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ABSTRACT OF THE THESIS

Application of Experimental Design and Analysis in a Social Network Mobile App

by

Muxin Shang

Master of Applied Statistics

University of California, Los Angeles, 2019

Professor Hongquan Xu, Chair

The objective of this research is to apply techniques of randomized controlled experimenta-

tion including experimental design and analysis in user experience optimization and mobile

app development. Online controlled experiments started to be used in the late 1990s with

the growth of the Internet. Nowadays, many Internet companies leverage controlled exper-

iments, especially A/B testing, to understand and make decisions at every step of product

development. Large sites, including Facebook, Google, and Airbnb, run hundreds of A/B

testing every month on features from UX design to algorithms for growth.

The power of running controlled experiments is the ability to establish causal inference

and quickly validate new product ideas with statistical evidence of success. This process can

ultimately help organizations, especially Agile software, optimize products with iterations

by better understanding the corresponding impact on the user experience and recognizing

the best performer from a list of variations.
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CHAPTER 1

Introduction

This paper aims to describe the entire process and methodology of how a controlled ex-

perimentation or A/B testing is applied at a mobile app to improve a specific feature from

experimental design to result based decision making. The mobile app is a social network

app for meeting new people and available for download in Apple store and Android store.

It allows users to rate other users′ profiles, and chat with them once both parties like each

other. The A/B testing process follows the scientific method and tests on multiple variations

by showing different UX design variations to users to determine the best performer based

on pre-defined key metrics. Effective experimental design requires the business problems to

be answerable and the results to be measurable. A reasonable A/B testing process usually

follows these steps in the cycle chart below.

Figure 1.1: A/B Testing Framework

The term A/B testing has been used to refer to controlled experimentation. There are

multiple test methods to structure experiments, such as A/B testing, multivariate testing
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(factorial design), and fractional multivariate testing. Traditional A/B tests recommend

testing one factor at a time because it requires fewer samples and hence runs faster, whereas

multivariate testing lets you test combinations of variables by isolating the impact of external

factors and comparing them against each other in every possible combination. Comparing

to running a series of A/B tests one at a time, multivariate testing studies effects of multiple

factors and understands the impact on the product ecosystem individually and interactively.

The combined effect of two factors may be different from the sum of two individual effects.

It is also efficient since it runs in a shorter time to find optimal variables from a list of factors

at a single test. Fractional multivariate testing should be considered when strategically there

is no interest in a specific set of combinations of variables for a test. It is more practical for

high-traffic sites or apps to use the multivariate testing method since it is relatively fast for

them to get enough samples for a broad set of variations.

This paper will describe a real application of multivariate A/B testing in the social

network app for a project that I led the analytic work providing actionable insights and

recommendations based on scientific methods including A/B testing. For this project, I

collaborated with both product team and engineering team completing a series of A/B

testing experiments using the framework in the Figure 1.1.
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CHAPTER 2

Methodology

2.1 Hypothesis Testing

In an ideal world, we would know everything about the population, hence no estimation is

necessary. However, in real-world businesses, there are limitations we need to work around.

In A/B testing we are limited by the time, resources and number of users we can assign to

any given test. Thanks to hypothesis testing methodology, we can make statistical inferences

of population parameters on a random sample.

Hypothesis testing is making inference about the relationship between two populations

to determine if there is a statistically significant relationship or not. There are two types

of hypotheses, the null (H0) and alternative hypotheses (H1). Statistical significance means

that the observed difference between two samples is caused by something other than chance

or random sampling error only. We choose to reject the null hypothesis to declare statistical

significance when the p-value is below a pre-specified value α, the probability of conducting

Type I error. There are two possible correct decisions and two possible errors in hypothesis

testing, as shown in Table 2.1 below.

H0 is True H0 is False

Reject H0 Type I error Correct decision

Do not Reject H0 Correct decision Type II error

Table 2.1: Error Types of Hypothesis Testing

The p-value gives the probability of observing an effect from a sample under the null

3



hypothesis. It provides a quantitative measure of statistical significance to determine the

observed difference in hypothesis testing. A p-value of less than 0.05 is considered as declaring

statistical significance under the conventional threshold. [4] How do we compare two samples

in terms of their distributions? The test parameters we choose determine the test statistic

for testing the difference in two populations. In general, we would compare the difference in

sample means or sample proportions for statistical testing. A sample mean is the average

value of a sample and the sample proportion is the amount of the sample that results in

success. The proportion takes a value from 0 to 1 measuring probability metrics such as

conversion rate. The sample mean and sample proportion allow to compare changes of

variables. In general, an A/B testing comparing sample means would define a null hypothesis

assuming two sample means equal, and an alternate hypothesis assuming two sample means

not equal.

2.2 Multiple Comparisons

Hypothesis testing is useful to prove hypotheses about our data. This method runs into the

problem of multiple comparisons when we want to test a set of m hypotheses simultaneously.

