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Phonetic reduction in the “Easy/Hard” database without “difficulty” 

 

Susanne Gahl 

gahl@berkeley.edu 

 

Abstract 

A widely-cited study investigating effects of recognition difficulty on the phonetic realization 

of words   (Wright, 1997, 2004) described vowel dispersion in a subset of the Easy/Hard 

database (Torretta, 1995). The core finding was that vowel dispersion, i.e. distance from the 

center of the talker’s F1/F2 space, was greater in words that represent difficult recognition 

targets, due to competition from other words in the lexicon (‘hard’ words) than in easy 

recognition targets (‘easy’ words).  The goal of the current study was to test whether the 

pattern observed in the subset extended to a larger portion of the Easy/Hard database, and 

whether the effect persisted when controlling for known other determinants of vowel 

dispersion.  Extending the investigation to all monophthongs in the database, we find that 

recognition difficulty fails to have a significant effect on dispersion when effects of 

segmental context are brought under statistical control. We conclude that the pattern of 

dispersion in Wright (1997) is not due to lexical competition, but is most likely due to 

segmental context, particularly place of articulation of consonants preceding and following 

the target vowels. We discuss the implications of this reanalysis for studies of pronunciation 

variation.  

 

 

 

1. Introduction 

 

Patterns of pronunciation variation in spoken language are at the focus of converging 

research programs in Phonetics, Sociolinguistics, and Psycholinguistics. Each of these has 

identified a multitude of factors giving rise to phonetic variation (see e.g. Bortfeld, Leon, 

Bloom, Schober, & Brennan, 2001; Fosler-Lussier & Morgan, 1999; Hay & Jannedy, 2006). 

One challenge for current research is to find out which of the potential sources of variation 

give rise to observed patterns, generally and in a given sample.  
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Some sources of variation are essentially uncontroversial: Clearly, segmental context affects 

the realization of segments, as does speaking rate (Farnetani, 1997). Deep theoretical 

questions remain open, for example concerning the nature of articulatory targets for 

production (Johnson, Flemming, & Wright, 1993), the relationship between speaking rate and 

articulatory movement (Moon & Lindblom, 1994), and the degree of abstractness of 

phonological representations (Pierrehumbert, 2001). Yet, it is clear beyond doubt that some 

articulatory variability is in some manner attributable to segmental context and speaking rate.  

Other sources of variation remain controversial, in the sense that there has yet to emerge a 

consensus about the scope of the proposed explanations. One current area of active research 

that is rife with controversy concerns the role of clarity and intelligibity in pronunciation, and 

more generally, the relationship between production and perception, and the role of talker’s 

models of listener’s needs in pronunciation (Arnold, 2008; Aylett & Turk, 2006; Gahl, Yao, 

& Johnson, 2012; Galati & Brennan, 2010; Jaeger, 2010; Stent, Huffman, & Brennan, 2008).  

One of the earliest studies examining the relationship of recognition difficulty and 

pronunciation focused on vowel dispersion (1997; 2004;  henceforth W1997 and W2004).
1
 

Vowel dispersion (and its opposite, vowel centralization) refers to the distance between 

vowel tokens and the center of a talker's vowel space. Following Bradlow et al. (Bradlow, 

Torretta, & Pisoni, 1996), W1997 measured vowel dispersion as the Euclidean distance 

between vowel tokens and the center of each talker’s  F1/F2 space. High vowel dispersion is 

a feature of 'clear speech', i.e. the speaking style talkers adopt when asked to speak clearly. 

That fact makes vowel dispersion a suitable tool for examining the role of intelligibility in the 

realization of words, both because dispersion affects intelligibility, and because speakers are 

able to adjust their speech so as to increase or decrease dispersion. W1997 examined two 

groups of words, respectively “easy” and “hard” targets for recognition, based on prior 

research by (Luce & Pisoni, 1987; Luce, Pisoni, & Goldinger, 1990; Pisoni, Nusbaum, Luce, 

& Slowiaczek, 1985). W1997 found vowel dispersion to be greater in 'hard' words than in 

'easy' words. That conclusion was based on a subset of a database of “easy” and “hard” words 

(Torretta, 1995). 

The W1997 study has had a very significant impact. The idea that talkers aim to optimize 

overall intelligibility while preserving effort, by expending articulatory effort on those words 

that might be difficult to understand, is a cornerstone of theories relating speech production, 

speech perception, and informativity (Aylett & Turk, 2004; Lindblom, 1990). Its central 

finding has been widely accepted, replicated, and extended to other aspects of pronunciation 
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besides vowel dispersion (Kilanski, 2009; Munson, 2007; Munson & Solomon, 2004; 

Scarborough, 2010). Yet, the role of recognition difficulty in pronunciation variation remains 

controversial (Arnold, 2008; Galati & Brennan, 2010). Furthermore, a recent study (Gahl et 

al., 2012) examining a much larger set of words than the one discussed in W1997 reported 

results that appear to run counter to the pattern observed in W1997. Clearly, many questions 

about the role of recognition difficulty in pronunciation remain unanswered and 

controversial.  

A number of relatively uncontroversial factors are known to affect vowel dispersion. Among 

these are vowel duration, speaking rate, talker sex, and segmental context. Other things being 

equal, vowel spaces tend to be more compact, i.e. less dispersed, at faster speaking rates  

(Lindblom, 1983; Moon & Lindblom, 1994), in the speech of male vs. female talkers (Byrd, 

1994), and in the vicinity of alveolar consonants (Farnetani, 1997). The effect of alveolar 

consonants arises since these consonants require tongue positions near the alveolar area, as do 

centralized vs. highly peripheral vowels. Manner of articulation of adjacent consonants may 

also be predictive of vowel dispersion, as a result of nasalization and coloring due to pre- or 

postvocalic nasals and liquids.  

