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Abstract

Small-  and  medium-sized  commercial  buildings  owners  and  utility  managers  often  look  for
opportunities for energy cost savings through energy efficiency and energy waste minimization.
However,  they  currently  lack  easy  access  to  low-cost  tools  that  help  interpret  the  massive
amount of data needed to improve understanding of their energy use behaviors. Benchmarking
is one of the techniques used in energy audits to identify which buildings are priorities for an
energy  analysis.  Traditional  energy  performance indicators,  such as  the energy  use intensity
(annual  energy  per  unit  of  floor  area),  consider  only  the  total  annual  energy  consumption,
lacking consideration of the fluctuation of energy use behavior over time, which reveals the time
of use information and represents distinct energy use behaviors during different time spans. To
fill the gap, this study developed a general statistical method using 24-hour electric load shape
benchmarking to compare a building or business/tenant space against peers. Specifically,  the
study developed new forms of benchmarking metrics and data analysis methods to infer the
energy performance of a building based on its load shape. We first performed a data experiment
with  collected  smart  meter  data  using  over  2,000  small-  and  medium-sized  businesses  in
California.  We  then  conducted  a  cluster  analysis  of  the  source  data,  and  determined  and
interpreted  the  load  shape  features  and  parameters  with  peer  group  analysis.  Finally,  we
implemented the load shape benchmarking feature in an open-access web-based toolkit (the
Commercial Building Energy Saver) to provide straightforward and practical recommendations to
users.  The analysis techniques were generic and flexible for future datasets of other building
types and in other utility territories.
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energy
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1. Introduction 

Buildings consume over 40 percent of the total energy consumption in the United States  [1].
Small- and medium-sized commercial buildings less than 50,000 square feet (ft2) (4,647 square
meters  [m2])  represent  95 percent  of  the  number  of  commercial  buildings  and  consume
47 percent of the total energy of U.S. commercial buildings, excluding malls [2]. Building owners
and utility  managers often look for  energy  cost  savings opportunities through installation of
energy efficiency measures or by identifying and eliminating energy waste. Analysis of whole-
building electric  load data is  an effective approach to discovering opportunities for  reducing
energy costs through building energy management [3]. Electric meters from Advanced Metering
Infrastructure  (AMI)  systems  provide hourly  or  sub-hourly  interval  data  to  utilities  at  a  rate
approximately three orders of  magnitude faster  than the traditional  manually  read data  [4].
Supported by the Smart Grid Investment Grant (SGIG) program, the U.S. Department of Energy
reported that by 2013, most SGIG-funded meter deployments had already started, or even been
completed  [5]. By mid-2014, electricity smart meters had been installed in over 50 million, or
43 percent, of U.S. households and were generating more than one billion data points a day [6].
California  also has  implemented state-level  smart  grid  policies  and topped the list  of  smart
meter penetration rates, at 87.1 percent [7]. 

Employment  of  new  technologies  in  the  energy  industry  usually  brings  new  opportunities
regarding energy efficiency [8] and cost effectiveness [9][10]. Specifically, the use of AMI systems
by utilities creates huge opportunities for novel forms of analysis and interpretation of energy
use behavior in buildings. However,  small-  and medium-sized business owners currently lack
easy  access  to  low-cost  tools  that  help  them  interpret  massive  amounts  of  data  to  better
understand their  energy  use  behaviors  and to  look for  opportunities  to  eliminate  electricity
waste [11]. 