In reality, to better understand what elements have significant impacts to the product when

running an experiment, breaking the samples into segments is necessary in order to dive

deeper and get more actionable insights of the data, for instance, what specific group of

people adopts different behaviors due to the product changes. Examples of segments are

gender, age, and regions of the users. In addition to the numbers of metrics tested, this

segmentation will further introduce more simultaneous comparisons.

When testing a set of hypotheses simultaneously, we are also dealing with the problem

of multiple comparisons, because the probability of observing at least one pair of treatments

significantly different at level α is larger than α. For example, we have m=20 hypotheses to

test at the significance level of 0.05, the probability of getting at least one false positive just

due to chance (experiment-wise error rate) is
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Pr(at least one significant result) = 1 − Pr(no significant results)

= 1 − (1 − α)m

= 1 − (1 − 0.05)20

≈ 0.64

Thus, with 20 hypotheses being tested at the same time, we have a 64% chance of getting at

least one significant result, even if all of the comparison results are not significant. As shown

Figure 2.1: Increasing Error Rate of Multiple Comparisons

in the figure above, this probability increases as more hypotheses being tested simultaneously.

It is common for a sophisticated app to run many hypotheses simultaneously at one test, in

order to monitor a set of key metrics over multiple segments. One of the approaches to fix

this problem is to adjust α, so that the experiment-wise error rate remains below the desired

significance level. One convenient method to use to control the experiment-wise error rate

is the Bonferroni method. [4]

The Bonferroni correction cuts off the significance α by the number of comparisons m at

α/m, so that a null hypothesis should be rejected if the p-value is less than α/m, instead of

α. As a result, experiment-wise error rate is corrected as the following such that it is now

close to the pre-defined significance level at α = 0.05.
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Pr(at least one significant result) = 1 − Pr(no significant results)

= 1 − (1 − α
m

)m

= 1 − (1 − 0.05
20

)20

≈ 0.05
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CHAPTER 3

Experimental Setup

3.1 Set Product Goal

This particular experiment that I designed and analyzed was to focus on improving user

interactions with an in-app new feature called “Location”. It is a location-based feature

collecting public locations, such as restaurants and shopping malls, which a user has visited

recently. It allows the user to view profiles and connect with a list of matches who have

been to the same locations, which hopefully help them find more common interests and

topics effortlessly. The actual UX design for this feature page is shown in the Figure 3.1.

A number of locations are ranked based on the recency of users′ visits. The first card is

always the most recently visited location, and the user can view more other location cards

by swiping the carousel, with one card centered at a time.

The team launched this feature in a small market and planned to iterate the feature with

a series of A/B testing to optimize this feature before rolling it out globally. I designed

and evaluated all of the experiments for this project. My analyses and recommendations

supported the team′s product decisions. This particular test discussed in this paper was one

of the series of A/B testing and was designed as multivariate testing. We eventually rolled

out the winning variant globally based on my analysis for this test. The following will go

through the details behind that experiment using the framework.

The product problem was discovered through one of my exploratory analyses on users′

adoption with this new location feature after launching it in a small market. The analysis

pointed out relatively lower usage of the feature, based on location card open rate and the

number of location cards opened per user on average.
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The goal of the feature is to help users find more relevant matches through viewing

other users′ profiles in locations they visited. The relatively low card opens led to lower

activities rating other users in those cards and hence undermined the feature effect to the

app ecosystem. Thus, the team wanted to find a more effective UX design to improve the

funnel drops and enable users to interact with more location cards.

3.2 Create Variants

For the organization, the product problem is the funnel drops on the conversions from the

“Location” entry page to card openings. Thus, the team′s objective is to explore factors and

factor levels that can get users to open more of location cards from the entry page.

The first step is to find out the main factors that would potentially result in the highest

increase in conversions. Theoretically, there are many elements on this entry layout page that

we could optimize such as the entire layout, the display of the card carousel, the design of

the location card, and even the theme color. We could only test a limited amount of element

options under the timeline and the budget cost, including the products roadmap timeline and

engineering cost. Thus, the best option for us was to find out the most impactful elements

to test. Through discussions with the product team and the design team, we decided to test

the page layout UX design and the sorting algorithms displaying the location cards. We have

determined that those two factors were the most impactful elements among all the possible

ones on this page.

The next step is to then discover appropriate levels for each factor. It is impossible to

test large amounts of levels due to limited resources in any organization. Based on the team′s

experience and product sense, we strategically selected two levels for the layout UX design

and four levels for the card sorting algorithms.
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Level

Factor Original 1 2 3

A. UX layout Map horizontal carousel Vertical List

B. Card sorting algorithm Recency Recency without empty cards Distance Number of profiles in a card

Table 3.1: Factors and Levels

As shown in Table 3.1, the two layout UX designs are the original map carousel design

and the new vertical list design. The four card sorting algorithms are the original recency and

the three new ones including recency with empty cards removed, distance, and the number

of profiles in a card. One example of the actual UX designs from control to variant groups

for this test is shown in Figure 3.1 below.

