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How Do Model Biases Affect Large-Scale Teleconnections That Control Southwest

U.S. Precipitation? Part II: Seasonal Models

Y. PEINGS ,a C. DONG,a AND G. MAGNUSDOTTIRa

a Department of Earth System Science, University of California, Irvine, Irvine, California

(Manuscript received 24 May 2024, in final form 16 September 2024, accepted 28 October 2024)

ABSTRACT: We explore the skill in predicting southwest United States (SWUS) October–March precipitation and asso-
ciated large-scale teleconnections in an ensemble of hindcasts from seasonal prediction systems. We identify key model
biases that degrade the models’ capability to predict SWUS precipitation. The subtropical jet in the Pacific sector is gener-
ally too zonal and elongated. This is reflected in the models’ North Pacific ENSO teleconnections that are generally too
weak with exaggerated northwest–southeast tilt, compared to observations. Also, the models are too dependent on tropi-
cal, El Niño–like, wave train anomalies for producing high seasonal SWUS precipitation, when in observations there is a
larger influence of zonal Rossby wave trains such as the one observed in 2016/17. Overall, this is consistent with biases in
the basic-flow-inducing errors in the propagation of zonal wave trains in the North Pacific, which affects SWUS precipita-
tion downstream. Although higher skill may be gained from reducing mean flow biases in the models, a case study of the
2016/17 winter illustrates the great challenge behind skillful seasonal prediction of SWUS precipitation. Unsurprisingly, the
almost record-breaking precipitation observed that year in the absence of ENSO is not predicted in the hindcasts, and
model perturbation experiments suggest that even a perfect prediction of tropical sea surface temperature and tropical at-
mospheric variability would not have sufficed to produce a reasonable seasonal precipitation prediction. On a more posi-
tive note, our perturbation experiments suggest a potential role for Arctic variability that supports findings from prior
studies and suggests reexamining high-latitude drivers of SWUS precipitation.

KEYWORDS: Atmospheric circulation; Teleconnections; Rainfall; Seasonal forecasting; General circulation models;
Interannual variability

1. Introduction

The western United States is a region where seasonal and
long-term prediction of precipitation is critical for managing
water resources. Water reservoir depletion during prolonged
droughts directly impacts water supply and hydroelectric infra-
structures, inducing great stress on society at large. Seasonal pre-
diction is made difficult by the fact that the total rain received in
a year mostly comes from short-lived weather systems and asso-
ciated atmospheric rivers (ARs; Ralph and Dettinger 2011;
Mundhenk et al. 2016). Rain and snowfall brought by ARs in
winter and spring are then stored in groundwater basins, snow-
packs, and reservoirs and provide most of the water resources in
the southwest United States (SWUS). The challenge for SWUS
precipitation forecasting is to predict how many, and where,
ARs will hit the West Coast, since a few AR landfalls can make
the difference between a dry year and a water-abundant year
(Dettinger 2013). This is especially true over California (CA)
where the distribution of precipitation is highly variable be-
tween years (e.g., Peings et al. 2022).

The skill of subseasonal and seasonal forecasts in the region
is notoriously low (e.g., Sun et al. 2022; Kumar and Chen
2020; Roy et al. 2020; Becker et al. 2022; Jiang et al. 2022) and

insufficient to effectively support water management deci-
sions (Sengupta et al. 2022). Most of the predictability at sea-
sonal time scales comes from slowly evolving components of
the climate system, especially sea surface temperature (SST)
anomalies associated with El Niño–Southern Oscillation
(ENSO), the most prominent mode of climate variability at
interannual time scales. ENSO-associated deep convection
and latent heat release in the tropical Indo-Pacific drive
a Rossby wave response (e.g., Hoskins and Karoly 1981;
Trenberth et al. 1998), setting up a north-central Pacific
trough–ridge during El Niño–La Niña (Horel and Wallace
1981; Deser et al. 2018). El Niño (La Niña) has generally
been associated with a wet (dry) SWUS (Ropelewski and
Halpert 1986; L’Heureux et al. 2015), but this teleconnection
is intermittent and only explains 25% of interannual SWUS
precipitation variability (Lee et al. 2018; Mamalakis et al.
2018; Kumar and Chen 2020; Jiang et al. 2022; Karanja et al.
2023). For example, the 2016 water year (WY; defined as the
amount of rainfall received from 1 October 2015 to 30 Sep-
tember 2016) was near average in terms of SWUS precipita-
tion despite a historically strong El Niño, while the following
weak La Niña 2017 WY was historically wet (Wang et al.
2017; Peings et al. 2022). Seasonal forecasts were unsuccess-
ful at forecasting both WYs. Empirical techniques with
much less complexity have been shown to equal or outper-
form the skill of dynamical models in predicting SWUS
precipitation (Switanek et al. 2020; Gibson et al. 2021; Switanek
and Hamill 2022), providing a benchmark for dynamical fore-
cast systems, but they still exhibit limited skill (DeFlorio et al.
2024).
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A requirement for skillful seasonal forecasts is predicting
the large-scale atmospheric circulation that drives SWUS pre-
cipitation during the cool season (October–April), i.e., the
persistence of ridging or troughing in the eastern North Pacific
(ENP; e.g., Swain 2015; Mundhenk et al. 2016; Seager and
Henderson 2016; Teng and Branstator 2017; Guirguis et al.
2019; Gibson et al. 2020), which regulates the frequency and
path of winter storms and ARs that bring precipitation to
the west coast of North America (e.g., Gibson et al. 2020;
Mundhenk et al. 2016; Swain et al. 2017; Teng and Branstator
2017; Payne and Magnusdottir 2016). Since most SWUS sea-
sonal precipitation is independent of ENSO and instead is as-
sociated with Rossby wave trains in the North Pacific (Jiang
et al. 2022), the outstanding question for seasonal prediction is
whether they are predictable. In Peings et al. (2022), we
showed that prescribing observed tropical atmospheric var-
iability in an atmospheric model significantly improved the
representation of North Pacific atmospheric patterns, at
subseasonal-to-seasonal (S2S; between 2 and 8 weeks, approx-
imately) and seasonal time scales, compared to Atmospheric
Model Intercomparison Project (AMIP)–type climate simula-
tions [prescribed SST/sea–ice concentration (SIC)]. Dias et al.
(2021) also used nudging to estimate the role of tropical fore-
cast errors in the midlatitudes. Although not addressing
real-world predictability, these “perfect tropics” experiments
indicated that a significant portion of S2S/seasonal midlati-
tude atmospheric variability is forced by tropical variability
and is not necessarily dependent on ENSO. Teleconnection
patterns originating from the tropics must therefore be accu-
rately represented in the models, which requires both a real-
istic atmospheric basic state and realistic tropical convective
forcing (e.g., Hoskins and Ambrizzi 1993; Li et al. 2020;
Wang et al. 2020). However, model biases develop quickly
after initialization in both S2S and seasonal forecast models,
affecting teleconnections associated with ENSO or the Madden–
Julian oscillation (MJO) (Bayr et al. 2019; Ma et al. 2021;
Garfinkel et al. 2022; Beverley et al. 2023; Williams et al.
2023). There is even evidence that initialization does not bring
significant value to the skill of seasonal forecast models, since
similar skill for some fields/regions can be obtained through ana-
log forecast techniques using long control runs from the same
models (Ding et al. 2018, 2019, 2020).

This work is an extension of Dong et al. (2024; referred to
as D24 hereafter), which aimed to reveal model biases that af-
fect subseasonal teleconnections of interest for SWUS precip-
itation, using an ensemble of S2S hindcasts. We follow
the same approach in the present study, but instead we ana-
lyze an ensemble of hindcasts from seasonal forecast models.
Like D24, the focus is on the cold season [October–March
(ONDJFM)], but here we explore the skill and model biases of
the forecast systems in terms of both monthly (1 month lead time,
month 1) and extended season prediction (ONDJFM seasonal av-
erage prediction or months 1–6; see section 2a). Our objective is
similar to D24, i.e., highlighting how model biases, in particular in
the background flow in the North Pacific, can affect how the mod-
els represent tropical–extratropical teleconnections and more
generally wave propagation in the midlatitudes. We also use per-
turbation experiments that were specifically designed to explore

potential predictability in the midlatitude atmospheric vari-
ability, extending to the work we presented in Peings et al.
(2022). After describing the data and methods in section 2,
section 3 describes the results from our different analyses, and
section 4 concludes by summarizing and discussing the impli-
cations of the results and how they relate to D24.

