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SUMMARY

We demonstrate using conditional mutagenesis that
Pbx1, with and without Pbx2+/� sensitization, regu-
lates regional identity and laminar patterning of the
developing mouse neocortex in cortical progenitors
(Emx1-Cre) and in newly generated neurons (Nex1-
Cre). Pbx1/2 mutants have three salient molecular
phenotypes of cortical regional and laminar organi-
zation: hypoplasia of the frontal cortex, ventral
expansion of the dorsomedial cortex, and ventral
expansion of Reelin expression in the cortical plate
of the frontal cortex, concomitant with an inversion
of cortical layering in the rostral cortex.Molecular an-
alyses, including PBX ChIP-seq, provide evidence
that PBX promotes frontal cortex identity by repres-
sing genes that promote dorsocaudal fate.

INTRODUCTION

Understanding the genetic underpinnings that control develop-

ment of the frontal cortex is particularly important for under-

standing the evolution of complex computational modules found

in higher mammals and for understanding mechanisms underly-

ing neuropsychiatric disorders such as autism and schizo-

phrenia. In these disorders, there is evidence for alterations in

the size and function of the frontal cortex (Amaral et al., 2008;

Crespo-Facorro et al., 2000; Gourion et al., 2004; Piven et al.,

1995; Yamasue et al., 2004).

Regional patterning of the cerebral cortex is coordinately

controlled by secreted factors such as fibroblast growth factor

(FGF) 8, 15, and 17 and cell autonomously controlled by tran-

scription factors (TFs), among other mechanisms. Loss of Fgf8

and Fgf17 expression leads to preferential deletion or hypoplasia

of the frontal cortex (Cholfin and Rubenstein, 2007; Fukuchi-Shi-
1192 Neuron 88, 1192–1207, December 16, 2015 ª2015 Elsevier Inc
mogori and Grove, 2001; Garel et al., 2003). FGF signaling con-

trols the gradiential expression of multiple TFs that contribute to

cortical regional identity. For instance, the graded expression of

TFs, such as CoupTF1, Emx2, Lef1, Lhx2, Pax6, and Sp8, along

the rostrocaudal (R/C) and ventrodorsal (V/D) axes imparts

regional identities to neuroepithelial cells in the ventricular zone

(VZ) (Armentano et al., 2007; Bishop et al., 2000; Borello et al.,

2014; Chou et al., 2009; Faedo et al., 2008; Galceran et al.,

2000; Mallamaci and Stoykova, 2006; Mangale et al., 2008; Sa-

hara et al., 2007; Yun et al., 2001).

Regional identity is then translated to the subventricular zone

(SVZ) and cortical plate (CP). Initially, the CP also exhibits gradi-

ents of TFs (i.e., CoupTF1 [PD1], Bhlhb5, Lhx2, Tbr1, and Tbr2)

that are gradually converted to patterns with regional boundaries

correlated with anatomical and functional subdivisions such as

the frontal, motor, somatosensory, and visual cortex; there is ev-

idence that these TFs also regulate regional fate (Alfano et al.,

2014; Bedogni et al., 2010; Elsen et al., 2013; Greig et al.,

2013; Joshi et al., 2008; Zembrzycki et al., 2015). At early devel-

opmental stages, thalamic afferents have little role in regional

patterning (Miyashita-Lin et al., 1999; Nakagawa et al., 1999).

Later in development, thalamic afferents contribute to refining

cortical areal properties (Chou et al., 2013).

Here, we demonstrate that the Pbx1 TF has a potent role in

orchestrating the developmental elaboration of the mouse fron-

tal cortex. We use a Pbx1 conditional allele (Ficara et al., 2008)

that was selectively deleted in the cortical VZ using Emx1-Cre

(Gorski et al., 2002) or in newly generated cortical neurons using

Nex1-Cre (Goebbels et al., 2006).

Pbx1 is one of four vertebratePbxgenes; these aremembers of

the TALE (three amino acid loop extension) homeodomain TF su-

perfamilyof atypical homeodomain-containingTFs,which include

the invertebrate orthologs exd (D. melanogaster) and ceh-20

(C. elegans) (Bürglin, 1997; Capellini et al., 2011b). These proteins

have a PBC domain that promotes protein-protein interactions

with two other TALE subclasses: MEIS and PREP (PKNOX).

PBX/EXD proteins form complexes with HOX proteins, function
.
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Figure 1. PBX1 Protein Is Expressed in Progenitors and Neurons of the Embryonic Cortex

Immunofluorescence co-staining at four prenatal ages with indicated antibodies.

(A–B0) PBX1A (in red) and PAX6 (in green) co-localize in the VZ of the cortex at E12.5 (coronal view).

(C–D0) PBX1A (in red) is expressed in the VZ and CP at E13.5. PBX1A and TBR2 (in green) do not co-localize in the SVZ of the cortex (coronal view).

(E–F0) PBX1A (in red) and TBR1 (in green) co-localize in the CP at E15.5 (coronal view).

(G and G0) PBX1A (in red) and CTIP2 (in green) is expressed at E18.5 (sagittal view).

Higher magnification and quantification of the images within the white rectangles are in Figure S1. Abbreviations are as follows: cp, cortical plate; Cx, cortex; cge,

caudal ganglionic eminence; lge, lateral ganglionic eminence.
upstream of Hox genes, and control patterning of the anterior-

posterior body axis and the limb bud (Capellini et al., 2011b; Vito-

bello et al., 2011). In addition, mouse Pbx genes have critical

functions in regulating spleen, craniofacial, and skeletal develop-

ment (Capellini et al., 2011a; Ferretti et al., 2011;Koss et al., 2012).

Pbx1–3 are expressed in the developing forebrain (Long et al.,

2009; Toresson et al., 2000), but the function of these TFs has not

been elucidated in these structures. Here, we found that loss of

cortical Pbx1 function alone, or in a Pbx1;Pbx2+/� sensitive

background, led to hypoplasia and dyslamination of the frontal

cortex through three mechanisms. In progenitors, Pbx1 regu-

lated R/C and dorsoventral (D/V) patterning. Surprisingly,

abnormal D/V patterning resulted in ectopic Reelin expression

in the rostral CP, leading to abnormal laminar patterning. In

immature neurons, loss of Pbx1 resulted in loss of molecular fea-

tures of the rostral cortex. Gene expression analyses identified

dysregulated TFs (e.g., Emx2 and Lhx2) that we propose

contribute to abnormal cortical patterning through their functions

in progenitors. We used PBX-chromatin immunoprecipitation

sequencing (ChIP-seq) to identify genomic loci where PBX pro-

teins bind in the embryonic day (E) 12.5 and E15.5 cortex. These

results yielded evidence that PBX binds near Emx2 and Lhx2

promoters. Furthermore, we identified enhancer elements that

are active in the E11.5 cortex that have PBX binding sites. Infor-

matics approaches defined in vivo PBX binding sites, and

provided evidence that these genomic elements also have sig-

natures of combinatorial binding with other TFs.

RESULTS

Expression ofPbxRNA and Protein in DevelopingMouse
Cortex
We examined Pbx1 RNA and protein expression in the devel-

oping cortex using in situ hybridization (ISH) and immunohisto-
Ne
chemistry (IHC) with an antibody specific to the PBX1A splice

variant of Pbx1 (expression is lost in the Pbx1 mutant) (Figures

S1Q and S1R) (Phelan et al., 1995; Shen et al., 1996). PBX1A pro-

tein expression in the E12.5 cortical VZ showed a caudorostral

gradient with low expression in the medial pallium (MP) and

CP. Similar results were seen using RNA ISH (Figures S1A–

S1F) (Allen Brain Developmental Atlas at E11.5, http://

developingmouse.brain-map.org/).