Benchmarking is  one technique used in energy  audits  for  targeting buildings and identifying
energy-saving opportunities  [12].  It  refers to the comparison of the energy use in the target
building  to  that  in  other  buildings,  and  includes  factors  such  as  the  magnitude  of  energy
consumption, energy density, and consumption patterns [13]. Benchmarking policies are being
pursued in many countries and at all levels of government. At present, the states of California
and Washington, and many major cities in the United States, including Washington D.C., Austin,
New York, Seattle, San Francisco, and Boston, have passed energy disclosure laws to transform
the  market  for  energy  efficient  buildings  [14].  A  simple  floor-area-normalized  Energy  Use
Intensity  (EUI)  metric  is  often  used  to  assess  the  energy-use  performance  of  a  commercial
building, and is commonly used as an Energy Performance Indicator (EPI) in the benchmarking
process  [15].  An EUI is  a useful  metric to evaluate a building’s  long-term aggregated energy
efficiency trends [16]. For example, the 1992 Commercial Buildings Energy Consumption Survey
database is used to develop distributions of electric EUIs in office buildings for the nine U.S.
census divisions  [12].  Individual  building EUIs can be compared to these distributions as an
indication of energy performance [17]. The Commercial End-Use Survey (CEUS) survey provides
detailed audit data for commercial buildings, and a California-based benchmarking tool, the Cal-
Arch, was developed using the database, representing the frequency distribution curve of energy
intensity and the relative position of the target building [13]. 
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Currently, the U.S. Environmental Protection Agency’s Portfolio Manager is the most commonly
applied tool  for performing operational ratings. It  allows auditors to track energy and water
consumption data and benchmark results to other buildings in the same functional category and
climate zone [18]. Other EPIs, such as energy per worker or energy per bed, may also be used in
various  building  types  [19,20].  However,  these  traditional  EPIs  reveal  only  the  long-term
cumulative energy consumption information, lacking consideration of the fluctuation of energy
use behaviors over time. With smart meter data, time series energy usage in sub-hourly intervals
allows energy customers to understand how much energy they use at different times of the day,
different days of the week, and different seasons of the year. Electric  load shapes convert the
long-term consumption data into estimates of the hourly or sub-hourly load to determine the
energy  use  patterns  over  time  [21]. Comparably,  the  load  shape  reveals  the  time-of-use
information, and the characteristics of the shapes during different time spans may represent
distinct  energy  use  behaviors.  Considering  this,  it  is  also  valuable  to  conduct  load-shape
benchmarking for buildings. 

A  load shape is defined as the curve that represents load as a function of time. Load shapes
contain information on how electricity use changes over the day, as a composite of end uses
such  as  lights,  appliances,  and  heating,  ventilation and  air  conditioning (HVAC).  Load shape
analysis is commonly used by building owners, operators, or energy managers to analyze the
energy consumption of their buildings. Researchers have developed general methods to obtain
these curves using historical electric meter data. Clustering is a common way to extrapolate load
profiles  representing  conventional  patterns  of  electricity  consumption  for  commercial  and
residential buildings  [22–24]. Chicco et al. applied the Electrical Pattern Ant Colony Clustering
(EPACC) algorithm to obtain the daily electricity load patterns of non-residential customers in a
typical  weekday  of  an  intermediate  season  and  created  a  partitioning  of  the  patterns  into
customers  with  non-overlapping  classes  [24].  Carmo  and  Christensen  conducted  k-means
clustering of  residential  daily  heat  gas  load profile to  find the correlation between the load
clusters  and  building  characteristics  such  as  the  floor  area,  building  type  and  vintage  [25].
Deepak Sharma et al. also applied clustering techniques using load factor (ratio of peak load to
average load) as an indicator, for the purpose of identifying similar electricity load profiles and
normal peak demand among them [26]. 

A  load  shape  reveals  information  that  helps  building  owners  and  facility  managers  detect
potential energy waste and diagnose the possible reason for it. For example, load shapes can be
evaluated to determine if they are consistent with the shape one would expect for the target
building business or building type. These patterns can consider hours of operation, weekday
versus weekend operation, seasonal variations, and holidays. The DrCEUS system, developed by
California’s Commercial End-Use Survey (CEUS) project, suggests the building’s load shape be
examined in a whole-year period to check the inconsistency between with the load file and the
time-of-use logger data  [27].  More generally,  researchers also have defined a variety of load
shape features  and parameters  to  interpret  the load file.  Mathieu  et  al.  recommended five
parameters that were useful for describing load shapes, namely near-base load (kilowatts, kW),
near-peak load (kW), high-load duration (hours), rise time, and fall time [28]. These parameters
were used to describe and visualize load variation from one day to the next. Capehart et al. also
recommended examining the base load percent (night load/day load), peak-to-base load ratio,

3



and coincident  peak in the facility  load profile,  to  identify  irregular  energy  use behaviors in
buildings [29].

