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Spheroids formed of mesenchymal stem cells (MSCs) exhibit increased cell

survival and trophic factor secretion compared with dissociated MSCs,

making them therapeutically advantageous for cell therapy. Presently, there

is no consensus for the mechanism of action. Many hypothesize that spheroid

formation potentiates cell function by generating a hypoxic core within

spheroids of sufficiently large diameters. The purpose of this study was to

experimentally determine whether a hypoxic core is generated in MSC spher-

oids by measuring oxygen tension in aggregates of increasing diameter and

correlating oxygen tension values with cell function. MSC spheroids were

formed with 15 000, 30 000 or 60 000 cells per spheroid, resulting in radii of

176+8 mm, 251+12 mm and 353+18 mm, respectively. Oxygen tension

values coupled with mathematical modelling revealed a gradient that varied

less than 10% from the outer diameter within the largest spheroids. Despite

the modest radial variance in oxygen tension, cellular metabolism from spher-

oids significantly decreased as the number of cells and resultant spheroid size

increased. This may be due to adaptive reductions in matrix deposition and

packing density with increases in spheroid diameter, enabling spheroids to

avoid the formation of a hypoxic core. Overall, these data provide evidence

that the enhanced function of MSC spheroids is not oxygen mediated.
1. Introduction
Mesenchymal stem cells (MSCs) are under widespread investigation for regenera-

tive therapies [1]. However, a major challenge to the translation of MSC-based

therapies into clinical practice is ensuring their survival and function upon trans-

plantation to the defect site [2]. Previous studies have reported that the high death

rate and poor engraftment of cells in ischaemic conditions reduces the efficacy of

stem cell therapy, as less than 1% of MSCs survive 4 days after transplantation into

an ischaemic defect [3]. Possible reasons for these complications include trans-

plantation into a hypoxic and inflammatory environment, as well as loss of

extracellular matrix (ECM) produced in culture following proteolytic enzyme

treatment commonly used to harvest expanded cells from the culture dish [4,5].

We and others have demonstrated that MSCs exhibit increased overall func-

tion and improved survival when formed into three-dimensional spheroids

[6–9]. Compared with an equal number of dissociated MSCs, 15 000 cell MSC

spheroids exhibited similar caspase 3/7 activity yet secreted up to 100 times the

amount of vascular endothelial growth factor. Larger spheroids formed with

more MSCs had increased caspase activity coupled with reduced metabolic

activity and proliferation [6]. Spheroid size must be carefully considered due to

limitations in the diffusive length of nutrient transport, a feature that may

render cells in the core of spheroids with radii greater than 200 mm vulnerable

to hypoxia and cell death [6]. Some have speculated that the presence of a hypoxic

core within the spheroid may pre-programme the cells to promote survival and

enhance their trophic factor secretion [10]. Thus, additional advantages may be
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conferred by using a spheroid whose radius is near the nutrient

transport limitation but not if it is surpassed [11]. Nevertheless,

there is disagreement in the literature whether this hypoxic

core exists or is necessary for enhanced MSC spheroid function.

Previous studies using cancer cells and hepatocytes have

used oxygen-sensitive microelectrodes to measure their

steady-state oxygen values [12–14], while others generated

predictive mathematical models but were unable to directly

measure oxygen tension values for model validation [11].

Although numerous modelling studies have been devoted

to the investigation of transport phenomena throughout

spheroids [11,15–17], previous studies were conducted with

non-MSC populations that consume oxygen and nutrients

at different rates [18]. Additionally, the significance of spher-

oid formation for MSCs is vastly different from cancer cells

and hepatocytes, as MSCs do not naturally form spheroid-

like bodies in vivo but are instead used as a tool to prime

the cells for maximum trophic factor secretion [7]. Lastly,

the packing density and porosity would differ between cell

types, causing the rate of diffusion to differ [19].

