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ABSTRACT 

A STOCHASTIC METHOD FOR MODELING FLUID DISPLACEMENT 
IN PETROLEUM RESERVOIRS 

C. Anderson and P. Concus 
Lawrence Berkeley Laboratory 

University of California 
Berkeley, California 94720, U.S.A. 

In the attempt to achieve optimal recovery of petroleum from a 
reservoir, it is usually necessary to model numerically the fluid dis­
placements within the reservoir. These displacements often involve 
the propagation of steep fronts, such as those between different fluids 
or between regions of differing chemical concentrations. Such fronts 
generally pose difficulty for numerical methods, the overcoming of 
which has stimulated the development of new methods in recent years. 
We discuss our recent work on one such method, the random choice method, 
which has the inherent capability of following even perfectly sharp 
fronts. The use of the method is illustrated for multi-dimensional, 
two-phase, immiscible porous f~ow, including 'the effects of capillary 
pressure and of gravity. 

INTRODUCTION 

As part of the attempt to achieve optimal recovery of petroleum 
from underground reservoirs, mathematical models of fluid displacement 
in the porous medium of a reservoir have been formulated and solved 
numerically. As practical incentives for greater recovery increase so 
does the interest in better numerical solution methods, particularly 
because enhanced recovery techniques often give rise to complex mathe­
matical problems. 

One area especially troublesome for numerical solution methods is 
that of following the propagation of steep fronts. These fronts typi­
cally may be those between regions of differing fluid saturation or 
chemical concentration. Even though steep fronts may not be present 
initially, they can develop naturally in time as a consequence of the 
inherent nonlinearities of fluid displacement in a porous medium. 
Specialized numerical methods are required if steep fronts are to be 
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followed stably and accurately, a task that may be crucial if, for 
example, reservoir dynamics depend strongly upon phenomena occurring 
at steep-front interfaces. 

We discuss here the random choice method, a numerical method 

that is designed particularly for following steep fronts stably and 

accurately. The use of this method for porous flow problems is still 
under development, particularly for multi-dimensional problems. Some 

of our current work in this area is described below. Other work on 

the random choice method for porous flow problems can be found in [11] 

and [12], and work on specialized techniques for finite element methods 

in, for example, [9], [15], and [18]. 

FLUID DISPLACEMENT EQUATIONS 

. The simultaneous, immiscible flow of two incompressible fluids 

is considered in an isotropic, homogeneous porous medium, including 

the effects of gravity and of capillary pressure. For a region whose 
interior is free of sources and sinks, one is led to the equations [21] 

(1) cp as g'Vf(s) a g(s) V·[h(s)Vs] at+ - y az o 

(2) V'g = Q 

(3) ~ - A ( s) [Vp - y~ (s) :k 1 . 

In these equations the quantity s(~,t) is the saturation of 

one of the fluids -- customarily the wetting one (the saturation of a 
fluid is the fraction of available pore volume occupied by that fluid); 

l-s is then the saturation of the other fluid, the non-wetting one. 

There holds 0 ~ s ~ 1. The quantities x and t are the space and 

time variables, respectively, and ~(~,t) is the total velocity (sum 
of the individual velocities of the two fluids). The coordinates 

~ = (x,y,z) are chosen so that gravity acts downward in the negative 

z direction, with :k the unit vector in the positive z direction. 

The quantity p(~,t) is the excess over gravitational head of the 

global pressure. (See the discussion below.) The quantity Q repre­
sents the sources and sinks of fluid (injection and producing wells) on 

the boundary of the domain. The porosity cp is taken, for convenience, 

to be constant in this study, and the coefficient y of the gravita­

tional term is y = gO(pw - Pn), where go is the acceleration due to 
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gravity, and Pw and Pn are the densities of the wetting and non­

wetting phases, respectively. 