Previous further research suggests a way in which these articulatory and indexical factors 

may interact with recognition difficulty to affect vowel dispersion: Rather than increasing 

dispersion for ‘hard’ targets across the board, talkers may expend effort to decrease the 

amount of context-dependent undershoot in ‘hard’ words, thereby keeping these words from 

being even harder to understand (Flemming, 2010; Lindblom, 1990). If talkers indeed aim to 

optimize a trade-off between effort and intelligibility, then they might expend effort in order 

to minimize target undershoot in ‘hard’ words, while allowing target undershoot in ‘easy’ 

words, for example as a result of coarticulatory influences of neighboring alveolar 

consonants. As a result, vowels in ‘easy’ words would tend to be centralized in the vicinity of 

alveolar consonants, but vowels in ‘hard’ words need not.  

W1997 sought to control for segmental context, by focusing on a set of ‘easy’ and ‘hard’ 

words matched for segmental factors affecting dispersion. Therefore, the analysis in W1997 

targeted a subset of a larger database, known as the Easy/Hard database (Torretta, 1995).  The 

Easy/Hard database contains 150 lexical items, spoken at three different speaking rates by 10 

different talkers. W1997 included all ten talkers, but only 68 lexical items, produced at one 

level of speaking rate (the 'medium' rate), for a total of 680 tokens out of the 4500-token 

database. The fact that the analyses focused on a subset of the database invites the question 
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whether the observed effect extends to other words in the database and whether it holds at all 

three speaking rates. A related question concerns whether the differences between the 'easy' 

and 'hard' words are primarily attributable to recognition difficulty; or whether they reflected 

other determinants of pronunciation variation.  

The goal of the present study was to ask whether the pattern in W1997 might have resulted 

from other factors besides recognition difficulty – specifically, factors that are 

uncontroversially thought to affect vowel dispersion. A related goal was to examine whether 

the observed pattern extended to other parts of the Easy/Hard database. To preview our 

results: we successfully replicate W1997, both in the W1997 subset and in the Easy/Hard 

database as a whole, but find that, when segmental context is brought under statistical 

control, there is no evidence for recognition difficulty modulating vowel dispersion in the 

Easy/Hard database.   

2. Data and Methods  

 

The database is described in Torretta (1995). The full database consists of 4500 audio files, 

representing 150 word types, read by ten talkers at three speaking rates. The recordings were 

made at the Speech Research Laboratory at Indiana University. No information about the 

talkers' linguistic background given in Torretta (1995). W1997 states that the talkers 

represented a variety of dialects, all characterized as “General American English”, and that 

“all the dialects had the same vowel-quality categories in all of the stimuli”.  

The word lists were constructed on the basis of previous research on word recognition, 

specifically of the effects of lexical familiarity, lexical frequency, and phonological 

neighborhood structure on recognition difficulty (Luce & Pisoni, 1987; Luce et al., 1990; 

Pisoni et al., 1985). Phonological neighborhood structure is captured by two related variables: 

(a) phonological neighborhood density and (b) neighborhood frequency. Phonological 

neighbors are words in the lexicon that differ from a target by addition, deletion, or 

substitution of one phoneme. For example, the neighbors of pat include the words cat, pot, 

spat, and pan. Phonological neighborhood density refers to the number of neighbors of a 

target. Neighborhood frequency was defined as the mean word frequency of a target's 

neighbors. The 150 word types consisted of two sets of 75 words, termed 'easy' and 'hard', on 

the basis of recognition difficulty. “Easy” words, i.e. easy targets for recognition, were high-
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frequency words facing little competition from their neighbors, i.e. with low neighborhood 

density and low neighborhood frequency, relative to the target frequency. “Hard” words, i.e. 

difficult recognition targets, were low-frequency words with many neighbors and high 

neighborhood frequency. Lexical familiarity was held constant across the two groups: both 

groups had very high familiarity ratings (greater than 6.7 on a seven-point scale). Estimates 

of familiarity, frequency, and phonological neighborhood structure were based on the 

Hoosier Mental Lexicon (Nusbaum, Pisoni, & Davis, 1984).  

According to Torretta (1995), the words were presented in random order on a computer 

monitor. Talkers were instructed to read the words “in a normal speaking voice” three times, 

at three different speaking rates. The utterances were low-pass filtered at 10kHz and digitized 

at a sampling rate of 22050 kHz. The speech files were edited so as to remove periods of 

silence on either side of the words and to check the waveform. The files were rerecorded “in 

appropriate cases (e.g. speaking level too loud/too soft)” (Torretta, 1995). No information is 

available about how many trials were repeated for this reason.   

The subset of the Easy/Hard database analyzed in W1997 consisted of 68 words (34 'easy' 

ones and 34 'hard' ones) from the original set of 150. As in the full database, the 'easy' words 

had few neighbors and were of high lexical frequency relative to their neighbors, whereas the 

'hard' words had many neighbors and were of low lexical frequency relative to their 

neighbors. Since the words in the two sets could not be homophones - which would entail 

having identical phonological neighborhood structures -, matching segmental context 

perfectly was impossible. Given that constraint, inclusion in the analysis in W1997 was based 

on the desire to avoid “consonantal contexts that could result in vowel colouring” and to 

observe target vowels “in similar contexts in 'easy' and 'hard' words” (Wright, 2004, p. 79). 

On the basis of those criteria, words with postvocalic /l/ and /r/ were excluded in W1997 and 

postvocalic nasals were matched across the two sets.  

In our reanalysis of the audio files, one of the audio files was found to be corrupt and had to 

be excluded from the analysis. Another file had to be excluded because the talker produced 

the word mail instead of the target mall. To facilitate the analysis of a larger data set, we used 

automatic alignment and formant extraction. The audio files for the Torretta Easy/Hard 

database were aligned with the broad transcriptions of the words at the phone level using the 

Penn Phonetics Lab Forced Aligner Toolkit (Yuan & Liberman, 2008). The start and end 

times of each vowel phone was obtained from the alignment results, and a portion of each 

token's audio file was extracted, starting 40ms before the start time and ending 40ms after the 
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end time of the vowel. This audio was downsampled to 12 KHz and analyzed by the 

Watanabe and Ueda formant tracker (Ueda, Hamakawa, Sakata, Hario, & Watanabe, 2007; 

Watanabe, 2001). Measurements for F1-F4 and F0 were recorded for the analysis frame 

occurring at the temporal midpoint of the vowel. In four cases, the automatic tracking 

resulted in F1 values of zero Hz or below 2 on the Bark scale. In seven cases, formant 

tracking errors resulted in missing F1 or F2 values. These tokens were excluded from further 

analysis.   

