in reference condi-

tion to as much as 20% at slow growth. More than half of this

increase was accounted for by changes in two abundant proteins,

Lpp and OmpC (Dataset EV9).

The GO-term enrichment analysis (Fig 4L; Appendix Note S4;

Dataset EV12) found several biological activities to be shared among

these three sectors and some of the other five sectors described

above. In particular, the C’-sector included many amino acid,

peptide, and protein transporters, which were upregulated in C-

limitation and downregulated in A-limitation. This, together with

their generally weak response to R-limitation, made the C’-sector

proteins very similar to the C-sector in both their response and func-

tion (higher-order functional groupings are indicated by the dashed

lines in Fig 4A). Both the A’ and the S’ sectors were enriched in

proteins involved in “cell division” and “cell cycle”, as well as in a

variety of terms associated with cell membrane and cell wall (Fig 4

L). Additionally, the A’-sector was enriched in “tRNA processing”,

“rRNA processing” terms, due to proteins involved in ribosome

biogenesis (rlm, rsm operons, whose proteins where hardly detected
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in Hui et al (2015)), and “response to antibiotic”, causing it to also

functionally overlap with the R-sector.

The comprehensive coverage in our dataset allowed us to investi-

gate the expression profile of proteins belonging to each of the 8

sectors. Surprisingly, we found that different sectors have markedly

different protein abundance distributions (Appendix Fig S9A–I). The
composition of both the S- and S’-sectors was strongly skewed

toward low-abundant proteins, with 62% of genes having a mass

fraction ϕi < 10−4 in reference condition, while most genes

belonging to the A- and U-sectors were relatively abundant (only

32% of genes below 10−4) (Appendix Fig S9J). Overall, low and high

abundant proteins seemed to respond to nutrient starvation in quali-

tatively different ways: About half of the low-abundant proteins

(42% of genes with mass fractions ϕi < 10−4 in reference condition)

were upregulated under both nutrient limitations (either carbon or

nitrogen), while 52% of highly expressed genes (ϕi > 10−3), includ-

ing the majority of biosynthetic enzymes, tended to be downregulated

in both nutrient limitations (Appendix Fig S9K).
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Figure 4. Proteome sectors in carbon, nitrogen, and translational limitation.

A Starting from a “reference” condition (glucose minimal media, growth rate approx. 1/h), we modulate E. coli growth by applying three different sources of stress
(“limitations”): carbon (C-) limitation, obtained by titrating glucose transport; anabolic (A-) limitation, obtained by titrating nitrogen assimilation; ribosomal (R-)
limitation, obtained by introducing translation-inhibiting antibiotics (chloramphenicol). The simplest way to capture the change in the proteome composition is to
introduce a binary classification: A protein can be either up- or downregulated in each of the three limitations. For example, the C-sector includes all proteins
whose abundance increases in C-limitation and decrease in A- and R-limitation, and is hence indicated as C↑A↓R↓. In the diagram, we show the eight possible
sectors, with the number of genes associated with each sector. Dashed lines indicate higher-order groupings between sectors with partially overlapping GO-terms.

B The decomposition of the proteome into protein sectors allows to appreciate the large-scale changes of protein expression in the three growth limitations. The pie
charts indicate the composition of the proteome by mass in reference condition and in the three extreme limitations (growth rate approx. 0.3/h).

C–K Protein mass fractions associated with each of the eight sectors across growth rates in the three growth limitation series. Panel (H) represents the mass fraction of
the O-sector, given by the sum of C’-, A’-, and S’-sector protein abundances (panels (I) to (K)).

L GO-term enrichment analysis of the C’-, A’-, and S’-sectors (see Appendix Note S4). The numbers at the side of the bars represent the number of genes in the sector
associated with each GO-term. Bold terms are mostly unique to each one of the three sectors, while the others are shared between two of the three sectors.
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In each of the C’-, A’-, and S’-sectors, one abundant protein stood

out against the above pattern. This were the outer membrane

porins: OmpF (C’-sector), OmpA (A’-sector), and OmpC (S’-sector),

which together with NmpC (C-sector) responded to the three growth

limitations with very different logic (Fig 5A–C). The variety of

expression patterns exhibited by the different porins is shown in

Fig 5A–C. In Fig 5D, we compared to their abundances in high

osmolarity medium, which is known to induce big shifts in porin

expression (Alphen & Lugtenberg, 1977). OmpA is the basal porin,

expressed at high levels in all conditions except for C-limitation.

OmpF is expressed in all conditions except for high osmolarity.

Interestingly, OmpC and NmpC seem to complement each other,

with NmpC specializing in C-limitation and OmpC specializing in

high osmolarity. The high expression of NmpC in poor carbon

sources was overlooked in previous studies due to the loss of nmpC

in certain E. coli K-12 strains (Hindahl et al, 1984), as will be

discussed below.

The total mass fraction of these porins is shown in Fig 5E, with

an increase under C- and A-limitation and a decrease under R-

limitation. This change is echoed in the mass fraction of periplasmic

proteins, although with twice as large increase under C-limitation

(Fig 5F). Although the increasing trend of periplasmic protein

expression in carbon limitation was already noted in Schmidt et al

(2016), they reported a much larger fraction of periplasmic proteins,

approaching 1/3 of total cytoplasmic proteins at slow growth, and

giving a rather different biological picture.

The increase of porin protein abundance under C-limitation coin-

cides with the increase of cell surface area due to reduced cell size

observed in poor nutrient conditions (Basan et al, 2015b; Si et al,

2017). To see whether the data in Fig 5E can be explained by
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Figure 5. Outer membrane proteins.

A–C Absolute protein mass fractions (in % of total protein mass) of the four most abundant outer membrane porins in E. coli NCM3722 (NpmC, OmpA, OmpC, and
OmpF), as a function of growth rate in three growth limitation series; symbols are shown in the adjacent panel.

D The table summarizes the mass fractions of the four porins in reference condition (glucose minimal medium), extreme C-, A-, and R-lim (growth rate ~ 0.3/h), and
high osmolarity (sample Lib-02, growth rate 0.24/h). Entries with mass fractions larger than 1% are highlighted in red.

E Total protein mass fractions of the four porins against growth rate, in the three growth limitation series.
F Total protein mass fraction of proteins classified as “periplasmic” according to Ecocyc classification (Karp et al, 2018) against growth rate, in the three growth

limitations.
G Porin surface density in C-limitation (red) and R-limitation. To obtain the porin surface density, we first obtained the number of porins per cell volume (see

Appendix Note S1) and divided by the (condition-dependent) surface to volume ratio, using the values reported by Si et al (2017) for C- and R-limitation.
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changes in surface-volume ratio, we computed the total density of

porins on the outer membrane using the cell size from Basan et al

(2015b) for C- and R-limitation and assuming a constant aspect ratio

(Si et al, 2017) (Fig 5G). In reference condition, we obtained a

density of about 1.2 × 104 porins/µm2, corresponding an occupation

of 5% of the cell surface area given a diameter of 2.6 nm for each

porin (based on the structure of the OmpA monomer (Pautsch &

Schulz, 1998)). The density increased by 15% under carbon limita-

tion and decreased by 20% under chloramphenicol treatment. These

results demonstrate that the total porin density is not conserved.

Rather, the porin density on the surface is low enough that it can be

adjusted in accordance to physiological demand.