Eq. (1) is the saturation (Buckley-Leverett) equation, which for 

our problems of interest, those with steep fronts, is hyperbolic or 
nearly hyperbolic in nature for a given q (the last term, which is 
the diffusive term, is assumed small). Eq. (2) arises from the incom­

pressibility and (3) from Darcy's law. For a given s, (2) is of 

elliptic type. 

The quantities f(s), g(s), h(s), A(S), and g(s) are functions 
of the relative permeabilities and capillary pressure, which are 

empirically determined functions of saturation, and of the viscosities, 

which are assumed constant. Let An and AW denote the phase mobil­
ities (ratio of permeability to viscosity) of the non-wetting and wet­

ting fluids, respectively; then for immiscible displacement 

f(s) g(s) 

g(s) h(s) 

where Pc (s) is the capillary pre.ssure. The quantity (-dPc/ds) is 
positive, An and Aware non-negative, and A(S) is positive, 
bounded strictly away from zero. Of particular interest are the non­

convexity of f(s) and g(s). For porous flow problems f(s) has 

typically an S-shape with one inflection point, as depicted in Figure 1, 
and g(s) has two inflection points, as depicted in Figure 2. The non­

convexity of f and g implies that in the limiting case of zero cap­

illary pressure, (1) with g fixed is a hyperbolic equation that does 

not satisfy the strict nonlinearity condition, thus permitting weak 

solutions that are combinations of propagating shock and expansion waves 

in contact. 

The quantity p(~,t) is pressure, which here is the average of 
the individual phase pressures diminished by the gravitational head and 

adjusted to include the capillary pressure by means of the global pres­

sure technique of [4]. Specifically, we take 
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Figure 1 Figure 2 

where PA is the average of the pressure of the wetting and non­
wetting fluids. 

Eqs. (1),(2),(3) are to be solved for . s(~,t) and p(x,t) given 

the initial value of s and suitable conditions on sand p on the 

boundary of the domain 

typically ensure that 

when s is known. If 

of interest. The boundary conditions on p 

g can be determined uniquely from (2) and (3) 

the capillary pressure term in (1) is absent, s 

may be discontinuous, and the equation will be satisfied only in the 

weak sense. We consider solving (1),(2),(3) by the random choice numer­

ical method. 

RANDOM CHOICE METHOD 

The random choice method is a numerical method that was developed 

for solving the hyperbolic equations of gas dynamics, for which solution 

discontinuities can occur. By using a sampling technique it controls 

numerical diffusion, even eliminates it altogether for one space dimen­

sion, and follows shock discontinuities sharply and accurately in a 

stable manner. The correct weak solution for a purely hyperbolic prob­

lem is obtained, corresponding to the limiting solution of parabolic 

problems as the dissipation approaches zero. A small amount of statis­

tical uncertainty is introduced, which normally is totally acceptable 

within the context of the discretization truncation errors. 
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The random choice method is based on a mathematical construction 
of Glimm [10] that was developed into a practical and efficient computa­

tional algorithm by Chorin [5].[6]. The earlier study of Moler and 

Smoller [19] is also of interest. Several persons have since studied 
and extended the method for problems in gas dynamics and in combustion; 

see. for example. [7]. [14]. and [22]. The random choice method was 

first adapted to porous flow problems in [2J. [3]. and [8]. and subse­

quently in [11] and [12]. where situations involving front instability 
(viscous fingering) and specialized multi-dimensional front tracking 

techniques were considered. 

For the fundamental equation of a single nonlinear conservation 

law. 

(4) ~ + .1... lji(s) at az o • 

to which (1) reduces in one space dimension in the absence of capillary 

pressure (q is constant for one space dimension). the random choice 
method advances a solution in time as follows. First the solution 

s(z.tj ) at the initial time tj is approximated by a piecewise­

constant function on a spat~al grid zi = i~z. i = .... -1.0.1 •...• where 
the function is equal to s~ = s (z .• t.) intl:J.e interval z. - ~lIz < z E;; 

1. .1.J 1. 
E;; zi + ~lIz. Then the (weak) solution of (4) is constructed analytically 
by the method of characteristics for the piecewise-constant initial 

data. and this solution is sampled at the new time to obtain the values 

for the new piecewise-constant approximation. 