There were a small number of discrepancies between the audio files and the description of the 

data base in Torretta (1995). The first discrepancy was that was that three tokens of the word 

“job” were coded as containing the vowel [o], despite the fact that none of the talkers 

pronounced job with that vowel (as might be the case if they were referring to the biblical 

figure Job). These three tokens were re-coded as containing the same vowel as the words 

shop, watch, cod, knob, and wad. Secondly, the item bag appears in Torretta (1995) and 

Wright (1997, 2004), but the corresponding recordings appeared to be the word hag for all 

talkers, with a period of audible frication before the vowel. It is no longer possible to recover 

whether the discrepancy is due to an error in stimulus description, stimulus presentation, 

participant error, or some other factor. The word wrong appeared on both the 'easy' list and 

the 'hard' list. For this reason, it was excluded from all current analyses (the item was also 

excluded in W1997 or W2004). 

There was also a discrepancy between the word lists in W1997 vs. W2004. W2004 lists the 

orthographic form caught, but not cot, whereas W1997 lists cot, but not caught. Torretta 

(1995) lists the item in question as cot. In the current study, the spelling cot (and the 

corresponding lexical frequency) is assumed, since Torretta (1995) and W1997 were closer in 

time to the data collection phase, and given that the item in question appears on the list of 

“hard” words: Since caught has a fairly high lexical frequency, it is unlikely that it would 

have met the inclusion criteria for the “hard” set.  

Diphthongs are transcribed as single segments by the aligner. Since a diphthong's temporal 

midpoint does not provide a reliable estimate of the formant characteristics of the diphthong 

as a whole, words containing diphthongs were excluded from the analysis. There were 8 

items including diphthongs in the W1997/2004 subset. Excluding words with diphthongs left 

60 types (600 tokens) in the set for the replication of W1997, and 125 types (3734 tokens) for 

the analysis of all monophthongs.
2
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Table 1 shows the mean values and the ranges of the frequency and neighborhood density of 

all word types in the Easy/Hard database, and of the subsets analyzed in W1997 and in the 

current study. For the most part, the mean of the lexical frequency and neighborhood density 

of easy vs. hard words are similar across samples. An exception is the lexical frequency of 

‘hard’ words, which is lower in the sample for the current study than either W1997 or 

Torretta (1995). Since low lexical frequency is one of the characteristics of the ‘hard’ group, 

the lower frequency of the ‘hard’ words in the current study should, if anything, aid in 

replicating any effect of recognition difficulty.  

 

Table 1.  Mean (range) of lexical frequency and neighborhood density of ‘easy’ and ‘hard’ 

words in Torretta (1995), Wright (1997) and the current study  

 

 Lexical frequency Neighborhood density 

 Easy Hard Easy Hard 

Torretta (1995)  

n = 150 

384.84  

(0.59-5654.73) 

10.73 

(0.31 – 171.45) 

14.47 (1-31) 27.75 (8-45) 

Wright (1997)  

n = 68 

218.25  

(13.98-1167.82) 

12.05  

(0.31-171.45) 

14.0 (4-28) 26.91 (8-43) 

Current study 

n = 125 

434.31 (0.59-

5654.73) 

8.88 

(0.31-42.73) 

14.95 (1-31) 28.25 (16-45) 

 

 

 

Vowel dispersion was calculated as the Euclidean distance between the point defined by the 

F1 and F2 (Bark) values of each vowel token and the talker's average F1 and F2 (Bark) 

values, following the method adopted in Wright and proposed in Bradlow et al. (1996). To 

trace the method used in W1997 as closely as possible, talker-specific vowel centers were 

calculated using only the words that also entered into Wright's analysis for the purposes of 

the replication (Study 1). For the analysis of the larger set (Study 2), talker-specific vowel 

centers were calculated using all analyzable monophthongs.  

For the statistical analysis of the larger dataset, we fitted linear mixed-effects regression 

models, using modeling tools now commonly used in analyses of pronunciation variation and 

many other psycholinguistic variables (H. Baayen, 2008; H. Baayen, Davidson, & Bates, 

2008; H. Baayen, Tweedie, & Schreuder, 2002). All statistical analyses were performed using 

R (R Development Core Team, 2008) and the R packages languageR (H. Baayen, 2008), and 

lme4 (Bates & Maechler, 2010). Normality and homogeneity of the residuals were checked 

by visual inspection of plots of residuals against fitted values.  
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In multivariate regression modeling without random effects, all categorical predictors are 

treated as fixed effects: All levels of fixed effects are known ahead of the analysis, and 

estimated coefficients describing the relationship between each level of the predictor and the 

outcome variable can vary freely. An example of a fixed effect in our models is Speaking 

rate, with the levels Fast, Medium, and Slow. The model treats the estimates for these three 

levels as three separate parameters, without imposing any constraints on how the three levels 

might differ from one another. Random effects, by contrast, are categorical predictors whose 

values are treated as random samples from a larger population. An example of a random 

effect in our models is Talker: The assumption is that talker-specific “baseline” values of 

vowel dispersion (the random intercept), as well as talker-specific variation associated with 

other variables (random slopes) represent normally distributed random variables with means 

equal to the population mean for each (intercept and slope) and unknown variance, estimated 

by the model. Treating talker as a random effect has two implications: First, it means that the 

modeling results can be understood as statements about the whole population of talkers, not 

just the particular talkers who participated in the experiment. Secondly, it imposes a 

constraint on the by-talker (and by-word) estimates: Talker-specific adjustments cannot differ 

arbitrarily from one another, but are assumed to represent samples drawn from a normal 

distribution representing the population of all possible talkers.   