2. Data and methods

a. Seasonal forecast ensemble

To evaluate seasonal forecasts from dynamical models, we
use hindcasts (also called reforecasts) from eight seasonal
forecast systems contributing to the Copernicus Climate Change
Service (C3S) seasonal forecasts: Centro Euro-Mediterraneo sui
Cambiamenti Climatici (CMCC; Gualdi et al. 2020), Deutscher
Wetterdienst (DWD; Fröhlich et al. 2021), European Centre for
Medium-Range Weather Forecasts (ECMWF; Johnson et al.
2019), Environment and Climate Change Canada (ECCC; Lin
et al. 2020), Japan Meteorological Agency (JMA; Yonehara
et al. 2020), Météo-France (Batté et al. 2021), the National Cen-
ters for Environmental Prediction (NCEP1), and the United
Kingdom Meteorological Office (UKMO; MacLachlan et al.
2015).

The hindcasts do not cover the same period, with ECMWF
having the longest period (1981–2016) and all models provid-
ing hindcasts for at least 1993–2016. Only DWD, ECCC, and
Météo-France go beyond 2016. When comparing the hind-
casts, we mostly use the 1993–2016 period of overlap. The
fields analyzed in this study are monthly outputs of precipita-
tion P, SST, mean sea level pressure (SLP), zonal wind at
200 hPa (U200), meridional wind at 200 hPa (V200), and geo-
potential height at 200 hPa (Z200; referred to as Z200x when
the zonal mean is removed), at different lead times. Lead time
defines how far from initialization a forecast is, in months. For
example, for a forecast initialized in September or on 1 October,
predicting October corresponds to a lead time of 1, and month 1
of the forecast is October. Predicting November from the
same forecast would then correspond to a lead time of 2,
with November being month 2 of the forecast. Predicting the
ONDJFM average also corresponds to a lead time of 1 (the
target season starts 1 month after initialization), with ONDJFM
corresponding to months 1–6 of the forecast.

In the study, we examine two prediction windows:

• Month 1 or monthly prediction: It measures the skill of
monthly prediction inside the ONDJFM season. For this,
for each ONDJFM season, we average the October–March
months that correspond to lead time 1 in the different hind-
casts initialized between September and March. Each
month inside a season then comes from a different hind-
cast, and it is always month 1 from its hindcast. In other
words, the “month 1” forecast window is the average of
October–March monthly forecasts. Note that because the
forecast centers have different protocols when producing

1 https://www.emc.ncep.noaa.gov/emc/pages/numerical_forecast_
systems/gfs/documentation_spectralgfs.php.
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the hindcasts, lead 1 does not always correspond to the
same exact 1-month lead time. As listed in Table 1, some fore-
cast systems/ensemble members are initialized on the first of
month 1, while others are initialized in the previous month be-
fore lead 1 or during month 0. As an example, for both hind-
casts initialized in September (month 0) and/or 1 October,
month 1 is October.

• Months 1–6 or extended season prediction: It measures the
skill for predicting the average ONDJFM seasonal anomalies,
on 1 October to the latest. For this, we only use hindcasts ini-
tialized in September or 1 October, which for a prediction of
the ONDJFM average corresponds to a lead time of 1, but
looking into months 1–6 of the hindcast. Unlike the month 1
prediction window, here all months included in an ONDJFM
season come from the same hindcast, and the “month 1–6”
forecast window is the forecast of the ONDJFM average. Sea-
sonal outlooks are typically produced for 3-month averages,
but we analyze the extended ONDJFM 6-month season in
this paper because this is a forecast window of interest for the
SWUS water agencies and other stakeholders (how much pre-
cipitation will hit our state this cold season?). Similar analyses
for October–December (OND) and January–March (JFM)
separately have been done that generally support the main
findings of this study. However, each 3-month season has its
own characteristics that are not addressed in the present paper
and are left for future studies.

Although the protocol for initialization differs among
forecast systems, the hindcasts are generally initialized using
atmospheric, oceanic, and land surface fields from various re-
analyses. The ensemble generation strategies also vary across
forecast centers, using a combination of atmospheric, oceanic,
and land surface perturbations, as well as stochastic physical
perturbations, to generate ensembles of hindcasts of various
sizes (Table 1; ensemble sizes vary from 10 to 40). More
details on the models, protocols, and initialization techniques
can be found in the C3S seasonal multisystem documenta-
tion.2 Because the model outputs and observations have
different horizontal and vertical resolutions, they are all inter-
polated onto a 18 grid for comparison. The ensemble of hind-
casts from each model is averaged together to measure one
model’s performance in prediction. The multimodel perfor-
mance is measured using the average of each model’s

ensemble, such that the same weight is given to each model,
regardless of the number of ensemble members they include.
When exploring teleconnections associated with ENSO or
SWUS precipitation, we concatenate individual ensemble
members together rather than using the hindcast ensemble
mean. This is motivated by our main research question, i.e.,
finding model biases that may hamper the representation of
these teleconnections. Using individual members concatenated
together as one long model run allows us to examine total,
rather than forced, variability in the models, and it also greatly
increases the sample size (when computing regressions, for ex-
ample), which increases the robustness of the results.

b. Observational data, indices, and diagnostics

We evaluate model performance by comparing it to reanal-
ysis data from the fifth major global reanalysis produced by
ECMWF (ERA5; Hersbach et al. 2020), which uses a data
assimilation system to constrain observations from 1940 to
the present with a horizontal spatial resolution of 31 km and
137 vertical levels. In addition to ERA5, we use the Hadley
Centre Sea Ice and SST dataset (HadISST; Rayner et al.
2003), the Global Precipitation Climatology Project (GPCP,
version 2.3) precipitation dataset (Adler et al. 2018), and the
Climate Prediction Center (CPC) precipitation dataset, a gauge-
based unified precipitation product over the continental United
States with a resolution of 0.258 (Chen et al. 2008). CPC is used
to examine western U.S. precipitation over the 1948–2023 pe-
riod, while GPCP is used when precipitation in the Indo-Pacific
basin is investigated (1979–2023 period).

An index of seasonal SWUS precipitation is defined as the
average ONDJFM precipitation in the domain (2368, 2518E;
318, 428N) (see Fig. 1a), over land only, for both observations
and the models. CPC data are used for observations. The in-
fluence of ENSO on SWUS rainfall is assessed using the
Niño-3 index (1508, 908W; 58S, 58N). The Niño-11 2 index has
a higher correlation with California and SWUS rainfall than
the other Niño indices in observations (Jiang et al. 2022).
Over 1948–2023, the correlation between our observed
ONDJFM SWUS precipitation index and the Niño-11 2
index is 0.43. The correlation is 0.37 with the Niño-3 index
and 0.33 with the Niño-3.4 index. We choose to perform the
analyses with the Niño-3 index because it is more commonly
used than the Niño-11 2 index, and it has a greater correla-
tion with SWUS precipitation than the Niño-3.4 index. The
propagation of Rossby waves is examined using a stationary
wavenumber diagnostic (based on the U200 basic state) and

TABLE 1. Description of the seasonal hindcasts.