By choosing the time increments t sufficiently small so that the 

Courant-Friedrichs-Lewy condition (lIt/lIz)max!lji'(s)! < 1 is satisfied. 

the waves propagating from the discontinuities in the initial piecewise­

constant approximation can be prevented from interacting during any 

given time step. This permits the solution of (4) to be carried out for 
a given time step by joining together the separate solutions of the 

Riemann problems. (4) with initial data 

(5) 

The practical success of the random choice method depends upon being 

able to solve these associated Riemann problems efficiently. 
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RIEMANN PROBLEMS 

The function ~(s) in (4) is the linear combination of f(s) and 
g(s), 

~(s) = [qf(s) - yg(s)]/ cP , 

and may typically have either one or two inflection points. Because 

of these inflections the solution of (4),(5) can be more complex than 

if ~(s) had no inflections, for which case the solution would be 

either a propagating single discontinuity (shock) or centered expansion 

wave. The presence of the inflections permits solutions that can con­
sist of combinations of one or more shocks and an expansion wave in 
contact. 

If the gravity term yg(s) is small compared with the transport 
term qf(s), then ~(s), like f(s), has only one inflection. For 

q > 0, this case is covered in [8], where the problem without gravity 

is considered. If q < 0, then the reasoning used in [8] would apply, 

except that all waves would propagate in the negative instead of the 

positive z-direction. 

For cases in which the effects of the gravity term become signifi­

cant, ~(s) will have two inflections. A typical example with y > 0 

is depicted in Figure 3. 

The Riemann problem solution is obtained by means of the following 

conditions which must hold along any curve of discontinuity of s(z,t). 
Let s = lim s(z,t) and s = lim s(z,t) be the limiting values 

- z+z_ + z+z+ 
from the left and right, respectively, at the discontinuity. Then there 

must hold [17], [20] 

o 
s 

Figure 3 
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~ = 1/1(0)-1/1(5,) 
dt . -51 

t 
t 

5=0 5=1 

Figure 4 

(a) Rankine-Hugoniot jump condition: The curve of discontinuity is a 

straight line with slope 

dz ~(s+) - ~(s_) 

at s+ - s 

(b) Generalized entropy condition: 

for any s between s+ and 

For a particular· f(s) 

s . 

and g(s) the Riemann 

is given 

depicted 

explicitly in [1] for the ~(s) of Figure 

the solution of (4),(5) for s~ = 0 and 
~ 

problem solution 

3. In Figure 4 is 

s{+l 1. Figure 3 

shows the concave hull of ~(s); the chord through s = 0 is tangent 

to ~(s) at s = sl and the chord through s = 1 is tangent at 

s = s2' These values determine the shock propagation speeds. In Fig­

ure 4 are shown the two lines of discontinuity (shocks) that propagate, 

respectively, in the negative and positive z-direcitons from the initial 

discontinuity at z = z. + ~~z. The characteristics from 
~ 

z < z. + ~~z 
~ 

on the initial line t = t. 
J 

and those from z > z. + ~~z 
~ 

intersect the leftward travelling shock, 

intersect the rightward travelling shock. 

Between the two shocks is an expansion wave with a fan of characteris-

tics emanating from the initial discontinuity. 
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If the sampled point is within the fan, then the corresponding 

value of s is determined by solving a single nonlinear equation to 

find the value of s between sl and s2 at which d~/ds is equal 
to the reciprocal of the slope of the characteristic through the point. 

If the sampled point is outside the fan, then either s = 0 or s = 1. 

SAMPLING 

The use of Riemann problem solutions to advance stepwise in time 

was introduced by Godunov [13]. It was the subsequent coupling with 

sampling, however, that contributed to the striking effectiveness of 

the random choice method in following sharp fronts. The sampled value 

of s in each interval at the new time is assigned as the new value of 
the piecewise constant approximation to s for that interval. 

