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ON EFFICIENT ESTIMATION OF SOME LIMITED
DEPENDENT VARIABLES MODELS}

Yacov Tsuri

INTRODUCTION

In empirical research, it is often the case that the data set under investiga-~
tion is incomplete. Consequently, a plethora of estimation methods have been
developed to deal with the several possible pattern of missing data, such as in
Afifi and Elashoff [1966], Griliches, Hall and Hausman [1978], and Dempster,
Rubin and Laird [1977]. In general, these methodologies use prior knowledge or
information on the process generating the data and on the missing patterns to
"complete” the data set. Standard estimation procedures are then employed on

this new data set.

The econometric literature distinguishes two types of models corresponding
to missing data préblerns: incomplete data on predetermined or right-hand-side
(RHS) variables only; and incomplete data on the dependent, and possibly on the
RHS, variables. In the latter models, known as Limited Dependent Variable {LDV)
models, the most widely used eétimation procedures follow Heckman
[1976,1978] and Lee [1978]. These procedures do not use "filled-in" methods but
rather employ a two stage procedure where the second stage focuses only on

the observed part of the sample with additional terms that account for the

t This research was partially supported by Water Resources Center Grant W822 and by the
Giennini Foundation of Agricultural Economics.
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I wish to thank T. Rothenberg, L. Le Cam, M. Hanemann and P. Ruud for helpful discussions
and comments. Any remaining errors are, of course, my responsibility.
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selection mechanism (or missing patterns), derived in the first stage.

Maximum likelihood (ML) methods are frequently considered (Amemiya
[1973], Hausman and Wise [1978], Heckman [1978], Duncan [1980], Cosslet
[1981], among others) but rarely used in practical applications because of com-
putational and implementation difficulties. (See Griliches et al. [1978] as an
exception.) This is primarily because the log likelihood furnctions of LDV models
is generally highly non-linear in the parameters and often contains multiple
roots so that iterations with arbitrary initial values may result in a root that
does not correspond to the global maximum of the function (Amemiya [1973]).
To overcome the possibility of a "wrong root" requires a "good” initial parameter
value. This leads to the consideration of a single iteration procedure of the form
SF —R (P )"qug(ﬂp ). where %% is the preliminary estimate, R{¢¥”) is an estimate
of the information matrix and Ls(8") is the gradient of the log likelihood func-
tion evaluated at o7, Thg outcome of this procedure, denocted as the "Linearized
Maximum Likelihood" (LML) procedure, is asymptotically equivalent to the ML
estimator provided that ¢ approaches the true parameter at an "appropriate”
rate as the sample size increases. (See Le Cam [1960, 1969], and Rothenberg
and Leenders [1964] for a theoretical discussion, and Berndt, Hall, Hall and
Hausme;n [1974] for implementation). In fact any estimate of the form
BF — R(8F) ug(8F), such that VT (wg(8F) — Ls(8F)) goes to zero in probability
as the sample size T - =, has the same limiting distribution as the LML estima-

tor. We will use this generalization of LML and denote it as the GML estimator.

Recently, an alternative algorithm for the ML estimation of models with
incomplete data has been offered by Dempster et m: [1977]. This method, called
the EM algorithm, is an iterative procedure with each iteration comprised of two
steps: an Expectation (E) step which can be interpreted as a guideline for filling

in the missing data; and a Maximization (M) step which proceeds with a
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maximization task. Since this seminal paper, an extensive literature has
emerged dealing with the convergence properties of the algorithm and its possi-

ble aplications {e.g., Wu [1983] and the reference cited therein).

The purpose of the research reported here is to investigate efficient estima-
tion methods for some LDV models in the context of the EM algorithm.! The use
of the term EM approach rather than algorithm is adopted because the M step
can take on differing formats in the algorithm and we will modify this step sub-
stantially in several cases. Two procedures will be considered: an iterative pro-
cedure resulting from a straightforward application of the EM algorithm: and a
single iteration procedure, corresponding to the LML procedure, resulting from
the EM approach. Each method is evaluated under two scenarios: single equa-
tion models (Section 2) and two-equation models (Section 3). Each scenario

involves two models corresponding to different patterns of missing data.
The conclusions emanating from the analysis include:

1. ML estimators can be derived via iterative Ordinary Least Squares (OLS)
in single equations models, or Generalized Least Squares (GLS) in multiple equa-

tion models if the EM algorithm is employed.

2. The EM approach provides a unique method for deriving and interpreting
the LML estimator which basically involves the application of an Instrumental
Variable (IV) regression.

3. The approach lends itself to an integrative framework which unifies the
analysis of the many possible LDV models and links it to classical linear model

theory. -

! The concept of efficiency used in this work together with the conditions that assure the
efficiency of the ML estimators are given in Appendix C. Consequently, the terms “efficient
estimator” and "ML estimator” are used interchangeably.
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The basic notation is as follows: the parameter set is denoted by ® with
representing an arbitrary member. A specific member of @ is denoted by a
super-script on 4 except for the cases of ML, LML, and GML estimators which are
denoted by 3, Uiy, and B¢y respectively. Other exceptions are indicated in
the text. The true parameter value is given by ¥°. Superscripts in general indi-
cate evaluations of the quantity at the specific parameter value. A superscript
"*" indexing a variable indicates that the variable is incompletely observed. The
density and distribution functions of a standard normal variate are denoted by
(.) and 3(.) respectively. The line segment joining two distinct points %' and 3"
of ® is denoted by ¥ ". The log likelihood function is denoted by L{%) with L4(.)
and Lgs(.) indicating the gradient vector of first derivatives and the Hessian
matrix of second derivatives respectively. An estimate 9% is consistent of order

T7% or VT -consistent, if VT (3F —9°) is bounded in probability as T -e.

2. SINGLE EQUATION MODELS

Two basic LDV single equation models, the Tobit and probit models,
corresponding to two different patterns of missing data, are considered in this

section.

