
UC Berkeley
UC Berkeley Previously Published Works

Title
A density functional theory of the Fermi contact contribution to the nuclear 
spin-spin coupling constant

Permalink
https://escholarship.org/uc/item/6sh882mg

Journal
Chemical Physics Letters, 234(4-6)

ISSN
0009-2614

Authors
Grayce, Christopher J
Harris, Robert A

Publication Date
1995-03-01

DOI
10.1016/0009-2614(95)00073-d

Copyright Information
This work is made available under the terms of a Creative Commons 
Attribution License, availalbe at https://creativecommons.org/licenses/by/4.0/
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6sh882mg
https://creativecommons.org/licenses/by/4.0/
https://escholarship.org
http://www.cdlib.org/


10 March 1995 CHEMICAL 

PHYSICS 
LETTERS 

ELSEVIER Chemical Physics Letters 234 (1995) 319-322 

A density functional theory of the Fermi contact contribution 
to the nuclear spin-spin coupling constant 

Christopher J. Grayce a, Robert A. Harris b 
The James Franck Institute, The University of Chicago, Chicago, IL 60637, USA 

b The Department of Chemistry, The University of California, Berkeley, CA 94720, USA 

Received 8 December 1994 

Abstract  

The authors' magnetic field density functional theory is extended to include electron spin-dependent interactions. 
Coupling the new theory with traditional spin density functional theory in the local limit yields a linear differential equation 
for the net spin density. The coefficients in the equation are functions of the electron density in the absence of a nuclear spin. 

A little while ago we proved that the ground state only now being obtained [6], useful spin density 
energy of an inhomogeneous many-electron system functionals appear to exist [7-10]. 
in the presence of a vector potential, A(r), is a The proof of our theorem is identical to that 
universal functional of the electron density and the developed before. The many-electron Hamiltonian in 
magnetic field, B(r) [1,2]. Through the use of time the presence of an inhomogeneous magnetic field, 
reversal arguments and the variational principle, we B(r), is 
found that second-order properties have a particu- 
larly simple form. In particular, the orbital portion of H = H 0 +  BfB(r) • s ( r )  d3r, (1) 
the nuclear spin-spin coupling, the chemical shield- 
ing tensor, and the magnetic susceptibility tensor, where H o contains the nonmagnetic portions of the 
may be related to one universal functional of the Hamiltonian. s(r) is the spin density operator, and 
density in the absence of the magnetic field. /x B is the Bohr magneton. Although the orbital con- 

Although our theorem as it stands allows us to tribution to the Hamiltonian, and therefore the en- 
obtain the orbital portion of the nuclear spin-spin ergy, may readily be included, we neglect it. The 
coupling tensor, the electron spin terms were ex- neglect is justified because we are interested in 
cluded. The Fermi contact term is generally the most second-order properties where spin and orbital ef- 
important contribution to the coupling constant [3-5], fects are additive. We now fix the magnetic field just 
hence we must rectify our omission. In this note we like we fix the electron-electron interaction in ordi- 
show that the contact coupling is a universal func- nary density functional theory. The Hohenberg-Kohn 
tional of the electron density in the absence of the theorem states that the ground state energy is a 
perturbing nuclear spins. We also point out that universal functional of the density. The proof is 
unlike the orbital case where useful functionals are identical to that used before [1]. The magnetic field 
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must appear explicitly in the functional. Hence we Then the spin-spin coupling constant is 
have, 

Jab = ~'rr Wr F(  p, Ra, Rb) .  (5) 

E G( p, B) - j u ( r ) p ( r )  d3r This completes the proof. Thus, were the universal 
functional, F( P0, r, r'), known, one could compute 

1 f f  p(r) p(r')  the contact contribution to J in any system from 
-I- Z a , '  ~ r 7  i d3r d3r' '  (2) knowledge of the zero-field ground-state density. 

Our previous work [2] identifies another similar 
where we have separated out the contributions to the functional from which the orbital contribution may 
energy due to the external field, v(r), and the classi- be calculated. 
cal electron-electron interaction. B denotes the ex- We now turn to the second point of this work: a 
plicit field dependence of the functional. The density method by which Eq. (3) may be used to obtain J 
also depends upon the field, without explicit knowledge of F. This can be done 

Of interest to us are the responses to weak fields, by taking advantage of recent developments in spin 
Symmetry under time reversal requires that the en- density functional theory [7-10]. That theory states, 
ergy and density be even functions of the magnetic assuming that there is only one direction for the 
field for a nondegenerate ground state. Hence, the magnetic field, that the ground state energy is a 
lowest-order correction in the presence of a magnetic universal functional of the spin density deviation, 
field to the zero-field energy, E 0, and density, P0, is ~(r), where 
•(B2). The energy depends on the magnetic field 
explicitly and also implicitly through the density, sO(r) = p~ ( r ) -  p+ ( r )  (6) 
hence the correction of t~'(B 2) to E 0 has two terms. 
The coefficient of B 2 in the first is just (dZE/dB 2) and the total density, p(r). Thus, in the weak field 
(B = 0). The coefficient of B 2 in the second is p(2), limit Eq. (3) is replaced by 

the first correction to the density, multiplied by 
(~E/~p) (p= Po), the first variation of the energy E ~2) = f~(r)F'( po, r, r ')~(r')  d3r d3r '. (7) 
with respect to the density evaluated at the equilib- 
rium zero-field density. However the variational prin- This form has a real advantage over the form given 
ciples requires this term to be equal to zero. There- by Eq. (3). There is a ~:(r) variational principle. 
fore only the explicit dependence on B of E[ p, B] That is, sO(r) satisfies 
contributes to the first correction to E 0. Hence we 
may write the second-order energy which we denote ~E(2) 