To yield an accurate representation of the solution the sampling 

sequence should be equidistributed [6] ,[7]. In [7] a deterministic 
van der Corput sampling sequence was propoased for use with the random 

choice method and was found to perform more favorably than previously 

used sequences with random components. The mth number e in the 
m 

basic van der Corput sequence is given by 

e 
m 

where the binary expansion for m is 

A discussion of the method and extensions for use with multi-dimensional 

problems are given in [7]. 

SOLUTION PROCEDURE 

Because of the numerous physical parameters, it is convenient to 

place (1),(2) ,(3) in non-dimensional form. To do so, we select the 

characteristic reference quantities: length xO' mobility 1.0 ' source 

strength QO' capillary pressure Pc' and density PO' The norma1-
o 

ized non-dimensional quantities are then defined to be 
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-
~/xO gXO/QO 

2 x g t = tQol (</>xO) 

V = XO'l Q = 
2 

Iw Aw/Ao In An/AO QXo/Qo , , 

P = pAo/Qo , Pc Pc/pc Pw = Pwl Po Pn Pn l Po , 
0 

and h(s) = h(s)/(AOp ) , g(s) g(s) lAO , I(s) = A(s) lAO 
Co 

For problems without boundary sources, a characteristic pressure or 
velocity could be used for non-dimensionalization in place of QO 
above. 

The dimensionless parameters 

that arise give a measure of the magnitudes of the gravity and capil­
lary pressure terms. Eqs. (1), (2), and (3) become (omitting bar 
superscripts) 

(6) ~~ + S·'lf(s) - B ddZ g(s) - E'l· [h(s)'ls] o 

(7) Q 

(8) 

For our illustrative numerical examples we solve (6),(7),(8), 
with accompanying boundary conditions, on the square 0 ~ x ~ 1, 

o ~ z ~ 1. A uniform mesh (~x = ~z = liN) is placed on the square 
and p is approximated by its value at the mesh points xi = i/N, 
Zj = j/N, i,j = O,l, ... ,N. The saturation s is approximated at 
the staggered points [(i+~)/N, (j+~)/N], i,j = 0,1, ... ,N-l, for 
convenience in setting up discrete approximations to (7),(8) [2]. 

Let 

at time t = tn' 

denote the approximate solution for the saturation 
To obtain pen) and g(n) = (u(n) ,wen»~, discrete 

approximations are solved to (7),(8) and their boundary conditions, 
using sen) for s. In our current study (6) is advanced one step 
in time to obtain s(n+l) by solving successively 
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dS + (n) d f(s) _ B d g(s) 0 at w az az 

by the one-dimensional random choice method, and 

;~ - £V·[h(s)Vs] o 

by a standard explicit method. Alternatives to the above operator split­

ting procedure are under study which have promise of greater accuracy in 

following undulating fronts and those propagating in directions unfavor­

ably oriented with respect to the mesh. For one approach, see [12]. 

Results for two numerical examples are depicted in Figures 5 and 6. 

A source of non-wetting fluid (s = 0) is located at one vertex of the 

square and a sink is located at the diagonally opposite vertex. On the 

boundary, the normal component of g and the normal derivative of s 

are taken to be zero. Initially the square is occupied entirely by wet­
ting fluid (s = 1). 

An = 

2 
AW s and The (non-dimensional) mobilities are taken to be 

a(1-s)2, where a is the .ratio of viscosities of wetting to non­

Figures 1 and 2 depict f(s) and g(s) for this case 

The parameter £ is taken to be zero (zero capillary 

wetting fluids. 

with a = 0.5. 

pressure), for which the solution has a sharp propagating discontinuity 
front. 

Figure 5 depicts the solution for the case B = 2.5 and a = 5 

with a source of (dimensionless) strength 5 at the upper left vertex and 

sink of equal magnitude at the lower right vertex. Since B > 0, this 

case corresponds to the injected fluid having smaller density than the 

fluid being displaced. The mesh spacing is lIN = 1/40 as indicated by 

the tick marks. For these parameter values gravity effects outweigh the 

transport effects somewhat, except near the source and sink. 