Proteome response under diverse growth conditions

In addition to the global, sector-level analysis performed so far, the

accuracy of absolute protein mass fractions attained by our work-

flow allowed us to make quantitative statements on the absolute

abundances of individual proteins across conditions. In this section,

we turned our attention to such an effort. We divided the analysis

into four categories. First, we compared the differences in proteome

response between growth on different carbon sources and on

glucose with titratable uptake. Second, we analyzed proteome

response under various nutrient-limiting conditions beyond carbon

and nitrogen, including exponential growth under phosphate limita-

tion and anaerobic condition, as well as transition to stationary

phase, colony growth, and biofilm-inducing conditions. Third, we

examined response to various stress conditions under nutrient

replete conditions, e.g., under high temperature, high osmolarity,

and oxidative stress. While the above are all done with NCM3722

cells and their close derivatives, we finally compared the proteome

of these with a number of other genotypes, which gave us the

opportunity to compare expression of motility and biofilm-

associated genes, which are often subject to mutations in laboratory

strains of E. coli.

Different carbon sources
In this study, we measured the proteome of cells grown in a variety

of carbon substrates (including mannitol, melibiose, arabinose,

xylose, gluconate) that are not commonly used for E. coli proteomic

studies. As these substrates provided a range of growth rates, this

dataset presents a unique opportunity to examine the effect of

“carbon limitation” imposed by these individual substrates,

compared to “C-limitation” described in previous sections imposed

by titrating the glucose transporter PtsG for cells grown on glucose.

This is done in Fig 6A by showing the increase in the abundance of

proteins for cells grown in each of these substrates, versus glucose-

limited growth dialed to obtain similar growth rate. Shown in red

are proteins that increased by at least 4-fold in relative abundance

and by at least 0.05% of the proteome in absolute abundance (~ 500

copies out of a million assuming proteins are of similar length). The

first thing to notice is how few such “red proteins” there are out of

~ 2,000 total proteins detected. Among these red proteins, about

half are specific to the catabolism of the particular substrate being

used, e.g., MtlAD for mannitol and MelA for melibiose. It is striking

that none of the specific catabolic proteins increase in expression by

more than a few percent of the proteome. The highest expressed

proteins, MelA (α-galactosidase) and LacZ (β-galactosidase), are at 4

and 1.3% of the proteome, respectively, when grown on melibiose,

an α-galactoside. The others increased by not more than 1% of

proteome. Additional catabolic proteins associated specifically with

the catabolism of the particular substrates are indicated in blue.

Their abundances are mostly lower than the red proteins; the few

exceptions with increase > 0.05%-proteome have the gene name

indicated in blue, including UhpT (G6P), AraAB (arabinose), XylB

(xylose), and GlpDTQ (glycerol). (They are not shown in red

because the relative abundance changed less than 4-fold, indicating

appreciable expression also under glucose-limiting growth.)

The sum of the abundances of all the catabolic proteins specific

to each respective carbon sources, i.e., all the proteins indicated in

blue, are plotted as filled diamonds in Fig 6B and comprise only

1–2% of the total proteome by mass. [The one exception is for

growth on melibiose, green diamond, with MelA alone being 4% of

the proteome. However, the abundance of MelA was assigned with-

out the benefit of calibration by ribosome profiling (as these

proteins were not detected in the calibration sample grown in

glucose medium) and may therefore be less accurate.]. The small

increase in these carbon source-specific catabolic proteins is to be

contrasted with the substantial increase of the total abundance of

“C-sector proteins”, as defined from the three growth limitation

series described above, plotted as filled circles for cells grown on

the specific carbon sources and as red open circles for cells grown

on glucose with titrated. These two datasets are remarkably similar,

indicating that the bulk of the C-sector proteins respond primarily to

the rate of carbon-limited growth, not to the specific carbon

substrates. Quantitatively, those responding to specific carbon

sources, filled diamonds, represent only 5–10% of C-sector proteins

by mass. The similarity between glucose limitation and the variety

of other carbon sources actually extends beyond C-sector proteins,

as the abundances of the other protein sectors are also similar; see

Appendix Fig S11 for an overview of the abundances of protein

sectors across all conditions studied in this work. Together, these

results establish the concept of “carbon-limited growth” and vali-

date the use of the titratable glucose uptake as a method to probe

the proteome response to carbon-limited growth.

Among the C-sector proteins, the abundances of TCA/gluconeo-

genesis (GNG) enzymes and flagellar components each comprise

about 25% of the total sector abundance (orange and blue symbols,

Fig 6C). While for most of these carbon substrates studied, the

abundance of these TCA/GNG and flagellar proteins are similar to

those observed for the titratable glucose uptake strain (Fig 6D and

E; compare red and gray symbols), there are several exceptions

worth noting. Cells grown on acetate (blue circles) exhibit a signifi-

cant increase (+ 3% proteome) in the abundance of C-sector TCA/

GNG enzymes; this is expected as these enzymes play a key role in

the assimilation of acetate. Interestingly, this is accompanied by a

decrease in the abundance of flagellar proteins, also about 3%. We

also note that for growth on melibiose, flagella proteins are not

expressed (Fig 6E, green circle), this is due to the use of strain

EQ59, a derivative of NCM3722 abolished of flagella expression as

will be discussed below. (For all other cases of growth on alterna-

tive carbon substrates, NCM3722 was used). The lack of flagella

expression leads to ~ 3.5% reduction in the total abundance of C-

sector proteins (Fig 6B, green circle). Recalling that these C-sector

proteins are defined from titratable glucose uptake and do not

include the melibiose-specific enzymes, particularly MelA and LacZ,
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adding back these two enzymes again makes the total comparable

to that of the glucose titration strain. These data suggest a possible

compensatory regulation among C-sector proteins under carbon-

limited growth.

The remaining C-sector proteins are comprised largely of the

outer membrane porin NmpC and a number of catabolic proteins

not related to the provided carbon substrates (open red circles and

filled purple diamonds in Fig 6C, respectively). As discussed above,

NmpC is the major outer membrane porin in C-limitation along with

OmpF. Catabolic proteins detected at appreciable levels include

those involved in the uptake of amino acids (cstA, dppF, livFGM,

gltJK, putP, tcyJ, yifK), galactose (galEKT, mglABC), ribose

(rbsABCDK), and acetate (acs). The abundance of these proteins

increase sharply under both glucose uptake titration and the alterna-

tive carbon substrates (Fig 6F), suggesting a general foraging strat-

egy in poor carbon conditions. Together, the data in Fig 6 provide a

detailed quantitative picture of the proteome response to carbon

limitation, with most resources devoted to general foraging (includ-

ing flagella, TCA/GNG, and the assortment of catabolic proteins),

and with only a small fraction associated with the uptake of the

specific carbon substrate provided.

Other nutrient conditions
In the first part of the results, we applied titratable limitations to

probe the response to perturbations of major proteomics sectors

(Figs 4 and 5). Here, we explored the proteome response to other

nutrient conditions, including anaerobic growth, phosphate limita-

tion, and slowdown into stationary phase. To display the finer dif-

ferences due to these perturbations, we used scatter plots showing

the absolute abundances of all proteins detected in a pair of growth

conditions, highlighting a number of major biological functions with

distinct colors and symbols. Examples are shown in Appendix Fig

A B

D E F

C

Figure 6. Carbon-limited growth.