The purpose of this study was to evaluate the oxygen

tension profile in MSC spheroids to establish the existence

of a hypoxic core and subsequently correlate cell survival

with oxygen availability in these aggregates. We used an

oxygen-sensitive microelectrode to measure oxygen tension

as a function of radius within spheroids of increasing

diameters. Data were used to numerically describe oxygen

gradients within spheroids using a mathematical model. We

measured cell viability and metabolism as a function of

spheroid size. Finally, we measured spheroid diameter and

packing density to examine a potential pathway of cell survival

in larger spheroids. The results of these studies offer an

enhanced understanding of the interplay among spheroid

size, nutrient transport and cell function.
2. Material and methods
2.1. Cell culture
Human bone marrow-derived MSCs (Lonza, Walkersville, MD)

from two donors were used without additional characterization.

MSCs were expanded in standard culture conditions (378C, 21%

O2, 5% CO2) in minimal essential medium–alpha modification

(a-MEM) supplemented with 10% fetal bovine serum (Atlanta

Biologicals, Flowery Branch, GA) and 1% penicillin/streptomycin

(P/S; Gemini, Sacramento, CA) until use at passages 4–5.

2.2. Spheroid formation and characterization
MSC spheroids were formed using the hanging drop technique

over 48 h with 15 000, 30 000 or 60 000 cells per 25 ml droplet [6].

This range was selected due to previous reports of resulting sizes

below and above the diffusion limit of oxygen, known increases

in trophic factor secretion, and to examine spheroids of similar

sizes reported in the literature [9,20,21]. This formation duration

was selected due to its ability to consistently form tightly packed

spheroids [21]. After the spheroids had aggregated for 48 h, spher-

oid diameter was quantified via bright field microscopy and

analysed with IMAGEJ (NIH, Bethesda, MD).

2.3. Oxygen tension measurements
Oxygen tension within the spheroid was measured in ambient air

at 258C using a Unisense oxygen microsensor OX-10 with an out-

side tip diameter of 10 mm and detection limit of 0.3 mM O2

(Unisense, Aarhus N, Denmark). Spheroids were held under
weak aspiration by a glass micropipette, and microsensor place-

ment was visualized using an Eclipse TS100 microscope (Nikon,

Melville, NY). The focal plane was used to place the microsensor

in the middle of the spheroid, and oxygen tension measurements

were taken every 10 mm until the centre of the spheroid. The

entire diameter of the spheroid was not profiled to avoid contact

between the microsensor and the glass micropipette (figure 1a).

2.4. Mathematical modelling
After oxygen tensions at the corresponding positions were

sampled, these data were used to generate a mathematical

model. As the MSCs within the spheroids are consuming oxygen

as it diffuses to the centre, we fitted the data to the mass transfer

equation for diffusive transport with simultaneous consumption

as previously described [12,13]:

@C
@t
¼ Dr2C� c, ð2:1Þ

where C is the concentration of oxygen; t is time; D is the binary

diffusion coefficient; and c is the reaction term using the following

assumptions:

(i) The system was at steady state.

(ii) Changes in O2 occurred only in one dimension, the radial

coordinate r, and did not depend on the polar (u) or the

azimuthal (w) angles.

(iii) The reaction rate of oxygen consumption was a zero-order

reaction; the cells are consuming oxygen at a maximum

rate K that is constant within each spheroid [17].

The equation can be rewritten in terms of the spherical

Laplacian as

K
D
¼ 1

r2

@

@r
r2 @C
@r

� �
, ð2:2Þ

where r is the radial coordinate.

The differential equation can then be written as

K
D
¼ d2C

dr2
þ 2

r
dC
dr

: ð2:3Þ

And the applicable solution is

C0 � CðrÞ ¼ K
3D

R2 � r2

2
þ b3

R
� b3

r

� �
, ð2:4Þ

where R is the spheroid radius; C0 is the concentration of oxygen

at the spheroid surface; and b is the radius at which dC/dr ¼ 0,

which represents the boundary of the hypoxic core within the

spheroid (figure 1b,c) [12].