The underlying structure is given by
(21) y' =z +u , t=1,2,..,T

(22) w "% N(0,0°%, t = 1,2,...T

The Tobit model results from the following obseyrv*vation rule

; if 'y;z O
(23) y, = . t=12,...T
0 otherwise



and for the probit model

1 ify;Z O
(2.3) Y = t=12,....T
0 otherwise

For both models it is assumed that z; is observed for all t, where X =
(z1.%2,....27)" is a Txk matrix, y* = (y*1.4*z....y*r) is a Tx1 vector of quantities
for which we observe y=(y,y,,....yr)" according to (2.3) or {2.3'), 8° and ¢°° are
respectively kx1 and 1x1 vectors of parameters to be estimated, and

w=(u},uy,...,ur) is a Tx1 vector of unobserved errors distributed according to
(2.2). 1t is assumed that X is of full rank, that ITirn %—,—X‘X exists and is positive

definite and that each column of X is statistically independent of the error vec-

tor u.

The missing data pattern corresponding to the probit model creates

identification problems in that any structure that agrees in sign with (2.1)

S oz
results in the same observations. Specifically the structure %——= -35‘1-1- —for

an arbitrary 0 < a < o is observationally equivalent to {2.1) and so a normaliza-
tion rule is required to identify any of the parameters. The normalization usually
employed and used in this study is ¢° = 1. No identification problems arise in

the Tobit model.
Let g; be defined as the indicator variable
1if y{ =0

(2.4) q = t=12,...,.T
0 otherwise

The sample g;; t = 12, ... Tis a realization of T independent Bernoulli trials

with the probability of success for the t* trial equal to 1 — &(—z;8°/¢°). This
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captures the randomness inherent in the observation rule.

In the application of the EM algorithm, discussed below, the following

definitions and results will be used

(2.5a) ;\;=M
@~/ 0)

-
(2.56) A = [ Temyre

where y, = z/8. 1t follows that

N def 1 ~
(2.6a) e A= 07\t(/i¢/0+7\t)

6)\{ dif
Ot

(2.66) A== 0 (/o D)

Defining 7f = vor(u; | < —i) and T} = var(w |y, = —4) it can be demon-

strated that (See Appendix A)
(2.72) T =c*(1 + oh)
(2.70) T = o?(1 + o) .

For any given parameter value, ¥ , we define yf = E’dxiy,'lytg where 1§}

denotes the expectation when ¥ holds. So

(R8) yf = quy + (1-q)(uf + 0°N\®) under Tobit

and

(R8) yf = quluf + M%) + (1—q,)(uf + \7®) under probit.

It can be verified that



e
(29)  Eg(y’ —mPlyed = (- m)? +7¢
where
(2.10) Tt = (1 —q)7r under Tobit
and
(2.10) 7y = (1 — q,)71 + g7 under probit .

The log of the joint density function of 43 t = 1,2, ..., T, is given by (disregard-

ing the constant term)

1 T 1
* . = —_— 2y S —
@10 7)== g % - Liog &
From (2.9) it follows that
. 1 a X 24 ™ T 2
(R12) B if(y"9)ly} = gy 2 [yt ~ 1) + T} = 2-log o°

Maximizing (2.12) over g8 and o? yields

(2.13a) gl = (X'X) 1 x'y*

T
(2186) 0°1" = -9\ (yF — ()2 + £ ) T

"
1D

1
T

Equations (2.12) and (2.13) form, respectively, the E step and M step of one
iteration of the EM algorithm which was shown {Dempster et al, [1977]) to yield a
root of the likelihood function. Therefore ML estimate can be derived via itera-
tive OLS procedur‘es.2

2 Note that CI is not an unknown parameter under the Probit model so (2.13b) is i~
relevant in this case.
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The same results were obtained by Hartley [1978] Fair [1977] (for the Tobit
model), and Green [1982b]. The first two by considering the first order condi-
tions of the log likelihood function and the later by using the EM method.
Hence, in single equation models the standard approach of maximizing the log
likelihood function can yield the same procedure as the EM algorithm of (2.11)
to (2.13). However, as is demonstrated in Section 3, in multiple equation models
the EM algorithm provides a unique procedure with advantages that have not

previously been recognized.

The other estimation procedure considered in this study is the single step
procedure. In this procedure an initial "good” estimate {(%%) is first derived and
used to construct R(WF) and ws(¥F). The final estimate is given by
Soyr = 13P~}?(19P)"1w1;(19p). Following Le Cam [1960, 1969], and Rothenberg and

Leenders [1964], ¥y, is asymptotically efficient provided that 9% is consistent
P
of order T7% R{($F) >, ¥(¢°) the information matrix, and VT (ws(8F) -

Ls(7)) . 0. ¥py is accepted from Ygyy, by putting we($F) = Le(9). Bgyy is not
unique since there are different £(.)’s and ws(.)’s satisfying the conditions above
(e.g., R(.) can be the Hessian matrix of the second derivatives of the log likeli-
hood function or the one suggested by Berndt et al. [1974]). Our approach pro-
vides another method to construct ¥gy; which produces an outcome that is
identical to the standard method of putting R(.) = Lgs{8") and wy(.) = Ly(s?),
in single equation models but, as will be shown in Section 3, is unique in multiple
equation models.3 This is the subject of the following discussion which begins by
considering the case of known o°* {(which includes_the Probit model automati-

cally).

% It is worth noting that, starting from a V' 7 -consistent estimate, one EM iteration (of the
form given in (2.12)-(2.13)) will not yield an efficient estimator. This is true also in multiple
equations models,



2.A The Case of Knoun ¢°°

The first step is to characterize the asymptotic properties of an efficient
estimator. From (2.13a) it follows that 5*! = g + (X'X) "' X'u* where u* is a Tx1

vector with the £t* coméonent defined as

(R.14) uf =yf ~ zp°

Since the ML estimator E is a fixed point of (2.13a) the following orthogonality

relation holds at ;§

(2.158) Xxuf = ZT: ruf =0
t=1

Expanding A7 ¥ , A f around A A respectively allows one to express uf as
wf =[1 = (1-q)(1+ oA P)]zi(g” —B) + 4 -

under Tobit, where the super-script "o" is dropped from ¢ until otherwise indi-

cated, and under the probit model as
uf =[1- (1= g )1+ AF) — g, (1 + AP)]z (B0 -B)+4,
where F € 5°ﬁ and ¢; is an error term defined as
(2.18) & =wu, — (1-g,)(uy — oA) under Tobit
and
(2.18") & =y — (1~g)(wy =A%) — g4 (wy ~N\°) under probit.