A Comparison between the proteome of Escherichia coli cells grown in various carbon sources and that of cells grown in glucose. For each carbon source (x-axis; the
growth rate is specified in the label), we show the increase in protein mass fractions in that medium from the abundances observed for cells growing at a similar
rate under “C-limitation”, i.e., on glucose with titratable expression of the glucose transporter PtsG in NCM3722-derived strains NQ1243 and NQ1390; see Dataset
EV1. For growth on carbon sources different from glucose, wild-type NCM3722 cells were used in all cases, except in the case of melibiose where the non-motile
NCM3722-derived strain EQ59 was used instead. Red circles indicate proteins with a fold increase larger than 4; blue dots represent proteins associated with
catabolism of the carbon sources in which cells are grown in (e.g., glp genes for growth on glycerol); gene names are displayed for proteins above a mass fraction
of 0.5. Proteins that were systematically different across all samples were excluded from the comparison; this was done by computing the differences of the log-
transformed mass fractions across all pairs of samples, and excluding proteins for which the absolute value of the mean difference is larger than its standard
deviation.

B Circles indicate the total mass fraction of proteins assigned to the C-sector for cells growing under glucose uptake titration (C-limitation, open red) and for cells
grown on the carbon sources described in panel (A) (filled gray, except for growth on acetate, blue, and melibiose, green). Filled diamonds indicate the total mass
fraction of proteins associated with the catabolism of specific carbon sources used (those indicated by the blue dots in panel (A)). They amount to only 5–10% of C-
sector proteins, with the exception of those associated with the catabolism of melibiose, with a single protein MelA comprising of 4% of total protein mass, or ~ 1/
3 of C-sector proteins.

C Open symbols indicate the fractional abundance within the C-sector of four protein groups (TCA cycle and gluconeogenesis (TCA/GNG); motility; the outer
membrane porin NmpC; alternative carbon or amino acid uptake and catabolic proteins) for cells growing under glucose uptake titration. The total protein mass
fraction of these four groups adds up to between 64 and 75% of the whole C-sector protein mass.

D–F Absolute protein mass fraction of TCA/GNG, motility, or alternate carbon uptake proteins that belong to the C-sector. Symbols are the same as in panel (B)). Cells
growing on acetate (blue) display higher TCA/GNG and lower motility expression levels compared to glucose-limited growth at the same growth rate. Expression of
motility proteins is instead greatly reduced for cell growing on melibiose (green), due to the fact that the non-motile strain EQ59 was used in this case.
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S10 for each of the three limitation series described in the previous

section, compared to the reference condition (wild type in glucose

minimal medium). Significant movement away from the diagonal

was seen for ribosomal proteins (green points), TCA enzymes (open

orange squares), glycolytic enzymes (open blue squares), fermenta-

tion enzymes (open purple diamonds), motility proteins (cyan trian-

gles), and a subset of stationary, RpoS-driven, proteins (yellow

triangles). The overall change in proteome composition in all three

cases was similar, close to 25% (Appendix Fig S11).

MOPS versus M9

For the comparison in Fig 6, samples with specific carbon sources

were mostly grown in MOPS-based media, while the titratable

glucose uptake strain was grown in M9 glucose medium. Here, we

compare NCM3722 grown in MOPS- and M9-based medium, both

with glucose as the sole carbon source. The resulting scatter plots

are shown in Fig 7A. The vast majority of genes were very similar

in expression across conditions, as also clear when looking at

aggregate measures of proteome similarity (Appendix Fig S11).

However, there were several notable differences between the two

growth media, which we highlighted by the red symbols. First, the

thiCEFSGH operon, encoding enzymes of the thiamine biosynthesis

pathway, was strongly repressed in M9 (undetected). This reflects

the supplementation of thiamine in the M9 medium used. Second,

the ent genes, encoding biosynthesis of enterobactin employed in

iron uptake, were significantly upregulated in M9 (2 to 4-fold),

while proteins for iron storage (encoded by ftnA, bfr) as well as the

iron-based superoxide dismutase (encoded by sodB) were signifi-

cantly upregulated in MOPS (> 2.5-fold). The iron content in M9

and MOPS is actually not so different (10 μM of FeCl3 in M9, 60 μM
of FeSO4 in MOPS). The opposite proteome response observed here

is likely due to the addition of 4 mM tricine in MOPS, which solubi-

lizes iron (Neidhardt et al, 1974). Consistent with this, small precipi-

tates were observed when adding FeCl3 to M9. There was also a

small but noticeable increase (~ 2-fold) across the isc genes, encod-

ing enzymes for Fe-S cluster assembly, for cells grown in M9.
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Figure 7. Comparison of proteome profiles across growth conditions.

Scatter plots of absolute protein mass fractions between pairs of growth conditions and/or strains. Lateral boxes include proteins detected in only one of the two
samples. Growth rates are reported on the axis labels when available. Colored symbols indicate groups of proteins as described in the legend (see Appendix Fig S10 for
more details). Some notable proteins are highlighted in red.
A Comparison of protein mass fractions for cells grown in different base media: M9+glucose (y-axis) versus MOPS+glucose (x-axis).
B Protein mass fractions for Escherichia coli strain NQ1431 (phnE+) growing in glucose and a poor phosphate source (2-aminoethylphosphonate) versus wild-type

NCM3722 cells in reference condition (glucose minimal medium with phosphate as P-source).
C Proteome of anaerobically growing cells on glucose minimal medium versus that of cells in reference condition.
D Comparison of proteome of cells in rich (LB) medium in different growth phases: mid-exponential (OD600 = 0.6, x-axis) and stationary phase (OD600 = 3.34, y-axis).

ª 2021 The Authors Molecular Systems Biology 17: e9536 | 2021 13 of 23

Matteo Mori et al Molecular Systems Biology



Concomitantly, the abundance of TCA enzymes (open orange

squares) was reduced by about 20% in M9 media. Together, these

data depict a quantitative picture of how M9-grown cells cope with

iron limitation by increasing Fe-S assembly and reducing their major

“consumers”, the TCA enzymes. Finally, we noted in M9 medium a

strong upregulation of the cusABCF genes, encoding the silver/cop-

per detoxification system, as well as of cusRS encoding for the regu-

lators of the cusABCF operon. The cause of this increase is not

known and may be related to the iron shortage. These data suggest

that MOPS is a superior medium for vegetative growth, even though

the differences in overall gene expression and growth rate between

MOPS and M9 appear to be small.

Phosphate-limited growth

We next turned to other modes of nutrient limitation. The steady-

state response of the proteome to phosphate limitation had been

characterized using a medium with phosphonate as the sole P-

source. Due to a nonsense mutation of phnE (encoding a subunit of

the phosphonate ABC transporter) in E. coli K-12, we created strain

NQ1431 which is isogenic to NCM3722 except for having a phnE+
allele. NQ1431 grew exponentially at a rate of 0.59/h in MOPS

glucose medium with phosphonate as the sole P-source. We

compared the proteome of this P-limited culture to that of a C-

limited culture that grew at a similar rate (strain NQ1243 in M9

glucose medium). As seen in Fig 7B, the P-limited culture showed a

strongly increased abundance of the phosphate uptake system,

including several pho, ugp, and pst genes encoding enzymes

involved in the transport and scavenging of alternative sources of

phosphorous (red circles in Fig 7B). The abundances of some of the

general stress proteins (yellow upward triangles) also increased,

while motility proteins (blue downward triangles) were reduced 3-

fold. Interestingly, ribosomal proteins, the major consumer of cellu-

lar phosphate, remained nearly unchanged (green circles), as did

the RNA polymerase components (not shown). The nucleotide

biosynthesis pathways increased moderately, 1.5-fold on average, in

particular the enzymes GMP synthetase (guaA, 2.4-fold increase)

and IMP dehydrogenase (guaB, 2.9-fold increase). A notable excep-

tion to this trend was the 2.7-fold decrease in the abundance of the

nucleoside diphosphate kinase (ndk), which was only partially

compensated by a moderate (1.5-fold) increase in the expression of

adenylate kinase (adk).