This can be further simplified to

C0 � CðrÞ ¼ a� br2 � g

r
, ð2:5Þ

where

a ¼ K
3D

R2

2
þ b3

R

� �
,

b ¼ K
6D

and g ¼ Kb3

3D
:

To solve for K/D [¼]mol/(L * cm2) and b[¼]mm, the concentra-

tion of oxygen and the corresponding radial position within

the spheroid were inputted into equation (2.5) and integrated

numerically in MATLAB (Mathworks, Natick, MA).

2.5. Analysis of spheroid size and packing density
To estimate the spheroid radius, cell assembly into spheroids was

assumed to follow the behaviour of close packing of uniform

hard spheres. The maximal volume fraction attainable by
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Figure 1. Numerical prediction of oxygen tension within MSC spheroids. (a) Experimental set-up of the oxygen microsensor and MSC spheroid; (b) diagram demon-
strating the presence/absence of a hypoxic core; (c) theoretical schematic demonstrating the effect of the presence/absence of a hypoxic core on the oxygen tension
profile; (d ) measured oxygen tension values as a function of distance into the spheroid (n ¼ 5). (e) Using the measured oxygen tension values, a mathematical
model was generated from the averaged data for each spheroid size using equation (2.5) and was plotted alongside the averaged oxygen tension values at each
point within the spheroid. ( f ) K/D was calculated for each spheroid from the measured oxygen tension values (n ¼ 5). (g) Oxygen tension as a function of radius
was visualized in the three-dimensional space by mapping the mathematical model over the cross section of a sphere of the appropriate diameter. Scale bar
represents 250 mm. Groups with no significance are linked by the same letters, while groups with significance do not share the same letters.
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arrays of similarly sized hard spheres is p=3
ffiffiffi
2
p
ffi 0:74, and the

diameter of MSCs within the spheroid was estimated to be

15 mm [22], resulting in a volume of 1767 mm3 per MSC.

Predicted spheroid radius

¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3

4p

� �
no. of cells per spheroid� volume of MSC� 0:74

3

s
:

ð2:6Þ

The packing densities were calculated using known cell numbers

divided by the aggregate volume, assuming a spherical shape.

Packing density ½¼�cells cm�3

¼ no: of cells per spheroid

4=3pR3
: ð2:7Þ
2.6. Assessment of cellular function
After spheroid formation, MSCs were lysed in passive lysis buffer

(Promega, Madison, WI) and apoptosis was quantitatively

measured by analysing 100 ml lysate per sample by using a

Caspase-Glo 3/7 assay (Promega) [6,9]. Luminescence was

detected on a microplate reader and normalized to DNA content,

which was determined from the same lysate by using the Quant-iT

PicoGreen DNA Assay Kit (Invitrogen, Carlsbad, CA). Protein
concentration was determined using the bicinchoninic acid assay

(Thermo Fisher Scientific, Rockford, IL) according to the manufac-

turer’s instructions and normalized to DNA content. Glucose and

lactate concentrations were determined from media samples and

the lysis buffer, and concentration was assessed using colorimetric

assay kits according to the manufacturer’s protocols (Abcam,

Cambridge, MA) [11]. The glucose consumption was calculated

by subtracting the remaining concentration of glucose from the

initial stock medium as reported by the manufacturer, 5.5 mM

(Invitrogen) [23,24]. As there is no lactate present in a-MEM, all

lactate measured in the media was calculated as a product of cellu-

lar respiration. Glucose-6-phosphate (G6P) was assessed from the

lysate using a commercially available enzymatic assay (Sigma-

Aldrich, St Louis, MO) as per the manufacturer’s instructions

and normalized to cell number.
2.7. Histological analysis
Cell viability of MSC spheroids was assessed by a live–dead

assay (Invitrogen) based on the simultaneous determination of

live and dead cells with calcein AM and propidium iodide [9].