Previous research listed above demonstrated different interpretations of the electric load shape
for individual buildings, but little work has been done to employ these load shapes as energy
benchmarking features, due to the complexity of extracting performance metrics from the time
series  data.  However,  the interpretation of  some facts  revealed in load shapes,  such as  the
average workday operation hours, may not be explicit by itself, but yields information when the
feature  is  compared  to  the  target  building’s  peers  of  the  same  building  category  in  the
benchmarking  analysis.  One  challenge  in  this  analysis  is  that  for  small-  and  medium-sized
buildings and business, electricity utility companies rarely have information on the floor area
that a meter serves. Considering it is not proper to use the absolute energy consumption for
peer group comparison since it ranges widely, we designed a novel approach to quantify the
energy performance by interpreting the load shape without consideration of the magnitude of
the total load. 

This study developed a general benchmarking method to allow energy consumers to benchmark
their  building or  business space by comparing their  energy  use patterns against  peers using
statistical methods. Specifically, new forms of benchmarking metrics and analytical methods are
needed to infer the energy performance of the building based on their load shape. The study
developed a simple tool to perform the benchmarking analysis for general commercial buildings,
to  present  straightforward  interpretations  of  the  result,  and  to  provide  practical
recommendations on energy efficiency improvements. The benchmarking results can be used by
the  building  owners  and  facility  managers  to  improve  how  they  operate  and  schedule
equipment,  to  find  opportunities  for  demand  response,  and  to  better  understand  the  link
between their building’s load shape and the coincident peak of the local distribution system or
the larger electric grid.

2. Data and Methods 

2.1 Source data sampling and labeling

Electric  load  meter  data  from  thousands  of  randomly  selected  small-  and  medium-sized
commercial buildings were obtained from Pacific Gas and Electric Company, a California investor-
owned utility, along with building information such as the location and building use. Specifically,
the  15-minute  interval  electricity  usage  meter  data  were  collected  from  a  total  of  2,353
accounts. Since the time span of the raw data varies from record to record, to perform peer
analysis and benchmarking, we selected a period of one continuous year, from January 1, 2015,
to December 31, 2015, for data analysis. During this period, 1,907 buildings have full records
without missing values. 

To categorize the buildings for peer group analysis, we labeled them based on building type, the
amount of electricity use, vintage, and climate zone. Building type was determined according to
the building’s North American Industry Classification System (NAICS) codes, which indicate the
building usage. Based on the sampled dataset,  we classified the buildings into three groups:
Office, Retail, and Other. Building floor area was not available, and considering this limitation,
the annual rolling premise usage was used to determine the building size category. In particular,
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buildings with electric usage less than 40,000 kilowatt-hours (kWh) were labeled as “small-sized
buildings” and the rest  as “medium-sized buildings.”  The year-built  information was partially
available by looking up the property information from a real estate data source website (such as
PropertyShark), and we categorized them as five groups: “before 1900,” “1900–1949,” “1950–
1979,” “1980–1999,” and “after 2000.” Forty-two percent of the buildings were labeled with one
of the five vintage categories. Climate zone was defined by California Building Energy Efficiency
Standards Title 24 by mapping the building ZIP code to one of the 16 zones. Via the resources
mentioned above, all sample buildings were labeled with one of the three building types, one of
the two building size categories, and one of the sixteen climate zones. In the study, we analyze
each feature using the buildings with available labeled data.

Figure 1 shows the distributions of the 1907 sample data records on the climate zone map (left)
and by pie charts (right), categorizing the source data by its building type, building size, building
vintage, and climate zone. The majority of the analyzed buildings are small offices, built after
1950 and before 2000, and are mainly located in the San Francisco Bay Area.

Figure 1 Distributions of the source data

The data  were labeled  with  these features,  and  these factors  were considered  as  potential
clustering features for the load shape benchmarking.