Based on prior research on vowel dispersion, we included the following factors as fixed 

effects in our analysis: Vowel type (i.e. phoneme), Speaking rate, Place of preceding 

consonant (a binary factor distinguishing alveolar vs. all other places of articulation), Place of 

following consonant (alveolar vs. all others), Manner of preceding consonant (approximants 

vs. nasals vs. obstruents), Sex, and Difficulty (‘easy’ vs. ‘hard’, based on the classification in 

Torretta, 1995). If the relationship between recognition difficulty and other factors affecting 

vowel dispersion is as outlined in Lindblom (Lindblom, 1990; Moon & Lindblom, 1994) and 

Flemming (Flemming, 2010), i.e. if talkers expend effort to keep vowels in ‘hard’ words from 

being difficult to recognize, then effects of recognition difficulty on vowel dispersion might 

manifest themselves not only as statistical main effects of Difficulty, but also as a significant 

interaction between place of articulation and Difficulty. To check whether this is the case, we 

tested for the presence of significant interactions between Place of articulation (alveolar vs. 

other) and Difficulty.   

Following the recommendations in Baayen & Milin (2010), we refrained from excluding 

extreme values of the dependent variable as outliers ahead of the analysis and instead 
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excluded outliers identified based on model criticism. Specifically, we excluded cases that 

were associated with large residuals (more than 2.5 SDs from zero) in the initial modeling 

phase and then refitted the model without those cases, to prevent these observations from 

unduly influencing estimates of coefficients. The outcome variable (dispersion) was centered 

around its mean, by subtracting the mean from each observed value. 

 

3. Results 

3.1. Replicating Wright (1997, 2004) 

To gauge the degree of consistency between the current study and the earlier analyses, we 

first sought to replicate W1997/2004, restricting our attention to words that were included in 

that study (excluding diphthongs), and following the analytical steps in W1997/2004 before 

extending the analysis to other parts of the database or taking additional predictors of 

dispersion into account.  

Average dispersion in the W1997 part of the data set, pooled across all talkers and vowel 

types, was higher for the hard words than for easy words (1.999 vs. 1.816, n = 599), as in 

W1997.  Since the overall means represent group averages of dispersion values, rather than 

averaged differences between the pairs of words, they do not necessarily indicate the effect of 

the easy/hard manipulation. Therefore, W1997 analyzed the results with a repeated-measures 

ANOVA, examining main effects of lexical category (i.e. 'easy' vs. 'hard', termed “Difficulty” 

here), talker, and vowel type, as well as the interaction between lexical category and vowel 

type. Applying the same repeated-measures ANOVA model to the automatically extracted 

formant values, we observed the same pattern of results as that reported in W1997: Assuming 

an alpha level of .05, there was a significant main effects of Difficulty (F(1,399) = 67.67, p < 

.0001). There was also a significant interaction of Difficulty by Vowel type (F(9,399) = 6.32, 

p < .0001).  

To explore differences across vowels further, W1997 also reported the average dispersion for 

'easy' and 'hard' words separately for each vowel. Figure 1, analogous to Figure 4.3 in W2004 

shows the by-vowel averages for the the easy vs. hard words.  
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Figure 1: Vowel dispersion in ‘easy’ vs. ‘hard’ words (n = 600) 

 

For eight of the ten vowel types, dispersion was greater for the “hard' words than the “easy” 

words. For some vowels, the observed difference not only followed the pattern observed in 

W1997, but was numerically larger. For example, average dispersion in easy vs. hard words 

containing the vowel [ʌ] differed by ca. 0.1 Bark in Wright's report, and by ca. 0.4 Bark (1.69 

vs. 2.10) in the current study. The exceptions were the vowels /ɔ/ and /o/. The latter of these 

may be diphthongal, which would render the automatic extracted formant values doubtful. 

The vowel [ɔ] patterned in the opposite direction from that observed by W1997 (2.50 for the 

‘easy’ condition vs. 2.28 for the ‘hard’ condition). It should be noted that this vowel was 

represented by a single pair of words (wash and cot) in the W1997 subset.
3
  

W1997 reported that the effect was “clearest” for the vowels /i, æ, ɑ, ɔ, u/. The current study 

recovers this effect for four of those vowels – the four that are represented by more than one 

item per condition. Overall, then, the differences in methods did not prevent a successful 

replication.  
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The overall mean of dispersion in W1997/2004 was approximately 2.3 for the hard words and 

1.8 for the easy words (according to Figure 4.1 in W2004), vs. 2.0 and 1.8 in the current 

study. It would appear, then, that the absolute degree of dispersion is lower in the current 

study, particularly for the “hard” words. One possible reason for this is that measurements for 

W1997 were made at the point of maximal displacement, i.e. the point “when F1 and F2 are 

the most characteristic for that particular vowel” (Wright 2004: 80). For vowels characterized 

by especially high or especially low F1 or F2 or F1/F2 ratios, that criterion often means that 

the measurement represents the extreme F1 and/or F2 for a given vowel token (though not 

always, since in cases “[w]here F1 and F2 were not in agreement, F1 was taken as the point 

of reference and F2 was measured at that point”). As a result, the 'maximal displacement' 

criterion favors extreme distances from the center of vowel space as the point where 

measurements are taken. The automatic formant extraction used in the current study does not 

favor extreme points and thus will tend to reduce the mean values for classes of vowels that 

are most likely to contribute extreme points - vowels in the 'hard' words, assuming the effect 

observed by Wright is present. Nevertheless, the overall pattern was similar: Dispersion was 

higher on average in 'hard' words compared to 'easy' words.   

3.2. The rest of the data 

 

We now turn to the analysis of the larger dataset, i.e. the set of all analyzable monophthongs 

in the Easy/Hard database. The larger and more segmentally varied dataset enables us to 

probe whether previously-observed generalizations about vowel dispersion, for example the 

effects of place of articulation or neighboring consonants, are borne out in the data. With that 

information in hand, we can examine the effects of recognition difficulty further.  