Anaerobic growth

We next compared the proteome of NCM3722 cells growing expo-

nentially in aerobic and anaerobic conditions in glucose minimal

medium (Fig 7C). Anaerobic growth is expected to induce signifi-

cant proteome rearrangements due to the much lower efficiency in

energy generation. Indeed, we observed a total variation of about

25% of the proteome (Appendix Fig S11). However, the growth

rates, 0.68/h and 0.91/h, respectively, were not very different. Ribo-

some content (green circles) also did not change much (≈ 1.3 fold,

comparable to the change in growth rate). As expected, the abun-

dances of most TCA proteins (orange squares) were strongly

reduced (~ 5-fold) in anaerobic conditions, by a total of 3% of the

proteome. Glycolytic proteins (blue squares) and proteins associated

with fermentation (magenta diamonds) increased in abundance by

2-fold (4% of proteome) and ~ 5-fold (5% of the proteome), respec-

tively. Most notably, AdhE, PflB, Eno, and GapA took between 2

and 3% of the proteome mass each in anaerobic growth. HypB,

involved in the maturation of the hydrogenases, was detected in

anaerobic but not aerobic condition. The abundance of motility

proteins (blue downward triangles) was reduced by about 2-fold

(~ 1% of proteome). MetE, catalyzing the last step of the methion-

ine biosynthesis pathway and being the most abundant proteins

(6% of proteome) for growth in minimal medium, was also strongly

downregulated (2.5% of proteome in anaerobic growth). However,

this was not a result of anaerobic growth per se, as the medium

used for anaerobic growth included vitamin B12, which enables

E. coli to replace MetE by the much more efficient MetH.

Transition to stationary phase

The transition from exponential growth to stationary phase also had

profound impact on the proteome. We grew E. coli NCM3722 cells

in rich (LB) media and collected samples in mid-log phase (OD600 =
0.6) and in stationary phase (OD600 = 3.34). The corresponding

proteomes are plotted against each other in Fig 7D. The abundances

of ribosomal proteins (green) and motility proteins (downward blue

triangles) in stationary phase were reduced 2- to 3-fold compared to

log phase. At the same time, the abundances of stress proteins (yel-

low triangles) and some TCA proteins (orange squares) were

strongly elevated (10- to 30-fold), as well as proteins associated with

fermentation (magenta diamonds, 2.5-fold). Overall, this change

involved a remodeling of > 30% of the proteome (Appendix Fig

S11), which likely took place during the time these cells gradually

slowed down in growth as various nutrient elements in the LB

medium got exhausted. Such extensive reallocation of the proteome

was also clearly visible in the abundance of the proteins sectors

(Appendix Fig S12). Fast growing cells (early log, filled triangle in

Appendix Fig S12) were characterized by a very large R-sector

(~ 40% of total protein mass), due to the large expression of riboso-

mal proteins and associated factors, and a very small S-sector. Vice

versa, cells entering stationary phase displayed a greatly reduced

R-sector (~ 20% of the proteome) compared to early log cells.

Instead, a considerable increase in S-sector proteins (t ~ 25% of the

proteome, to be compared to ~ 10% in fast growth) reflects the

abundance of stress and catabolic proteins in this condition. Biosyn-

thetic enzymes, belonging predominantly to the A- and U-sectors

and not needed during growth on rich media, were expressed at low

levels across all growth phases (~ 15% for the sum of the sectors).

Different stress sources
After describing the response of the E. coli proteome to several

nutrient conditions, we investigated its response to several sources

of stress, including high temperature, hyperosmolarity, and oxida-

tive stress.

High temperature

First, we compared the proteome of NCM3722 cells grown exponen-

tially in MOPS minimal medium with glucose at 42 and 37°C.
Growth rates in both cases were similar (0.88/h versus 0.98/h), and

the two proteomes were similar as well (only ~ 15% of total varia-

tion, Appendix Fig S11). The abundances of heat shock proteins and

chaperones (shown in red in Fig 8A) were only mildly increased

(< 3-fold increase at 42°C). Motility proteins (filled blue) changed

the most, becoming nearly non-detectable at 42°C. This change is

likely post-transcriptional in origin (De Lay & Gottesman, 2012),
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since the regulatory region of flhDC encoding the motility master

regulator contains a transposable element (Brown & Jun, 2015),

which would relieve most transcriptional regulatory processes

(Lyons et al, 2011; Cremer et al, 2019).

High osmolarity

We then compared the proteome of NCM3722 cells growing expo-

nentially in MOPS glucose medium, between 0.6 M NaCl and

normal osmolarity of 0.1 M NaCl (Fig 8B). Growth rates differed by

almost 4-fold, and we observed an overall difference in proteome of

about 25% (Appendix Fig S11). However, ribosomal proteins

decreased by only 20% (from 15.4 to 12.3% of the proteome mass)

while carbon-limited E. coli with similar reduction in growth rate

experienced a 40% reduction (down to 9.3% of the proteome). This

result can be attributed to the reported slowdown in translation for

cells grown at high osmolarity, which led to compensatory increase

in ribosome content (Dai et al, 2016). Compared to normal osmolar-

ity, σS-dependent genes encoding general stress proteins did increase

significantly (yellow upward triangles; 10-fold median increase),

while flagella (filled blue triangles) were again strongly reduced

(1% change in proteome). It is instructive to compare the high

osmolarity and the high-temperature samples (Fig 8C). The remark-

able similarity of the two proteomes (< 20% total variation between

the proteomes, Appendix Fig S11) suggests that the slowdown of

growth in high osmolarity is not due to a protein allocation bottle-

neck, but may instead have a metabolic origin.

Oxidative stress

Finally, we looked at changes in the proteome of exponentially

growing NCM3722 cells subjected abruptly to oxidative stress, i.e.,

20 min after addition of 400 μM H2O2. Within this time span, we

observed increased expression of several stress proteins (Fig 8D),

including some known to be part of the oxidative stress response

system (Dukan & Touati, 1996): Dps, KatG, ZinT, ZnuA, and ZnuC

(red circles). Also notable is the rapid drop in the abundance of

motility proteins, by more than 3-fold in 20-min (1.8% of

proteome). A similar drop (at rate much faster than allowed by dilu-

tion due to cell growth) was observed also during nutrient

A

C

B

D

Figure 8. Proteomes of cells subject to several stress conditions.

Scatter plots of absolute protein mass fractions between pairs of growth conditions and/or strains. Symbols as indicated in the legend (same as in Fig 7); some notable
proteins are highlighted in red.
A Absolute protein mass fractions of NCM3722 cells grown at high temperature (42°C) versus normal temperature (37°C).
B High osmolarity (0.6 M NaCl) versus normal osmolarity (0.1 M NaCl).
C Comparison between proteomes of cells in high osmolarity versus high temperature. The two proteomes are quite similar despite the vastly different growth rates

(0.24/h and 0.88/h, respectively).
D Proteomes of cells subject to oxidative stress (600 µM hydrogen peroxide for 20 min before collection) compared to exponentially growing cells in reference

condition.
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downshift (Erickson et al, 2017), suggesting an active mechanism of

flagella loss.

Various genotypes
In the last part of our analysis, we compared several E. coli geno-

types different from NCM3722 and uncovered some surprising

effects important to common laboratory studies.