As a positive control for propidium iodide, spheroids contain-

ing 60 000 cells per spheroid were incubated in 70% methanol

prior to incubation with the calcein AM/propidium iodide

solution for 30 min as per the manufacturer’s instructions. To

visualize regions of apoptosis within spheroids at early to
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intermediate stages of apoptosis [25,26], annexin V conjugated to

fluorescein isothiocyanate (FITC) (Thermo Fisher Scientific) was

applied to sections at a dilution of 1 : 20 within a buffer com-

posed of 10 mM 4-(2-hydroxyethyl)-1-piperazineethanesulfonic

acid, 140 mM sodium chloride and 2.5 mM calcium chloride.

Samples were incubated with annexin V for 30 min at 378C
prior to washing and imaging. Viable cells determined by

trypan blue exclusion served as a negative control for annexin

V staining, while cells incubated in 750 nM staurosporine for

20 h [27], along with 500 000 cell spheroids, served as a positive

control. All samples were treated using 40,6-diamidino-2-pheny-

lindole (DAPI) nuclear counterstain. The area of FITC signal

(annexin V) was normalized to the area of blue signal (cell

nuclei) to determine an apoptotic index for the inner and periph-

eral regions of each spheroid, thereby indicating whether an

apoptotic core existed within the spheroids.

To visualize regions of hypoxia within the spheroids, pimonida-

zole hydrochloride (200 mM; Hypoxyprobe; Chemicon, Temecula,

CA) was added to the spheroids and incubated in ambient air

for 2 h. As a positive control, spheroids containing 60 000 cells per

spheroid were incubated in 1% oxygen for 5 days prior to collection,

where incubation with pimonidazole also occurred in 1% oxygen

[28]. Primary detection was performed with a 1 : 50 dilution of the

mouse monoclonal anti-pimonidazole IgG included in the kit,

and cells were counterstained with DAPI.

Spheroids were imaged using an Eclipse TE2000U microscope

(Nikon, Melville, NY) and an Andor Zyla digital camera (Oxford

Instruments, Abingdon, UK). Spheroids were collected and fixed

in 10% formalin, washed with phosphate-buffered saline, and

then embedded in HistoGel (Richard-Allan Scientific, Kalamazoo,

MI). Samples were embedded in Tissue-Tek OCT compound

(Sakura, Torrance, CA), and 10 mm sections were cut on a

CM1850 Cryostat (Leica Microsystems, Bannockburn, IL) and

mounted onto microscope slides (VWR Superfrost Plus Micro

Slide; VWR International, Radnor, PA) for analysis. To visualize

cell morphology, spheroids were collected and cryosectioned as

described above yet with no staining prior to collection. Sections

were then stained with H&E and imaged.
2.8. Statistical analysis
Data are presented as mean+ s.d. of the mean. Statistical analy-

sis was performed using a one-way ANOVA with either Tukey’s

post hoc correction for multiple comparisons or paired t-tests

when appropriate. All statistical analyses were performed in

PRISM. v. 7 software (GraphPad, San Diego, CA); p-values of

less than 0.05 were considered statistically significant. Signifi-

cance is denoted by alphabetical lettering; groups with no

significance are linked by the same letters, while groups with

significance do not share the same letters.
3. Results
3.1. Numerical simulation of oxygen profiles

in mesenchymal stem cell spheroids
Oxygen tension was measured every 10 mm for spheroids of

different sizes (figure 1d). Oxygen tension in the culture

medium was experimentally measured as 267 mM O2, which

was constant among spheroids of different sizes. Spheroids

were transferred from their hanging droplet to the microscope

slide just prior to analysis. The gradient in oxygen tension was

not significantly different between 15 000- and 30 000-cell

spheroids, whereas the rate at which the oxygen tension

decreased in the 60 000-cell spheroid was nearly twice that of

the 15 000- and 30 000-cell spheroids. Data were normalized
into the non-dimensional unit r/R, and from these experimen-

tal data, a mathematical model was generated for each

spheroid using equation (2.5) (figure 1e). The a, b and g

values were calculated for each spheroid, which were then

used to calculate b and K/D. For all three spheroid sizes, we

determined that g ffi 0, indicating b ¼ 0. In these studies, we

defined hypoxia as the critical oxygen tension that would

permit cell viability and function. If cells were no longer

viable, then they would not be able to consume oxygen and

nutrients, thus the b-value represents the boundary of the

hypoxic core where dC/dr ¼ 0. Therefore, since b ¼ 0 for

these MSC spheroids, these findings suggest that a hypoxic

core does not exist within these spheroids.