2.2 Deriving load shapes from meter data

To evaluate the hourly load shape from the metered data, daily chronological load curves were
examined,  clustered,  and  generalized.  As  suggested  by  our  literature  review,  load shapes  in
commercial building are dominated by factors such as the day of the week and the season of the
year  [30]. Hence, for each meter record, we first clustered the daily records into four seasons:
Winter (Dec, Jan, Feb), Spring (Mar, Apr, May), Summer (Jun, Jul, Aug), and Fall (Sep, Oct, Nov).
This allows the customers to identify different characteristics of the energy use pattern in each
season. For each group of time series, we derived basic statistics of the daily data, namely the
hourly mean load, the daily mean load, and the load at the 5, 15, 50, 85, and 95 percentiles. To
capture the behavior on typical days, the “mean of the medians” is calculated for each statistic,
by finding the median value for each day of the week and taking the mean of the results. 
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Given the seasonal load shapes derived for each time series record, quantified features of those
curves were extrapolated. Naming the load at  n percentile as  “pct_n,” we especially defined
three examined load shape features in this study, including:

 Peak load: pct_95

 Base load: pct_15

 On hour:  the period of  time when building’s  load is  higher  than the threshold.  The
threshold is defined as pct_5 + 0.25 * (pct_95 – pct_5).

Further, to identify the energy use pattern during the days when the buildings are in operation
for each season, the data were clustered into workdays and non-workdays based on its load
pattern during the day, as shown in Figure 2 [31]. Specifically, we adopted the k-means clustering
algorithm in the workday and non-workday clustering, considering features including daily mean
load, mean on-hour load, mean off-hour load, on-hour duration, and the 5, 15, 50, 85, and 95
percentiles of the daily load curve. Based on the results,  the hourly representative load curve,
along with the three concerned load shape features, are derived for each cluster, representing a
typical workday and a typical non-workday for each building.

Figure 2 Load shape features and parameters [31]

2.3 Load shape parameters analysis

Building load shapes can vary greatly, but a group of buildings may share similar characteristics
in their shapes [32]. For small- and medium-sized commercial buildings, the timing and amount
of  energy  use  are  the  most  significant  indications  of  the  building’s  operating  patterns.  To
examine a facility load and compare it to its peers, we normally care about the magnitude of day
load, night load, and operation and non-operation load, as well as the duration during which
these  loads  occur.  We  developed  a  set  of  dimensionless  parameters  to  interpret  the  load
patterns. Specifically, the three load shape parameters listed in  were considered in this study.
The  concepts  of  peak  load,  base  load,  typical  workdays,  and  on-hour  were  defined  in  the
previous section.
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Table 1 Definition of load shape parameters

Load shape parameters Definition
Peak-base load ratio Ratio of peak load to base load on typical workdays
Workday/non-workday load ratio Ratio of total daily load on typical workdays to non-workdays
On-hour duration Duration of a building’s operating hours on typical workdays

As the base load is the amount of power always on, a low peak-base load ratio may indicate that
many  unnecessary  loads  are  left on in  the building  during  the night  hours.  Similarly,  a  low
workday and non-workday load ratio may suggest many unnecessary loads are left on during
non-operating days in a week. Apart from these, the on-hour duration can imply the amount of
time in a day that the building is in full or main operation, and the customer can justify whether
the duration is as expected.

2.4 Representative load patterns clustering

A more nuanced way to look at hourly energy consumption is a load duration curve. The curve is
the graphical representation of hourly electric demand from highest to lowest over a certain
time interval. Clustering load curves are based on the shape of a load curve, and are usually
normalized scaled to a specific range, such as [0.0, 1.0]. To normalize the vector of the shape, we
divided the load of every hour by the annual average daily near-peak load, which was calculated
by taking the average of the daily peak load (pct_95) across all working days of a building.

Suggested  from previous  work,  the  normalized  curves  can  then  be  clustered  to  obtain  the
representative  load  patterns  (RLPs).  The  RLPs  represent  the  conventional  patterns  of  the
electricity consumption of a building group. We used the RLPs to understand the normal load
shape in similar load profiles and to identify irregular load shapes. To recognize a building’s RLPs
for each studied period (a season in this case), we clustered the hourly load curves based on the
shape of the curve. The cluster analysis groups the load profiles into classes according to their
load characteristics. The k-means clustering algorithm is the most widely applied for the purpose
of load curve clustering  [33], and was adopted in the analysis. The algorithm includes iterated
selection of k centroids of k patterns, and the objective function is to minimize the overall Sum
of Squared Errors (SSE) given by Equation (1):

SSE=∑
k=1

K

∑
x j∈Ck

d2 (w k , x j )(1)

where Ck is the k-th cluster with C1 ∪ C2 ∪ ... ∪ Ck = X and d(•, •) is the Euclidean distance norm.
The Calinski-Harabasz (CH) criterion was used to evaluate the optimal number of clusters. The
CH criterion calculates the CH clustering index for cluster validation, and tests the validity based
on the average distance between and within cluster sum of squares  [34]. The corresponding
functions in the Statistics and Machine Learning Toolbox™ in MATLAB were applied. 