Forecast system Ensemble size Period and start dates

CMCC-SPS3 40 1993–2016 first of month
DWD-GCFS2.1 30 1993–2019 first of month
ECCC-GEM5.2-NEMO 10 1993–2020 first of month
ECMWF-SEAS5 25 1981–2016 first of month
JMA-CPS3 10 1993–2016 two start dates lagged by 15 days, previous month
Météo-France System 8 25 1993–2018 two last Thursdays of previous month1first of month
NCEP-CFSv2 24 1993–2016 every 5 days, every 6 h, previous month
UKMO-GloSea6 28 1993–2016 1st, 9th, 17th, and 25th of previous month

2 https://confluence.ecmwf.int/display/CKB/Description+of+
the+C3S+seasonal+multi-system.
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FIG. 1. (a) Skill of the multimodel C3S ensemble over 1993–2016, as measured as the gridpoint correlations between
the observed (CPC) and predicted ONDJFM precipitation (multimodel average prediction), from seasonal forecasts
initialized in October (or September). (b) As in (a), but for the mean SLP in the North Pacific–North America do-
main (ERA5 for observations). (c) Time series of the SWUS ONDJFM precipitation index over 1981–2020, from the
CPC observations (blue) and the multimodel mean of the C3S seasonal forecasts (orange). Individual model ensem-
ble means are shown with dotted gray lines, which span different periods. The correlation between the observed
SWUS index and the prediction from the multimodel ensemble mean is 0.45 over the whole 1981–2020 period (with
only ECMWF over 1981–92), 0.52 over 1993–2016 (all the models), and 0.43 over 1993–2016 after the 1998 year is re-
moved. (d) Ensemble distribution of the predicted SWUS ONDJFM precipitation index, based on the 192 ensemble
members from the eight model hindcasts, for each year 1993–2016. The boxplots indicate the median and upper and
lower quartiles of the distribution. The whiskers indicate the minimum and maximum values, and the circles are out-
liers. The ensemble mean is marked by a red diamond, and the corresponding observed value is marked by a blue cir-
cle, with its percentile rank relative to the model spread in blue text.

J OURNAL OF CL IMATE VOLUME 38426

Brought to you by UNIVERSITY OF CALIFORNIA Irvine | Unauthenticated | Downloaded 12/17/24 09:22 PM UTC



ray tracing, similar to part I of this study (D24). To avoid rep-
lication of the description of these diagnostics, we refer the
reader to D24 for details on the methodology.

We characterize the presence of a strong seasonal zonal
wave train in the North Pacific using an index we call the
North Pacific waviness index. The index is computed using
ONDJFM V200 anomalies (calculated from respective clima-
tologies for observations, seasonal models, and perturbation
experiments). We choose V200 because upper-level meridio-
nal wind emphasizes the presence of zonal wave trains in the
atmosphere, as an alternation of positive and negative anoma-
lies around the trough–ridges that constitute the wave train.
For each season, we calculate the zonal gradient of the V200
anomalies, which measures meanders in the flow. Then, we
calculate its absolute value, and the resulting field is spatially
averaged (with area weights) in a large North Pacific domain
(1408, 2408E; 358, 658N). The index is then normalized accord-
ing to its own climatology/standard deviation. The greater the
index, the greater the absolute magnitude of gradients in the
V200 anomalies, i.e., the greater waviness in the zonal flow.

c. Perturbation experiments for the 2017 case study

Perturbation experiments have been designed to examine
the unexpectedly wet WY 2017 over CA/SWUS. Following
the methods described in Peings et al. (2022), we use the
Whole Atmosphere Community Climate Model, version 4
(WACCM4; Marsh et al. 2013), to perform a set of seasonal
experiments that include a hierarchy of forcing for ONDJFM
2017. WACCM4 has a horizontal resolution of 1.98 latitude by
2.58 longitude, and it is a high-top model with 66 vertical lev-
els up to 5.1 3 1026 hPa (;140 km). We use the specified
chemistry version of WACCM4 (SC-WACCM4; Smith et al.
2014), which is computationally less expensive to run but sim-
ulates dynamical stratosphere–troposphere coupling and
stratospheric variability that are comparable to the interactive
chemistry model version.

The simulations follow the AMIP experimental design;
i.e., the AGCM is constrained by observed SST and SIC.
Monthly SST/SIC from the merged Hadley/NOAA-OI da-
taset (Hurrell et al. 2008) is prescribed to the atmosphere,
with a linear interpolation to derive daily SST/SIC from the
monthly values and ensure a smooth evolution of SST/SIC.
External forcings (greenhouse gasses, aerosols, volcanoes,
ozone, and solar radiation) follow their historical 1978–2017
values (Meinshausen et al. 2011). Since WACCM4 does not
simulate the QBO, we use the QBO prescription that is an
option feature of WACCM. The QBO is prescribed through
nudging of the equatorial stratospheric winds to observed radio-
sonde data, between 228S and 228N, and from 86 to 4 hPa. The
following set of experiments has been performed:

• AMIP: Our control experiment consists of an ensemble
of 10 AMIP runs, covering the 1978–2016 period, that are
forced with observed 1978–2016 SST/SIC. It is used as a
baseline to estimate the climatology of our model when
analyzing the atmospheric response in the perturbation
experiments.

• AMIP17: The first perturbation experiment consists of 100
ensemble members for the ONDJFM 2016/17 season that
are forced with observed 2016/17 SST/SIC. The ensemble
members are branched from the 1 October 2016 initial con-
ditions from AMIP, and a large ensemble is created by
adding tiny temperature perturbations in the initial condi-
tions (Kay et al. 2015).

• AMIP-TROP17: This experiment is similar to AMIP17,
but it includes nudging of tropical variability to impose the
observed 2016/17 tropical variability in the model and ex-
amine the response in the midlatitudes. The method is de-
scribed in detail in Peings et al. (2022). Temperature, wind,
and surface pressure are relaxed toward 3-h variability from
the MERRA-2 reanalysis (Gelaro et al. 2017) in the tropical
troposphere (228S–228N, from the surface up to 150 hPa).
This experiment consists of 100 ensemble members.

• AMIP-TRHL17: This experiment is similar to AMIP-
TROP17, but it also includes nudging of Arctic variability
(north of 608N, up to 300 hPa) to examine the potential in-
fluence of high-latitude variability on observed anomalies
in the midlatitudes. We also discuss an additional experi-
ment, AMIP-HL17, that includes nudging of Arctic variabil-
ity alone (no tropical nudging). It also includes 100 ensemble
members.

This set of experiments allows us to estimate the role of
global SST, tropical variability, and high-latitude variability,
in one of the wettest years on record in CA that occurred un-
der weak La Niña conditions.

3. Results

a. Skill of the seasonal forecast ensemble

As mentioned in the introduction, the skill of seasonal fore-
casts for SWUS/California precipitation is low (e.g., Kumar
and Chen 2020). We start by assessing the skill of our ensem-
ble of models for western U.S. seasonal precipitation, with
individual model skill shown in Fig. S1 in the online
supplemental material. Figure 1a shows the skill of the C3S
models in predicting ONDJFM precipitation over the western
United States. This is shown as a gridpoint correlation be-
tween observed ONDJFM mean precipitation and the predic-
tion from the multimodel ensemble mean (average of model
ensemble means) for the 1993–2016 period that includes all
models. Although mostly positive correlations are found
across the western United States, generally the correlations
are under 0.6, i.e., less than 35% of the explained variance.
This skill remains too low for real-world application by users
such as water managers and other stakeholders.

Figure 1b shows that higher skill is obtained in predic
ting the seasonal-mean large-scale atmospheric circulation,
through gridpoint correlations of the ONDJFM mean sea
level pressure in the ensemble prediction versus observations
(ERA5 reanalysis), but the correlations are only about 0.6,
once again only 35% of the explained variance in seasonal sea
level pressure variability in the region. The multimodel en-
semble prediction of the ONDJFM SWUS precipitation index
has a correlation of 0.45 with observations over 1981–2020
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(Fig. 1c; ECMWF only over 1981–92). Over the 1993–2016 pe-
riod that includes all models, the correlation is 0.52. Individual
model correlations are given in Table 2. One of the best en-
semble mean predictions is found for WY 1998, a notoriously
successful El Niño year for seasonal forecasting (Barnston
et al. 1999). The ensemble prediction is close to the observed
value with a small spread among the ensemble members (i.e.,
good confidence in the forecast). After removing 1998, the
correlation drops to 0.43 or only 20% of the explained vari-
ance in the index. The seasonal prediction system is not able
to capture other extreme years, such as the very wet year of
2017 or the very dry year of 2014 (Fig. 1c). This is problematic
for real-world applicability of the forecasts since extreme wa-
ter years are the ones that matter for water management and
decision-making. Some individual models exhibit higher skill
than the multimodel mean in certain regions, for example,
Météo-France in Northern California (Fig. S1f) and in general
over the SWUS (Table 2), but as we will see later, Météo-
France is one of the most biased models when it comes to the
North Pacific mean atmospheric circulation and teleconnec-
tions. It is therefore difficult to attribute better skill in this
model to a better representation of important processes for
SWUS precipitation, and we need to remember that the sam-
pling size is too small to address the skill of a model with high
confidence. Figure S2 shows a similar time series as Fig. 1c
but for OND and JFM (months 1–3 for both). Higher skill is
achieved in JFM (R 5 0.63) versus OND (R 5 0.35), as ex-
pected from more defined large-scale atmospheric circulation
patterns and teleconnections in JFM compared to OND. In
this regard, the skill we show for ONDJFM is representative
of a middle ground between the two forecast seasons.