Using (2.7) u# can be expressed as

(2.17) uf = ;12—{02 —- 7Pz (B> - B) + &,
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where 7y is defined in (2.10) and (2.10’) and is rewritten below for convenience
(2.10) 7 = (1—qt)?[ under Tobit

(R.10) 7y = (1-q,)77 + ¢, 7  under probit,

It follows from (2.15) and (2.17) that
B-go) =L L o2 3y Ll
(@18) NT(B-g) = (02 to? - Wyzig™ e St

Accounting for the randomness underlying ¢; the £'s are independent random

variables with zero mean and variance equal to:
(2.19) war {&] =0%7¢; t=12,....T

where

(.20) 1 = ¥(~ue/ o)1i under Tobit
and

(R.20") 7y = O~ )T + [1-8(—w )1 under probit.

T
Applying Liapounoff's Central Limit Theorem to v'\/l___TE zi €& for an arbitrary
t=1

K-vector v yields

@21) 23 e S MO A0 —D°)
' VT &7 '

where

(R.22a) A= hm ——-—cr i

Tz

T
(2.226) D= Ilm Z Tz,

1
T
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Note that A-D = 0 (i.e., is positive semi-definite) since o2—7,>0 for all t.
Let v be a member of an arbitrary vector space (finite dimension) such that

the %‘lm T ﬁ vy exists and let d; be a Bernoulli variate with success probabil-

ity equal to P;. Then the following result holds, (See Amemiya [1973]).
T ]

(2.24) hm——ﬁ vidgvy = hrn -—Z Ve PV

This result together with the fact that? is consistent implies that

P
(2.25) 7 o ;}é—{A"—D“]

1
o

n e

1
T

1t follows from (2.18), (2.22a and b), and (2.25) that

THEOREM:

(2.26) VT (B—f°) > N{O, o*(4°—D°)-Y).

The inverse of the covariance matrix in the RHS of (2.26), denoted as the asymp-

totic precision (also the information matrix in this case) is equal to
-—1-4-74" - —-IZ—D". The first term is the asymptotic precision in the absence of
o o

missing observations. The second term is the asymptotical loss in precision

(information) due to the missing data pattern.4

Having characterized the asymptotic distribution of an efficient estimator,

we now assume that a “good" initial estimate, denoted as g7, is available. Define

(e2n) §F=vF - L3Hme" s 7 = GPGE.. TP o Tx1 vector

4 The theorem above is, of course, not new {e.g., see Amemiya [1973]), but the process of
deriving it, motivated by the fact that the ML estimator, 3, is & fixed point of (2. 13&) tnereay
leadmg to (2.15) - (2.26), is & natural outcome of using the EM algorithm. This generalizes
easily to more complicated LDV models and provides another way of deriving asymptotic dis-
tributions of ML estimators.
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(2.28) zf =z - ——1—2—?{)2:"; XP =(zPzf. . ZF) o Txk matriz
o /
where g defined in (2.8) or (2.8') by substituting ¥ for ¥ and 7 is 7, of (2.10)

- (2.10') evaluated at ¥F. With the above definitions, the following relation is

identified
(2.29) gf=zFp +¢:t=12....T

where £, is the same error term defined in (2.18) or (2.16"). Our estimator,
denoted by B, is the result of applying IV regression to (2.29) using z' as the

instrument. Formally

(2.30) B = (XXF)xy”

It can be verified that g is identical to B = B° -Lg;ng by writing (2.30) as
B =pF + (XXT) \ul

and noting that

aL(ﬁp) — -LX"LLP

op a?

8*L(B" 1
ST 0R)

(see Appendix B). For the sake of completeness the asymptotic efficiency of 8

when B is consistent of order 772, is demonstrated below:

B={(xXP) '\ xyP = P + (X XP)-1xuP

Lok

N‘ T At M
=67+ (XXP)1 Y iz, 5%{02-75]%(5“ B7) + e



-13-

(by replacing gF for;é in {2.16) where 'E € gFp°)

Yy

= BP + (X XP)! PR %2'{0'2 -7 —op(1)]z, (B°—B) + z, 8.}

=1
(where hy = op(1) if hy i Oas T - )
= 87 + (X X)X (XP(6° -pP) + X[op(1)(B7-8°)] + &
=8 + (X'XP)1X¢ + (X X)X X)[op(1)(87 -6°)]
Hence

_l_X's +

2 oy — ¢ 1 ey
(2.31) ﬁ(ﬁ*ﬁ)—(TXXP)I\/T

[ RPI NG X X0 (ONVT (87 =6°)]

The convergence of —;—,—,")?P and —;—,—X’X to a proper limit and the assumption that

VT (B —-B°) is bounded in probability assures that the second term in the RHS

of (2.31) goes to zero in probability. By comparing {2.18) to (2.32) it follows that
— _ - . P
VT (8-8°) = VT (B—p°) =VT(B-B) > 0

This completes the demonstration. A straightforward implication of the above
result is that var (8) = ¢%(X'XF)~! which is the usual formula for the variance of

an IV regression coefficient.

The major result is that an efficient estimator can be achieved via instru-
mental variable regression on a suitably transformed data set. In general, how-

2. . .
~ever, 0° is unknown and must be estimated along with g°.

2.B The Case of Unknown ¢°°
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The normalization ¢° = 1 excludes the probit model from this case and so
only the Tobit model is considered. It is assumed that a “good” initial estimates
BF and o are available. Let us redefine yF and Zf in (2.27) and (2.28) by
replacing o with ¢ so B in (2.30) is now evaluated at ¢”. Denote ¥ as the infor-

mation matrix and partition it according to g and ¢ ie.,

[ |
(2.32) ¥= li: :23

where ¥,;, ¥15 = ¥, and ¥,, are, respectively, kxk, &x1, and 1x1 matrices.

Finally, let
P _ _ 1 P 1
(2.33a) RP = —{X'% )———UPZ

and
(2.336) AP =8P -8
It is verified in Appendix B that

_ 9%L '{9P) 1
(2.340) RP = "“65%-5,———?:—

2L(sP) | aL(s7)
agog | 0B

(2.34b) AP =

Consider now the LML estimator

gml_ gPl N Bl {Lﬁ(«@P}}
1 = o] = 7| Jeg wg) ngwﬁf

~ where ¥E = ¥;(8”) is any consistent estimate of ¥y (8°) for i,j=1,2. From an

expression for a partitioned inverse, ¥;;; can be written as
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ofw = o =[P HL VT Lf - [ 17 L
Bua = B° -V LE —WENE PTNERET 1+ YR OR[ PLA

where

Choosing ¥{] = R? and using (2.34b) gives
(R.36a) ofyy = oF + [ [PTH(¥E AP - LE)
(2.36b) Bum =B+ RV (07 — ofur)

;_9 , A and R? are constructed using the method outlined above. The other
terms needed in the derivation of ¥py are ¥i, ¥4, and Lfg. They can be
recovered from the ﬁrst‘derivatives of the log likelihood function {Berndt, at.al.
[1974]) which is given in Appendix B. This completes the discussion of our
approach in analyzing single equation LDV models. The results generated by this

approach are similar to those methods developed in the literature.