Conducting the experiment using 2 to 5 clusters,  Figure 3 shows the results of the clustering
performance evaluated by the CH criterion. Comparing the performance of clustering solutions
containing two to five clusters, we chose to group the load curves of office buildings into three
clusters, and the retail buildings into two, as suggested by the optimal cluster numbers for each
subgroup.
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Figure 3 Clustering performance of different number of clusters

After clustering, the RLPs are developed by calculating the centroid of a cluster of normalized
load  curves.  Figure  4  Example  clustering  results  for  each  subgroup shows  an  example  of
clustering the load curves based on peer groups into an optimal number of clusters.

(a) Clustering results for small office - winter (b) Clustering results for small retail - winter
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(c) Clustering results for medium office - winter (d) Clustering results for medium retail - winter
Figure 4 Example clustering results for each subgroup

3. Experiment and Results

3.1 Data categorization for peer group analysis

To enable energy benchmarking of a building in peer groups, we first categorized the sample
buildings based on the data labels. To select features for categorization, we individually tested
the  significance  of  each  data  labels  listed  in  Chapter  2.1 to  those  mentioned  above  three
statistical  load  shape  parameters.  Table  2 lists  the  p-value  for  each  term,  testing  the  null
hypothesis that the coefficient is equal to zero (no effect). Testing at a significant level (α-value)
of 0.05, a predictor that has a low p-value less than the α-value was likely to be a meaningful
addition to the corresponding response variable and vice versa. In the output below, we can see
that  the predictor  variable  of  building  size  was  significant  for  all  tested  responses,  and the
building type was associated with the peak-base load ratio and on-hour duration. Finally, the
climate zone had an effect on load ratios in summer. 

Table 2 Significance of building labels to load shape parameters

Factor P-value of general linear model

Peak-base load ratio Workday / non-workday load ratio On-hour duration
Winter Summer Winter Summer Winter Summer

Building size category 0.000 0.000  0.000 0.045 0.000  0.000
Building type 0.000 0.034  0.201 0.382 0.000  0.015
Vintage 0.789 0.744  0.701 0.495 0.252  0.477
Climate zone 0.695 0.002  0.276 0.000 0.343  0.227

Table  2 suggested categorizing sample buildings  based on their  size  category,  type,  and the
climate zone in  summer.  However,  except  for  Climate Zone 3,  the source data  we had was
limited. According to the central  limit theorem, a sample size less than 100 will  construct  a
95 percent  confidence  interval  with  a  margin  of  error  of  over  ±13 percent  (for  very  large
populations as in our case)—too large a range for estimating the true population proportion with
any accuracy [35]. For benchmarking analysis, we usually desire a sample size level of about 500
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to optimally estimate the population parameters, constructing a 95 percent confidence interval
with a margin of error of about ±4.4 percent. To ensure the sample size was sufficiently large in
each cluster for benchmarking, we only categorized the sample buildings with their type and
size. Besides, in this analysis, the buildings labeled “Other” as a building type were excluded
from benchmarking analysis since energy usage can vary from type to type, and it is irrelevant to
compare the usage of office and retail  buildings to other  types of buildings. As a result,  we
sampled four groups of 928 small office, 148 medium office, 532 small retail, and 124 medium
retail buildings for peer comparison. With more labeled data available in the future, the peer
group could be categorized in more detail according to the significance of the data label to the
benchmarking  parameters  concerned,  and  more  detailed  sensitivity  analysis  should  be
conducted regarding the significance of each parameter [36].

3.1.1 Analysis of load shape parameters

Based on the methodology described in the previous chapters,  we derived the statistics and
distributions  for  each  load  shape  benchmarking  parameter.  Figure  5 shows  the  probability
distribution of the peak-base load ratio of the four  building categories:  namely,  small  office,
small retail, medium office, and medium retail. The X-axis shows the load ratio ranging from 1 to
30, and the Y-axis shows the percentage of all analyzed buildings within a certain range. The
results indicated that more medium-sized buildings had a lower peak-base load ratio than the
small  buildings,  and  more  office  buildings  had  a  lower  peak-base  load  ratio than  the retail
buildings.  Among all  sample  buildings  in  our  analysis,  small  office buildings  and  small-  and
medium-sized  retail  buildings  tended  to  shut  down  more  completely  during  non-operation
hours.