It is important to remember that for each hindcast year, we
compare a single realization of observed variability to a single
model, or multimodel, ensemble mean. When the ensemble
mean misses an observed anomaly, the observed value may
still fall within the spread of the ensembles, i.e., within expect-
ations from internal variability (Chen and Kumar 2018). This
is illustrated in Fig. 1d, which compares the observed value of
the SWUS precipitation index to the distribution of all indi-
vidual ensemble members from the model hindcasts, for each
year 1993–2016. The percentile rank of the observed value is
given for each year, and we can verify that for every one of
these years, the observed precipitation anomaly falls within
the distribution of model predictions (192 ensemble members
in total).

Before examining the drivers of SWUS seasonal precipita-
tion, we analyze how precipitation is represented in the mod-
els. A composite of high SWUS precipitation in observations
is shown in Fig. 2a. This is an average of ONDJFM precipita-
tion anomalies for seasons with above one standard deviation
of the ONDJFM SWUS index (15 years of the 1948–2023

period, CPC data). For this analysis, we use the full available
datasets for observations and the models rather than compar-
ing them over the 1993–2016 period of overlap. This increases
the sample size for the observed composite on the SWUS pre-
cipitation index. For each model, we use all ensemble mem-
bers concatenated together and not the ensemble mean. The
multimodel mean is then the average of each model’s compos-
ite. The potential influence from low-frequency modes of vari-
ability may affect analyses when comparing different time
periods, but because the SWUS precipitation index exhibits
little low-frequency variability over 1948–2023, this does not
have a major influence here.

Anomalously high precipitation is found over most of
California, with little precipitation in the inland desert re-
gions, showing that our SWUS index mostly represents CA
precipitation, the region most affected by October–March
atmospheric rivers from the North Pacific. Figure 2b shows
the multimodel mean bias as a difference from Fig. 2a for
month 1, while Fig. 2c shows the bias for months 1–6. The
bias in high SWUS seasonal precipitation anomaly varies only
slightly with lead time, mostly representing a slight overesti-
mation of precipitation over central California. However, this
only shows the mean bias and not differences in the distribu-
tion of seasonal precipitation. To examine the latter, Fig. 2d
shows the observed distribution of the ONDJFM SWUS P
index in observations (blue) and in all the hindcasts from the
multimodel ensemble (orange) for month 1. As can be seen
from the difference in distribution, the models tend to un-
derestimate the precipitation deficit during dry seasons,
while overestimating extreme precipitation years relative to
observations. This results in a flatter distribution than in obser-
vations, and on average, it corresponds to a slight overestima-
tion in climatological SWUS seasonal precipitation (Fig. 2b).
For months 1–6 (ONDJFM average) that is the focus of this
study, the same bias in the distribution is slightly amplified,
with even less frequent dry seasons and more frequent and ex-
treme wet seasons.

b. Representation of the basic atmospheric state and
ENSO teleconnection in the North Pacific

In this section, we begin with evaluating how the seasonal
forecast models represent the atmospheric basic state and
SST in the North Pacific, during our ONDJFM season of inter-
est and over the overlapping 1993–2016 period, for a direct
comparison with observations and among models. All analyses
use ONDJFM seasonal averages. As explained in section 2a,
the hindcast ensemble members are concatenated together for
the regression analyses, which yields a sample size of at least
240 ONDJFM seasons for the models with 10 ensemble mem-
bers, up to 960 for CMCC and its 40 ensemble members. This
is of course significantly larger than observations for which

TABLE 2. Correlation coefficient between each model’s predicted SWUS P index and observations, over 1993–2016. For models that
include a longer time period, the correlation coefficient over the full period is given in parentheses.

Model MMM CMCC DWD ECCC ECMWF JMA Météo -France NCEP UKMO

Skill (R) 0.52 (0.45) 0.53 0.38 (0.34) 0.5 (0.42) 0.49 (0.46) 0.47 0.65 (0.64) 0.23 0.41
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assessment of the teleconnection patterns is less robust than
for the models. Figure 3a shows the observed climatology of
SST and U200. Figures 3b and 3c illustrate the ENSO telecon-
nection in observations, as a regression of SST and U200
(Fig. 3b), and P and Z200x (Fig. 3c), on the Niño-3 index.
Z200x is the 200-hPa geopotential height after removing its
zonal mean, which highlights large-scale stationary waves. We
then examine how the models represent each of these quantities
by plotting the multimodel mean bias (deviation from observa-
tions) for month 1 (Figs. 3d–f) and for months 1–6 (Figs. 3g–i).

An important climate feature for seasonal prediction in the
SWUS is the East Asian jet stream (EAJS), the most intense

subtropical jet on Earth, easily identifiable in Fig. 3a (black
contours). The EAJS, acting as a waveguide for Rossby waves
generated in the tropics and in higher latitudes, must be
accurately represented in climate models to simulate realistic
tropics–extratropics teleconnections as well as zonal wave
propagation over the North Pacific (Trenberth et al. 1998;
Zhang and Villarini 2018). As can be seen in Figs. 3d and 3g,
the multimodel ensemble exhibits a bias in the EAJS, whereby
too-strong U200 anomalies are simulated to the southeast of the
jet core. This bias represents a too-zonally elongated jet in the
central Pacific. The bias increases with lead time, resulting in a
more pronounced bias in the month 1–6 predictions (Fig. 3g).

FIG. 2. (a) Composite of precipitation (mm day21) on the high ONDJFM SWUS precipitation index (11 standard deviation) in the
CPC observations (1948–2023). (b) Bias of the same quantity in the multimodel ensemble, for month 1. (c) As in (b), but for months 1–6.
(d) Histogram of the ONDJFM SWUS precipitation index (mm day21), in observations (CPC, 1948–2023) and in the ensemble of C3S
models, for month 1 (5088 seasons). (e) As in (d), but for months 1–6.
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The jet being too zonal and elongated in the subtropical North
Pacific is associated with too-warm SST in the eastern tropical
Pacific and the Maritime Continent region (shading in Figs. 3d,g).
As shown in Fig. S3, this multimodel mean view hides disparities
among models. Most models simulate a too-zonal and elongated
EAJS with varying amplitude for the bias, except for ECMWF
and JMA. The bias in SST also varies greatly with models, being
generally too warm in the tropical Pacific and Indian Oceans
(e.g., Météo-France) or too cold overall (ECCC).