MG1655 vs NCM3722

First, we compared NCM3722 to MG1655 (sub-strain EQ353), both

grown exponentially in MOPS glucose media (Fig 9A). EQ353 cells

grow at a substantially slower rate compared to NCM3722 (0.69/h

vs 0.98/h), which is consistent with the general trend that the

growth of MG1655 cells being ~ 2/3 that of NCM3722 for a variety

of carbon sources (Mori et al, 2016). Despite the difference in

growth rates, the total difference in protein fractions was not very

large, below 20% (Appendix Fig S11). Notably, we observed a

strong reduction in the expression of motility genes, which are

mostly undetected in EQ353. This reduction can be attributed to the

genotype. This particular sub-strain of MG1655 has a wild-type

flhDC promoter (Cremer et al, 2019), whereas NCM3722 has the

above-mentioned insertion of a transposable element immediately

upstream of the flhDC promoter (Lyons et al, 2011), resulting in the

constitutive expression of the FlhDC master motility regulator which

is otherwise repressed (Pr€uss & Matsumura, 1997; Cremer et al,

2019). The strong (~ 25-fold) reduction in the expression of AceAB

(enzymes of the glyoxylate shunt) in NCM3722 compared to

MG1655 is also attributable to a known lesion: Reduction in AceAB

is accompanied by a 3.5-fold increase in IclR, which is a key repres-

sor of aceAB expression (Maloy & Nunn, 1982), while increase in

IclR expression was predicted based on a mutation in the auto-

regulatory region of iclR in NCM3722 (Lyons et al, 2011). A striking

difference between MG1655 and NCM3722 was in the expression of

outer membrane porins. OmpC was strongly expressed in EQ353

compared to NCM3722 (> 10-fold, 1.5% of proteome). The opposite

behavior was observed for the other porin NmpC, which was very
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Figure 9. Comparison of strains with different motility and biofilm capabilities.

Scatter plots of absolute protein mass fractions between pairs of growth conditions and/or strains. Symbols as indicated in the legend (same as in Fig 7); some notable
proteins are highlighted in red.
A Absolute protein mass fractions of Escherichia coli MG1655 (EQ353) versus strain NCM3722, both growing on glucose minimal medium.
B Proteome of the NCM3722-derived non-motile strain EQ59 (motA− with wild-type flhDC promoter) growing on melibiose, compared to that of NCM3722 cells growing

on acetate.
C Proteome of the biofilm-forming E. coli strain Nissle1917 compared to that of NCM3722 (both growing on acetate).
D Comparison of E. coli MG1655 (Genetic Coli Stock Center strain #6300) and Nissle1917.
E The proteome of E. coli strain EQ59 growing on solid agar is compared to that of NCM3722 in reference condition.
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abundant in NCM3722 (~ 2% of proteome), 200× higher than that

in EQ353. This difference is also attributable to the genotype: The

nmpC gene in the genome of MG1655 is interrupted by an insertion

element and is hence not functional. Appendix Fig S13A shows a

comparison of the abundances of all porins in NCM3722 and

EQ353. Apparently, the elevated level of OmpC and, to a lesser

extent, OmpA, in EQ353, are a compensatory response to the loss of

nmpC.

Finally, we also observed a general, modest upregulation of

genes driven by the general stress sigma factor σS (Fig 9A, yellow

triangles), except for ElaB whose abundance was increased 75-fold

(red circle), reaching 0.1% of the proteome in EQ353. The increased

expression of σS-driven genes could arise from at least two scenar-

ios. First, it could arise from genotype difference, as the rpoS gene

in NCM3722 contains an amber stop codon which reduces its level

ofσS. However, direct comparison to a strain with restored rpoS in

NCM3722 showed only moderate increase in σS-driven genes

(Appendix Fig S13B), suggesting that the effect of rpoS mutation in

NCM3722 might be minimal. Another possible scenario is sigma

factor competition between σS and the dedicated flagella sigma

factor FliA (Mauri & Klumpp, 2014). In this scenario, the reduction

in flagella expression (with undetectable FliA level) in EQ353 may

favor the expression of σS -driven genes. The cause of the excep-

tional increase of ElaB level is not known.

Motility mutant

We next compared NCM3722 to strain EQ59, which although nomi-

nally just motA-, has a restored wild-type flhDC promoter, as veri-

fied by sequencing (see Methods). The flhDC region of strain

BW25113 (the ancestral strain from which the KEIO deletion library

was derived (Baba et al, 2006)) does not contain any insertion

elements (Grenier et al, 2014). Hence, the wild-type flhDC promoter

was cotransducted, because it was adjacent to the motA null muta-

tion. Comparing the proteome of EQ59 and NCM3722 (grown in

carbon sources giving similar growth rates), we obtained a surpris-

ing finding. Fig 9B shows that EQ59 has, as expected, a strongly

reduced expression of motility proteins compared to NCM3722

(filled blue triangles), with most motility proteins below the detec-

tion limit. Surprisingly, we also observed significant changes in the

abundances of several pde genes, encoding phosphodiesterases

(PDEs), which hydrolyze the signaling molecule cyclic-di-GMP coor-

dinating biofilm formation (Reinders et al, 2016). In particular,

PdeG and PdeH, the two most expressed PDEs in NCM3722,

dropped to undetectable levels in EQ59, where PdeL and PdeK

became the most dominant PDEs. The difference in PdeH expression

can be linked to the mutation affecting the expression of motility

proteins, since pdeH is predicted to be driven by a FliA-dependent

promoter (Zhao et al, 2007), and this regulatory effect can be

rationalized as necessary to suppress biofilm formation when the

cell desires to turn on motility. We note that PdeH is commonly

noted as the major PDE degrading cyclic-di-GMP, and is highly

expressed in various E. coli strains (Pesavento et al, 2008; Reinders

et al, 2016). The crosstalk between flagella and PdeH expression

suggests that the high PdeH level seen in many laboratory strains

may be an artifact of constitutive FlhDC expression. It is even

conceivable that the biofilm-null phenotype is a key driving force

favoring the motility+ phenotype in domesticated laboratory strains.

The switch from the dominance of PdeH to PdeL in WT FlhDC

background is possibly very significant for the decision of biofilm

formation in E. coli. PdeL is a complex molecule with enzymatic

and regulatory activities, and its expression is auto-regulated

(Reinders et al, 2016). The latter suggests an intriguing scenario

where PdeL expression/activity may, through auto-regulation, set

a switch-like decision for a cell’s participation in biofilm forma-

tion. However, it should be noted that despite the low levels of

PdeG and PdeH, EQ59 does not form biofilm due to other lesions

common to domesticated K-12 strains (e.g., nonsense mutation in

bcsQ, the first gene in the operon encoding cellulose production

(Serra et al, 2013b)).

Biofilm-former

To further study the expression of biofilm-associated genes, we

analyzed protein expression in E. coli strain Nissle1917 (subse-

quently called Nissle). The Nissle strain is a non-pathogenic, non-

K-12 strain commonly used as probiotic, which compared to K-12

strains such as NCM3722 is thought to have retained some wild-

type characteristics, including the capacity to form biofilm (Bury

et al, 2018). Indeed, strong clumping was observed when we

grew Nissle cells in acetate in biofilm-forming condition (low

osmolarity minimal carbon media into stationary phase, see Meth-

ods). Compared to NCM3722 cells grown exponentially in the

same carbon source (Fig 9C), Nissle cells had similar levels of

ribosomal, flagellar, and glycolytic proteins, but increased levels

of fermentation enzymes (magenta diamonds) and lower levels of

TCA proteins (orange squares). Significant changes were seen in

the curli-associated proteins CsgC, CsgF, and the master regulator

CsgD, which were expressed in Nissle cells but not in NCM3722

(red symbols on left side plot). Also, we observed an increase in

the expression of Bcs proteins associated with cellulose produc-

tion (red circles, > 3-fold). Interestingly, the phosphodiesterases

PdeG and PdeH, highly expressed in the NCM3722 strain due to

the constitutive motility expression mutation (see above), were

still expressed in Nissle, but at somewhat lower level. PdeG

abundance is reduced by 2-fold, which is presumably related to

motility expression in Nissle. However, in Nissle the phosphodi-

esterase PdeL was not detected, suggesting that PdeL is in the

“low” state and this strain is poised for biofilm formation in a

different way from K-12.