Figure 5 Histogram of peak-base load ratio for each building category
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Similarly, Figure 6 plots the probability distributions of the workday and non-workday load ratio.
It was clear from Figure 5 that more retail buildings have a lower workday / non-workday load
ratio  than  office  buildings,  because  retail  buildings  tend  to  operate  all  days  of  a  week.  In
particular, the statistics of small- and medium-sized office buildings were close; while the load
ratio of medium-sized retail buildings was significantly lower than other groups, indicating these
buildings  did  not  have  an  obvious  difference  in  operation  patterns  between  workdays  and
non-workdays.

Figure 6 Histogram of workday / non-workday load ratio for each building category

The duration of operation hours also varied from group to group, as shown in  Figure 7. The
difference was found between small buildings with an average “on” duration of around 10 hours
and medium buildings at around 13 hours. Detailed operation start and end time can be found
from representative load pattern analysis, as described in the following chapter.
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Figure 7 Histogram of peak-base load ratio for each building category

3.1.2 Representative load patterns 

Representative load patterns (RLPs), derived from the centroid of load curves of each building
group, were used to identify more detailed building energy use patterns, involving the start and
end time of operation hours, as well as the period of rise time, high-load duration, and fall time.

Figure 8 lists all the clustered RLPs for the four building categories. The percentage marked for
each load shape on the figures represents the percentage of the buildings falling into this kind of
RLP. Taking small offices for instance, 65 percent of the RLPs have a normal curve corresponding
to the normal  operation schedule,  rising at  8  am and falling  around 6  pm,  and this  cluster
accounts for the largest proportion of all buildings. And 18 percent of the buildings had a flat and
high curve, which does not have an obvious rise or fall time, indicating the building is operating
the whole day. A few office buildings had a load curve that is “on” during the night and “off”
during the day. This likely represents a meter serving part of a building that only operates at
night. A large number of these meters may be parking lots or exterior lighting.
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Figure 8 Clustered representative load patterns for each building category in summer

Plotting the seasonal RLPs in one figure, as shown in Figure 9, it was clear that in retail buildings,
the load patterns are similar between seasons. Across different seasons, for small and medium
offices, the afternoon “fall time” (as defined in Figure 2) is shorter in winter than that in other
seasons, as the peak load in the cooling seasons usually appears at 3 pm. The load shape in
winter during working hours (9 am to 5 pm), however, stays at a relatively constant level and
does not show a particularly high peak load in the afternoon. Across different building groups,
medium office and retail buildings tended to have a longer high-load duration, when the load
ratio was higher than 0.8, which makes sense because larger buildings have more people, and
the diversity of times people come and go is likely larger. Each group of buildings had its own
normal operation hours different from one another.

Figure 9 Seasonal representative load patterns of each building category

The RLPs and the percentage of buildings they represented were also included in the database
for benchmarking.
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4. Application

Based on the previous analyses, we purposed benchmarking a building’s load shape from their
utility  meter  data  according  to  two  metrics,  the  load  shape  parameters,  and  the  clustered
representative load patterns. The load profile database and analysis methods were programmed
and  implemented  into  a  web-based  toolkit,  the  Commercial  Building  Energy  Saver  (CBES:
http://cbes.lbl.gov)  [3].  CBES  is  intended  use  for  small-  to  medium-sized  office  and  retail
buildings in California, providing energy benchmarking and three levels of retrofit analysis that
consider the project goal, data availability, and user experience. CBES offers prototype building
models for  seven building types,  six  vintages,  in  16 California  climate zones and roughly  80
energy  conservation  measures  (ECMs)  for  lighting,  envelope,  plug-in  equipment,  HVAC,  and
service hot water  retrofit  upgrades.  The CBES Preliminary Retrofit Analysis  utilizes  the DEEP
database, a data bank for screening and evaluating retrofit measures for commercial buildings
generated from 10 million building energy simulations conducted using EnergyPlus on the U.S.
National  Energy  Research  Scientific  Computing  (NERSC)  supercomputer.  The  CBES  Detailed
Retrofit Analysis employs advanced automated calibration algorithms to attune inputs before
simulating  energy  savings  of  ECMs.  For  the  detailed  retrofit  analysis,  on-demand  energy
simulations using OpenStudio [37] and EnergyPlus [38] calculates the energy performance of the
building with user-configurable ECMs. CBES is flexible enough that the user can jump to any level
of evaluation after the common inputs are provided.