3. TWO EQUATION MODELS

The number of possible models corresponding to different patterns of miss-
ing data increases dramatically with the number of equations. This highlights
the importance of a unified framework of analysis. Two models, resulting from
two different patterns of missing data, are considered. Extension to other possi-

ble models is straightforward.

The underlying structure is given by

(31) yn=zyuf +uyit=12..T
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(8.2) yg =z +ugy:t=12..T

(3.3) t:;:

Model (J) results from the following observation rule

il Ny, 2oy % =

o o t=1,2,....T.
e PR

Yy if yg >0
(84) yy, = t =12..T
NA otherwise

where NA denotes unobserved dato

1 ifyg =0
(3.5) Yot = t = 1.2,...,T
0 otherwise
Model (I} results from
e if yge >0
(3.4) yy = t=12..T
NA otherwise
2t fys =0
(3.5) yo = t=12,..,T

NA otherwise

For both models it is assumed that z;, j=1,2 is observed for all t. For examples

of situations that give rise to such models see Heckman [1978], Lee and Trost

[1978], Lee [1978], and Hanemann and Tsur [1982]. The specifications of the

guantities involved are as follows: X; = (zjl,sz,....xjtj' J=lRisa T xk

matrix for which we assume:

1) each column of Xj 1s statistically independent of U; = (u;,, ujz. . .

j=1.2

. uj; >[,
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ii) im = X; exists and is positive definite, | = 1,2

iii) Xj is of full rank, j = 1,2.

Y=y iz, yir) is a  TX1 vector for which we observe
Y; = (Yj1.Yj2...y;7) according to the observation rule (3.4), (3.5) or (3.4'), (3.5"),
j=12. g° and ¥° are, respectively, k X 1 vector and 2x 2 positive definite
symetric  matrix of parameters to be estimated and U =
(uj1 g -+ uyr)s 5=1.2 is an unobserved error vector with (u,,ug ) distri-
buted according to (3.3) independently for t = 1,2, . . ., T. The coeflicient vec-
tors in (3.1) and (3.2) are not necessarily identical. They can be distinct or have
{some or all) common elements. However, it is always possible to merge them
into one coeflicient vector by a suitable redefinition of z,, and z,,. Hence there
is no loss in generality in the way the model is presented. The missing data pat-
tern can create identification problems. In model (I), without exogenous restric-
tions on the parameters, ¢§, ¢, and the part of ° corresponding only to (3.2)

are not identifiable. Therefore, a normalization rule is required and is given by

g8 = 1. No identification problems arise in model (II).
Let us define

1]

(3.8a) ' = } P Y = (y Y. yr) a 2T x 1 vector

wow

¢
|
, 1t
(3.60) =z = t J s X =(zy,ze - .z7) a 2T X k matriz
: 2
and
|
1t . .
(3.6c) u = [Zzt}; U= {u,,ug,...,ur) a2l x 1 vector

The structural model can be written now as
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TN AR TR TH iid N(0,2°), t=1,2.....T.

With the observed dependent variable given by

(3.6d) y; =

yu] . ,
yzt} Y= (yl.yz,...,yr)f a 27 x lvector

where y;, j = 1.2 follows from (3.4) and (3.5) in model (I) and from (3.4') and
(3.5’) in model (II).

In the application of the EM approach, the following definitions and results

will be used:
(37) =z, j=12

—p{—iae / 02)

3.8 A=
(3.8a) A O(—pioe / 03)

@(—tiey / 02)
1=8( o / 03)

(3.8b) A =

From (3.8a and b)

_ 5?\: 1, M _
3.9a R T VX (Y
( ) A= ) s t(o_z £
(3.9) Af =3 ON :——-—A (-———+>\)

Let Tt = cou{ug. uj |ug < —pg) and ’?\“{;t = cou(uy, wj |ug = —ug) for i,j =
1,2. Then using properties of truncated bivariate normal {Johnson and Kotz

[1972]. See also Appendix A.), it also follows that
(8.10a) Thp = of(1 + pRoy)

(3.10b) Taar = 051 + 03A])
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1

(3.102) Tz = 0.(1 + 0oA)

H

(3.11a) Thy = o¥(1+p%0:A¢)
(8.110) Ty = 081 + opAY)

(3.110) r:iifgg = Ulg(1+UgAt+)

_ Oz
where p = p
192

. Let 77, 7 be a 2x2 matrix with ij element equal to ?i}t- ?’3}‘

respectively and define y/f to be £, (y; |y ) for j=1,2. That is, under model (I):

(38.12a) y& = qeyn + (1-g)(uf + 0% A7)

(3.120) y& = q(ufi + M) + (1-q;) (u& + \7%)
and under model (II):

ofs ‘
—A{")
Gz

(B.1Ra' ) yft = qeyu + (1—gq)(ufi +
(3.126") y& = quyae + (1~ Mk + o5N)
where g, is the indicator variable defined as

1 if yg't >0
(3.13) g = t=12..T
O otherwise

With the definitions in (3.12) it is straightforward to verify that

(3.14)  Eyel(ye~pe ) —me) 19e3 = (e yF—p) + 7F

where
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~ ~ 0 0

(8.18) 7 =(1-gq)77 +q 0 T under model ()
(3.15) 7y = (1-q,)77 under model {/])
and

Be = (Pyebtar) .

The log of the joint density of ¥, t = 1,2, . .., T (disregarding the constant
term) is

.. 1 & “ay, Y
(3.18) f(y*:¥) = —%og = 5 2 TN )y )
£=1

where "tr" indicates trace. Using (3.14) gives

T ~
(8.17) Eyelf (s )y} = = 5 D er 8 s ) ) + 7+ Folog 127

Maximizing (3.17) over g and ¥ yields

(3.18a) B! = X'(J QLI X) 1 (J @ 217 =

T
(yt:c__ xH)(ytlc___ x+1)r + }7727{

1 £=1

™

(3.18p) T+l = L
T t

H

where "J" is the identity matrix {of order T) and " ® " is the Kronecker product.