While a gradient clearly exists within the spheroids that

expectedly increases with increasing spheroid size, the largest

spheroid containing 60 000 cells per spheroid exhibits less

than a 10% decrease in oxygen tension between the outer

layer of cells and the inner core. Regardless of spheroid diam-

eter, the oxygen tension values do not approach a point at

which dC/dr ¼ 0 prior to the centre point, indicating that

these spheroids do not exhibit a limitation for the mass trans-

fer of oxygen. The a and b coefficients from the mathematical

model were then used to calculate K/D for each spheroid.

The smallest spheroids (15 000 cells per spheroid) exhibited

increased K/D values compared with the other two sizes,

indicative of a smaller diffusion coefficient if the reaction

rate of oxygen consumption is assumed to be constant

within spheroids of differing diameters (figure 1f ). This

assumption was verified by numerically solving for K/D at

each point using equation (2.4) (data not shown). To visualize

the oxygen gradient in three dimensions, numerical data

were mapped over the cross section at the midplane of

the sphere, varying the diameter of the sphere to that of the

average spheroid diameter for each size (figure 1g).

3.2. Packing density decreases with increasing
spheroid size

We noted that the measured radii did not follow a cubic

relationship with the number of cells per spheroid. To visual-

ize this, the predicted spheroid radius, assuming maximal

packing density, was calculated using equation (2.6) and

plotted with the measured radii (figure 2a). The measured

radii of the smaller spheroids (15 000 cells per spheroid)

correlated well with the predicted radii, yet the 30 000- and

60 000-cell spheroids were 16% and 25% larger than their

corresponding predicted radii, respectively. From these

data, it became evident that the packing density of the

MSC spheroids must decrease as the spheroid size increased,

allowing oxygen and nutrients to penetrate more easily into

the centre of the spheroid. Thus, the packing density was

calculated using equation (2.7), and we confirmed that as

the number of cells per spheroid increased the cells signifi-

cantly decreased their packing density within the spheroid

(figure 2b). To verify that differences in spheroid diameter

were due to packing density and not cell proliferation, we

quantified the DNA content as an indicator of cell number

within each spheroid. DNA content correlated with the

number of cells per spheroid (R2 ¼ 0.964), confirming that

all MSCs per droplet were incorporating into the spheroids

and there was no increase in cell number during spheroid

formation (figure 2c). Protein content per cell decreased as

packing density decreased (figure 2d ), suggesting relative
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decreases in ECM content within larger spheroids. Cell pack-

ing density and ECM content were further visualized using

haematoxylin and eosin (H&E), and numerous cavities

throughout the spheroid structure became more evident

with increasing spheroid size. H&E staining also revealed

that the outer layer of cells appeared more densely packed

and elongated than the interior of the spheroid for all three

sizes, and spheroids generally became less spherical as diameter

increased (figure 2e).

3.3. Cell viability and metabolic activity decreases
with increasing spheroid size

The largest spheroids (60 000 cells per spheroid) exhibited

increased caspase activity, indicative of apoptosis, compared

with the smaller 15 000- and 30 000-cell spheroids (figure 3a).