To make sure that any differences between our overall conclusions and those of W1997 were 

not due to extraneous effects of speaking rate, or more generally a failure to replicate the 

earlier analysis, we first checked whether the pattern observed in W1997 held at all three 

speaking rates, for the items included in W1997. That appeared to be the case: ANOVAs of 

the data from the ‘slow’ and ‘fast’ conditions produced results that were parallel to the 

pattern at the medium rate, with significant effects of Vowel type, Talker, and, critically, 

Difficulty. In both the ‘fast’ and the ‘slow’ condition, there were significant main effects of 

Vowel type, and Difficulty (Vowel F(9,399) = 46.73, p < .001; Difficulty F(1,399) = 35.69, p 

< .001 in the ‘fast’ condition; Vowel F(9,398) = 57.63, p < .001; Difficulty F(1,398) = 17.36, 
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p = .004 in the ‘slow’ condition). There was also a significant interaction of Difficulty by 

Vowel type (in the ‘fast’ condition F(9,399) = 6.63, p < .001; in the ‘slow’ condition F(9,398) 

= 3.20, p = .002.). Most important for the replication is the presence of a significant main 

effect of Difficulty: At each level of speaking rate, vowel dispersion was significantly higher 

in the hard words than the easy ones.  

As shown in Table 2, the pattern of vowel dispersion in easy vs. hard words was not entirely 

uniform at all speaking rates. For example, only the five vowels /æ, ɔ, i, o, ʌ/ showed greater 

dispersion in ‘hard’ words than ‘easy’ ones at all three speaking rates. Nevertheless, it 

appears that the pattern reported in W1997 holds at all three speaking rates, when one 

considers Difficulty (easy/hard), Speaking rate, Vowel type, and Talker as the only 

predictors.   

 

Table 2.  Vowel dispersion (in Bark) at three speaking rate.  

 Slow Medium Fast 

Vowel easy hard easy hard easy hard 

ɑ 2.43 2.32 2.24 2.19 2.18 2.16 

æ 1.87 1.94 1.61 1.79 1.63 1.68 

ɔ 2.65 3.54 2.46 3.22 2.40 3.00 

ɛ 1.31 1.24 1.19 1.13 1.22 1.07 

e 2.49 2.57 2.22 2.30 2.04 2.01 

ɪ 1.39 1.46 1.25 1.32 1.23 1.16 

i 3.23 3.39 3.01 3.30 2.73 3.15 

o 2.67 3.03 2.24 2.59 2.29 2.55 

ʊ 2.55 NA 2.55 NA 2.54 NA 

u 2.88 2.02 2.59 1.96 2.56 1.88 

ʌ 1.50 1.66 1.38 1.65 1.31 1.56 

 

 

To understand the pattern of vowel dispersion in the larger set more fully, we fit mixed-

effects regression models controlling for factors affecting vowel dispersion, as indicated by 

prior research: Vowel type, Speaking rate (slow/medium/fast), Sex, Place (alveolar vs. other) 

and Manner or articulation of adjacent consonants, and Difficulty. In order to ascertain the 

individual contribution of the various predictors of dispersion, we first fitted a model (the 

“full” model) containing all predictors. Outliers, defined as observations with standardized 

UC Berkeley Phonology Lab Annual Report (2012)

290



residuals greater than 2.5 standard deviations, were removed. The number of observations 

removed by this criterion was 83, i.e. 2.2% of the observations in the sample. We refit the 

model without the outliers and ascertained the contribution of each predictor in turn in a 

series of leave-one-out model comparisons, each comparing the full model to a model 

without the predictor in question. The model is summarized in Tables 3 and 4. The p-values 

associated with the difference in log likelihood in the leave-one-out models vs. the full model 

are reported in the column labeled “p(chi square)” in Table 3.  

The model confirmed previously reported effects of neighboring consonants and of speaking 

rate, but did not reveal any significant effect of Difficulty. Dispersion varied significantly 

across vowel types, as one would expect. In addition, dispersion was greater at the medium 

speaking rate than at the fast speaking rate (the baseline level for modeling purposes) and 

greatest at the slow speaking rate.  Dispersion was also significantly greater in vowels 

immediately before or after non-alveolar consonants. Target vowels preceded or followed by 

nasals and (oral) obstruents were centralized compared to vowels preceded or followed by 

approximants. We did not observe significant effect of Sex. We suspect that this might be due 

to the presence of the random effect for Talker in the model: Since there were only five 

talkers of each sex, differences between male and female talkers are likely modeled as 

individual differences across talkers. Crucially, there was no significant effect of Difficulty 

(beta = -.05, pMCMC = .50, pChisq = .50). Figure 2 shows the partial effects plots, i.e. the 

model predictions for each predictor in the model when all other predictors are kept constant. 

The pattern of results that is reflected in the plots is that the model recovers effects of 

articulation of neighboring consonants and of speaking rate, but gives no indication that 

Difficulty affects dispersion when other predictors are taken into account.  
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Table 3. Estimated coefficients, standard errors, t-values and p-values, based on MCMC 

sampling, and log likelihood tests for fixed effects of the model of vowel dispersion (n = 

3734), and predicted ranges. Model R-square = .81 

 

 

 

 Beta (SE) t pMCMC(>|t||) p(chisq) Predicted 

range 

(Intercept)  0.2797 

(0.17536) 

1.595 .1107   

Vowel æ -0.3729 

(0.13151) 

-2.835 .0046 < .0001 2.00 

ʌ -0.6196 

(0.10726) 

-5.777 < .0001   

ɔ 0.5116 

(0.16955) 

3.017 0.0026   

ɛ -0.8372 

(0.16486) 

-5.078 < 0.0001   

e 0.0704 

(0.13278) 

0.530 0.5961   

ɪ -0.9912 

(0.12559) 

-7.892 < 0.0001   

i 1.0116 

(0.13525) 

7.480 < 0.0001   

o 0.2814 

(0.15953) 