The CBES toolkit can be used to generate a benchmarking report by input building type and
building size category and upload the annual meter  data file. For the load shape parameter
benchmarking, the user can compare the operation and performance of an individual building
against its peers to determine whether the building is in the normal range.  The CBES toolkit is
compatible with multiple meter data intervals,  as it ultimately aggregates the load data to a
reasonable  interval  length.  For  example,  if the load  data  at  1-second  timescale,  the  tool
aggregates it to the 10-minute timescale, to avoid carrying around tens or hundreds of times
more data  than needed. However,  to  generate  more accurate  hourly  load shapes using  the
methodology described in Section 2.2, the tool also requires the data interval of the input daily
chronological  loads to  be short  enough for  clustering based on shape,  and preferably to  be
hourly or sub-hourly.

We conducted a case study with the CBES toolkit using the AMI data from a medium-sized retail
building  in  San  Francisco  to  demonstrate  the  benchmarking  feature.  The  studied  dataset
contains  electricity  meter  records  of  the  building  from  Jan  1,  2015,  to  Dec  31,  2015,  in  a
15-minute interval. The toolkit first generates a normalized load curve of the target building and
compares it to the RLPs of its peer group—the database of all  medium-sized retail  buildings.
Figure 10 shows the sample report generated by the toolkit, including the benchmarking results
of the three parameters, namely peak-base load ratio, workday / non-workday load ratio, and
on-hour duration in summer. The building was benchmarked with its peer medium-sized retail
buildings, and the parameter distributions of the whole database are shown as the histograms.
The red dashed line indicates the medium level  of all  medium retail  buildings,  and the blue
shadow shows the range from the first to the third quartile, marked as the interquartile range
(IQR). The report provides the user with the message that this building’s peak-base load ratio
and  work  /  non-workday  load  ratio  are  2.0  and  1.33,  respectively,  which  are  lower  than
81.9 percent and 7.0 percent of its peer buildings. The on-hour duration is 14.4 hours per day,
and is only longer than 64.6 percent of its peer buildings. So compared with its peer buildings,
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this building’s workday / non-workday load ratio and on-hour duration (operation hours) are
normal.  The building’s  peak-base load ratio is  significantly  lower  though,  indicating that  the
building may not fully shut down during the non-working hours at night.

Figure 10 Results of a load shape benchmarking case study for a retail building in San Francisco 

The CBES toolkit then generates normalized load curves of the target building and compares
them to the RLPs of its peer group.  Figure 11 shows the two clustered RLPs of medium retail
buildings in dashed line and the target building in solid line. Cluster 1 had a normal load pattern
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with regular on and off hours, while Cluster 2 had a flat and high curve. In all medium retail
buildings from the database, 79 percent were grouped into the first cluster, while the rest were
clustered into the second. The user can further compare the load shape with the RLPs across the
four seasons to understand the building’s operation performance in all seasons. Take the sample
building in Figure 11 as an example, the load curve is closer to the RLP of the first cluster, and
shows a normal on-off schedule. The load curve indicates the building’s working hour starts at
around 7 am and ends at around 8 pm, and the rise and fall times are normal. However, the
curve during the off-work hours deviates from the shape of the majority of its peer buildings,
which can inform building operators to check the operating schedule of the building systems. 

Figure 11 Clustered representative load patterns clustering

In this way, a building owner or facility manager can compare a building’s load shape patterns 
against peer buildings in the same type and size category to identify irregular load shapes and to 
evaluate the building’s operation performance.