PBX1A and PAX6 proteins were co-expressed in the cortical

VZ (Figures 1A and 1B; Figures S1J and S1K), whereas PBX1a

was not detected in secondary progenitors and was not co-ex-

pressed with Tbr2 at E13.5 (Figures 1C and 1D; Figures S1L

and S1M). By E15.5, PBX1a expression in the VZ was reduced,

but it was extensive in the CP, where it was coincident with

TBR1 in deep layers (Figures 1E and 1F; Figures S1N–S1P). At

E18.5, PBX1A IHC labeled superficial layers of the CP, particu-

larly in the rostral cortex (Figure 1G). Pbx1 RNA expression

closely matched protein expression (Figures S1A–S1F). Two

other Pbx family members were expressed in the developing

telencephalon. Pbx2 was broadly expressed in progenitors at

E12.5, E13.5, and E15.5 except for the MP (Figures S1G–S1I).

Pbx3 expression appeared largely restricted to the basal ganglia

(http://developingmouse.brain-map.org/) (Toresson et al., 2000).

Cre-Mediated Elimination of Pbx Expression in Cortical
Progenitors and Young Neurons
Pbx1 null mutants die because of hematopoietic defects in mid-

gestation (DiMartino et al., 2001); therefore, we used Pbx1 con-

ditional mutants (Pbx1flox allele) to analyze its function during

cortical development (Ficara et al., 2008). To distinguish

Pbx1’s role in progenitors versus neurons, we used two Cre

lines: Emx1-Cre to delete Pbx1 (Pbx;Emx1-Cre) in the VZ begin-

ning at E10.5–E11 (Gorski et al., 2002) and Nex-Cre to remove

Pbx1 (Pbx;Nex-Cre) in postmitotic neurons (Goebbels et al.,
uron 88, 1192–1207, December 16, 2015 ª2015 Elsevier Inc. 1193
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Figure 2. Pbx Mutants Have Major Alter-

ations in Cortical Regional Patterning,

Including Loss of Molecular Features of

the Frontal Cortex

Analysis of the cortical patterning by WM-ISH on

P0 brains of control (left column), Pbx;Emx1-cre

mutants (middle column), and Pbx;Nex-cre mu-

tants (right column).

(A–E) Lmo4 probe: superior view (A–A00) and lateral

view (B–B00). Nt3 probe: superior view (C–C00).
Lmo3 probe: superior view (D–D00) and lateral view

(E–E00). Green asterisks represent reduction of

frontal cortex expression compared to control.

Red asterisks represent expansion of dorsomedial

cortical expression compared to control. The yel-

low asterisk represents a change in the frontal

cortex expression pattern compared to control.
2006). Deletion was confirmed using Pbx1 ISH (Figures S1Q and

S1R). Although thePbx1 conditional mutants had cortical pheno-

types (Figure S2H–S2K), we augmented the phenotype by

reducing the Pbx dosage by including one Pbx2 null allele (Fig-

ures S2I–S2O). Previous studies showed that the Pbx2+/� state

exacerbated Pbx1 non-brain phenotypes (Capellini et al.,

2006), even though Pbx2�/� null mice were viable and had no

obvious phenotype (Selleri et al., 2004). We observed an exacer-

bation of Pbx1�/� cortical molecular phenotypes in a Pbx2+/�

background and therefore performed most of our analyses on

the sensitized Pbx2+/� background. We did not observe a

patterning phenotype in the Pbx2+/� mice (Figures S2F and

S2G) and thus usedPbx2+/� as the control genotype. Our prelim-

inary analysis suggests that the Pbx2�/� cortex is hypoplastic

(data not shown).

Pbx;Emx1-Cre mutants were viable and survived into adult-

hood. The post-natal day (P) 7 Pbx;Emx1-Cre brain appeared

grossly normal; histological analysis showed hypoplasia of telen-

cephalic commissures, mild thinning of the caudal cortex, and

dyslamination in hippocampal cornu ammonis fields (Figures
1194 Neuron 88, 1192–1207, December 16, 2015 ª2015 Elsevier Inc.
S1T–S1Z). Herein, we focused on the

phenotype of the prenatal cortex.

Pbx1 Regulates R/C Patterning in
Both Progenitors and Postmitotic
Neurons but Regulates D/V
Patterning Primarily in Progenitors
Given PBX1 expression in the cortical VZ

and its function in patterning of other tis-

sues (Capellini et al., 2006; Selleri et al.,

2001; Vitobello et al., 2011), we hypothe-

sized that Pbx1 may regulate cortical

regionalization. Thus, we performed

whole-mount in situ hybridization (WM-

ISH) on P0 brains using Lmo4, Nt3, and

Lmo3 probes (Cholfin and Rubenstein,

2007, 2008). In control animals, Lmo4 la-

bels rostral (frontal) and caudal (visual)

areas. Pbx;Emx1-Cre mutants lacked

the Lmo4+ frontal domain, and there
was a rostral shift of the caudal Lmo4 domain (Figures 2A, 2A0,
2B, and 2B0), providing evidence Pbx1 regulates R/C cortical

patterning.

To further assess the rostral phenotype, and to examine D/V

patterning in the mutant, we studied Nt3 (Ntf3) expression. At

P0, in addition to labeling part of the frontal cortex, Nt3 was ex-

pressed dorsally in the cingulate-retrosplenial cortex. Similar to

the Lmo4phenotype, thePbx;Emx1-cremutant lacked the frontal

Nt3 domain and the dorsal domain expanded ventrally and

rostrally (Figures 2C and 2C0). Finally, we examined Lmo3 expres-

sion (amarkerof the somatosensorycortex). Themutants showed

a rostroventral expansion of this domain (Figures 2D, 2D0, 2E, and
2E0). Thus,Pbx1was required to promote rostral gene expression

properties and repress dorsal ones in the developing cortex.

Because Pbx1 is expressed in both cortical progenitors and

neurons, we tested whether loss of Pbx1 expression in postmi-

totic neurons regulated cortical patterning by studying

Pbx;Nex-cre mutants at P0 using WM-ISH. These mutants lost

frontal cortex expression of Lmo4 and Nt3 (Figure 2A00 and

2C00). However, the D/V patterning changes of Lmo4 and Nt3



expression in Pbx;Nex-cremutants were milder than those in the

Pbx;Emx1-cre mutants (Figure 2).

We confirmed that the P0 WM-ISH expression changes led

to the expected deletion of frontal cortex and expansion of dor-

sal and caudal cortex by performing ISH on P8 coronal

sections of control, Pbx;Emx1-cre, and Pbx;Nex-cre brains

(Figures S2P–S2GG00). For instance, in the frontal cortex, both

mutants lost Nt3 expression and had reduced Cux2 and Er81

expression, and the Pbx;Emx1-cre had greatly reduced Lmo4

expression. The Pbx;Emx1-cre mutant also had ventral expan-

sion of Er81, Nt3, and Nurr1. In all, the data provide evidence

that Pbx1 regulates RC patterning in both progenitors and

postmitotic neurons but regulates D/V patterning primarily in

progenitors.