The aerobic state of spheroids was investigated by measuring

glucose consumption and lactate production. Total glucose

consumption significantly decreased with increasing spheroid

size, with the 15 000-cell spheroids consuming approximately

fourfold more glucose than the larger 60 000-cell spheroids

(figure 3b). Larger spheroids consumed less glucose than

their smaller counterparts, as evidenced by measurement of

intracellular glucose and glucose-6-phosphate levels (electronic

supplementary material, figure S1a,b). Intracellular glucose

measures instantaneous levels compared with the total glucose

consumption over 2 days, thus motivating the order-of-magni-

tude reductions from total glucose consumption. Total L-lactate

production followed the same trend as glucose consumption

(figure 3c). As no L-lactate is present in a-MEM, all L-lactate

was a result of cellular metabolism. The yield of lactate from

glucose was similar for all groups, regardless of spheroid size

(electronic supplementary material, figure S1c).
3.4. Histological detection of cell viability and hypoxia
Cell viability within spheroids was visualized using live/

dead dyes, revealing no discernable differences between

spheroids of different sizes. The absence of dead cells

within the larger spheroids was further validated by compar-

ing the spheroids with a positive control, in which spheroids

containing 60 000 cells per spheroid were incubated in 70%

methanol in order to kill the cells prior to incubation with

the live/dead dye (figure 4a). From these images, it is evident

that cells within each spheroid size are alive and viable.

The methanol solution caused the spheroids in the positive

control group to contract, leading to an oblong shape.

Annexin V staining further confirmed the absence of apop-

totic cells within the core of spheroids of 15 000, 30 000 and

60 000 cells (figure 4b,c). These results differ slightly from

our data quantifying caspase 3/7 activity, which is indicative

of cells actively undergoing apoptosis. Caspase activity is

highly sensitive and measured as relative luminescence,

making it is more valuable for comparing within samples

than for asserting the presence or the absence of apoptosis

since all cell populations have a baseline of apoptotic activity.

Immunohistochemical staining further validated our

oxygen tension measurements and verified the absence of a

hypoxic core, as there was no pimonidazole staining within

any of the spheroids (figure 5). Pimonidazole fluorescently

labels regions below 14 mM O2 and is commonly used in

cancer cell spheroids as well as hepatocyte spheroids to demar-

cate the boundary of the hypoxic core [17,29]. Thus, the

absence of a fluorescent signal indicates that a hypoxic core

does not exist within these spheroids. The positive control

(60 000 cells per spheroid incubated in 1% O2 for 5 days prior

to collection) yielded looser, smaller spheroids, possibly due

to a high degree of cell death as the medium was not refreshed.
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To determine whether spheroids of larger diameters would

exhibit significant apoptosis and hypoxia within their cores,

spheroids of 100 000, 250 000 and 500 000 cells were formed

and subjected to both annexin V and pimonidazole staining.

In contrast to the results reported here for 15 000-, 30 000-

and 60 000-cell spheroids, a statistically significant hypoxic

core was observed beginning from a size of 250 000 cells per

spheroid (electronic supplementary material, figure S2),

which correlated with a significant annexin V signal in the

core (electronic supplementary material, figure S3). These

results indicate that hypoxic cores within MSC spheroids

do exist and correlate with increased apoptosis, but only at

much larger sizes than those studied here.

4. Discussion
MSC spheroids exhibit increased cell survival and trophic

factor secretion compared with individual cells, making
them a promising alternative for transplantation in cell-

based therapies. However, there is disagreement in the litera-

ture whether MSC spheroids contain a hypoxic core and if

this hypoxic core is directly responsible for these enhanced

properties [7,30–33]. In these studies, we determined that

the oxygen gradient within MSC spheroids varied less than

10% from bulk, external oxygen tensions. As MSC spheroid

size increased, the packing density within the spheroids

decreased, thus facilitating oxygen and nutrient transport.

Nonetheless, we determined that glucose consumption was

markedly altered with increasing spheroid size. These data

demonstrate that MSC spheroid function is modulated with

spheroid size, yet this enhanced function of MSC spheroids

is not due to a hypoxic core.

The assumed presence of a hypoxic core within MSC

spheroids is largely based on reports demonstrating hypoxic

and necrotic cores within spheroids formed of cancer cells,

and, more recently, hypoxic cores within hepatocyte spher-

oids [11–13,17,34]. One cannot translate these findings to

MSCs, as both cancer cells [35] and hepatocytes [36] reside

in highly oxygenated niches, while MSCs typically reside in

niches with much lower physiological oxygen tensions [37].