1.764 0.0778   

ʊ -0.1336 

(0.23867) 

-0.560 0.5757   

u 0.1378 

(0.14590) 

0.944 0.3450   

Speaking rate Medium 0.1083 

(0.01570) 

6.896 < 0.0001 < .0001 0.29 

Slow 0.2948 

(0.01571) 

18.768 < 0.0001   

Place_before Non-

alveolar 

0.2923 

(0.07531) 

3.882 0.0001 .0002 0.29 

Place_after Non-

alveolar 

0.1925 

(0.07765) 

2.479 0.0132 .0145 0.19 

Manner_before Nasal 0.2438 

(0.13097) 

1.861 .0628 .1750 0.24 

Obstruent 0.0996 

(0.08274) 

1.204 .2288   

Manner_after Nasal -0.4074 

(0.13097) 

-3.111 0.0019 < .0001 0.73 

Obstruent -0.7251 

(0.11599) 

-6.251 < 0.0001   

Sex Male 0.0411 

(0.10982) 

0.374 0.7085 .7095 0.04 

Difficulty Hard -0.0503 

(0.07388) 

-0.681 0.4956 .4958 0.05 
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Table 4. Summary of random effects in the model 

Random 

effect 

Variance SD MCMC 

median 

HPD95lower HPD95upper 

Talker 

(intercept) 

0.029752 0.17249 0.1818 0.1136 0.2753 

Word 

(intercept) 

0.121207 0.34815 0.2620 0.2370 0.2890 

Residual 0.150190 0.38754 0.3937 0.3845 0.4029 

 

The model included random intercepts, to capture the fact that there is individual variation in 

vowel spaces, but did not include random slopes for the effect of Difficulty, which would 

capture individual differences in the degree to which talkers adjust their pronunciation as a 

function of recognition difficulty. We did explore this possibility, by including by-talker 

random slopes for Difficulty; the resulting model showed the identical pattern of significant 

effects of Place and Manner of articulation, Vowel type, and Speaking rate; and the same 

pattern of non-significance of Sex and Difficulty. That model did not substantially increase 

model goodness-of-fit, so we report the simpler model here.  

Just as the random effect for Talker might prevent Sex from producing a significant effect, 

the random effect for Word might prevent Difficulty from producing a significant effect. To 

test this possibility, we refit the model again, this time without a random effect for Word. In a 

model without a random effect for Word, the contrast between ‘easy’ and ‘hard’ words 

yielded a marginally significant effect – in the opposite direction from what one would expect 

based on the analysis in W1997: Predicted dispersion for ‘hard’ words was lower than for 

‘easy’ words: beta = -0.0354 (SE = -0.0353), pMCMC = 0.0770, chisq = 3.1346, p(chisq) = 

.07665. This result suggests that the failure of Difficulty to produce a significant effect in the 

full model is not due to the presence of the random effect for Word. 

Since we suspected that Difficulty was in competition with other predictors in the model, we 

explored the possibility that order of entry into the model might have kept the effect of 

Difficulty from revealing itself. To give Difficulty a chance to account for variability in 

dispersion without facing competition from other fixed effects (save those variables also 

included or kept constant in W1997), we fitted a model with only the random effects (Talker 

and Word), Vowel type, and Speaking rate, to which we then added Difficulty. The 

coefficient of Difficulty in the resulting model was insignificantly different from zero, and 
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model comparison did not reveal any significant model improvement when Difficulty was 

added to the baseline model (chi square = 0.49, p = .48; beta = 0.0586 (SE = 0.05855), 

pMCMC = .48.  

 

 

Figure 2: Partial effects in the model of vowel dispersion in the Easy/Hard database 
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We also explored the possibility that Vowel type might interact with Speaking rate, or with 

Difficulty. Testing these interactions was motivated by the observation that vowels change 

far more than others as a function of speaking and difficulty (Lindblom, 1964; Moon & 

Lindblom, 1994; Wright, 1997).  The interaction of Vowel type by Rate was significant, 

reflecting the fact that some vowels, such as /i/, allow for greater variability in dispersion and 

consequently change to a greater degree as a function of speaking rate. As in the model 

without the Vowel x Rate interaction, Difficulty failed to yield a significant effect. The 

pattern of significance of the other predictors (Place and Manner, and Sex) was unchanged. 

Including the interaction in the model caused R
2
, i.e. the proportion of variability explained, 

to increase slightly, from .81 to .82. Since this increase is so slight, and since the behavior of 

the variables of interest remained unchanged, we report the model without the Vowel x Rate 

contrasts, in the interest of readability.  

The words full, pull, and put were the only words in the database containing the vowel /ʊ/. 

Since all three of these were in the “easy” set, testing the interaction of Vowel type with 

Difficulty was only possible after excluding full, pull, and put. We therefore refitted the 

model to the database without /ʊ/, this time including interactions of Vowel type with 

Speaking Rate and with Difficulty. Log likelihood tests indicated a significant interaction of 

Vowel type by Speaking rate (χ
2
= 333.24, p < .001), but no significant interaction of Vowel 

type by Difficulty (χ
2
= 8.9, p = .45). The Difficulty contrast did not yield a significant effect 

in any of the Models. The pattern of significances of all other predictors was likewise 

unchanged.  

We suspected that vowels flanked by alveolars on both sides might tend to be more 

centralized than vowels adjacent to only one alveolar consonant. To test whether this was the 

case, we also entered an interaction of the two factors coding the presence of alveolars before 

and after the target vowel. That interaction did not lead to significant model improvement, 

based on model comparison, and we refrained from exploring it further. 

Since the voicing of consonants affects vowel duration (Peterson & Lehiste, 1960), which in 

turn affects vowel dispersion, we also explored the effect of voicing of both the preceding 

and following consonants. Neither factor yielded significant effects when added to the model, 

perhaps because of the presence of Manner of articulation in the model: Since all 

approximants in the sample are voiced, effects of voicing may have been captured by the 

Manner variable.  
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In summary, the models discussed so far do not provide any evidence suggesting that vowel 

dispersion varied as a function of Difficulty, at least not in the manner outlined in W1997: 

There was no significant effect of Difficulty in the models of the larger data set. This was the 

case both when other predictors of dispersion, such as place and manner of articulation of 

surrounding consonants, were controlled and when they were kept out of the model to give 

Difficulty a chance to account for as much of the variability in dispersion as possible.  