Abnormal D/V Patterning in the Pbx;Emx1-cre Mutant
Leads to Ectopic Reelin Expression in the Rostrodorsal
Cortex, Leading to Dyslamination
As noted earlier, loss of Pbx1 function led to ventral expansion of

dorsal cortical properties (Nt3 and Lmo3). In the rostral-most re-

gions at E13.5 and E15.5, Reelin is expressed in a small domain

adjacent to the septum, which is probably the indusium griseum

(Figure 3).

In E13.5 Pbx;Emx1-cre mutants, this Reelin+ domain broadly

expanded ventrally in the CP (Figure 3A). By E15.5, a Reelin+

deep layer in the CP extended ventrally from the dorsal-most

position through roughly half of the cortex, but only in the

rostral cortex, as seen in both coronal and sagittal views (Fig-

ures 3B–3E). These Reelin+ cells did not co-express calretinin,

and thus are probably not Cajal-Retzius neurons (Figures S3A–

S3C).

Because Reelin regulates laminar positioning of cortical pro-

jection neurons (Ogawa et al., 1995), we assessed the expres-

sion of molecular markers of the subplate (Nurr1), layer VI

(Tle4), layer V (ER81, Etv1), layer IV (RORb), and layer II/III

(Cux2) at P8 (Hoerder-Suabedissen et al., 2009; Molyneaux

et al., 2007; Nieto et al., 2004; Schaeren-Wiemers et al., 1997).

Consistent with the ectopic Reelin expression in the deep CP,

we observed an inversion of the cortical layers in the rostral cor-

tex (i.e., the region with the ectopic Reelin) (Figure 4). Particularly

note the inverted expression of Nurr1 and Tle4 in the superficial

layers (cf. Figures 4A, 4A0, 4B, and 4B0), as well as Cux2 and

RORb inverted expression in the deep layers (cf. Figures 4D,

4D0, 4E, and 4E0). Bromodeoxyuridine (BrdU) birthdating ana-

lyses support the evidence for inverted lamination in the rostral

cortex (Figure S4).

Pbx;Nex-cre mutants did not have the abnormal lamination

phenotype (cf. Figures 4A–4E and 4A0–4E0). Thus, loss of Pbx

function in progenitors, which lead to abnormal D/V patterning

in the Pbx;Emx1-cre mutants, caused the ventral spread of

Reelin expression into rostral deep cortical layers, with a subse-

quent inversion of cortical layers of the rostral cortex.

Molecular Mechanisms Underlying the D/V Patterning
Defects in Pbx Mutant Cortical Progenitors: Altered TF
Expression and Increased SMAD1/5 Phosphorylation
We next searched for the mechanisms through which Pbx1 reg-

ulates patterning in cortical progenitors. FGF signaling regulates
Ne
arealization and size of the frontal cortex, as exemplified by fron-

tal cortex hypoplasia in Fgf8 hypomorphs and Fgf17 null mice

(Cholfin and Rubenstein, 2007, 2008). Therefore, we examined

the genetic interactions between FGF signaling and Pbx1 func-

tion. First, we found that Pbx1 expression appeared normal in

Fgf8neo/neo hypomorphs, implying that Pbx1 was not strongly

regulated by FGF signaling (Figure S5J). Then, we examined

expression of FGF-responsive genes (Erm, Pea3, and Sp8) in

the VZ of the rostral cortex in E13.5 Pbx;Emx1-cre mutants.

We detected no change in their expression, suggesting the

Pbx1 does not promote rostral identity by promoting FGF

signaling (Figures S5A–S5C).

Like the Pbx1 mutant, loss of Pax6 function causes R/C and

D/V patterning defects (Stoykova et al., 2000; Yun et al., 2001).

However, Pbx1 expression was not altered in Pax6sey/sey mu-

tants at E11.5 and E12.5 (Figure S5K). Furthermore, Pax6

expression was not altered in E13.5 Pbx;Emx1-cremutants (Fig-

ure S2E). Together, these data suggest that Pbx1 exerts its

rostral patterning function independent of FGF signaling or Pax6.

We next turned our attention to Pbx1’s repression of dorsal

properties, because upregulation of this systemmay alter frontal

cortex development. We studied the expression of TFs that con-

trol cortical D/V patterning:CoupTF1, Emx2, Lhx2, and Lmx1a by

ISH at E13.5 in Pbx;Emx1-cremice.CoupTF1 and Lmx1a had no

clear expression changes (Figures S5D and S5H).

However, Emx2 expression and Lhx2 expression were

increased, particularly in the ventral cortical VZ (red arrows) (Fig-

ures 5A–5D). Lhx2 expression increased about 2-fold inmutant’s

ventral cortex and about 1.6-fold in the lateral cortex (Figure 5C).

Emx2 expression increased about 1.5-fold in the mutant’s

ventral cortex (Figure 5F). Both Emx2 and Lhx2 are critical in

specifying cortical identities (Cholfin and Rubenstein, 2008;

Chou et al., 2009;Mallamaci et al., 2000;Monuki et al., 2001;Mu-

zio and Mallamaci, 2003). Thus, upregulation of Emx2 and Lhx2

could contribute to D/V and R/C patterning shifts in Pbx1 mu-

tants. Lhx2 expression did not change in Nex-cre mutants (Fig-

ures S5S and S5T).

Next, to obtain unbiased information on Pbx1-regulated

genes, we compared RNA expression (using gene expression

array analysis) in the cortex from E12.5 and E15.5 control and

Pbx;Emx1-cre brains. RNA expression changes were not

strong at E12.5 (data not shown), whereas at E15.5 the Pbx1

mutant had robust changes in RNA levels for several genes

(Table 1).

We focused on TFs with altered expression levels (Dbx1,

Dmrta1, and Pknox1) by performing ISH analysis. All three

TFs were overexpressed in the cortical VZ (Figures 5G–5J

and 6F0). Pknox1 (also known as PREP1) is a co-factor of

PBX1 (Berthelsen et al., 1998a, 1998b, 1998c). We performed

overexpression experiments in which Pknox1 was electropo-

rated in utero at E12.5. However, this did not change Lmo4

and NT3 P0 WM-ISH expression (data not shown), suggesting

that increased Pknox1 did not contribute substantively to the

Pbx1 mutant phenotype but rather may reflect compensatory

upregulation.

Dbx1 andDmrta1 expressionwere increased in thePbx;Emx1-

cre cortex; their expression domains expanded dorsally (Figures

5G–5J). Dbx1 regulates D/V patterning of the spinal cord (Pierani
uron 88, 1192–1207, December 16, 2015 ª2015 Elsevier Inc. 1195



Figure 3. Pbx Mutants Have Ectopic Reelin Expression in the Rostral CP

Reelin RNA expression analysis by ISH in control (left column), Pbx;Emx1-cre mutants (middle column), and Pbx;Nex-cre mutants (right column).

(A–D) Reelin expression at E13.5 and E15.5 on coronal sections.

(E) Reelin expression at E15.5 on sagittal sections. Red arrows point to the increasedReelin expression in the mutant’s rostral CP compared to the control (green

arrows).