Examining the ENSO teleconnection, the observed pattern
of U200 anomalies (Fig. 3b) is well reproduced in the models
for both target seasons (Figs. 3e,h), although it is a little weak
for months 1–6. This is consistent with Williams et al. (2023)
who reported too-weak ENSO teleconnection in five seasonal
hindcasts, including the four we use. Individual model biases
in SST and U200 associated with ENSO can also be seen in
Fig. S4. Increased precipitation in the tropical Pacific is associ-
ated with a typical Gill-type response to enhanced convection
in the tropics, with a Rossby wave propagating over the North
Pacific and arching over western North America [Pacific
North America (PNA) pattern] (Fig. 3c). The models gener-
ally overestimate ENSO precipitation anomalies in the west-
ern tropical Pacific (Figs. 3f,i), a well-known bias of the
coupled general circulation models (Bellenger et al. 2014;
Beverley et al. 2023). The bias in Z200x shows a ridge

surrounded by negative anomalies (Figs. 3f,i), suggesting the
trough anomaly is larger and less focused than in observa-
tions. A northwest–southeast tilt is apparent when looking at
the Z200x ENSO teleconnection in the individual models and
multimodel ensemble (Fig. S5j) that is not as apparent in ob-
servations (Fig. S5a). This tilt was also noted byWilliams et al.
(2023). It is a seemingly small bias of the ENSO teleconnec-
tion but is located right in the region that influences the
SWUS. This results in a bias in the U.S. West Coast precipita-
tion associated with ENSO in the models. As shown in Fig. 4,
the models are too dry in the Pacific Northwest compared to
observations and generally wetter in the SWUS (Fig. 4k).
This north–south dipole in ENSO precipitation anomaly in
the models results from a slight southward shift in the ENSO-
driven atmospheric circulation compared to observations.
GPCP is used for observations to include precipitation over
the ocean as in the models, but a similar bias is found when
using CPC (over land only, not shown).

c. Atmospheric circulation patterns associated with
SWUS rainfall

We now investigate the large-scale atmospheric circulation
associated with SWUS precipitation, in observations versus
seasonal forecasts. Figure 5 shows the regression of P and
Z200x on the ONDJFM SWUS precipitation index (defined

FIG. 3. (a) Observed climatology (1993–2016) of ONDJFM SST (HadISST, shading, 38C interval) and ONDJFM U200 (ERA5, con-
tours, 20 m s21 contour interval). (b) ENSO teleconnection in observations (1993–2016), as the regression of ONDJFM SST (HadISST,
shading, 0.28C interval) and of ONDJFM U200 (ERA5, contours, 2 m s21 contour interval) on the ONDJFM Niño-3 index. For U200,
positive (negative) contours are in red (blue). (c) Regression of ONDJFM precipitation (GPCP, shading, 0.2 mm day21 interval) and of
ONDJFM Z200x (ERA5, contours, 5-m contour interval) on the ONDJFM Niño-3 index. For Z200x, positive (negative) contours are in
red (blue). (d)–(f) Corresponding bias for month 1 in the C3S seasonal models, as the difference between the multimodel average and ob-
servations. Anomalies that are greater than 50% of the observed climatology are in color (red for positive and blue for negative values).
In (d), the contour interval for U200 is 1 m s21. In (e) and (f), the contour intervals are half the values of (b) and (c), i.e., 1 m s21 for U200
and 2.5 m for Z200x. (g)–(i) As in (d)–(f), but for months 1–6.
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in section 2b), in observations and in the individual model
hindcasts for months 1–6, over the 1993–2016 overlap period
(24 years). For the models, the sample size is much larger
since we concatenate ensemble members of the hindcasts to-
gether. For example, this gives 24 3 40 5 960 years for
CMCC, since 40 ensemble members are provided for this
model (Table 1). In observations, seasonal SWUS precipita-
tion is associated with a trough anomaly in the eastern North
Pacific (Fig. 5a, contours), which directs storms and rainfall
over the region. It also coincides with high precipitation in the
east/central tropical Pacific (Fig. 5a, shading) and moderate
El Niño SST anomalies in the tropical eastern Pacific (not
shown), reflecting the moderate relationship between ENSO
and high SWUS precipitation.

However, the Z200x anomalies of Fig. 5a are more complex
than the ones associated with ENSO (Fig. 3c), suggesting a di-
versity of influence on SWUS P. In particular, we identify an
arching wave train originating in the EAJS, with a ridge cen-
tered off the coast of Japan, that resembles midlatitude zonal
wave trains discussed in D24. Compared to observations, the
models simulate deeper Z200x anomalies in the ENP region
(Fig. 5k). They also exhibit simpler structures in the Z200x
patterns, typical of the PNA-like pattern with less of the
zonal/arching wave train. This general view is confirmed by
the multimodel ensemble mean (Fig. 5j) and in the multimo-
del bias that exhibits a zonal wave train in the North Pacific
and in the high latitudes (Fig. 5k). Note that a similar multi-
model bias is already present in the month 1 prediction (not
shown).

A limitation of regression analysis is that it does not address
nonlinearity in the statistical linkages. That is, in the present
case, the regression analysis includes drivers of wet, neutral,
and dry conditions in the SWUS. To address nonlinearity, we
performed a composite analysis shown in Fig. 6 that groups
years exhibiting more than one standard deviation in the
SWUS P index. Compared to Fig. 5, we analyze the extended
1948–2023 period to maximize sample size (using CPC for the
SWUS precipitation index) and composite SST rather than
precipitation along with Z200x (because unlike global precipi-
tation, SST is available over the 1948–2023 period). This ex-
tracts 15 years from the 76 ONDJFM seasons over 1948–2023
in observations and 37–155 in the hindcasts (from 240 to
960 seasons). The Z200 composite patterns resemble the re-
gression patterns of Fig. 5, which verifies that the results are
robust using different methods and periods and relatively
linear (i.e., regression analyses reflect what happens during
wet SWUS years). Interestingly, the contrast between obser-
vations and the models is more pronounced here, as seen in
Fig. 6a where a clearer zonal wave emerges in observations
in the high latitudes. In the models, once again the signal is
reminiscent of the quadrupole from the PNA pattern, with
no zonal wave train in higher latitudes (Fig. 6j). An excep-
tion is Météo-France that exhibits a ridge over the Aleutians
Islands as in observations (Fig. 6g).

Because ENSO is a prominent signal associated with
SWUS P in these analyses, we then remove its influence in re-
gression patterns similar to Fig. 5. For this, we regress both
the SWUS P index and the fields onto the Niño-3 index and

FIG. 4. Regression of U.S. West Coast precipitation (0.1 mm day21 interval) on the Niño-3 index (1993–2016). (a) Observations (GPCP);
(b)–(i) month 1–6 hindcasts from the individual models; (j) multimodel ensemble mean; and (k) multimodel ensemble bias.
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examine the residuals (Fig. 7). By design, the positive precipi-
tation anomaly associated with ENSO in the tropical Pacific
disappears. In observations (Fig. 7a), the residuals of the
Z200x anomalies show a wave train over the North Pacific
and North America, with a pronounced trough centered over
the ENP region, resembling zonal patterns that drive wet
SWUS conditions independently of ENSO (Wang et al.
2017). In the models, generally the residual wave pattern still
resembles an ENSO-like teleconnection, with a meridional
(PNA-like) wave characterized by a ridging anomaly in the
subtropical Pacific and a trough in the North Pacific (Fig. 7j).
Compared to observations, this results in low-pressure/trough
anomalies that are less localized in the ENP region and ex-
tended to the west over the North Pacific (Fig. 7k), with less

ridging in the central North Pacific as in observations. An ex-
ception is JMA that shows a ridge–trough–ridge pattern in
the North Pacific (Fig. 7f). Here too, similar biases are already
present in the month 1 prediction (not shown), suggesting
that model biases affect the hindcasts early on in the runs.

Overall, these results seem to support the idea that the
forecast models, and coupled climate models in general, tend
to overestimate the influence of meridional wave trains on
SWUS seasonal precipitation (directly associated with ENSO
or not) to the detriment of zonal wave trains (Dong et al.
2023; D24). This is of course under the assumption that the
signals we extract in observations are robust, for which we have
one realization only, i.e., less robust than for the models. How-
ever, results from the following sections support this finding.