Equations (3.17) and (3.18) form, respectively, the E step and the M step of
an iteration of the EM algorithm which was shown (Dempster ef al.) to yield an
estimate corresponding to a (local) maximum of the likelihood function. Solving
for 8! and F*! that satisfy (3.18) is not trivial and in fact requires an iterative
procedure itself. This can be simplified by first solving (3.18a) using ¥ and then
solving (3.18b) using g+

4 this simplification coresponds to using & GEM procedure (see Dempster af al. p. 7).
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Equation (3.18a) clearly reveals the similarity of our approach to the seem-
ingly unrelated GLS estimation technique of Zellner [1962]. In fact, it implies
that the ML estimator can be achieved via iterative GLS procedure where the
missing data are being "filled-in" in each iteration according to (3.12a)-(3.12b)
or (3.12a')-(3.12b"), depending on the observation rule (I) or (II) respectively.
From there the analysis is carried out as if no data are missing with some

modifications that aceount for the "filled-in" values.b

The advantage of this procedure is its simplicity of implementation which
involves data transformations (that require the evaluation of the standard nor-
mal density and distribution functions) and the readily available GLS option. Its
convergence properties and computational efficiency is yet to be compared to

other iterati&e methods such as that of Berndt et al.
We turn now to the single iteration procedure. First, consider
3.A The Case of Known I°

The first step is to characterize the limiting distribution of the ML estima-

tor. Let us define

|
(819) wf=yf-uf= j - lxétjﬁ"; Us=1---1, a 2Tx1vector.

From (3.18a) g*! = g + (X'(/ ® Z™')U*. Since B is a fixed point of (3.18a) the

following orthogonality relation hoelds

(320) Xy YHWUuf=0

[P

where the superscript "o" is dropped from I until otherwise indicated. By

5 The identification problem of Model (I) requires the normalization gz = 1. This con-
straint should be incorporated into the maximization of (3.18) which is done over § and the
identifiable elements of X, No such problem arises under model (in.
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replacing A" F, AF 8 with their first order expansions around A;° A/° respec-
tively, and rearranging we can express uf under model (1) as

[ 0y ]

1 -——Az
0 1+apn B E T

0 0

] .
uf = {Z-(1-q¢) 0 1+o A;-F} J L7z (B°-B) + &

and under model (II) as

1 012,
wf = B-(-g0) |y 1, AF| T 3Tz (B -B) e

or by using (3.10) and (3.11) uf can be expressed as

(821) w’ ={z -7 i 'z (- B) + &
where

[0 o

(3.22) 7= (l-g;)7¢ +q, t‘+

]
T !unde'r model (J)

(3.22) 7/ = (1—q)7F under model (/I)
_ 0z,
fy ] Y T A [ o

under model {I)

(323) &= |,

- 1... . —
zz} (1-g.) Uzt — O ° 2 P‘Et —0gA0

L] Uy = —A°

Uyt
(3.23) £ = luztj —(1-q,) under model (IT)

and Befpe.

It follows from (3.20) and (3.21) that

(3.24) V2T (B-p°) = XU@Z D9y -7 @S |
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1y -1
T X (I®T )¢

where I™* is a block diagonal matrix with the % block equal to 7, and ¢ =
(£1,....€7)". When taking the g, in (3.23) to be a Bernoulli variate with success

probability of 1-®{—u$,/ 0g) the ¢ are found to be 2x1 independent random vec-

tors with zero mean and
(3.258) war(g)=20—7f ;t=12,..T

where

T+
12¢

i
~a
+
Tzt

[0
(3.30) 1 ={1-%,) t:,,z + @, T under model (I)
Ti2t

(3.30) 7, =9, 77 under maodel (I])

and ; = &(—pp/ 02). Let T be a RTx27 block diagonal matrix with the £ block

equal to 7; and define

= 1i ..’;_. ' 3Y¢
(3.31a) 4 -LTLEE ZTXU@E )X

(3.31b) D = lim ——X"(/ @ TH)I(/ @)X
Taw 2T
(831c) D* = lim élT—X'(f QU (I @5n-)X

The assumed convergence of g?:yﬁ}iﬁ J = 1,2 assures the existence of A, D and

D*. Note that under model (II) D = D* This can be seen from the definitions of

7; and 7, in (3.30") and (3.22"), respectively, and from result (2.25). Formally,
3.31d) D = D* under model (II)

Since # is consistent, it follows that
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1 ' -1 ’g -1 L ‘o
(3.32) -E—y-,—X(I@xz: NI QL) -T*HI®E DX » 4°-D

and from (3.25)

1

d
57X (I QT NE » N(0, 4°-D°)

(3.33)

These two results together with (3.24) yield

THEOREM:

(3.34) V2T (B-B°) S N{0.(4° —D®) YA —D° ) (4°—D™ )Y .

Note that in model (II) D = D*. Hence the asymptotic covariance matrix reduces
to (4°-D°)"L.

The process of obtaining result {3.34) relies heavily on the EM approach
(starting from the fact that B is a fixed point of (3.18a) hence (3.20), etc.) and is
a straightforward extension of the single equation case that can be generalized
easily to other multiple equation LDV models. The asymptotical precision (or
information in these‘ cases) is given by the inverse of the covariance matrix and
is equal to A-[D~(D-D*)(A-D) Y (D-D*)] for model (I} and A-D for model (II).
In both cases A is the asymptotic precision in the absence of unobservables.
Hence the second term can be interpreted as the asymptotic loss of information

due to the unobservable pattern.