(A0 0 0, B0 0 0, C0 0 0, D0 0 0, and E0 0 0) Reelin in situ signal intensity (integrated density) around the regions indicated by arrows was quantified and analyzed using ImageJ as

described (McCloy et al., 2014). At least three brain sections were used for each measurement. *p < 0.05 (mean ± SD).
et al., 2001).Dmrta1 loss of function analysis in the cortex has not

been reported; however, its expression is increased by Pax6,

implying that Dmrta1 may promote ventral fate (Kikkawa et al.,

2013). Dmrta1’s closely related family member Dmrta2 regulates

cortical DV patterning (Konno et al., 2012). Thus, we propose that

Pbx1 regulates D/V patterning, at least in part, by repressing TFs

(Dbx1,Dmrta1,Emx2, and Lhx2) that are expressed in VZ cortical

progenitors (in either D/V or V/D gradients).
1196 Neuron 88, 1192–1207, December 16, 2015 ª2015 Elsevier Inc
In addition to molecular defects in the cortical VZ, Pbx;Emx1-

cre mutants had dysregulation in the cortical SVZ. There was

reduced expression of Svet1 (�2-fold) and Cxcl12 (�2-fold) (Fig-

ures S5M and S5N). The SVZ (but not the VZ) had an �40%

reduction of M-phase (PH3+) cells at E12.5 in Pbx;Emx1-Cremu-

tants (not Nex-cre mutants) (Figures S5L, S5P, and S5Q). This

could account for the reduction in the thickness of the superficial

cortical layers. Furthermore, consistent with reduced CXCl12
.



Figure 4. Pbx Mutants Have Inversion of Cortical Layers in the Rostral Cortex

Laminar marker expression in Pbx;Emx1-cre and Pbx;Nex-cre mutants at P8 by ISH on control (left column), Pbx;Emx1-cre mutants (middle column), and

Pbx;Nex-cre mutants (right column).

(A–E)Nurr1, marker of subplate (A–A00); Tle4, marker of layer VI (B–B00); Er81, marker of layer V (C–C00);Rorb, marker of layer IV (D–D00); andCux2, marker of layers II

and III (E–E00). Red arrowheads point to the superficial boundary of the corresponding layers, showing the laminar inversions in the mutant.

Neuron 88, 1192–1207, December 16, 2015 ª2015 Elsevier Inc. 1197



Figure 5. Pbx;Emx1-creMutants at E13.5 Have Changes in the VZ Expression of TFs that Control Cortical Patterning Shown on Coronal Sec-

tions Using ISH

(A and B, D and E, G–J) Lhx2 expression (A–B0), Emx2 expression (D–E0), Dbx1 (G–H0), and Dmrta1 (I–J0). Black arrows indicate normal expression in the

ventrolateral cortex; red arrows point of the increase in expression of patterning genes in the mutant’s ventrolateral cortex.

(C and F) Quantification of Lhx2 (C) and Emx2 (F) in situ signal in Emx1-cre mutant versus control cortex.

Measurements in four brain sections were made in the ventral, lateral, and dorsal regions of the cortex. Integrated density was calculated as described previously

(McCloy et al., 2014). *p < 0.05 (mean ± SD).
expression, a known attractant for interneurons (Li et al., 2008;

Wang et al., 2011), there were fewer Dlx1+ and Lhx6+ cells in

the E15.5 Pbx;Emx1-cre cortex (data not shown).

Pbx repressed expression of Cav1 (Figure S5O). Cav1 is nor-

mally expressed at low levels in the dorsal-most cortex at

E13.5; in the mutant, it is dramatically upregulated throughout

the VZ. Cav1 encodes a structural component of caveolae

that plays an important role in integrating multiple signaling

pathways.

Pbxwas essential for the expression of Smoc1 in the VZ of the

cortex (Figure 6H0); ChIP-seq supports it as a PBX target

(described later) (Figure 6H). Smoc1 is an extracellular matrix

protein that acts as a BMP antagonist in early embryogenesis

(Thomas et al., 2009). As such, we tested whether BMP signaling

may be abnormal in the Pbx;Emx1-cre mutants by measuring

SMAD phosphorylation using IHC.
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Phosphorylation of SMAD increases its ability to signal (Gou-

mans and Mummery, 2000; Kitisin et al., 2007) and regulates

DV patterning of the neural tube (Fernandes et al., 2007).

pSMAD1/5 is normally detected in the VZ of the MP with a dor-

sal-to-ventral gradient at E15.5. Pbx;Emx1-cre mutants had

increased pSMAD1/5 and a ventral spread along the VZ (Figures

6J and 6J0). This increase was detected throughout the RC

extent of the cortex. pSMAD2 levels did not change (data not

shown). pSMAD staining did not change inNex-cremutants (Fig-

ure S5V), and we did not observe a change in Bmp4 expression

at E13.5 (Figure S5I).

WNT signaling is required for the dorsal-most cortical regions

(Lee et al., 2000; Zhou et al., 2006), and it participates in neocor-

tical patterning (Caronia-Brown et al., 2014) We assessed

expression of Axin2 and Wnt3, transcriptional readouts of

WNT signaling. At E13.5, their expression appeared normal in
.



Table 1. Results of Gene Expression Array Analysis of the E15.5

Pbx;Emx1-cre Cortex, Showing Downregulated and Upregulated

Genes

Genes Changed in Pbx1 Mutants

Symbol Name

Fold

Change FDR

Downregulated

Smoc1a SPARC related modular

calcium binding 1

3.8 9.9 3 10�5

Rai14a retinoic acid induced 14 2.5 1.2 3 10�3

Rbp1 retinol binding protein 1,

cellular

2.4 4.5 3 10�2

Flrt3a fibronectin leucine rich

transmembrane protein 3

2.3 1.8 3 10�2

Ccbe1a collagen and calcium

binding epidermal

growth factor domains 1

2.3 3.6 3 10�2

Pdzrn3a PDZ domain containing

RING finger 3

2.2 1.1 3 10�3

Bmpr1ba bone morphogenetic

protein receptor, type 1B

2.0 1.7 3 10�2

Cxcl12 chemokine (C-X-C motif)

ligand 12

2.0 5.5 3 10�3

Cux2a cut-like homeobox 2 2.0 3.8 3 10�2

Fzd8 frizzled homolog 8 1.8 3.5 3 10�3

Figf c-fos induced growth

factor

1.8 2.7 3 10�2

Plxna4a plexin A4 1.6 2.4 3 10�2

Ngfr nerve growth factor

receptor

1.6 4.5 3 10�2

Rnd2 Rho family guanosine

triphosphatase 2

1.4 3.8 3 10�2

Sema6d semaphorin 6D 1.4 2.3 3 10�2

Upregulated

Dbx1 developing brain

homeobox 1

4.6 9.0 3 10�3

Pknox1a Pbx/knotted 1

homeobox (Prep1)

3.0 9.9 3 10�5

Npr3 natriuretic peptide

receptor 3

2.8 1.4 3 10�2

Pde1aa phosphodiesterase 1A,

calmodulin-dependent

2.3 2.7 3 10�2

Dmrta1a doublesex and mab-3

related TF-like family A1

2.3 3.3 3 10�2

Fzd7 frizzled homolog 7 2.0 3.6 3 10�2

Lmo3a LIM domain only 3 1.9 3.1 3 10�3

Lmo4a LIM domain only 4 1.7 3.8 3 10�2

Nr4a2 (Nurr1) nuclear receptor

subfamily 4, group A,

member 2

1.7 2.3 3 10�2

Ngef neuronal guanine

nucleotide exchange

factor

1.6 2.7 3 10�2

A red star indicates which genes have PBX ChIP-seq peaks in their pro-

moter and/or intragenic regions.
aGenes that contain promoter or intragenic Pbx ChIP-seq peaks.

Ne
Pbx;Emx1-cre mutants (Figures S5F and S5G), providing evi-

dence that Pbx does not mediate cortical patterning through

modulating WNT signaling. Thus, abnormal regional patterning

of the Pbx;Emx1-cre cortex appears to be due to alterations in

the gradients of TF expression (Dbx1, Dmrta1, Emx2, and

Lhx2) and increased SMAD1/5 signaling. We next assessed

which of these phenotypes was directly due to Pbx1 chromo-

somal binding.