FIG. 5. Teleconnection associated with SWUS P. (a) Regression of ONDJFM precipitation (GPCP, shading, 0.2 mm day21 interval)
and Z200x (ERA5, contours, 10-m contour interval) on the SWUS precipitation index, for the 1993–2016 period. (b)–(i) As in (a), but for
months 1–6 of the individual forecast systems (1993–2016 period too). (j) As in (a), but for the multimodel ensemble mean. (k) Bias of the
multimodel ensemble, i.e., difference from observations [(j) minus (a), 5-m contour interval for Z200x]. Red contours are for positive
Z200x anomalies, and blue contours are for negative Z200x anomalies.
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d. Underestimation of zonal wave trains in the models

The previous section suggests that the seasonal models do
not capture the influence of zonal wave trains on seasonal
SWUS precipitation as in observation. Here, we explore
whether this may be a general bias in the models by measur-
ing how they represent these seasonal zonal wave trains,
versus observations, without any focus on ENSO or SWUS
signals. For this, we use the North Pacific waviness index
described in section 2b, which we calculate for ERA5, the sea-
sonal models, and also the numerical experiments described
in section 2c. This index measures the waviness (or meanders)
of the atmospheric flow at 200 hPa using the zonal gradient of

V200. For each dataset, one value per season is retrieved, and
the distribution of these values is plotted in Fig. 8 using a box-
and-whisker plot representation. The distribution of the index
is relatively similar in all the datasets, with the exception of
extreme values being more frequent in the model data, which
is expected from the much larger sample size. ONDJFM 2017,
which we discuss in the next section, is the highest value on
record in ERA5, making it a textbook example of a promi-
nent and seasonal zonal wave train over the North Pacific.
For comparison, the 1983 value is provided, showing that a
strong El Niño year does not typically lead to a high value of
this index. When compared to model distribution, from both

FIG. 6. Teleconnection associated with high SWUS P. (a) Composite of ONDJFM SST (shading, 0.28C interval) and Z200x (ERA5,
contours, 5-m contour interval) for the 15 years with a high (.one standard deviation) SWUS precipitation index, over the 1948–2023 pe-
riod. (b)–(i) The same composite as in (a), but for model years with a high (.one standard deviation) SWUS precipitation index, out of
all the ensembles of month 1–6 predictions from each forecast system (full hindcast period). (j) As in (a), but for the multimodel ensemble
mean. (k) Bias of the multimodel ensemble, i.e., difference from observations [(j) minus (a)]. Red contours are for positive Z200x anoma-
lies, and blue contours are for negative Z200x anomalies. The number of years/hindcasts selected for the composite, versus the total num-
ber of years in the dataset, is given in the upper left of each panel.
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the seasonal hindcasts and our perturbation experiment, 2017
represents an extreme case, close to the upper limit of the
model distribution.

A question that comes to mind is whether the atmospheric
patterns associated with high values of the North Pacific wavi-
ness index are similar across datasets. This is answered in
Fig. 9 that shows composites of V200 and Z200x onto high
values of the index (greater than 1.5 standard deviations) for
ERA5 and the seasonal hindcasts. The procedure selects
11 years in ERA5 (out of 84 years, 1940–2023) and from 18 to 75
in the hindcasts that have considerably larger sample sizes. In
support of section 3c, there is a substantial difference between
the models and observations. High waviness of the North
Pacific flow in the models is mostly associated with a quadru-
pole that resembles the PNA, or arching wave, pattern with a
trough in the subtropical North Pacific followed by a ridge–
trough–ridge pattern further north. This trough is much weaker

in ERA5, and the ridge–trough–ridge pattern in higher latitudes
is embedded in a large-scale zonal wave train that originates
over India, at the entrance of the EAJS, with also a second
wave train in the high latitudes. Similar analyses over the
1993–2016 period for observations yield comparable results
(not shown). This points to a fundamental bias in the models’
representation of atmospheric variability in the North Pacific:
At seasonal time scales, they generally underestimate the
probability that high-wavenumber zonal wave trains may lin-
ger in the North Pacific, as happened during WY 2017.

To investigate why, we perform a similar analysis to D24
and examine how the model mean state biases affect zonal
Rossby wave propagation. This is done by calculating the sta-
tionary wavenumber field for reanalysis and the hindcasts and
evaluating linear Rossby wave propagation using ray tracing
(see D24 for details on the method). First, we compare the
stationary wavenumber field at 200 hPa between observations

FIG. 7. As in Fig. 5, but after removing the influence of ENSO, through a regression of the SWUS P index and the fields onto the Niño-3
index to retain residuals only. The contour interval is 5 m for Z200x. Period: 1993–2016.
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and hindcasts (Fig. 10), focusing on the DJF season (months 3–5
of the September/1 October initialized hindcasts) since this is
the season when the basic-state jet and tropics–extratropics tele-
connection are the strongest. Two waveguides of high stationary
wavenumber exist in the North Pacific, one associated with the
EAJS, with regions of forbidden propagation on the northward
and southward flanks, and another one in the eastern North
Pacific (Fig. 10a).

The two distinct waveguides connect in the central subtrop-
ical Pacific, and the EAJS waveguide extends to the northeast,
allowing for wave propagation toward North America. There
is a tendency for the models to merge these two waveguides,
reducing the channel of high-wavenumber propagation to-
ward the western coast of North America. This is similar to
the bias that was identified in version 2 of the Community
Earth SystemModel large ensemble (CESM-LENS; Kay et al.
2015) by Dong et al. (2023), and we propose that it reflects an
overestimation of the El Niño/SWUS P relationship in the
models that is directly related to biases in the basic flow. As
can be seen in Fig. 10, biases in U200 (overlaid in black con-
tours) and in particular a too-strong and elongated jet circula-
tion in the subtropical North Pacific lead to a retraction of the
midlatitude waveguide and a strengthening of the absolute
vorticity gradient in the subtropics (Dong et al. 2023).

While we qualitatively anticipate that this leads to a south-
ward deflection of Rossby waves, we can quantitatively test
this using ray tracing, initiating rays with initial zonal wave-
number k5 5, the dominant wave scale in the waveguide dur-
ing DJF (Branstator and Teng 2017), at 18 intervals from 758
to 1408E along a latitude band at 308N. At each location, two

rays are initiated, with either a positive meridional wavenum-
ber or a negative meridional wavenumber, totaling 132 rays.
We then integrate their path as described in D24 and count
the frequency of ray propagation into the ENP region at the
exit of the EAJS (defined as crossing eastward over 2308E be-
tween the latitudes 308 and 608N), where they have the poten-
tial to influence SWUS precipitation. This is done using the
observed U200 basic state (Fig. 11a), each individual model’s
U200 basic state (Figs. 11c–j), as well as the multimodel
U200 basic state computed from the multimodel ensemble
(Fig. 11b). We find that 42% of these Rossby waves propagate
into the ENP domain under the ERA5 basic state, compared
to 33% in the multimodel ensemble. This indicates that the
seasonal models on average may underestimate the influence
of zonal wave trains on SWUS precipitation, especially as
basic-state biases grow with lead time, since too many of these
waves may be deflected southward in the east Pacific. This is
especially true for two models that exhibit significantly lower
frequency of propagation in the ENP domain, Météo-France,
and NCEP, which are also the models with the most pro-
nounced U200 dipole bias in the North Pacific (Figs. 10h,i).
This is also consistent with conclusions from D24, as a simi-
lar bias is found at weeks 5–6 in the S2S hindcasts, when
models are no longer (or minimally) influenced by initial
conditions.