5. Discussion

As pointed before, the smart meter data of a small business may correspond to only a portion of
a building rather than the entire building. Utility companies do not have accurate data of their
customers’ total floor area. Floor area data are hard to acquire. Consequently, the load profiles
were  not  normalized  by  floor  area,  and  thus  it  was  not  eligible  to  compare  the  buildings’
absolute amount of energy use against peers. Considering this limit, the benchmarking metrics
proposed in this study were based on the normalized hourly load profile (by their own peak
loads), considering only the shape of the curves, regardless of the actual energy use amount.
Specifically, the quantified metrics marks represent mostly the variation of electricity load over
time during a day, or the distribution of energy demand.  Besides, as utility companies do not
have the information of the exact serving area of a meter, the usage category of an analyzed
record can be ambiguous  for  the peer  grouping and benchmarking  analysis.  Another  major
limitation due to the limited data source is that the gas consumption was not provided along
with the electricity data, while the seasonal daily electricity profile of a building would differ
based on whether or not the building has gas heating. Future work is suggested to consider this
as a potential peer grouping parameter for seasonal load shape analysis.
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Fifteen-minute electricity data for 2,000 smart meter accounts were acquired in this study, and
used as the database for the benchmarking analysis.  Due to the practical  limitations of data
availability  and  reliability,  the  analysis  was  based  on  a  simplified  grouping  of  buildings  in
California. As justified in the paper, to ensure the sample size was large enough in each cluster
for benchmarking, the sample buildings were categorized by their use type and size category
based on annual electricity consumption. However, it might be worthwhile to further group the
benchmarked buildings by climate zone and building vintage if an adequate sample of buildings
have smart meter data available. Furthermore, the current datasets were sampled only from
small- and medium-sized commercial buildings in California, but the analysis techniques may
also be applied to other building types and in other utility territories and locations. With more
meter data  from AMI  available in the future, the benchmarking database can be replenished
gradually to cover broader existing building stock and for a wider range of applications.

6. Conclusions

In this study, a general approach was developed to allow load shape benchmarking for small-
and  medium-sized  commercial  buildings  and  businesses  to  interpret  and  benchmark  their
electricity  use  patterns  with  statistical  approaches.  The  paper  discussed  the  method  of
benchmarking metric selection, peer group categorization, and the selection of desired sample
size  for  benchmarking.  Normalization and  cluster  analysis  techniques  were  proposed.  Three
quantified shape-based parameters were proposed to characterize a building’s electricity use
patterns from interval load data, namely the peak-base load ratio, the on-hour duration, and the
workday and non-workday load ratio. The analysis techniques are generic and flexible for future
datasets of other building types and in other utility territories. The methodology and results
were implemented in the CBES web tool, allowing users to perform the analysis easily and obtain
a better understanding with the visualized benchmarking results. 

The methodology and the tool can be useful for the energy benchmarking of buildings with AMI
data, where the available vast amount of raw data needs to be processed effectively, to acquire
useful  information  about  the  energy  use  behaviors  and  the  potential  application  in  energy
saving,  utility  cost  saving  and  waste  elimination.  Moreover,  recognizing  representative  load
shapes for peer group buildings would benefit demand response, which aims at usage reduction
at peak that is  offset by usage during off-peak hours. Energy customers can use the tool  to
benchmark their building operation performance against other peer buildings. Owners will be
able  to  identify  opportunities for  operational  improvements,  energy  retrofit,  and utility  cost
saving.  The potential  benefits  also rest  upon energy  policy  pillars  associated with  economic
objectives to  reduce the cost  of  energy supply by  a  targeted response to electricity  market
conditions.

Load shape benchmarking implies  a step forward in  energy benchmarking as a comparative
appraisal of the energy performance of an existing building. With the massive amount of  AMI
data flowing into the industry in the future, the benchmarking techniques may allow building
owners and facility managers to improve building operations to reduce energy use and utility
cost.  Further  work  is  needed  to  understand  the  practical  application  of  this  tool  and  its
usefulness for customers. As mentioned, further work is also needed to explore these trends
with a larger dataset,  and to conduct additional related research in other climate zones and
regions with different end-uses and electricity consumption patterns. For example, it would be
very worthwhile to attempt to group peers by climate zones, and by construction and retrofitting
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history  aligned with the changes in  building regulations and codes.  As  techniques to  collect
hourly occupancy data improve, it will be useful to revisit this methodology to understand how
energy use and occupancy can be compared.
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