PBX ChIP-Seq from Embryonic Cortex Identifies Target
Genes
To determine which of the gene expression changes in the VZ

may be directly PBX regulated, we performed ChIP-seq from

E12.5 wild-type cortex using pan-PBX antibody. To help identify

direct PBX targets in progenitors and postmitotic cells, we

performed ChIP-seq from E15.5 cortex. As a specificity con-

trol, we added a PBX1 peptide to the chromatin immuno-

precipitations to block antibody binding. About 4,100 peaks

were identified at E12.5, and about 7,600 peaks were identified

at E15.5. About 2,500 peaks were the same between E12.5

and E15.5. Genomic Regions Enrichment of Annotations

Tool analysis (http://bejerano.stanford.edu/great/public/html/)

(McLean et al., 2010) showed the distribution of PBX binding

sites as a function of their distance from the transcription start

site;�35%were near the promoter (±5 kb), whereas the majority

(65%)mapped at more distant locations at both E12.5 and E15.5

(Figures S6A and S6B).

We compared our E12.5 ChIP-seq peaks with 900 enhancers

(Visel et al., 2013) that have reproducible tissue-specific enhancer

activity in transgenic assays (Vista enhancer browser, http://

enhancer.lbl.gov/). We found that about 30% of these 900 en-

hancers contained PBX peaks. Of enhancers that contained

PBXpeaks, about 40%had forebrainexpression in the transgenic

assay. Examples of four such enhancers are depicted in Fig-

ure S6C. These data support that PBX is frequently associated

with bona fide distant-acting in vivo enhancers in general and

with enhancers active in the developing forebrain in particular.

In addition, we compared a p300ChIP-seq dataset from E11.5

forebrain (Visel et al., 2009) with our E12.5 ChIP-seq to evaluate

how many PBX-enriched regions also map to p300-bound en-

hancers. Out of 2,453 p300-bound forebrain enhancers, 651

(26%) also contained Pbx ChIP-seq peaks.

Lhx2 and Emx2 were upregulated in the ventral cortex of Pbx

mutants (Figure 5). The promoter regions of these genes had

PBX ChIP-seq peaks (Figures 6A and 6B). At E12.5 there were

two prominent PBX ChIP-seq peaks at Lhx2 promoters. PBX

peaks were present in the same Lhx2 genomic locations at

E15.5 cortex, although they were not as pronounced. The

Emx2 locus contained two PBX peaks, one at the 50 end and

the other at the 30 end of the gene (Figure 6B).

PBX had ChIP-seq peaks over the proximal promoters of

Pknox1 and Meis2 genes (at E12.5 and E15.5) (Figures 6F and

6G). Pknox1 andMeis2 are members of the TALE homeodomain

protein family that cooperatively bind with PBX proteins to pro-

moters of target genes (Bjerke et al., 2011). In Pbx mutants,

Pknox1 expression is strongly increased throughout the cortex

(Figure 6F0). Expression of Meis2 is also strongly increased in

the VZ, as well as the CP, in Pbx mutants (Figure 6G0).
uron 88, 1192–1207, December 16, 2015 ª2015 Elsevier Inc. 1199
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Figure 6. ChIP-Seq Showing PBX Binding to Promoters, and Other Gene Regions, that Are Dysregulated in Pbx Mutants
(A–I) Genome browser views showing PBX ChIP-seq peaks at E12.5 and E15.5. Gene expression changes are shown in Figures 2, 4, and 5, except for Pknox1,

Meis2, and Smoc1, which are shown in (F)–(H0).
(J and J0 ) Pbx;Emx1-cremutants have expanded domain of pSMAD1/5 expression in the dorsal cortex (red arrows) at E15.5. Signal intensity was quantified and

expressed as integrated density in (J0) (mean ± SD).
PBX binding sites were also found in proximity of TFs that are

preferentially expressed in specific cortical layers and regions.

PBX ChIP-seq mapped to the start sites of Etv1 (ER81) (E12

and E15), Lmo3 (E12), and Lmo4; expression of these three

genes was dysregulated in Pbx mutant (Figure 4; Table 1; data

not shown).

Although our analysis found many other interesting genes that

are probable PBX targets, we wish to highlight Reelin. As shown

in Figure 3, Reelin RNA expression was upregulated in the

Pbx;Emx1-cre mutants (Figure 3). The Reelin locus contains

two intragenic PBX peaks at E15 and one peak at E12 (which

is in the same location as one of the E15 peaks) (Figure 6I).

Thus, there is good evidence that PBX binds to regulatory re-

gions of genes whose abnormal expression is implicated in the

regional and laminar phenotypes of Pbx mutants.

Nucleotide Motifs in Genomic Loci Bound by PBX
Next, we performed computational analyses to identify PBX

in vivo binding sequences and to provide evidence for TFs that

interact with the PBX-regulated genomic elements. We identified

nucleotide sequences that were over-represented in the PBX-

ChIP-seq peaks using the peak-motifs tool called Regulatory

Sequence Analysis Tools (Thomas-Chollier et al., 2012) and

clustered motifs by motif similarity and co-occurrence within
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ChIP-seq peaks using Pvclust (Suzuki and Shimodaira, 2006).

Representative motif logos and frequencies for major identified

motifs are shown in Figure 7 and Figures S7A–S7C. The most

commonmotifs mapped to theMEIS1motif in the JASPAR data-

base, as well as PBX1 in JASPAR and in the Catalog of Inferred

Sequence Binding Proteins database. The MEIS1/PBX1-anno-

tated motif family included a long inverted palindromic motif

and a short motif that represents half the palindrome (Figures

7A and 7B). We found that 77% of the identified PBX peaks at

E12.5 and 79% of peaks at E15.5 contained at least one pre-

dicted motif, and these motifs showed strong enrichment at

the center of PBX peaks, indicating that this is likely the primary

binding motif recognized by PBX. The inverted palindrome motif

and half-site have been identified previously using site-selection

experiments with MEIS1 (Shen et al., 1997).

The most common secondary motif at both time points was a

degenerate motif mapping to the SP/EGR families (53% of

E12.5 peaks and 47% of E15.5 peaks) (Figures 7C and 7D).

At E12.5, the second most frequent secondary motif was a

strong PDX1 motif (36% of peaks). At E15.5, the second

most frequent secondary motif was MECOM (46%), also corre-

lated with the NFATC motif identified at E12.5. The co-occur-

rence of PBX1 and PDX1 has been previously reported (Swift

et al., 1998).
.



Figure 7. Motif Analysis of Genomic Loci

Bound by PBX

(A and B) PBX short (A) and long (B) motifs identi-

fied from the ChIP-seq data. The long motif is an

inverted palindrome. The sequence of both short

and long motifs maps to the center of the PBX

ChIP-seq peaks.

(C and D) Motifs identified in PBX ChIP-seq peaks

at E12.5 (C) and E15.5 (D); their frequency is noted.

The MEIS motif is the same as the PBX motif.