e. Case study: The 2016–17 winter

A particularly interesting year for seasonal prediction is the
WY 2017. Following a disappointing El Niño 2016 WY that
did not bring the expected rain (Kumar and Chen 2017), Cali-
fornia experienced its second wettest year on record, narrowly
following the “monster El Niño” 1983 WY.3 Both the 2016
and 2017 WYs were not predicted by the ensemble mean sea-
sonal forecast ensembles (Kumar and Chen 2017; Singh et al.
2018), although the 2016 WY has been shown to be within the
envelope of possible forecast outcomes (Chen and Kumar
2018). The anomaly of precipitation in ONDJFM 2017 can be
seen in Fig. 12a, using the CPC data. Most of the western
United States was wetter than normal, in particular CA, with
this WY ending the severe 2011/16 drought in the state. We
only have three models that include WY 2017 in the C3S sea-
sonal hindcasts, DWD, ECCC, and Météo-France. Their per-
formance in predicting P and SLP is shown in Figs. 12b–d,
with the multimodel ensemble prediction in Fig. 12e. Al-
though the three models tend to predict wetter-than-normal
conditions in the northwest United States, they never meet
the amplitude of observations and they miss their extent, es-
pecially the extension of the excess in precipitation to the
SWUS. Our set of hindcasts does not include 2017 for
UKMO, but according to Singh et al. (2018), it also failed to
predict the observed precipitation for that season. Despite
forecast failure by the ensemble, the 2017 SWUS precipitation
anomaly falls within the range of predicted values by individ-
ual hindcasts from the multimodel ensemble (Fig. S6). It
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FIG. 8. Distribution of the seasonal ONDJFMNorth Pacific wav-
iness index (from V200), in ERA5 (1940–2023, 84 seasons), CMCC
(1993–2016, 960 seasons), DWD (1993–2019, 810 seasons), ECCC
(1993–2020, 280 seasons), ECMWF (1981–2016, 900 seasons), JMA
(1993–2016, 240 seasons), Météo-France (1993–2018, 650 seasons),
NCEP (1993–2016, 576 seasons), UKMO (1993–2016, 672 seasons),
AMIP (1978–2016, 390 seasons), and AMIP17 (300 seasons). The
boxplots indicate the median and upper and lower quartiles of the
distribution. The whiskers indicate the minimum and maximum
values, with outliers in circles (outliers are values beyond two inter-
quartile ranges from the upper-quartile range). The ensemble
mean (zero by construction) is marked by a red diamond. For
ERA5, the values of the index for 2017 and 1983 are marked by
blue squares.

3 https://cawaterlibrary.net/document/water-year-2017-what-a-
difference-a-year-makes-2/.
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represents the 94th percentile of predicted values by the 65
available hindcasts for that season (30 from DWD, 10 from
ECCC, and 25 from Météo-France). This points out that the
observed anomaly is within the range of model variability; i.e.,
internal variability alone can cause the forecast miss, rather
than model deficiencies (in line with Chen and Kumar 2018).

The wet WY was driven by the predominance of a favor-
able atmospheric pattern throughout the ONDJFM season,
i.e., a low-pressure trough in the ENP that directed atmo-
spheric rivers toward California, causing abundant precipita-
tion over the state. The low-pressure trough in the ENP was a
local marker of a larger-scale stationary wave, with alternat-
ing troughs and ridges over the North Pacific (Wang et al.
2017). This can be seen in Fig. 13, which displays the SST

(HadISST) and Z200x (ERA5) anomalies for ONDJFM 2017.
The atmospheric circulation exhibits a remarkably consistent cir-
cumglobal zonal wave train. The wave train appears to originate
in the EAJS and propagate downstream over the North Pacific,
with a pronounced trough–ridge dipole centered over the U.S.
West Coast. As can be seen in the SST anomalies, no pronounced
ENSO signal was observed in the tropical Pacific. The ONDJFM
hindcasts initialized in September/1October (months 1–6) are suc-
cessful in predicting the SST (Figs. 13b–e, shading), but they miss
the zonal wave train observed in the North Pacific (Figs. 13b–e,
contours). The 2017WY is a good example of the current limits of
seasonal forecasting. It would have beenmost beneficial to predict
this season as it was extreme, but this seems to be beyond the ca-
pability of the current forecast systems.

FIG. 9. Composite of V200 (shading, 0.5 m s21 interval) and Z200x (contours, 5-m contour interval) for seasons with a value of the NP
waviness index greater than 1.5 standard deviation for (a) ERA5, (b) CMCC, (c) DWD, (d) ECCC, (e) ECMWF, (f) JMA, (g) Météo-
France, (h) NCEP, (i) UKMO, and (j) mutlimodel ensemble mean. Red contours are for positive Z200x anomalies, and blue contours are
for negative Z200x anomalies. The number of years selected for the composite, versus the total number of years in the dataset, is given in
the upper left of each panel.
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To explore physical mechanisms and potential predictors
that may have driven the pronounced seasonal zonal wave
train and CA precipitation, we turn to the AMIP-type pertur-
bation experiments described in section 2c. The 100-member

ensemble of runs branched on 1 October 2016 is averaged to
extract the ensemble mean and response to the prescribed
forcing. The ONDJFM 2017 response is then compared to ob-
servations. In Fig. 14a, we show the velocity potential (VP250,

FIG. 10. DJF stationary wavenumber in (a) ERA5 and in DJF (months 3–5 in the hindcasts) from the (b)–(j) mod-
els, along with U200 biases (contour). Contour interval is 3.0 m s21. Zero contour level is omitted. Imaginary values
of stationary wavenumber are shaded in light blue.
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shading/black contours) and meridional wind (V250, red/blue
contours) anomalies at 250 hPa from MERRA-2 (because the
runs are nudged toward MERRA-2). The North Pacific wave
train visible in the V250 is consistent with Fig. 13a, as ex-
pected. The 250-hPa velocity potential is a marker of large-

scale vertical motion in the atmosphere, often used to charac-
terize tropical convection. Figure 14b shows the response in
the AMIP17 experiment, i.e., the influence of observed SST/
SIC anomalies. For VP250, only anomalies that are statisti-
cally significant at the 95% confidence level are shaded.

FIG. 11. DJF stationary wavenumber for (a) ERA5 and month 3–5 forecast climatologies from the (b)–(j) models.
The black contour is stationary wavenumber-5 level. Blue lines represent a subset of rays initialized in the EAJS with
k5 5. The yellow box indicates the region used for ENP propagation frequency, which is shown in each subplot title.
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Statistical significance for the ensemble mean of each nudging
experiment is estimated using 1980–2017 ONDJFM seasonal
anomalies from the AMIP experiment as the control group.
As can be seen in the VP250 anomalies (shading), prescribing
SST allows for a fairly accurate representation of large-scale
convection anomalies in the tropics (Walker circulation), as
measured by the anomaly pattern correlation of 0.61 (area
weighted, comparing VP250 anomalies to observations in the
shown domain). Although a wave train originating in the
EAJS is forced in the North Pacific (V250 contours), it is
much weaker than in observations. The corresponding precip-
itation anomaly (Fig. 14f, compared to GPCP precipitation to
include the ocean in Fig. 14e) resembles the prediction of the
seasonal forecast models in Fig. 13, with slightly wetter-than-
normal conditions in the northwest and dry conditions in the
SWUS. This is consistent with the fact that the forecast mod-
els mostly rely on SST for seasonal prediction.

After prescribing tropical variability through the nudging
of the tropical troposphere (Fig. 14c; AMIP-TROP17), the ac-
curacy of the VP250 anomalies is refined, and the zonal wave
train is reinforced. However, it does not exhibit the exact
same propagation and structure as in observations, resulting
in a different location for the ENP trough, and the precipita-
tion anomaly is actually worse than for AMIP17, with overall
dry conditions in contrast to observations (Fig. 14g). Finally,
by adding nudging of Arctic tropospheric variability in
AMIP-TRHL17, we retrieve patterns that are closer to what
was observed in 2017. The zonal wave train is much closer to ob-
servations (Fig. 14d), as is the precipitation anomaly (Fig. 14h),
although it is still too dry in the SWUS. In the North Pacific, the
difference between AMIP-TRHL17 and AMIP-TROP17 is
highly significant, at the 99% confidence level using the Student’s
t test (not shown). A similar result is obtained when nudging Arc-
tic variability alone (Fig. S7), such that for this case study, tropical
nudging is not necessary in order to represent the North Pacific
zonal wave train and the western U.S. precipitation anomaly.
This means that the climate anomaly can be explained by a

combination of SST tropical forcing plus high-latitude atmo-
spheric variability. This is remarkably consistent with Singh et al.
(2018), who found that high-latitude variability was an important
driver of CA precipitation in WY 2017. In particular, they found
that forecast ensemble members that successfully predicted CA
precipitation were the ones that correctly predicted the phase of
the Arctic Oscillation (AO). By nudging the Arctic domain, we
prescribe AO variability in our AMIP-TRHL17 experiment, and
in agreement with their study, this leads to a better representa-
tion of precipitation anomalies. These results point to a role for
tropical SST in generating a Rossby wave through convection
anomalies in the vicinity of the EAJS. The wave train then prop-
agated along the EAJS and its exit region over the North Pacific,
being refined by high-latitude variability along its path, leading to
the prominent seasonal trough–ridge anomaly over the U.S.
West Coast. A limitation of this analysis is that the nudging do-
main starts at 608N, which includes a portion of the observed
trough–ridge dipole in the North Pacific. This makes interpreta-
tion difficult, as the improved representation of the wave train
may simply be the result of nudging the northern part of these
centers of action. Still, this does not preclude that high-latitude
variability was important in the propagation of this wave train.