MG1655 cells have different sub-strains which have or do not

have insertion elements upstream of the flhDC promoter (Lee &

Park, 2013), which are likely to affect their biofilm-producing capa-

bilities. Here we took a strain without insertion element

(CGSC#6300) and grew it in condition similar to that of the Nissle

strain described above. When comparing its proteome to that of

Nissle (Fig 9D), we observed that cellulose synthesis genes

bcsBCZ were not expressed in MG1655 while product of bcsG was

detected at a reduced level. This is likely a result of the afore-

mentioned nonsense mutation in MG1655 that disrupted the

bcsQABZC operon, but not the bcsEFG operon (Serra et al,

2013a). Also, Curli synthesis (Csg proteins) was detected in

MG1655, but at a reduced level. Note that Curli synthesis proteins

were not detected at all in NCM3722 and derivatives, likely due

to defective Curli transport result from a nonsense mutation in

csgG in NCM3722 (Lyons et al, 2011). Interestingly again, PdeL

was detected in the non-biofilm-forming MG1655 strain, but not

in the biofilm-forming Nissle strain.
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We finally studied expression of the non-motile strain EQ59 on

hard agar, where individual cells grow into compact colonies, with

the radius of the colony expanding linearly rather than exponen-

tially in time (Warren et al, 2019). The slow growth is attributed to

non-uniform nutrient distribution within the colony, which caused

cells in the interior of the colony to be in nutrient-starved state

(Warren et al, 2019). In Fig 9E, we compared the (average)

proteome of cells collected from such colonies versus exponentially

grown planktonic cells, both in glucose minimal medium. Expect-

edly, motility proteins (filled blue triangles) were greatly reduced

for the non-motile strain EQ59. Stress proteins (yellow triangles)

were elevated in colony growth (on average ~ 10-fold). This is not

surprising given that most cells in the colony are not growing due to

the lack of nutrient, and are thus expected to resemble the station-

ary phase. However, ribosomal proteins were only moderately

reduced, by ~ 60%, despite the very different growth behavior.

Interestingly, the abundance of TCA genes (open blue squares)

remained nearly unchanged, while those of fermentation genes

(cyan) increased strongly (6-fold on average). This varied composi-

tion, resembling a mixture of anaerobic and aerobic growth,

suggests varied micro-environments experienced by the cells, e.g.,

aerobic environment at the periphery and surface of the colony, and

anaerobically in the colony interior.

Discussion

The long-term goal of systems biology is the generation of predica-

tive mathematical models to describe and understand cellular

processes and phenotypes based on molecular data. For this goal,

accurate, reproducible, and consistent measurements of absolute

analyte concentrations across many conditions are crucial. Among

the various biomolecules of a cell, proteins play a pivotal role,

because they are actively involved in almost all cellular processes

and many important biochemical events cannot be inferred from

genomic or transcriptomic measurement (Liu et al, 2016). Recent

advances in the field of proteomics, like DIA/SWATH mass spec-

trometry in combination with novel data analysis strategies, have

matured in a way that it is possible to obtain accurate measure-

ments of thousands of proteins reproducibly over many samples.

However, obtaining accurate absolute abundances for lowly

expressed proteins is still a challenge. Currently, biological insights

derived from quantitative proteomic studies of E. coli have come

mostly from coarse-grained levels, e.g., on the total abundances of

enzymes participating in a metabolic pathway (Hui et al, 2015;

Schmidt et al, 2016), but not from individual proteins.

In this paper, we developed a versatile workflow to obtain abso-

lute abundances for thousands of proteins at the individual protein

level over a vast number of conditions. DIA/SWATH mass spec-

trometry was used to generate high-quality peptide precursor inten-

sity profiles at high throughput and minimal costs. For the peptide-

centric DIA/SWATH data analysis, a comprehensive E. coli spectral

library including 64% of all annotated E. coli proteins (2,770

proteins) was generated. A novel protein inference algorithm,

termed xTop, was used to accurately infer protein intensities from

peptide precursor intensities. xTop takes into account all detected

peptide precursors for a given protein across all samples, thereby

reducing the effect of noise and missing values in the dataset, and

producing better relative quantification compared to commonly

used inference methods such as iBAQ and TopPep1/3 (Fig 2).

To obtain absolute protein mass fractions, we assessed various

quantification methods using a set of calibration samples involving

biological and technical replicates from the same condition. The

absolute mass fractions obtained from proteomics data with various

inference algorithms and from ribosome profiling data were evalu-

ated using (i) a set of anchor proteins for which accurate protein

abundances were measured with stable isotope-labeled synthetic

peptides (AQUA), and (ii) several protein complexes with known

stoichiometry. Among these methods, ribosome profiling yielded

the most accurate quantitation, at least for proteomes which are not

significantly degraded compared to dilution by growth rate (Koch &

Levy, 1955; Mandelstam, 1958). As it is infeasible to use ribosome

profiling to examine many samples in parallel, we used ribosome

profiling as the standard for measuring absolute protein mass frac-

tions and combined it with accurate relative quantitation over many

samples offered by DIA/SWATH and the xTop protein inference

method.

The resulting versatile workflow was used to quantify the absolute

abundance of 2,335 proteins for various E. coli strains grown across

66 conditions, including stress conditions and non-planktonic states

never characterized previously. Absolute abundances are reported in

terms of protein mass fractions, which corresponds directly to cellular

protein concentrations, regardless of the possible changes in cell size

across growth conditions (Appendix Note S1). Our quantitative

dataset includes low-abundant proteins with cellular protein mass

fractions as small as 10−5 of the proteome, corresponding to concen-

trations close to 30/μm3 for an average-sized protein (~ 60 copies per

cell for cells growing in glucose minimal medium), as well as high

abundant proteins with cellular protein mass fractions close to 10%

(300,000/μm3, ~ 600,000 copies per cell).

We compared the results of this study to previous studies on the

proteome of E. coli. Peebo et al (2015) studied E. coli BW25113

grown in chemostat (Peebo et al, 2015). We compared their results

obtained in glucose minimal medium to ours for MG1655 (EQ353)

grown in glucose batch culture. Their study showed a lower protein

coverage (about 60% of ours). For the detected (more highly

expressed) proteins, their absolute abundances were in good agree-

ment with ours (Appendix Fig S14A and blue symbols in

Appendix Fig S14D). Schmidt et al (2016) studied mostly BW25113

in a variety of batch and continuous cultures, but also provided data

for MG1655 in glucose medium for comparison to other studies

(Schmidt et al, 2016). We compared the latter to our results for

MG1655 (EQ353) in glucose match culture. While the number of

detected proteins were comparable (1,901 vs 1,843), we observed a

systematic underestimation of low-abundant proteins (Appendix Fig

S14B) and a larger variance in the stoichiometry of known protein

complexes compared to our data (light blue in Appendix Fig S14D).