Thus, the oxygen tensions capable of inducing necrosis may

be different between cell types. Furthermore, the application

of MSC spheroids is vastly different from cancer spheroids, as

spheroid formation primes MSCs for increased trophic factor

secretion, while cancer spheroids are used as in vitro tumour

models. Because of the radiation-resistant nature of hypoxic

tumours, cancer spheroids are designed to exhibit a necrotic

core surrounded by a hypoxic region to effectively examine

treatment strategies [38,39]. While we did not detect a

hypoxic core in spheroids formed with 60 000 MSCs or

fewer, others reported stabilization of hypoxia-inducible

factor (HIF-1a) within MSC spheroids, representing a potential

pathway for improved cell survival and growth factor secretion

[40]. However, this claim was based upon immunofluorescent

staining of MSC spheroids less than 200 mm in diameter, and

the staining occurred exclusively at the spheroid periphery,

more likely the result of aggregation stress than an oxygen

tension gradient. Others have investigated the presence of a

hypoxic core through histological analysis of spheroid cross

sections and demonstrated proliferating cells in spheroids up

to 1000 mm in diameter [6,41,42]. To our knowledge, this is

the first study to directly measure spatial distribution of

oxygen tension within MSC spheroids, which did not

approach hypoxic conditions in the centre of even the largest

spheroids formed from 60 000 MSCs. In fact, we did not

detect the formation of a hypoxic core until making spheroids

containing at least 250 000 MSCs. Hypoxia does not have a

strict definition in terms of oxygen tension and is dependent

on cell type and physiological conditions. We defined hypoxia

as the critical oxygen tension that would permit cell viability

and function. We observed only small changes in oxygen ten-

sion experimentally and numerically, which were insufficient

to induce signs of cellular distress via histological analysis,

indicating that hypoxic signalling was not occurring within

these spheroids. However, due to equipment limitations,

these studies were performed in ambient air and the induced

gradient may become more significant in vivo where oxygen

and nutrients are less available. Nonetheless, this does not

diminish the impact of these findings, as the increase in trophic

factor secretion by MSC spheroids in ambient conditions has

been previously reported [9,21,43].
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As the number of cells per spheroid increased, the packing

density decreased, resulting in tightly packed, smaller spher-

oids and loosely packed, larger spheroids. This may account

for why oxygen tension was not significantly reduced in the

larger spheroids, as the greater intercellular space allowed for

the transport of oxygen and nutrients to the centre of the spher-

oid. Studies in spheroids of select cancer lines [44] failed to

demonstrate such a correlation between spheroid size and

packing density [45,46]. While cell viability and actin-mediated

contractility were positively correlated in MSC spheroids [47],

this adaptive packing density has not been previously reported

with spheroids formed of this population. However, differ-

ences in MSC spheroid morphology have been noted due to

differentiation state [41,48] and dynamic culture conditions

[49], both of which could affect oxygen diffusion throughout

the spheroid. The increase in oxygen diffusivity is also reflected

in the K/D values, as the smaller, tighter packed spheroid con-

taining 15 000 cells per spheroid exhibits a K/D value more

than double that of the 60 000 cell spheroids. Interestingly,

although the oxygen gradient was not severe, increasing the

number of cells per spheroid significantly increased caspase

activity and decreased metabolic activity. This is in agree-

ment with our previous study in which we found that

smaller spheroids had greater metabolic activity and prolifer-

ation [6]. Others have reported that changing the number of

cells per spheroid had no effect on adenosine triphosphate
(ATP) levels on a per cell basis; however, those studies were

performed with spheroids ranging from 500 to 5000 cells per

spheroid that may not have been sufficiently large enough to

induce changes in metabolic activity [47].