The contours in Figure 5 are curves of constant saturation from 0.1 

to 0.6, in increments of 0.1, increasing away from the source (0,1). 

The contours for saturation 0.7 and greater generally lie directly under­

neath the 0.6 contour. (The advancing front as calculated by the random 

choice method is essentially a sharp discontinuity with a saturation 

value corresponding to s2 in Figure 4.) The contour plotting program's 

interpolation procedure displaces, over a mesh interval, contours that 

(J 
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Figure 5 

Saturation contours s = .1, .2, .3, .4, .5, .6 
at times (a) t = .11, (b) t = .21, (c) t = .30, (d) t = .42 

for. first test problem. 
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Figure 6 

Saturation contours s = .1, .2, .3, .4, .5, .6 
at times (a) t = .06, (b) t = .12, (c) t = .24, (d) t = .28 

for second test problem. 
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should lie on top of each other, hence the drawing of contours .7, .8, 
and .9 was suppressed for clarity in the figures. The solution is 
depicted at several values of t, up to a time prior to breakthrough 
of the displacing fluid into the sink. The undulations in the advanc­
ing front, of the order of one mesh spacing, are due in part to the 
interpolation introduced by the contour plotting program, but mainly to 
the properties of the random choice method, of which they are typically 
representative. These statistical fluctuations db not cause numerical 
difficulty, however, even for the present case of £ = 0, for which 
the front.is seen to move in a generally stable manner. 

The example depicted in Figure 6 is for B = 5 and a = 2 with 
a source of strength 5 at (0,0) and a sink of the same strength at (1,1). 
Here the less-dense fluid is injected at the bottom of the domain and 
advances buoyantly towards the top while progressing more slowly toward 
the sink. The contours and mesh spacing are as in Figure 5. 

The time required to perform the complete calculation to break­

through, including numerical solution of (7),(8) by a fast-Poisson pre­
conditioned conjugate-gradient method, was approximately 3 minutes on 
the CDC 7600. This is several times slower than for a problem without 
gravity [2], in part because with B 1 0 ~(s) generally has a differ­
ent shape at each mesh point. 

No attempt was made to assess the error in the computed solution 
for these examples except by verifying qualitative agreement with solu­

tions obtained with coarser grids. The analytic solution for a test 
problem without gravity for which g does not vary with time [A(S) = 1] 
is compared with the random choice method numerical solution in [3]. 

Recently obtained experimental results for a one-dimensional Buckley­
Leverett problem have indicated that the random choice method obtains 

more accurate solutions near a shock than do other commonly used methods, 
strikingly more accurate than the difference method that yielded incor­
rect weak solutions not satisfying the entropy condition [16]. 

ACKNOWLEDGMENTS 

This work has benefited directly from our earlier joint work with 
N. Albright and W. Proskurowski. It was supported in part by the 
Engineering, Mathematical, and Geosciences Division of the U.S. Depart­
ment of Energy under contract W-7405-ENG-48. 



-14-

REFERENCES 

[1] N. Albright, C. Anderson, and P. Concus, The random choice method 
for calculating fluid displacement in a porous medium, "Boundary 
and Interior Layers--Computational and Asymptotic Methods", J. J. H. 
Miller, ed., Boole Press, 1980. 

[2], N. Albright and P. Concus, On calculating flows with sharp fronts 
in a porous medium, Fluid Mechanics in Energy Conversion, J. D. 
Buckmaster, ed., SIAM, Philadelphia, 1980, pp. 172-184. 

[3] N. Albright, P. Concus, and W. Proskurowski, Numerical solution of 
the multidimensional Buckley-Leverett equation by a sampling method, 
Paper SPE 7681, Soc. Petrol. Eng. Fifth Symp. on Reservoir Simula­
tion, Denver, CO, Jan. 31 - Feb. 2, 1979. 