Suppose now that a "good" initial estimate g is available. Let us define
(3.35) ylP=yf—7Psz,87; VP = (@‘{’55’@‘5) a 2T x 1 vector
(3.36a) z,P =z, — 7,721z, ; XP = (ZP 2P ZF) a 2T x k matriz
(8.3680) zf =z, =1Lz, ; XF = (ZPZL.. .28 a 2T x k matriz

where 7, and 7, defined in (3.22)-(3.22') and (3.30)-(3.30") respectively.8 With the

- ) v _ e ™Map_ ™D
& Note that under model (II) 7, = 7 which implies Z;” =2 .
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above definitions the following relation can be identified
(3.37) yf =z +¢&;t=12...T

where £; is the same error defined in (3.23) or (3.23'). Our estimator g is the
outcome of applying an IV regression on (3.37) using X'(/ ® £~!) as the instru-

ment. Thatis
(38.38) B=(X (U@ HYP)y'x (s )¥P

Unlike in one equation models, in this case it is impossible to show the
equivalence of § and By = ﬁp - ngng by identifying the components at the
RHS of (3.38) as the appropriate derivatives of the log likelihood function. How-

ever, it is pfoven below that
THEGREM:
g is asymptotically efficient, provided that 8 is consistent of order 7-1/2,

PROOF:
B=(X(IQLNHXP)y1x(IQLH)T¥P
=P + (X (I @T VX T) X (I QL) UP
(where UP = YP-Y'PgP = YP_xpP)
T

=P + (X (IRT XYY i uf
i=1

=p" + (X'U@Z‘l))?'f’)“‘i 2 27 (E-1F) D200 —67) + £,
$=1

(from (3.21) by replacing B with B¥ and evaluating at § € grpe )

Thep T 12 - ’
=87+ (XU QLX) Y 2L U (E=7T—op())E (8 —pF) + £,
t=1
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(where the identify matrix multiplying op(1) is of order 2)
=87+ (XU QT NXP) (TR HNEP(E ) + £ + X[0p(1)(82—5°))}
=B + (XU QTNHXPYIX(J QT V)¢ +
(X(IREMXTY1x (I ®2"‘)‘X[0p(1>(ﬁp—ﬁ°>]
Hence

1
Ver

VET (B~°) = (57 X (U @I X)Ly (1 m-)e +

(X0 OT XY Lo (1 @2 )X[op (1) VET (67 —47)]

L y(7 @5 %P and

The V7 -consistency of g and the convergence of 57

-él—T-X'([ ® L)X to proper limits assures that the second term in the RHS above

approaches zero in probability as T - «, that is
VT (B-p°) = (-?:13;)('(1 ® 2‘1)§'P)'1E%X’([ QI V)¢ + 0p(1)
From (3.24) then

. _ P 4
VRT (B—p°) - V2T (B—p°) = V2T (B-B)» 0 Q.E.D.

A direct implication of the above theorem is that g defined in (3.38) above is
a GML estimator. To see this from another angle define
(3.392) QP = Xx(Is H)X?P
(339) @7 = X(IRT )T

Then from (3.34) and (3.31a) to (3.31c) it follows that
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P
—‘LQ'P GFQT - ¥,,(0°) the information matriz.

3. P =
{3.40) R 57

Now B can be expressed as
(3.41) B=pg" -RPVP

where
(3.42) VP = -2-%; RTQF X (IQTHUP .

The fact that g and By are both efficient implies:
LEMMA:

Let a be the vector comprised of the distinct elements of &, V(.) as in {3.42),

and 8” a VT -consistent estimate of 8°. Then
P
(3.43) VT [V(BF.a®) — Lg(BF,0°)] » 0.

Proof is given in Appendix C. The above Lemma together with (3.40) imply that g8

is a GML estimator.

The critical point here is that, in the presence of a "good" initial estimate,
efficiency is attainable via (single) IV regression on a suitably transformed data
set, using filled-in values for the "missing" dependent variables.

Achieving "good” initial estimators is quite feasible (Amemiva [1973], Heck-
man [1976], Quandt and Ramsey [1978], Green [1981,1983]) however, it is rarely
the case that the covariance matrix is known a priori.

3.B The Cuse of Unknown %°

It is assumed that "good” initial estimators g7, o, of B° . o® are available

where o is the vector of the identifiable parameters of £. That is
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(3.44) a=(0f 001/ 02) aRx lvector, under model (J)

(3.44) a = (o} ooy, 08), a 3 x 1wector, under model (IT)

The information matf‘ix, partitioned according to 8 and ¢, is given by

where ¥y, ¥)2 = ¥5;, and ¥y, are, respectively, k Xk, k X2 (k x 3), and 2x 2

(3 x 3) matrices in model (I) {model (II)). The GML estimator is defined as

Beur| lgP ] R 9B of
69 o = Lol = o |- ve] |27

where ¥ is any consistent estimate of ¥g, i, j = 1,2; and (wf", ) satisfy
P
VT [(wf" o) - (L LE)] » 0.

When using expressions for the inverse of a partitioned matrix, gy and agy;

can be written as
- -1 -
(3.47a) agy = of - [ 1P LEF  wg — [ 1P 0P

(3.470) Bow, = 7 = Vi wf — WVl PRI wf + ¥ N[ 17700

Let us redefine ¥/, z,%, and z{ in (3.35), (3.36a), and (3.36b) by substituting £¥
for Z. Also redefine 7; of (3.30) or (3.30') by replacing ®(-pup / 05) with 1 — g,.

Finally define
(3.48) AP =pP ~F =P

That K7, defined in (3.40) with £% replacing ¥, remains a consistent estimator of
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¥{) is not surprising. What is less obvious is that, under some weak conditions
involving the existence of ¥(.) and 8V(.)/8a at an appropriate vicinity of 4°,
(3.43) implies

LEMMA:

(8.48) VT (V(BP. aP) - Ly(g”, aP)) 5 0

Provided that g, af are VT -consistent estimates of 8°, a®. Proof is given in

Appendix C.

P
The fact that R¥ - ¥? together with (3.48) allows one to substitute
AP = RPT'VP for \Ifﬁnlw;f and R¥ for ¥{] in (3.47a) and (3.47b) and to arrive with

the following expressions for $gy;:

(3.49a) agy = of + [ 1P {VHAP — 0P}

(3.496) Bow =B+ R ¥h(a® - agu)

B. A and RP are constructed using the method outlined above. The other terms
needed in the derivation of Sgy; are ¥, ¥4, and wf . They can be recovered
from the first derivatives of the log likelihood function {berndt at al [1974]

which are given in Appendix B.