4. Conclusions

Following up on D24 that focused on S2S teleconnections
and forecast models, in this study we explore potential model
biases that may hamper the skill of seasonal forecasts when
trying to predict seasonal SWUS precipitation. Eight sets of
hindcasts from the C3S ensemble are analyzed, focusing on
the ONDJFM season, month 1 prediction (average of monthly
forecasts for October–March months), and month 1–6 prediction
(forecast of the ONDJFM average after September/1 October
initialization). In line with previous studies that reported low
forecast skill for predicting SWUS precipitation, we find that
the multimodel forecast ensemble explains a maximum of a
quarter of the SWUS precipitation variance over 1993–2016
(R 5 0.52), comparable to correlations with a linear ENSO

FIG. 12. The 2017 seasonal (ONDJFM) P anomaly (shading, 0.2 mm day21 interval) and SLP anomaly (contours, 1-hPa contour inter-
val), relative to 1993–2016. (a) Observations (CPC/ERA5), (b) ensemble mean prediction from DWD, (c) ensemble mean prediction
from ECCC, (d) ensemble mean prediction fromMétéo-France, and (e) multimodel ensemble mean prediction.
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predictor (e.g., Jiang et al. 2022). While low forecast skill is
probably inherent due to atmospheric internal variability and
low signal-to-noise ratio (Kumar and Chen 2020), the forecast
models do contain significant errors that may detract from pre-
dictive skill. The most noticeable and recurrent is a bias in the
subtropical Pacific jet circulation, represented by too-zonal
and strong westerly circulation in the eastern subtropical
North Pacific. The jet bias is reinforced with lead time, but it is
already present in month 1, i.e., within a few weeks of initiali-
zation. The models also simulate a too-weak and shifted
ENSO teleconnection at seasonal lead times (consistent with
Williams et al. 2023), which induces a southward shift of the
associated precipitation anomaly along the U.S. West Coast.

An important conclusion from this study is that seasonal fore-
cast models rely too much on ENSO-like meridional wave
trains to drive seasonal SWUS precipitation, underestimating

the influence of zonal wave patterns. While in observations,
SWUS is influenced by both tropics–extratropics/PNA-like and
zonal/circumglobal wave trains, the forecast models mostly ex-
hibit ENSO/PNA-like patterns in our analyses. A Rossby ray-
tracing analysis illustrates how model bias in the atmospheric
basic state affects the propagation of wavenumber-5 wave trains
along the EAJS, leading to errors and underestimation of their
propagation to the north. This is similar to results from D24
where the same analysis was performed using S2S forecast mod-
els (5–6 weeks after initialization). The tendency for the model
to overpredict the influence of meridional, ENSO-like, wave
trains versus the influence of zonal wave trains on SWUS pre-
cipitation was also found in the CESM2 large ensemble (Dong
et al. 2023). We suggest this is a common bias affecting not only
S2S/seasonal forecast models but also the current generation of
ocean–atmosphere coupled models in general.

FIG. 13. The 2017 seasonal (ONDJFM) SST anomaly (shading, 0.28C interval) and Z200x anomaly (contours, 10-m
contour interval), relative to 1993–2016. (a) Observations (HadISST/ERA5); (b) ensemble mean prediction from
DWD, for months 1–6; (c) as in (b), but for ECCC; (d) as in (b), but for Météo-France; and (e) as in (b), but for the
multimodel ensemble mean prediction (3-model average).
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A case study of the unexpectedly wet 2017 WY reveals how
challenging such years are for seasonal forecasters. In the ab-
sence of a well-defined ENSO anomaly, a pronounced zonal
Rossby wave train persisted over the North Pacific during the
season directing multiple ARs over CA and resulting in abun-
dant precipitation. This anomaly was not predicted by the
forecast ensembles, as illustrated by analyses of the hindcasts
that include 2017. Our hierarchy of WACCM4 experiments
demonstrates how difficult it would have been to predict that
seasonal anomaly. Prescribing observed SST/SIC anomalies
does not suffice, which suggests that even perfectly predicting
SST months in advance would not have been enough to pre-
dict the seasonal Rossby wave and associated precipitation.
After prescribing perfect tropical variability through nudging
(which imposes observed MJO and other tropical variability
in the model), the response is still different from observations
and only nudging Arctic variability as well allows for a more
realistic response. Even though it is unclear how much
predictability exists at the seasonal time scale in the high lati-
tudes, this highlights the need to explore the role of high-
latitude climate processes in driving midlatitude variability.
Sea ice was prescribed in our experiments, but other drivers

such as Arctic tropospheric temperature and the stratospheric
polar vortex may exhibit some predictability and exert an in-
fluence in midlatitudes (Singh et al. 2018). One caveat of any
model experiment is that it may miss important processes re-
sponsible for SWUS precipitation (large-scale teleconnections
as well as small-scale processes, for example, linked to orogra-
phy), such that this estimate of potential predictability coming
from SST, the tropics, and the Arctic is inaccurate and too
low. However, we note that WACCM4 was able to accurately
simulate the 1983 El Niño teleconnection and record-breaking
CA precipitation, as well as the 2016 El Niño teleconnection
and CA moderate precipitation after nudging the tropics
(Peings et al. 2022). This makes us more confident that the
difficulty in reproducing the 2017 seasonal anomaly does not
simply come from model limitations but from the fact that it
is a manifestation of internal atmospheric variability that is
hardly predictable.

Overall, our study underscores how challenging it is to pre-
dict seasonal SWUS precipitation a few months in advance. It
is possible that predictable signals are too limited to gain sig-
nificant skill in the future, but our study also conveys a posi-
tive message in that the models may not be adequate yet for

FIG. 14. The 2017 seasonal (ONDJFM) VP250 anomaly (shading and black contours, 13 106 m2 s21 contour inter-
val) and V250 anomaly (contours, 1 m s21 contour interval), relative to 1980–2017. (a) Observations (MERRA-2);
(b) response in AMIP17; (c) response in AMIP-TROP17; (d) response in AMIP-TRHL17; and (e)–(h) corresponding
P (0.4 mm day21 contour interval) and SLP anomaly (0.5 hPa contour interval); GPCP and ERA5 are used for obser-
vations. The anomaly pattern correlation between observations and the experiment is given on top of each panel, for
VP250 and P. For the simulations, anomalies that are significant at the 95% confidence level are shaded.
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predicting it and may exhibit greater skill with future im-
provements in their basic state and teleconnections. Ad-
vanced machine learning techniques also represent an avenue
for improving long-term forecasting, not only because data-
driven weather/climate forecast models develop quickly
(Ebert-Uphoff and Hilburn 2023) but also because they rep-
resent a tool to understand dynamical model biases. For in-
stance, Gibson et al. (2021) developed a suite of machine
learning algorithms to predict western U.S. precipitation re-
gimes, which they trained using the CESM1 large ensemble.
This highlighted the overestimation of the influence of ENSO
in CESM1, when it comes to drivers of western U.S. precipita-
tion. A similar approach could be applied to S2S and seasonal
hindcasts/forecasts to further evaluate what drives SWUS pre-
cipitation in the models versus observations. Possibly, post-
processing corrections may then be applied to the forecasts to
account for known model limitations in key drivers of SWUS
precipitation. This is a prospect for future research. Finally, in
this study, we evaluated the models based on the 6-month
ONDJFM season, while the influence of ENSO in seasonal
prediction is generally evaluated over 3-month seasons that
are typically used for seasonal forecast outlooks (e.g., Deser
et al. 2018). Although additional analyses not shown in this pa-
per suggest our general conclusions also apply to 3-month aver-
ages, it will be interesting to revisit them in more detail for DJF
or JFM when ENSO teleconnections are the strongest.
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