[4] G. Chavent, A new formulation of diphasic incompressible flows in 
porous media, Lecture Notes in Math., 503, Springer-Verlag, Berlin­
Heidelberg-New York, 1976, pp. 258-270. 

[5] A.J. Chorin, Random choice solution of hyperbolic systems, J. 
Comput. Ph~, 22 (1976), pp. 517-533. 

[6] A. J. Chorin, Random choice methods with applications to reacting 
gas flow, J. Comput. Phys., 25 (1977), pp. 253-272. 

[7] P. Colella, An analysis of the effect of operator splitting and 
of the sampling procedure on the accuracy of Glimm's method, Ph.D. 
Dissertation, Mathematics Department, University of California, 
Berkeley, 1979. 

[8] P. Concus and W. Proskurowski, Numerical solution of a nonlinear 
hyperbolic equation by the random choice method, J. Comput. Phys., 
30 (1979), pp. 153-166. 

[9] J. Douglas, Jr., B. L. Darlow, M. Wheeler, and R. P. Kendall, 
Self-adaptive Galerkin methods for one-dimensional, two-phase 
immiscible flow, Paper SPE 7679, Soc. Petrol. Eng. Fifth Symp. on 
Reservoir Simulation, Denver, CO, Jan. 31 - Feb. 2, 1979. 

[10] J. Glimm, Solutions in the large for nonlinear hyperbolic systems 
of equations, Commun. Pure Appl. Math., 18 (1965), pp. 697-715. 

[11] J. Glimm, D. Marches in , and O. McBryan, The Buckley-Leverett equa­
tion: theory, computation and application, Proc. Third Meeting of 
the International Society for the Interaction of Mechanics and 
Mathematics, Edinburgh, Sept. 10-13, 1979. 

[12] J. Glimm, D. Marchesin, and o. McBryan, Unstable fingers in two 
phase flow, Rockefeller Univ. preprint, 1979. 

[13] S. K. Godunov, Finite difference methods for numerical computation 
of discontinuous solutions of the equations of fluid dynamics, Mat. 
Sbornik, 47 (1959), pp. 271-306 (in Russian). 

[14] A. Harten and P. D. Lax, A random choice finite-difference scheme 
for hyperbolic conservation laws, Courant Mathematics and Comput­
ing Laboratory Report, New York Univ., May 1980. 

[15] J. Jaffre, Approximation of a diffusion-convection equation by a 
mixed finite element method: application to the water flooding 
problem, Comput. Fluids, 8 (1980), pp. 177-188. 

.~ 



-15-

[16) J. LaVita, Some remarks on the comparison of methods for computing 
discontinuous solutions of conservation laws, Lawrence Berkeley 
Laboratory Report LBL-11469, Univ. of California, 1980. 

[17) P. D. Lax, Hyperbolic Systems of Conservation Laws and the Mathe­
matical Theory of Shock Waves, SIAM Regional Conf. Series in Appl. 
Math., 1973. 

[18) K. Miller and R. Miller, Moving finite elements, part I, SIAM J. 
Numer. Analysis (to appear). 

[19) C. Moler and J. Smoller, Elementary interactions in quasi-linear 
hyperbolic systems, Arch. Rat. Mech. Analysis, 37 (1970), pp. 309-
322. 

[20) O. A. Oletnik, Uniqueness and stability of the generalized solu­
tion of the Cauchy problem for a quasilinear equation, Amer. Math. 
Soc. Translat., II. Ser., 33 (1963), pp. 285-290. 

[21) D. W. Peaceman, Fundamentals of Numerical Reservoir Simulation, 
Elsevier, Amsterdam-Oxford-New York, 1977. 

[22) G. Sod, A numerical study of a converging cylindrical shock, J. 
Fluid Mech., 83 (1977), pp. 785-794. 




	LBL11523_cover.pdf
	LBL11523_text.pdf