Numerous studies have reported increased caspase activity

in MSC spheroids, and it has been postulated that this phenom-

enon is due to aggregation stress [21,50]. In these studies, we

observed that larger spheroids had elevated caspase levels, yet

there was no hypoxic core and they exhibited decreased packing

density, which probably decreased aggregation stress. Annexin

V, an early to intermediate marker of apoptosis, was not

detected in these spheroids. Thus, cellular apoptosis appears

to be a function of neither oxygen tension nor aggregation

stress, suggesting an independent mediator in three-dimensional

aggregates that warrants further investigation.

We observed decreased glucose consumption with increas-

ing spheroid size, as well as reductions in both intracellular

glucose and glucose-6-phosphate, yet we detected no change

in glucose metabolism as revealed through the lactate–glucose

ratio. Reduced glucose consumption yet maintenance of the

lactate–glucose ratio suggests impaired glucose uptake as a

function of spheroid size. Whether spheroid diameter regulates

expression and/or activity of glucose transporters, perhaps

through AMP kinase whose activation is regulated by glucose

bioavailability, presents as an intriguing possibility. Previous

results in two-dimensional adherent MSCs reveal distinct
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metabolic profiles across species [23]. Similarly, MSCs from

different donors within a species demonstrate variable

lactate–glucose ratios, indicating metabolic heterogeneity

[51]. By contrast, we found no difference in the lactate–glucose

ratio in spheroids as a function of spheroid size or donor. The

metabolic pathways used by MSC spheroids to process glucose

and glucose-6-phosphate remain to be defined. That the

lactate–glucose ratio decreases with greater cell number per

spheroid suggests that glucose is fully oxidized to carbon

dioxide by the tricarboxylic acid (TCA) cycle. Alternately,

glucose can be diverted to anabolic pathways (pentose phos-

phate pathway for generation of NADPH for reductive

biosynthesis or the formation of ribose-5-phosphate for

nucleotide synthesis). Although no other studies have yet

examined the bioenergetics of MSC spheroids, work by Liu

et al. [52] revealed that seeding density influences cellular

metabolism. MSCs cultured at low plating density relied

upon aerobic glycolysis for ATP production, with reduced

coupling of glycolysis to the TCA cycle, and greater activity

of the pentose phosphate pathway than cells cultured at

higher density [52]. Whether these results translate to three-

dimensional culture within spheroids requires greater investi-

gation, but these data suggest that spheroids of varying cell

size may have different capacity for the reduction of reactive

oxygen species that form upon transplantation into a low-

oxygen microenvironment.

One possible mechanism for reduced glucose uptake and

cell survival with increasing spheroid size is the decrease in

available integrin binding sites due to reduced protein content.

While the exact mechanism has yet to be elucidated, the simpli-

fied model of spheroid formation involves cell–cell contact,

cadherin accumulation, ECM deposition, integrin binding

and spheroid compaction [31]. However, as the MSC spheroids

adjusted their packing density to allow for the transport of

oxygen and nutrients, this came at the expense of ECM

deposition and available integrin sites for cell adhesion. Cell-

derived matrix enhances cell survival and function [53,54],

and MSC spheroid formation can enhance the production of

ECM proteins such as laminin, elastin, type 1 collagen and
fibronectin [31,55,56]. Furthermore, we recently demonstrated

that MSC spheroids containing 15 000 cells per spheroid

deposit a collagen-rich ECM, and that the MSCs’ integrin–

ECM interactions drive cell fate [57]. Therefore, the capacity

of spheroid formation to enhance MSC function is at least par-

tially mediated by cell–ECM interactions, and these cell–ECM

interactions decreased with increasing spheroid size. This, in

turn, may have led to a decrease in cellular metabolism and

increased cell apoptosis.

Overall, the discovery that spheroids composed of up to

60 000 MSCs did not exhibit a hypoxic core increases their

potential for clinical translation. The ability to form large,

viable tissue constructs represents a significant challenge to

the field of tissue engineering. As MSC spheroids adapt

their packing density and thus do not exhibit necrosis, they

represent promising building blocks for the emerging field

of bio-printing [58]. MSCs form symbiotic relationships

with a myriad of other cell types and could be applied to a

variety of different tissues.
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