4. SUMMARY

Methods of Maximum Likehood estirﬁation of Limited Dependent Variables
models are investigated in the context of the EM algorithm developed by Demp-
ster et al [1977]. It is shown that this approach lends itself to an integrative
framework of analysis that unifies various LDV models and link them to classical
linear model theery. The computational consequences of this approach are: i)

ML estimators can be obtained via iterative OLS or GLS procedure when the EM
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algorithm is applied directly; ii) A unique method for deriving an asymptotically
eflicient single iteration estimator is achieved which produces an outcome
identical to that of the standard (Hessian) method under single equation models

but differs from those of other methods in multiple equation models.

The extension of this technique to models of more then two equations is
straightforward but the use of this approach in simultaneous equatons LDV
models (eg., Amemiya [1974,1978], Heckman [1978], Lee [1981]) requires
further research. Another topic for investigation is the practical question of con-
vergence and computational efficiency in empirical examples. In Tsur [1983] 1
have estimated a 3-equation LDV model using the EM algorithm outlined above as
well as two nonlinear ML algorithms. The results showed that EM wase the only
method which converged over the whole parameter space, including the
identifiable covariance terms, where as the ML algorithms broke down. However,
further computatonal experience is required before a comprehensive evaluation

of the role of the EM method in LDV models can be made.
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APPENDIX A

[02 o2 }
1 Vi ~ ~
Let (u,uyp) be N{O, [ 022} { and define w, = u,/ 0y, Up = U/ Oy, and p =

015/ 0,0z. The density function of ugi{fg >a and Uy | Up < a are respectively

[1-8(a)]¢(z) for x > a and [#{a)] e(y) for y < a.

(A1) E(us ]| dy>a)=[1-8(a)]! }x;a(x)dx
- -1 7 dy(z)
= [1-#(a)] [ - ——%—r——dx

def
= [1-9(a)]'¢(a) = A (a)

In the same manner

(42) Bl | Fesa) = [5@)]" [ zole)i

=~ [8(a)]"p(a) = A(a)
B | 52> ) = [1-8(2)]" [ aPpla)d

(integrating by parts)

=1+ ait(a)
Hence
(A3) wvar{d, | up>a)=1+ar*(a) - [A*(a)] = l+£&*‘(a)
where

nr(@) Y 2 o ea)-a 4 at(a)]
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s

t - -
6(/4;/0') for s = - and +.

Note that inthe text @ = — /0 and Af = 8A§/ Bu = &1——

In the same manner
(A4) war(t, | wp<a) =1+ar(a) - [\ (a)]?
= 1+A~(a)

where

Aoy T - L) 2 gx-0) - @)

The variate @, can be expressed as

(AB) w)=puy+ (1-pPiz

where z ~ N{0, 1) independent of 1?2. Therefore

(A8) BTy | 2> a) = pBGiz | 42 > a) = pA*(a)

(A7) E(@, | up<a)=pE(u, | uz<a)=pr(a)

Using (A.5)

E(Q? | Uy > a) = Bip*ud + (1-p%)2° + p(1-p*Viez | Uy > a}

= p*E(uf | Uz >a) + 1-p?

(A8) war(w, | s >a) =pPE(uf | Uy >a) + 1-p% — p?A*(a)]?
= pfuar(ty | we > a) + 1-p%
= p*(1+A%(a)) + 1-p°

=1+ p*At{a)
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In the same manner
(A9) var{w,| Up<a)=1+p?A(a)
Using (A.5) again
E(@ Uz | Up>a)= Eipa§+(1;pg)%z2?2 | 2y > a}
= plvar(uy | Ug > a) + [AHa)]?]
= p(1+A%(e)) + p[A*(a)]?
Hence
(A4.10) cov(uy, ug | U > @) = p(1+A*(a)) + p[AHa)]? -
pA (@)
= p(1+A%(a))
In the same manner
(A 11) cov(u,,0p | Tasa) = p(1+A{(a))

. . ~ ~
The extension to the corresponding moments of v, = 0,2, and Uy = Ogup i8S

straightforward.

APPENDIX B

This appendix provides likelihood functions and their first derivatives for

the Tobit model and models (I) and (II) of the two-equation case.

The Tobit Model
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The log of the likelihood of the t* observation is denoted by I, (¥) and is

given by

(B.1) L) = q,{- % log a®~ '2—:;2‘(% -z, 8)%) + (1—q,) log ®(~=z, B/ o) + constant

(8.2) ?'Lf;é—j)—: x¢ '173‘59%(% —z;8) + {1—g¢)or¢)
g
(23 22 = Lo [yt + (1-g)oncif

Note from (B.2) that

P T
aLég )‘ = };g tgl z{gqe(ye —z¢ B7) + (1—q;)a" NP}

a

1 zuf 1

(J‘P‘2 t=1 O'PZ

X'uf

where

ul = yP-z i uf = (W uf, - )

Likewise

2L (sF) 1 & Py
= — z, —(1—g, JA iz
aﬁaﬂr GPg tgi t%‘h ( ‘It} 1 g i

N
I
[y
]
W
_
!
e
<2
"
&

- where 7, and X are defined in (2.18) and (2.29) respectively.

Two-Equation Model (1)
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(B4) L(8) = i~ % logof ~ == (yy ~z16)% +
1

log®(g;)} + (1—q;)log $(~z2B) + constant

where
' a '
(B.5) g ={zup+ *(;gi(yu -z B} / (1-p%)%
1

and recall that o3 is normalized to unity.

hy o

0L(¥) _ (oo - 222, 13
1__'02)% 2t 012 1t

(B.6) 8 =gelzy }llg‘(yu“xitﬁ)‘* q

H1-g Az
where

=1 &= 5

0L () 1

_ 20’12
902 T 2o

1-p®

(5.8) (= of+(yu—zup) — hy

[ —=1u8)+ - (1-08) %

8L (%) 1 .
(B.9) ‘—6—:;—12“':?:’% W[(yu ~zuf) + gi012(1-p%) %]

Two-Fguation Model (I1)

(B.10) L(8) = q;{%1og|Z7Y] - K(y, —z,8)' Ly, —=(B)] +
(1—g;)log (— x4, 8/ 0,) + constant

8L {8) , ‘ x
t = qi= Rz X7y, + 2 X7z B ~ (1-g, )N, _;732{-

(B.11) 55
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0L (8) 8L(S) gp-
(B.18) 7=t e 5o

11
-1 gz

2 2
05—0%)% |-01208  —012

q: . C N, —0120% ]
= tr 5[~y —z:B) (v —z:m)' ]
2 (o}

8L (8) _ . [0L(8) ax-!
(B. 13) o —-tr{az_l 5oms

—2020% ~0202——o’2]
0 . , 1 1208 fos—0ofz
= tr{ [y, ~z e I e —
5 (Z—(y: tB) (v —2¢B)'] (0208 05,2 ”‘01205’0?2 —20,,0%
[ o2 -0 |
8L (%) Otz —01207%

N e Y -1
(B. 14) 90k - tr \q; HE~(y: 2 B){y: —2:B)'] —(0-5022'012%2 {—-012012 of J ¥

(1-q¢) Zo B
Ool;
2 B\ O'g

APPENDIX C
This appendix clarifies what is meant by ef ficiency in this paper and pro-
vides proofs for (3.43) and (3.48).