(E and F) Identification of TFmotifs other than PBX/

MEIS at E12.5 (E) and E15.5 (F).
We tested for differences in the distance to the nearest gene

for identified motifs, revealing sets of motifs that are pre-

ferentially located proximal or distal to transcription factor start

sites (TSSs). There was no difference for MEIS1 along with

NFYA (highly correlated with MEIS1/PBX1 binding motifs and

annotated to PBX1 in cisBP), FOXM1/TCF7L2, and

ZNF354C. There was significant bias (t test, p value < 0.05)

toward proximal PBX peaks for SP/EGR, NRF1, ELK4,

MZF1_1-4, and TFAP2A motifs and bias toward distal PBX

peaks for PDX1, POU5f1::SOX2, NFATC2/MECOM, FOXP1/

SRY, MEF2A, ATOH1, and SOX5. Clustering of motif co-

occurrence captures the strong enrichment for TSS-proximal

motifs, with little minimal structure observed for motifs prefer-

entially found distal to the TSS at both time points (Figures 7E

and 7F; Figures S7D and S7E).

Finally, we tested for motifs that were enriched at one time

point but not the other using peak motifs with the background

as the second time point. At E12.5, PDX1/NOBOX motifs are
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strongly enriched compared to peaks

identified at E15.5, with 64% of E12.5

peaks annotated with this site. SP/EGR

family motifs are also enriched relative

to E15.5. At E15.5, we identified ATOH1,

NFIC/HAND1::TCFE2a, and FOXD3, all

three of which were preferentially located

distal to TSSs. ATOHmotifs were found in

nearly 70% of E15.5 PBX peaks when

analyzed with E12.5 as the background.

The increased frequency of occurrence

for NOBOX/PBX1 at E12.5 and ATOH1

at E15.5 is at least partly driven by these

motifs clustering with MEIS1 sites in the

original analysis using the peak-motif

default background.

DISCUSSION

Herein, we demonstrate using conditional

mutagenesis that Pbx1 regulates regional

identity and laminar patterning of the

developing mouse neocortex in cortical

progenitors (using Emx1-Cre) and in

newly generated neurons (using Nex1-

Cre). Because Pbx1 and Pbx2 have
similar RNA expression patterns at E11.5 (Figure S1), and

because they are known to share functions (Capellini et al.,

2006), we amplified the cortical phenotype by eliminating one

Pbx2 allele. Analyses of Pbx1mutants with normal Pbx2 dosage

were qualitatively the same as the compoundmutant (Figure S1).

Furthermore, cortical patterning appeared normal in Pbx2+/�

(Figure S2).

We found three salient molecular phenotypes of cortical

regional and laminar organization: (1) hypoplasia of the frontal

cortex in both Pbx;Emx1-Cre and Pbx;Nex1-Cre (Figure 2; Fig-

ure S2), (2) ventral expansion of the dorsomedial cortex in

Pbx;Emx1-Cre (Figure 2), and (3) robust ventral expansion of

Reelin expression in the CP of the frontal cortex, concomitant

with a partial inversion of cortical layering in Pbx;Emx1-Cre (Fig-

ures 3 and 4). The latter is a novel phenotype in which abnormal

cortical patterning is coupled with region-specific abnormal

laminar patterning. Next, we addressmechanistic underpinnings

of these phenotypes.
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Pbx Function in Cortical Progenitors Regulates D/V
Patterning by Repressing Lhx2 and Emx2 Expression
Wepropose thePbx regulates cortical regional fate in the cortical

VZ in part by repressing expression of TFs that control cortical

DV patterning. Pbx;Emx1-cre mutants have ventral expansion

of high Emx2 and Lhx2 expression. Themutants also exhibit dor-

sal expansion ofDbx1 andDmrta1 (from the ventral-most cortex)

(Figure 5). Concomitant with these changes in the VZ are a dor-

sal-to-ventral expansion of molecular properties in the CP that is

particularly striking forNT3 (Figure 2; Figure S2). There is no clear

ventral-to-dorsal expansion of CP properties. We propose that

the loss of frontal cortex properties (loss of Lmo4 and NT3 and

gain of Lmo3) is in part due to the rostroventral shift of caudodor-

sal properties (e.g., Lmo3) (Figure 2).

The changes in expression of Lhx2 and Emx2 could contribute

to the Pbx mutant’s patterning phenotype, because each of

these TFs has demonstrated functions in cortical patterning.

Lhx2 promotes neocortical fate by repressing properties of flank-

ing structures. Lhx2 null mutants illustrate that Lhx2 dorsally re-

presses choroid plexus identity and that ventrally Lhx2 represses

properties of the ventral pallium (also known as antihem) (Bulc-

hand et al., 2001; Mangale et al., 2008; Monuki et al., 2001). In

Lhx2;Emx1-cre mutants, lateroventral cortex acquires neocor-

tical fate (Chou et al., 2009). Thus, like Lhx2,Pbx controls the bal-

ance of cortical fates along the DV axis. In Pbxmutants, the Lhx2

gradient is changed; there is upregulation in the lateroventral re-

gions of the cortical VZ and in the CP. Dorsal properties are

expanded (e.g., NT3+ cingulate or retrosplenial) at the expense

of more ventral properties (Lmo3+ somatosensory). Thus, we

propose that Pbxmaintains the correct level of Lhx2 expression,

which is crucial in regulating the balance among different cortical

regions.

Emx2 overexpression is also likely to contribute to the Pbx

mutant phenotype. An �2-fold increase in Emx2 expression in

the VZ repressed rostroventral fate and led to expansion of cau-

dodorsal cortical areas (Hamasaki et al., 2004). As noted earlier,

this phenotype is similar to that of the Pbx mutant. ChIP-seq

analysis identified two PBX peaks just 50 of the transcribed re-

gion of Lhx2 and two PBX peaks within Emx2’s transcribed

domain (Figure 6). Thus, PBX may directly control Lhx2 and

Emx2 transcription.

Molecular Mechanisms Underlying the D/V Patterning
Defects in Pbx Mutant Cortical Progenitors: Altered TF
Expression and Increased SMAD1/5 Phosphorylation
It is likely that additional mechanisms contribute to Pbx1’s con-

trol of cortical region fate, in addition to altered Emx2 and Lhx2

expression. Prominent dorsal expansion of Dbx1 and Dmrta1

expression (Figure 5) merits further consideration but will require

better understanding of the functions of these TFs during cortical

development.

PBX proteins function in part through forming complexes with

other TALE homeodomains, such as the PKNOX (PREP) and

MEIS proteins (Bjerke et al., 2011). Pbx;Emx1-Cre mutants

have striking overexpression of Pknox1 (Prep1) and Meis2;

both genes have PBX ChIP-seq peaks (Figure 6). It is possible

that the increased Pknox1 (Prep1) and Meis2 expression was a

compensatory mechanism or that the increase intensifies the
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phenotype. Future analyses of Pknox1 (Prep1) and Meis2 mu-

tants, alone or in combination with Pbx1, are needed to elucidate

their respective functions.

As noted earlier, Pbx;Emx1 mutants had a prominent ventral

expansion of dorsal properties in the VZ (Emx2 and Lhx2) (Fig-

ure 5) and in the CP (NT3) (Figure 2). These mutants also showed

increased levels of activated (phosphorylated) pSMAD1/5 TFs

(Figures 6J and 6J0). BMP signaling activates SMAD1/5 (Itoh

et al., 2000; Kitisin et al., 2007). In the forebrain, BMP signaling

is known to specify the choroid plexus, dorsal-most fate in the

telencephalon (Fernandes et al., 2007). Thus, it is possible that

increased pSMAD1/5 participates in the expansion of dorsal

cortical properties in the Pbx;Emx1 mutant that, in conjunction

with the increased Emx2 and Lhx2 expression, contributes to

the loss of the frontal cortex. We are uncertain about the mech-

anisms for increased pSMAD1/5 but speculate that loss of

Smoc1 expression (Figures 6H and 6H0) may contribute to this.