 

3.3 Testing the interaction of Difficulty and segmental context 

So far, we have followed the analytical strategy in W1997, by testing whether dispersion is 

higher in ‘hard’ words, as suggested in W1997. As mentioned above, there is another 

possible way in which Difficulty might affect dispersion: Talkers might expend additional 

articulatory effort to reach articulatory targets in ‘hard’ words, so as to produce vowels that 

are unobscured by coarticulation. In ‘easy’ words, talkers might allow dispersion to vary 

primarily as a function of vowel target and contextual factors (e.g. reduced dispersion near 

alveolar consonants). To test whether this was the case, we fitted a new set of models, this 

time including interactions of Difficulty with each of the other fixed effects, i.e. Place and 

Manner of articulation of surrounding consonants, Sex, and Speaking rate.  

The only interactions that gave rise to significant interactions were those of Difficulty with  

Place of articulation of the preceding consonant and Manner of articulation of the following 

consonant. The interactions of Difficulty with Speaking rate, Place of articulation of the 

following consonant, Manner of articulation of the preceding consonant, and Sex were non-

significant. The model R
2
 was .81, i.e. unchanged compared to the model without the 

interactions.  

To give the effect of Difficulty another chance to reveal itself, we followed up with separate 

analyses of the ‘easy’ and ‘hard’ words. We fitted the same predictors to each subset that 

were in the full model. An effect of Difficulty on talkers’ efforts to counteract coarticulation 

and assimilation should produce a situation in which place and manner of articulation of 

surrounding consonants affects dispersion in ‘easy’ words to a greater degree than in ‘hard’ 

words.  

The results did not bear this out. The presence of alveolar consonants before the target vowel 

affected vowels in ‘easy’ words, but not in ‘hard’ ones (with dispersion being greater after 
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non-alveolars), but did not yield a significant effect in the ‘hard’ words.  Manner of 

articulation of the consonant following the target vowel likewise had a significant effect on 

'easy' words, but not 'hard' ones, with target vowels in ‘easy’ words being more centralized 

before nasals and obstruents than before approximants. On the other hand, place of 

articulation of the consonant following the target vowel had a significant effect for both sets 

of words (greater dispersion before peripheral consonants). Additionally, there was a 

significant effect of manner of articulation of the consonant preceding the vowel for the 'hard' 

set, but not for the 'easy' set, contrary to what one would expect if talkers attempt to correct 

for coarticulatory effects when producing words that might be difficulty to understand.  

On balance, the analysis of the larger data set does not provide evidence for an effect of 

Difficulty on dispersion along the lines argued in W1997 and subsequent studies, but leaves 

open the possibility that recognition difficulty might modulate effects of consonant-vowel 

coarticulation. This result underscores the importance of stimulus selection: Since 

consonantal context affects dispersion, the larger data set may not be the ideal testing ground 

for probing effects of recognition difficulty. W1997 restricted the focus of analysis to a 

subset of the data base precisely for this reason, by matching segmental properties of the 

stimuli across the Easy/Hard condition. To understand whether Difficulty affected dispersion 

in the matched subset, we now turn to a re-analysis of the subset in W1997, using the 

information about the effects of other variables gleaned from the larger data set. 

 

3.4 Returning to the W1997 subset: Does Difficulty affect dispersion when other factors are 

controlled? 

 

To test whether the effect of Difficulty persisted when segmental properties were controlled, 

we refit the model of dispersion to the set of monophthongs in W1997. After removing 

outliers identified based on model residuals (n = 34, i.e. 1.9% of the data), we refit the model. 

The model is summarized in Tables 5 and 6. 
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Table 5. Estimated coefficients, standard errors, t-values and p-values, based on MCMC 

sampling, and log likelihood tests for fixed effects of the model of vowel dispersion (n = 581), 

and predicted ranges. Model R
2
 = .80 

  Beta 

(SE) 

t pMCMC(>|t||) p(chisq) Predicted 

range 

(Intercept)  0.40715 2.897 0.0066   

Vowel æ -0.66821 -6.214 0.0001 < .0001 2.34 

ʌ -0.66140 -6.472 0.0001 

ɔ 0.08813 0.593 0.5582 

ɛ -1.33658 -

12.823 

0.0001 

e -0.23227 -2.435 0.0162 

ɪ -1.39292 -

13.953 

0.0001 

i 0.94242 8.914 0.0001 

o 0.37601 3.067 0.0040 

u 0.18482 1.220 0.2296 

Speaking rate Medium 0.09764 4.396 0.0001 < .0001 0.26 

Slow 0.26488 11.920 0.0001 

Place_before Non-

alveolar 

0.18853 2.985 0.0048 .0040 0.19 

Place_after Non-

alveolar 

0.18691 2.975 0.0040 .0041 0.19 

Manner_before Nasal 0.10903 1.016 0.3052 .1306 0.17 

Obstruent -0.06493 -0.948 0.3634 

Manner_after Obstruent -0.40744 -5.769 0.0001 < .0001 0.41 

Sex Male 0.05688 0.582 0.5960 .5639 0.06 

Difficulty Hard 0.06134 1.103 0.2824 .2725 0.06 
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Table 6. Summary of random effects in the model 

Random 

effect 

Variance SD MCMC 

median 

HPD95lower HPD95upper 

Talker 

(intercept) 

0.023071 0.1519 0.1635 0.0968 0.2799 

Word 

(intercept) 

0.025952 0.1611 0.1628 0.1322 0.1990 

Residual 0.144726 0.3804 0.3824 0.3698 0.3958 

 

As in the model of the larger dataset, Vowel Type, Speaking rate, Place of articulation of 

consonants before and after the target vowel were associated with significant effects, in the 

same direction as in the model of the larger set. Manner of articulation of consonants 

preceding or following the target vowel was not associated with a significant effect. There 

were no significant effects of talker sex or Difficulty. In summary, the model recovers the 

(fairly uncontroversial) effects of place of articulation, vowel type, and speaking rate in the 

subset of the data examined in W1997, but does not provide evidence for an effect of 

recognition difficulty on dispersion.  