These results are consistent with the bias of the iBAQ method used

in that work for inferring protein abundances as discussed earlier

(Appendix Figs S4D and S5). Finally, Caglar et al (2017) reported

protein abundances for E. coli B strain (REL606) in a number of

conditions (Caglar et al, 2017). We compared their data for glucose

minimal medium in exponential growth to the same dataset for

MG1655 (EQ353), which grew at similar rates (0.69/h compared to

0.75/h for REL606) in glucose minimal media. While the number of

reported proteins was similar, the observed protein abundances
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showed considerably more scatter compared to the other studies

(S14C, gray symbols in S14D).

It is worth noting that the biological results discussed in these

studies were largely insensitive to the problems with low-abundant

proteins, as they were based mostly on the behavior of protein

groups or on individual proteins that are highly abundant. This can

be most clearly seen in the study by Hui et al (2015), in which abun-

dances of individual proteins were not even reported (Hui et al,

2015). The other studies reported abundances mostly at the level of

pathways or functional groups, which are dominated by the abun-

dant proteins. Rarely abundances of individual proteins are

discussed. In contrast, the robust quantification of protein mass

fractions across conditions offered by our workflow led us to many

interesting biological scenarios as summarized below.

The biological results analyzed in this work are divided into two

parts, at the coarse-grained level and the individual protein level.

Building on previous work (Hui et al, 2015), we first analyzed the

proteome of E. coli at a coarse-grained level, in response to three

major types of growth limiting conditions (metabolic limitation and

antibiotic inhibition, 29 samples in total). This resulted in the classi-

fication of 1,821 proteins into eight “proteome sectors”, each

consisting of proteins with similar response profiles across these

conditions. Our results are very much in agreement with those of

Hui et al (2015) for the proteins detected in both studies. However,

with our workflow a much increased resolution on low-abundant

proteins was achieved, i.e., we quantified and classified almost

twice as many proteins, although the absolute mass fractions of

these proteins amounted to only ~ 10% more than those reported in

Hui et al (2015). A large number of the newly detected proteins

were upregulated in all three limitations (S’-sector), a pattern which

was not seen previously. As many of these proteins are associated

with cellular processes such as lipid and cell wall biosynthesis, cell

division, cell cycle, and DNA replication, we attributed the increase

in mass fraction of these proteins at slow growth to changes in the

ratio of cell surface and cell number to cell volume, as cell volume

decreases at slow growth (Si et al, 2017). This could be shown

explicitly for outer membrane porins (Fig 5E), where the abundance

per mass increased at slow growth, matching S/S’-sector profiles,

whereas the surface density showed an approximate constancy

across conditions.

In this study, we investigated an unprecedented variety of

growth conditions, which allowed us to generate a comprehensive

E. coli spectral library and provided us with a unique perspective to

study E. coli physiology. Here we recap a few highlights. For exam-

ple, the proteomes of cells in glucose-limited growth via titratable

glucose uptake could be compared to those of cells growing on a

variety of carbon sources. This yielded a unique perspective on

protein allocation in carbon-limited growth (Fig 6). Surprisingly,

only a small fraction of the proteins upregulated in carbon-limited

growth were specific to the utilization of the supplied carbon

sources. Half of these upregulated proteins were TCA enzymes and

flagella-related proteins, while the rest were distributed between

other generic transporters and the outer membrane porin NmpC.

This result strongly challenges the view that proteome composition

is optimally allocated for maximizing growth (O’Brien et al, 2013;

de Groot et al, 2020; Dourado & Lercher, 2020), since many of these

upregulated proteins are not directly useful for growth in the

supplied carbon source.

The proteome of cells under various nutrient limitations and

antibiotic inhibition showed strong differences as quantified in the

sector analysis (Fig 4) and also from direct scatter plots

(Appendix Fig S10). Surprisingly under stress conditions, specifi-

cally at high temperature (42°C) or under hyperosmotic stress

(0.6 M NaCl), the proteome did not change significantly at a global

level, despite a 4-fold difference in growth rates compared to

unstressed conditions or among different stress conditions (Fig 8,

Appendix Fig S11). This suggests that, unlike metabolic limitations

and antibiotic inhibition where the rate of growth is intimately

related to constraint in the proteome (You et al, 2013), the growth

defects associated with these stress responses are likely not due to

constraint in the proteome, but may instead originate from problems

that cannot be solved by reallocating the proteome.

Another surprising finding from our dataset is the distinct dif-

ferences on protein mass fractions resulting from seemingly minor

effects. For example, M9 and MOPS are two commonly used growth

media for laboratory studies of E. coli. However, the comparison of

their proteomes shows a variety of clear differences caused by dif-

ferences in thiamine and iron availability (Fig 7A). Similarly, dif-

ferent laboratory strains of E. coli, even those labeled as common

MG1655 strain, exhibit important biological differences (Fig 9),

particularly concerning the expression of genes involved in the

synthesis and degradation of the cyclic-di-GMP, an important

messenger molecule directing biofilm formation (Jenal et al, 2017).

This is traced to the strain-dependent expression of FlhDC (Barker

et al, 2004; Fahrner & Berg, 2015), the master regulator of flagella

synthesis, which also drives the expression of PdeH (Ko & Park,

2000), the major phosphodiesterase responsible for cyclic-di-GMP

degradation. This finding underscores the importance of strain

selection in the study of both motility and biofilm formation.

So far, our analyses covered only a small part of the proteins

accurately quantified in this study. Perspectively, our data can serve

as a rich resource for the systems biology community, in order to

perform hypothesis testing, integration with other quantitative

omics-resources, or classical biochemical studies, as well as

genome-wide modeling of E. coli gene expression and metabolism.

For example, when combined with RNA-seq data on the same

strains and conditions, these data can be used to infer translational

efficiency for thousands of genes across many conditions. We expect

data of this high quality and robust at the level of individual

proteins, to herald in a new era in quantitative systems biology.

Materials and Methods

Organisms and culture conditions

A detailed description of all E. coli strains and growth conditions

used in this study can be found in the Extended Experimental Meth-

ods and in Datasets EV1–EV3.

Escherichia coli spectral library generation

Proteomic sample preparation
The proteomic sample preparation was performed using an opti-

mized E. coli protocol described previously by Schmidt et al (2016).

Briefly, E. coli cell pellets were lysed with 2% sodium deoxycholate,
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ultrasonicated, and heated to 95°C. Proteins were reduced, alkylated

and digested with LysC and trypsin (Glatter et al, 2012). The peptide

mixtures were desalted, dried, and resuspended to a concentration

of 0.5 µg/µl. To all peptide mixtures, the iRT peptide mix (Biog-

nosys) was added directly before the MS-measurement. To increase

proteome coverage, 33 µg of peptides from samples Lib1 to Lib30

were pooled and fractionated by off-gel electrophoresis (OGE) into

13 fractions.

DDA mass spectrometry
LC-MS/MS runs in DDA mode were performed on a TripleTOF 5600

mass spectrometer (SCIEX) interfaced with an NanoLC Ultra 2D Plus

HPLC system (Eksigent). Peptides were separated using a 120 min

gradient from 2 to 35% buffer B (0.1% v/v formic acid, 90% v/v

acetonitrile). The 20 most intense precursors were selected for fragmen-

tation. For the generation of the E. coli spectral library, 53 DDA-based

proteomic measurements were performed in total (see Dataset EV2).