In Xenopus early embryogenesis, there is evidence that Smoc1

acts as a BMP antagonist (Thomas et al., 2009).

Pbx Function in Newly Born Cortical Neurons Regulates
Cortical Patterning
While regional specification of cortical domains is initiated in

neuroepithelial stem cells (VZ) by processes that control gene

expression, there is evidence, based on loss ofCoupTFI,Bhlhb5,

and Lhx2 functions (Alfano et al., 2014; Joshi et al., 2008; Zembr-

zycki et al., 2015), that immature CP neurons maintain plasticity

regarding cortical regional or areal identity. Here, we found that

eliminating Pbx function in newly generated cortical neurons us-

ing Nex-Cre degraded regional cortical molecular properties,

particularly in the frontal cortex, which showed greatly reduced

Lmo4 and NT3 expression (Figure 2).

ChIP-seq analysis identified PBX peaks in the Lmo3 and Lmo4

loci, providing evidence that Pbx expression in postmitotic neu-

rons (Figure 1) directly regulates these markers of cortical areas.

Furthermore, Lmo4 function is required in rostral cortical neu-

rons to control the identity of its projection neurons (Cederquist

et al., 2013). Thus, our data are consistent with the model that

Pbx expression in cortical progenitors controls region fate

through repression of Emx2 and Lhx2 and Pbx expression in

cortical neurons controls their identity by promoting Lmo4

expression.

Pbx Represses Reelin Expression in Rostral CP
Neurons: Evidence that Ectopic Reelin Expression in
Pbx Mutants Leads to Dyslamination in the Rostral
Cortex
Reelin regulates radial migration of immature cortical projection

neurons and orchestrates cortical ‘‘inside-out’’ laminar organiza-

tion (Ogawa et al., 1995). Here, we found that loss of Pbx in

cortical progenitors leads to ectopic Reelin expression that ex-

pands ventrally from indusium griseum (where it is normally pre-

sent) into the rostral neocortex, particularly in early-born layers

(Figure 3).We suggest that abnormal DV patterning in the cortical

VZ accounts for much of this ectopic expression. However, loss

of Pbx in newly generated neurons (Nex-Cre) leads to a subtle in-

crease in Reelin overexpression (Figure 3), suggesting that Pbx

regulates Reelin in both the VZ and the cortical neurons.
.



Consistent with this, there is a prominent PBX ChIP-seq

intragenic peak in Reelin in both E12.5 and E15.5 analyses

(Figure 6I).

The Pbx;Emx1-Cre mutant shows a robust lamination pheno-

type (only in the rostral cortex, where the ectopic Reelin is

evident) (Figure 4), consistent with the model that ectopic Reelin

expression disrupts the normal lamination pattern. In the rostral

cortex, neurons expressing subplate, layer VI, and layer V

markers are in a superficial position, whereas neurons express-

ing Cux2, the layer II/III marker, are in a deep position. BrdU

pulse-chase analyses support the inversion of these layers in

the rostral cortex (Figure S4). Thus, Pbx controls programs that

mediate regional and laminar development, particularly in the

rostral cortex.

PBX ChIP-Seq from Embryonic Cortex Identifies Target
Genes
The anti-PBX antibody used in the ChIP experiments recognizes

PBX1, PBX2, and PBX3 (Ferretti et al., 2011). Pbx3 expression is

not detectable in the developing cortex (Allen Brain Atlas). As

noted previously, Pbx1 and Pbx2 share similar expression during

cortical development (Figure 1; Figure S1) and share functions

(Capellini et al., 2006, 2008). Thus, the PBX ChIP-seq results

most likely reflect both PBX1 and PBX2 genomic binding sites.

We performed PBX ChIP-seq from E12.5 and E15.5 cortex. At

E12.5, most cells in the cortex are progenitors; thus, the �4,100

PBX ChIP-seq peaks from this age should largely reflect PBX-

bound regulatory elements in dividing cells of the VZ and SVZ,

some of which are generating neurons destined to deep cortical

layers. In the E15.5 cortex there are both progenitors and neu-

rons; thus, the�7,600 PBX ChIP-seq peaks from this age should

reflect a mixture of PBX-bound regulatory elements in progeni-

tors and immature neurons. We predict that PBX binding

captured by the ChIP-seq experiments includes both activating

and repressive activity. In the future, region-specific chromatin

datasets across the cortex could be used to examine this at a

chromatin level. Nonetheless, we show that PBX binds near

genes that are both upregulated and downregulated after condi-

tional deletion of Pbx1, evidence for direct PBX regulation of crit-

ical patterning genes.

The intersection of the E12.5 and E15.5 ChIP-seq data identi-

fied �1,600 PBX peaks unique to E12.5 data. These may be

enriched for regulatory elements that function in cortical progen-

itors and/or are important in the generation of deep-layer cortical

neurons. Conversely, the intersection of the E12.5 and the E15.5

ChIP-seq data showed �5,100 PBX peaks unique to E15.5.

These may be enriched for regulatory elements that function in

immature cortical neurons and/or are important in the generation

of superficial-layer cortical neurons. Finally, PBX bound to

�2,500 peaks at both E12.5 and E15.5; these regulatory ele-

ments may execute functions common to these stages of

corticogenesis.

Roughly 20% of PBX ChIP-seq peaks were found close

(0–5 kb) to genes, particularly 50 of the exons, and thus represent,

in part, binding to promoters (Figure S6). In addition, >65%of the

peaks mapped >5 kb away from transcribed genic regions (Fig-

ure S6), suggesting that PBX also binds to enhancers. We iden-

tified PBX peaks on 270 regions that have enhancer activity at
Ne
E11.5 (Table S1); 120 of these regions have enhancer activity

in the E11.5 forebrain (Figure S6D; Table S2) (Visel et al., 2013).
Nucleotide Motifs in Genomic Loci Bound by PBX
De novo analysis of motifs from PBX peak sequences identified

the likely primary PBX bindingmotif, which corresponds to a pre-

viously described motif for MEIS1 (Knoepfler et al., 1997; Shen

et al., 1997). This binding motif occurs as both a full inverted

palindromic motif and a set of motifs that are half-sites of the

full inverted motif. PBX peaks proximal to TSS were strongly en-

riched for binding motifs mapped to the SP/EGR family, NRF1,

ELK4, MZF1_1-4, and TFAP2A. Thus, PBX proteins may coop-

erate at promoters with these proteins. The SP family member

SP8 has a prominent role in cortical patterning (Borello et al.,

2014; Sahara et al., 2007).

Distal PBX peaks were strongly enriched for motifs that are

bound by proteins related to PDX1, MECOM/NFATC2,

POU5f1::SOX2, FOXP1/SRY, NFATC2, ATOH1, SOX5, and

MEF2A. These TFs are likely enhancer regulators, many of which

are related to TFs with known functions in cortical development.

For instance, the POU5f1::SOX2 complex, which control embry-

onic stem cell pluripotency, is related to the SOX2 and BRN

(POU) proteins that promote neural fate (Tanaka et al., 2004).