The concept of ef ficiency of an estimator takes on several forms in sta-
tistical literature. (See Rao [1973, pp. 346-351] and Hajek [1972] for a discus-
sion of the different approaches.) One such form entails consistency and attain-
ment of the Cramer-Rao lower bound. That is, an estimator @T is {asymptoti-

cally) efficient if
(C 1) Pu VT (S7 —9%) » N(0, ¥~1(s0)

where Pgiz] indicates the distribution law of z when ¥ holds and ¥(.) is the
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information matrix. Definition (C.1) suffers from some deficiencies as is demon-
strated in Rao [ 1973, p. 347]. Hence, a slightly modified definition is often

employed (e.g., Bickel [1982]) and will be used here:
Definition: An est?&n;ator B ’LS (asymptotically) ef fw?,ent if
(CR) Py ¢~NT By =870 - N(0, ¥~Y(s%) for any sequence 7
such that VT (87 — 9°) stay bounded.

Since in the text the ML estimators are shown to satisfy (C.1), the question

arises as to whether they also satisfy (C.2), and are therefore efficient.

Le Cam [1980] provided a general answer to this question. He proved that,

in general, (C.1) implies {C.2) if:

(i) 7 isa "right” root of the likelihood function in the sense that it maximizes

the likelihood at- a "small" neighborhood of ° That is, let

Ng(T) = 07 | 87 =80+ 22 hris o bounded th
ot T) = = 77 I is o bounded sequence ] en

-~ - ; -1

dr %égio ¢ L(9) §.

(ii) The Local Asimptotic Normality (LAN) assumption holds (Le Cam op cit. ).

the LAN assumption implies:
0 dsf o, Nr c 0
A Ry, TY) = L(® +2/_T') = L{8%) = h'pAp(8°) — Yo 'p¥(8ORy + 0,(1)
where
Pyt Ap(w9%) ) » N{ O, ¥(s% ] and hy stay bounded.

A sketch of the proof is as follow:
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maximizing A(.) over hy (disregarding the residual term) to get
Ry =¥ (60 A (s0)
from (i)
— .90
Gpr =9 + By
and from (ii)
COVyof VT (B — %), R'pAp(8%) | » Ay |
From (C.1) and LAN
H90)y Ry
hY

Pt VT (7 =9 Rrae(39) 3 - weo, (V099 e |y

which implies, using theorem of Le Cam [1960], that

Pyr{ NT (7 =% § » N{ hy , ¥"1(9)

hr

T — g0
where 8% 5 +\[7—,,

hence

Por{ VT (87 —37) § » N{O, ¥71(x0)

For the models considered in the text the ML estimators satisfy (i) by cnstruc-
tion, and the asumption that -—;:”X approaches a proper limit assures that the

LAN condition holds.
“Aproof of (3.43) and (3.48):

Let B, A be a partition of © so ¥ = (8 a); f€B. a€ A, and partition ¥()
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according to 8 and «;

11 (8) ¥ia(0)
(C3) ¥(B) =g (5) vo()

It is assumed that:
(AC) ¥(.) exists and 15 positive definite in a small vicinity N, of 8°.

Let us consider first the case of known o, so a is fixed at «®, and take two

asymptotically efficient estimates 8} and g%, that is
(C.4) PuyrofVT (BF = 87) » N(O, ¥i{s9)); j=1.2

for any sequence 87 such that VT (87 —g°) stays bounded. Then, under (C.4), the

following holds:

LEMMA:
o P
(C.5) VT (gh-BF) - 0
PROOF:

See Theorem (4.1) of Hajek [1972].

Let 8} = ﬁP—\Ifﬁ"iLﬁ{BP,a"), where g is VT -consistent estimate of g°, v is
a consistent estimate of ¥)(%°) and Lg(,0°) = 3L(87.a°)/ 8B and let g% =
BF — YE'V(BP, o°) where V() is a kx1 vector. If B% is asymptotically eflicient

then (C.5) implies

(€.6) VT(Ls(fP.00) = V(B”.a*)) 5 o.

We now extend (C.6) to the case of unknown « and prove:
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THEOREM:

Let 8%, of be VT -consistent estimates of £°, «°, and let V{8.a) be such that

(C.8) holds at (87,a°) and V,(.) = agi') exists at N, = N, M A, finally assume

that (Ac) holds. Then
(C7) ~VTLLe".aP) - V(gP.aP)] & 0

PROOF:

Let us define
(C.8) A(B.a) = Lg(B.a) — V(B,cx)

and note that, from the VT -consistency, of can be expressed as

(C9 of =a° + —\/l_—?—ST where 0 < | Sp| <o

Hence

(C.10) VT MBP.aP) = VT MEP.00) + \fT[A(ﬁp,a°+5TT)—A(ﬂP,a°)]

= VT MgP,a%) +

AT 0+ {1/ VT Sp)]-MEP.00)
Sr/ VT

VT (of —a®)

P
As T » o, VT MBP.0°) » 0 by (C.6) and the second term on the R.IL.S. of (C.10)
tends to A{B7,a°)VT (o —a°). Since VT (o —a®) is bounded in probability, to

prove {C.7) it is sufficient to show

P
(C.11) AP %) > 0.

Let us return to the case of known a and fix o at o = o ¢ Ny M A All the
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results attained under o = a® are now followed for « = o' Therefore the following

can be concluded:

P
VTAB". o) > 0] A(BPa)=A(BP.a0) P

P 0 as T » e,
VT AMBP. &) > 0 1/NT

Nowlet o' » o toget {C.11). Q.E.D.
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