 

4. General Discussion 

We analyzed vowel dispersion in the Easy/Hard database (Torretta, 1995), with the aim of 

understanding the role of recognition difficulty in pronunciation variation. A seminal study 

(Wright, 1997, 2004) reported that vowel dispersion was greater in words that are ‘hard’ 

targets for recognition than in words that are ‘easy’ targets for recognition. The main finding 

in the current study is that recognition difficulty fails to have a significant effect on vowel 

dispersion in the Easy/Hard database when segmental properties and other known 

determinants of dispersion are controlled. 

 

The current investigation is subject to some of the same limitations as W1997, in that we had 

no control over the words that were included in the stimulus lists. As a result, a number of 

combinations of factors were underrepresented in the data or not represented at all. With a 

more varied and more balanced set of words, many more interactions could usefully be 

explored, such as the three-way interactions of Vowel type, Place of articulation, and 
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Difficulty. However, the Easy/Hard database, although sizable, was not constructed with that 

aim in mind and does not contain word types representing all possible combinations of all 

relevant factors. We refrained from exploring any such interactions further, given the 

limitations of the data base.  

 

Another limitation of the current study is that we did not investigate individual differences in 

the degree to which talkers are affected by the various predictors of dispersion – including, 

but not limited to, recognition difficulty. Doing so is possible in principle, by fitting models 

with by-talker random slopes for each of the fixed effects. However, fitting such models to 

the existing database featuring 10 talkers would almost certainly result in overfitting.  

 

Another limitation concerns the treatment of recognition difficulty in the database: Lexical 

frequency and neighborhood density were treated as binary variables (high vs. low frequency 

and density) and were manipulated simultaneously, but the two variables represent two 

distinct gradient properties. It is tempting to enter frequency and neighborhood density as two 

continuous variables into the model, in place of the binary variable capturing the easy vs. 

hard distinction. Doing so might shed light on the individual contribution of frequency and 

neighborhood density. However, the design of the Easy/Hard database meant that modeling 

frequency and neighborhood density as continuous predictors would be problematic: The 

words in the database were selected so as to represent extremes along the dimensions of 

frequency and neighborhood density, so the mid ranges of both of these variables is 

underrepresented in the database. This precludes using the database to investigate the effects 

of the frequency and neighborhood density continua.  

 

Recent literature on effects of neighborhood density on pronunciation variation presents some 

puzzling discrepancies, quite apart from fundamental theoretical differences of interpretation: 

Beginning with W1997, several studies observed recognition difficulty (operationalized as a 

combination of high neighborhood density with low target word frequency, or as high 

neighborhood density independent of frequency) to be associated with increased vowel 

dispersion (Kilanski, 2009; Munson, 2007; Munson & Solomon, 2004) or with other factors 

affecting clarity (Baese-Berk & Goldrick, 2009; Scarborough, 2005, 2010). On the other 

hand, high neighborhood density has been found to be associated with durational shortening 

of words in connected speech (Gahl et al., 2012; Kilanski, 2009) and with vowel 

centralization (Gahl et al., 2012), despite the fact that shortening and centralization tend to be 
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associated with decreased intelligibility, other things being equal. One contribution of the 

current study is to remove one part of the puzzle and show that it probably belongs to a 

different puzzle altogether.    

 

5. Conclusion 

 

The analysis presented here casts doubt on a widely accepted interpretation of a study of 

vowel dispersion (Wright, 1997, 2004). More broadly, we take the current study as telling a 

cautionary tale: Finding out which of the myriad known sources of pronunciation variation 

best explain systematic patterns – generally, and in a given sample – poses a significant 

empirical and theoretical challenge in understanding variation. Understanding theoretical 

implications of any given empirical finding requires considering alternative explanations, 

which may come from a range of disciplines, including articulatory or perceptual Phonetics, 

Sociolinguistics, and Psycholinguistics. Sometimes, the data may reflect patterns that are 

relatively uncontroversial, rather than favoring one side or another of a theoretical divide.   
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6. Notes 

 

* Acknowledgments: I thank David Pisoni and Luis Hernandez at the Speech Research 

Laboratory at Indiana University for making the audio files available to me.  

 

1. The report was first published as a technical report (Wright 1997) and subsequently as a 

contribution to an edited collection (Wright, 2004). Wright (2004) reflects some slight 

changes in wording and formatting. Comments and analyses mentioning W1997 and 

W2004 in the current manuscript apply to both versions, except where noted otherwise. 

 

2. The vowels /o/ and /e/ are realized as monophthongs in some varieties of American 

English and as diphthongs in others (see e.g. Thomas, 2001). We conducted all analyses 

here with and without /o/ and /e/. The pattern of results remained unchanged regardless of 

whether these vowels were included. For the sake of comparison to W1997, we report the 

results of the analysis including /o/ and /e/. 

 

3. It should be noted that these means are based on averaging the absolute dispersion values 

across talkers, rather than on any contrast an individual talker might make distinguishing 

wash vs. cot. More generally, the by-vowel means do not necessarily reflect the effect of 

the easy vs. hard distinction (or of any other lexical or segmental property). One way to 

investigate whether the overall pattern holds across talkers is to conduct a by-item (rather 

than just by-subject) ANOVA, along the lines proposed in Clark (1973). W1997 did not 

report such an analysis, and since the goal of this part of the current analysis is to ascertain 

whether we were able to replicate W1997, we refrained from any further ANOVA based 

on the factorial experimental design. To take by-talker and by-vowel variation into 

account, we instead fit mixed-effect regression models,. 
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