Sox5 function is crucial for development of deep-layer neurons

(Kwan et al., 2008; Lai et al., 2008; Leone et al., 2008). ATOH1

is a bHLH family member, many of which have fundamental roles

in cortical development, including Ngn1, Ngn2, and the NeuroD

family (Fode et al., 2000; Mattar et al., 2008; Olson et al., 2001;

Sun et al., 2001). The observation that the ATOH1 motif was en-

riched at E15.5 but not E12.5 (Figures 7C–7F) suggests that PBX

and bHLH proteins may coordinately bind to enhancers with ac-

tivity during neurogenesis, neuronal migration, and maturation

rather than in neuroepithelial progenitors. Finally, the FOXP1

motif is consistent with known functions of FoxP1 and FoxP2

in neural differentiation (Bacon et al., 2015; Tsui et al., 2013). In

sum, these results are an entrée for elucidating the mechanisms

whereby combinations of TFs interact with PBX proteins on cis-

regulatory elements to modulate gene expression during cortical

regionalization, laminar patterning, and neuronal differentiation.
EXPERIMENTAL PROCEDURES

ISH on Brain Sections

All experiments were performed according to the University of California San

Francisco Institutional Animal Care andUseCommittee. The 20 mm frozen sec-

tions were dried, washed three times with PBS (5 min each), and fixed with 4%

paraformaldehyde in PBS for 10min. Sections were then rinsedwith PBS three

times (3 min each) and treated with 1 mg/ml Proteinase K for 17 min. After two

quick rinses, PBS sections were postfixed with 4% paraformaldehyde for

5 min and rinsed again in PBS three times (3 min each). Acetylation was per-

formed for 10 min in an acetylation buffer containing 1.3% triethanolamine,

0.17% HCl, and 0.4% acetic anhydride in water. Sections were then rinsed

with PBS three times (10 min each) and prehybridized by incubating with hy-

bridization buffer (50% formamide, 5x SSC [pH 4.5], 50 mg/ml yeast tRNA,

1% SDS, 50 mg/ml heparin) for 2 hr in a 67�C oven. After prehybridization,

in situ probes diluted in hybridization buffer at 500 ng/ml were added for over-

night incubation at 67�C. Next-day slides were rinsed with prewarmed 5x SSC

[pH 4.5], washed twice (30 min each) with 0.2x SSC (pH 4.5) at 70�C, and then

washed once (5min) with 0.2x SSC (pH 4.5) at room temperature, followed by a

wash with NTT buffer (0.15 M NaCl, 0.1 M Tris [pH 8.0], 0.1% Tween 20).
uron 88, 1192–1207, December 16, 2015 ª2015 Elsevier Inc. 1203



Sections were blocked with NTT blocking buffer containing 5% heat-inacti-

vated horse serum and 2%blocking buffer (Catalog No. 11096176001, Roche)

for 1 hr at room temperature, followed by an overnight incubation at 4�C with

anti-digoxigenin-alkaline phosphatase (AP) antibody (1:5,000 dilution in NTT

blocking buffer). Next-day sections were washed three times with NTT buffer

(30 min each), followed by three 5 min washes with NTTML buffer (0.15 M

NaCl, 0.1 M Tris [pH 9.5], 0.1% Tween 20, 50 mM MgCl2, 2 mM levamisole),

and incubated with developing reagent BM Purple (Catalog No.

11442074001, Roche) until desired intensity of the signal was reached. Devel-

opment reaction was stopped with PBS. Sections were allowed to dry, dehy-

drated with xylenes, and mounted with Permount.

WM-ISH

The meninges were removed from dissected P0 brains, and brains were fixed

overnight in 4% paraformaldehyde. After two rinses with PBS containing 0.1%

Tween 20 (10 min each), brains were rehydrated through a series of methanol

washes in PBS-Tween 20 (25%, 50%, 75%, and 100%) and stored at �20�C
until further processing. On the day of the experiment, brains were rehydrated

through a series of methanol washes (75%, 50%, and 25%), rinsed with PBS-

Tween 20 twice, and treated with 20 mm/ml Proteinase K for 30 min. After

digestion, tissue was rinsed with 100 mM glycine and PBS-Tween 20 and

postfixed with 4% paraformaldehyde/0.1% glutaraldehyde for 20 min. After

postfixation, brains were washed once with PBS-Tween 20 and then washed

once with a 1:1 mixture of PBS-Tween 20 and hybridization buffer (50% form-

amide, 1.3x SSC [pH 4.5], 5 mM EDTA, 50 mg/ml yeast tRNA, 100 mg/ml hep-

arin, 0.5% Tween 20). Solution was then replaced with hybridization buffer,

and tissue was allowed to prehybridize for 1 hr at 70�C. In situ probes were

diluted in hybridization buffer at 500 ng/ml, and hybridization was performed

overnight at 70�C. Next-day brains were washed three times (30 min each,

at 70�C) with hybridization buffer, once with a 1:1 mixture of hybridization

buffer and Tris-buffered saline and Tween 20 (TBST; 30 min at 70�C) and three

times (30 min each) with room-temperature TBST. Brains were blocked with

TBST containing 10% heat-inactivated horse serum and 0.1% blocking buffer

(Roche) for 2 hr at room temperature, followed by an overnight incubation at

4�C with anti-digoxigenin-AP antibody (1:4,000 dilution). Next-day brains

were washed with TBST eight times for 30 min each and left in the wash buffer

overnight. BM Purple (Roche) was used as a developing reagent.

Chromatin Immunoprecipitation

Wild-type cortices (one litter of E12.5 or E15.5) were dissected, triturated in 1%

formaldehyde in PBS, and fixed for a total of 10min at room temperature. Fixed

cells were pelleted and washed with cold PBS. Pellets were lysed in 500 ml of

lysis buffer (1% SDS, 10 mM EDTA, 50 mM Tris [pH 8.1]) on ice for 10 min, and

lysates were sonicated using Bioruptor (Diagenode) on high settings for 15 cy-

cles (7.5min of total sonication time). The resulting average chromatin size was

200–500 bp as verified by the bioanalyzer. Cleared chromatin was diluted ten

times with dilution buffer (0.01% SDS, 1.1% Triton X-100, 1.2 mM EDTA,

16.7 mM Tris-HCl [pH 8.1], 167 mM NaCl) and was incubated overnight at

4�C with 3 mg of appropriate antibody. Mixture of protein A and G magnetic

beads (Life Technologies) was preblocked overnight with BSA and tRNA and

was added to the chromatin the next day for 3 hr. Immune complexes were

washed once with low-salt buffer (0.1% SDS, 1% Triton X-100, 2 mM EDTA,

20mM Tris-HCl [pH 8.1], 150mMNaCl), high-salt buffer (0.1% SDS, 1% Triton

X-100, 2 mM EDTA, 20 mM Tris-HCl [pH 8.1], 500 mM NaCl), LiCl buffer

(0.25M LiCl, 1% Tergitol-type nonyl phenoxypolyethoxylethanol 40, 1% deox-

ycholic acid [sodium salt], 1 mM EDTA, 10 mM Tris [pH 8.1]), and Tris-EDTA

buffer. Complexes were eluted in 1% SDS, 10 mM sodium bicarbonate buffer

at 65�C for 10 min. Crosslinks were reversed at 65�C overnight, proteins were

digested using proteinase K, and DNA was purified using the Zymo ChIP DNA

Clean and Concentrator kit (Zymo Research). Immunoprecipitation was per-

formed using the following antibody: Pbx1/2/3 (sc-888, Santa Cruz). As a

negative control in PBX ChIP experiments, the PBX antibody was incubated

with PBX blocking peptide (sc-888P, Santa Cruz) at a 1:400 molar ratio and

added to the chromatin lysates. ChIP-seq libraries were prepared using the

NEBNext DNA Library Prep Kit (NEB) and Illumina standard adaptors and

were sequenced using a 50 bp single-end strategy using Illumina HiSeq

platform.
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