DDA data analysis
The generated dataset was searched using four different search engi-

nes in parallel: Comet (Eng et al, 2013), Myrimatch (Tabb et al, 2007),

X!Tandem (Craig & Beavis, 2003), and OMSSA (Geer et al, 2004). The

MS2 spectra were queried against a canonical E. coli proteome data-

base downloaded from Uniprot and appended with the iRT peptides

(Biognosys) and 9 control or antibiotic resistance proteins. The search

results were further processed and analyzed through the Trans-

Proteomic-Pipeline (Deutsch et al, 2010). The combined results were

filtered at a 1% protein FDR using MAYU (Reiter et al, 2009).

Generation of spectral library and peptide query parameters
A non-redundant consensus spectral library (Lam et al, 2008) was

generated with SpectraST (Lam et al, 2007). The python script

“spectrast2tsv” (https://pypi.python.org/pypi/msproteomicstools)

was used to extract peptide query parameters from the spectral

library. This script automatically extracted the six most abundant

singly or doubly charged b- and y-ion fragments for each peptide

precursor in the range between 350 to 2,000 m/z, excluding the

precursor isolation window region. iRT peptides were used to gener-

ate normalized retention times for all peptides.

Quantitative proteomics with DIA/SWATH

DIA/SWATH mass spectrometry
Tryptic peptides were measured in SWATH mode on two TripleTOF

5600 mass spectrometers (Sciex), both interfaced with an Eksigent

NanoLC Ultra 2D Plus HPLC system as described previously (Collins

et al, 2017). Peptides were separated using a 60 min gradient from 2

to 35% buffer B (0.1% (v/v) formic acid, 90% (v/v) acetonitrile). A

64-variable window DIA scheme was applied, covering the precur-

sor mass range of 400–1,200 m/z (for details see Extended Experi-

mental Methods), with a total cycle time of ~ 3.45 s. Per MS

injection 2 μg of protein amount was loaded onto the HPLC column.

For a detailed overview of all samples measured by DIA/SWATH,

see Datasets EV2 and EV3.

DIA/SWATH data analysis
The DIA/SWATH data was analyzed using OpenSWATH (www.ope

nswath.org) as described previously (Collins et al, 2017). We

changed the following parameter: m/z extraction windows =
50 ppm. To extract the data, we used our E. coli spectral library

described before. PyProphet-cli, an extended version of PyProphet,

optimally combined peptide query scores into a single discrimina-

tive score and estimated q-values using a semi-supervised algorithm

(Rosenberger et al, 2017). To assign the weight of each Open-

SWATH subscore, we used the set of peptide peak groups subsam-

pled from every run with the ratio of 0.07. The software was run

using the experiment-wide and global context with a fixed lambda

of 0.8, and the results of the experiment-wide mode were filtered

with a 1% protein and peptide false discovery rate according to the

global mode analysis (Rosenberger et al, 2017). TRIC was applied to

align extracted and scored peak groups across all the runs following

the filtration steps (Rost et al, 2016). The resulting peptide-level

quantitative data matrices are available in Datasets EV4 and EV5.

Quantitative protein inference using TopPep1/3, iBAQ, and xTop
Peptide precursors were ranked based on their average intensity

over all samples (missing values are set to 0). Subsequently, the N

(N = 1, 2, 3, . . .) most intense peptide precursors per protein were

selected and their intensities were summed to yield the protein

intensity in each sample. TopPep1 signals were simply the intensi-

ties of the one most intense peptide per protein, and TopPep3 was

obtained by summing the top 3 peptide precursor intensities (Top

peptides were defined not per sample, but by average over all

samples). iBAQ intensities were computed by adding the signal from

all peptide precursors and dividing by the expected number of fully

tryptic peptides computed with an in-house script. Finally, xTop is a

Bayesian estimator that makes use of all the available peptide inten-

sities to improve on the TopPep1 estimation and is described in

detail in Appendix Note S2.

Absolute protein concentrations or protein copy numbers were

converted to mass fractions and vice versa through simple transfor-

mations using the known protein masses (see Appendix Note S1).

Since TopPep1, TopPep3, iBAQ, and xTop most naturally reflect

protein copy numbers or concentrations, we multiplied the corre-

sponding intensities by the known molecular weight of each protein

and normalized the corresponding intensities to 1. The resulting

mass fractions ϕi are reported in Appendix Figs S4 and S5 for a

representative MG1655 sample. The same rescaling has been

applied to the ribosome profiling synthesis rates in order to generate

the mass fractions ρi. The final scaling of xTop protein intensities

with the ribosome profiling data was performed as described in

Appendix Note S1; a scaling factor 1 was assigned to proteins for

which no proteomics data were available in the calibration samples.

Ribosome profiling

Ribosome profiling was performed as described in detail previously

(Li et al, 2014). Briefly, 250 mL of cell culture in steady-state expo-

nential growth was rapidly filtered at OD600 = 0.3 by passing it

through a nitrocellulose filter. Cell pellets were rapidly collected

using a pre-warmed metal crumber, flash-frozen in liquid nitrogen,

and combined with frozen droplets of lysis buffer. Cells and lysis

buffer were pulverized by mixer milling under cryogenic conditions.

Pulverized lysate was thawed on ice and clarified by centrifugation

at 4°C, digested with MNase, and the resulting monosomes collected

by fractionation following sucrose gradient centrifugation. Ribosome
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protected mRNA fragments were size selected via gel purification,

dephosphorylated at the 3’ end and ligated to 5’ adenylated DNA

oligo. After reverse transcription, the single-stranded DNA was

circularized, and PCR amplified. Trimmed footprint reads were

aligned to the E. coli genome using Bowtie v1.0.1 (Langmead et al,

2009). Relative synthesis rates were computed as the mean ribo-

some footprints density over gene bodies, with small corrections for

5’ to 3’ ramp and internal Shine-Dalgarno-like sequences.

Binary classification of the proteome

Proteome sectors were defined with a procedure similar to the one

employed in Hui et al (2015). Briefly, for each protein and for each

growth limitation series (C-, A- and R-limitation) we first normal-

ized the mass fraction so that they equal 1 in the reference condi-

tion, and then fitted a linear relation between the relative protein

abundance ri and the growth rate λ, namely ri (λ) = ri,0 + sλ. The

sign of the slope yields the “response” of the protein within each

growth limitation mode: a negative sign corresponds to upregulation

(↑), and a positive sign corresponds to downregulation (↓). Each

sector is identified by the combination of three responses; for

instance, the C-sector includes proteins upregulated in C-limitation

(indicated as C↑) and downregulated in A- and R-limitation (A↓R↓).

Such binary classification was performed only for proteins for which

three data points were available in each limitation. All other

proteins were assigned to an "X-sector" of unclassified proteins.

Data availability

The datasets and computer code produced in this study are available

in the following databases:

- raw mass spectrometry files (DDA and DIA/SWATH), ProteomeX-

change Consortium via the PRIDE partner repository: http://

www.ebi.ac.uk/pride/archive/projects/PXD014948.

- the E. coli spectral library file in various formats, SWATHAtlas

(www.SWATHAtlas.org): http://www.peptideatlas.org/PASS/PASS01421.

- targeted analysis of selected peptides from the DIA/SWATH data,

performed with the Skyline software (MacLean et al, 2010), avail-

able on Panorama Public (Sharma et al, 2018): https://panorama

web.org/Ecoli_DIA.url.

- ribosome profiling data, Gene Expression Omnibus: https://www.

ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=GSE139983.

- xTop protein intensity calculator, MATLAB package, https://git

lab.com/mm87/xtop. A Python version of the code is currently

being developed, and will be made available at the same repository.

Expanded View for this article is available online.
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