- o .  (8) 
as E (2), as ~ : ( r )  

E = f n ( r )  • F( Po, r, r') • B(r')  d3r d-r,3, Hence, as is well known, we may determine ~(r)  for 
one nuclear spin, say " a " ,  and determine the energy 

(3) and coupling at the other spin, b, through use of the 
Hellman-Feynman theorem [3,4]. That is, we have, 

where the functional, if( P0, r, r'), depends only on 
• = R b )  ~ w / z  s , ( 9 )  the zeroth-order density. To calculate the Fermi con- ]'£a ]'tbJab ]J'b Ca( 4 

tact contribution to the coupling we take the mag- where ~:a(Rb) is the spin deviation at R b due to a 
netic field in Eq. (3) to be, nuclear spin at R a. 

Although we may proceed in general, let us con- 
4 7 r ~ 3 ( r _  R~,)/x,~, (4) sider the very recent developments in spin density 

B(r) = E 
a = a,b 

functional theory. These developments take the form 
where R,~ and /x,~ are the position and magnetic of exchange-correlation energy functionals, as well 
moment operator respectively of nuclear spin a. as kinetic energy functionals, of unprecedented accu- 
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racy and simplicity [9-11]. To take advantage of hyperfine coupling in one electron atoms [12-14]. In 
these functionals we first write the energy as the latter case the one electron sO(r) satisfies 

1 
E( Po, ~) = To(½( Po + ~))  + to(½( P o -  ~))  - V2 ~ ( r )  + - - V P o ( r  ) • V~(r)  

+ ex(½( po + + ex(½( p o -  po 

(V2p°(r) 5 [17p°(r)]2) 2 Po(r) 2 +Ec(PO, d3r + 

aSS 4 P°(r)p°(r') d3r d3r , 3~rtxBtXzpo(r)63(r--R). (13) 
+ Ir-r'l 

Here the nuclear spin is at R. 
-i'-#/,Bf~(r) ~ 3 ( r -  ga) d3r d3r ' In conclusion, we have generalized our magnetic 

' field density functional theory to include the Fermi 
(10) contact contribution to the nuclear spin-spin cou- 

pling constant. We have also related our theory to 
where T0, Ex, and E c are the kinetic energy, ex- traditional spin density functional theory. Combining 
change, and kinetic energy corrected correlation spin the variational principle with time reversal argu- 
density functionals, respectively, merits, we have shown that in the local limit the net 

We have already included the fact that only P0 spin density, ~(r), satisfies a linear partial differen- 
appears to second order. Now we assume that both tial equation. The coefficients of this equation are 
the kinetic energy and exchange-correlation func- functions of the unperturbed density. For all density 
tionals are local functions of Po + ~: and IV( P0 + functionals currently in use, the functions may be 

)]. We now expand the energy to second order in written explicitly. An example is given in the Ap- 
~. The most general form of the energy function is, pendix. 

Unlike a recent Kohn-Sham theory of coupling 
E = Eo(Po) + f f  f ( ~ ( r )  2Al(Po) constants [15], the new equation is a pure density 

functional theory. One needs only solve one linear 
+ ~ ( r ) V ~ ( r )  • Vpo ( r )  a2(Po)  differential equation. Hopefully the new equation 
+ [ V~ ( r ) ] :  A 3(Po) will provide a new way of calculation of spin-spin 

couplings. Hopefully too, the theory may be used as 
+ [ ~TP0( r)]  2 a4(Po) ) d3r a stringent test of density functionals. 

_ ~ : ( r ) [ a l  + ½~r. (Az)•po(r) ] Both CJG and RAH thank Cynthia Jameson for 
her encouragement and her sharing with us her 

I + ?txB I-q ~:(r)63( r - R a )  d3r- (11) knowledge. RAH wishes to thank Ignacio Tinoco Jr. 
for stimulating his interest in spin-spin coupling. 

The coefficients, A 1... A4, depend on the particular Finally RAH was supported by grants from the 
form of the kinetic energy, exchange, and correlation ACS-PRF and the NIH (through John Hearst). 
functions. Minimizing Eq. (11) with respect to ~(r) 
yields 

Ii r" A3V~(r ) + V .  [ (V~(r )  • Vpo(r))A4VPo(r)] Appendix 

- ~ ( r ) [ A  1 + ½V. (A2)Vpo(r)] In the appendix we relate A 1 to A 4 to the Lee, 
Lee and Parr 'G'  function [10]. With ' y '  given by 

= l 6 3 ( r _  Ra) (12) 2/~n ll-£ a 
I lrpo( r) l 

In a sense Eq. (12) is a density functional general- y = 21/3 (A.1) 
ization of the Dalgarno-Schwartz equation for the P0(r) ' 
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