Figure 3.1: Design of Variants

As shown in Table 3.1, this experiment consists of two factors with the layout UX at two

levels and the sorting algorithm at four levels, and it generates total possible combinations of

eight test groups. Full factorial testing or multivariate testing is considered as the experiment

method to test on every possible combination available. Instead of running two separate
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single factor experiments, running the experiment for the two factors with a combination of

all levels at once would allow us to learn the interaction effects over all levels chosen. The

goal is to figure out what specific elements on the product page play the most important role

in achieving business objectives. Overall, this experiment will have 8 test groups. Unlike

traditional in-person experimentation associated with the pharmaceutical industry, Internet

companies are usually not limited by the expense of getting enough samples. They can run

tests and assign users randomly into a test group when the users log into the app or site

successfully. Given that this mobile app has enough traffic, the team is open to running a

number of variations without worrying about running insufficient samples and slowing down

the test as a result.

Factors

Group UX Layout Sorting Algorithm

Control Map horizontal carousel Recency

Variant 1 Map horizontal carousel Recency without Empty Cards

Variant 2 Map horizontal carousel Distance

Variant 3 Map horizontal carousel Number of Profiles in a Card

Variant 4 Vertical List Recency

Variant 5 Vertical List Recency without Empty Cards

Variant 6 Vertical List Distance

Variant 7 Vertical List Number of Profiles in a Card

Table 3.2: Planning Matrix

3.3 Define Key Metrics

The first step of planning A/B testing is to define the key metrics measuring the success of

the test. It comes down to the product goal. Whether an experiment should be taken as

successful or not largely depends on the product objectives. They are the factors the decisions

are based upon. So a determination of objectives is necessary before any experiments. Clear
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objectives help decide clear KPIs (key performance indicator) or key metrics for the test.

Figure 3.2: Feature Engagement Flow

Figure 3.2 is the product funnel flow for this new “Location” feature. In order to in-

crease the result of getting more location relevant matches, we would have to improve the

conversions at the upper funnel, which is getting more users to open and then swipe in the

“Location” cards. Since we have got the optimal variations to test based on our capacity,

the key metrics should measure the results from the variations. The metrics that matter to

the team are:

• Average number of location card opens

• Location card open coverage

• Average days active in “Location”

The two goals we want to achieve are more users open a location card and more location

cards opened on average. We believe that the list layout design will naturally increase more

cards viewed than the horizontal carousel design with one card being centered at one time.

Location card coverage allows us to see if more users open at least one location card, and

the average number of location cards opened allows us to see if users open more location

cards during a period of time. Average days active in “Location” attempts to measure the

ecosystem impact to this feature from the variations. It allows us to see if users are using

this “Location” feature more frequently. The optimal variation would ultimately lead to

significant lifts in all of the three key metrics above. We would not want to measure and

compare more metrics than what we need because more hypotheses tested simultaneously

will decrease the statistical power and lead to longer test length.
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3.4 Determine Minimum Sample Size

An appropriate sample size is crucial to an A/B testing. We expect large samples to achieve

more reliable results and we also want to run experiments faster due to resources limitation.

However, small sample size decreases statistical power. Power is the probability of rejecting

the null hypothesis when it is false. The power of a test is its ability to detect an effect when

there is one to be detected. Power analysis can be used to estimate the minimum sample

size required for A/B testing with pre-defined significance level, effect size, and statistical

power. In general, for every hypothesis test or A/B testing, we’ll want to do the following

to estimate effective sample size.

• Minimize the probability of committing a Type I error, α. Typically, α = 0.05 is used as

the convention threshold for significance level

• Maximize the power, 1−β. A power of 0.80 or greater is typically the convention threshold

The power analysis can be used to estimate minimum sample size, and it is calculated

using the following formula: [1]

• Minimum sample size n for difference in means: n =
2σ2(Z1−β+Zα/2)2

(X̄1−X̄0)2

• Minimum sample size n for difference in proportions: n =
2p̄(1−p̄)(Z1−β+Zα/2)2

(p1−p0)2

Based on the formulas above, we can get minimum sample size for each of the key

metrics, based on our pre-defined significance level of 5% and power of 95%. We take the

largest sample size in order to get enough samples for any of the metrics. From the Table

5 below, we can conclude that each experiment group requires at least 5,000 samples to get

enough power for statistical significance for the key metrics.
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Key Metric Historical performance Expected lift Effect size Minimum sample size

Average number of location card opens 5 +10% 0.5 2000

Location card open coverage 50% +5% 0.025 5000

Average days active in Location 3 +2% 0.06 5000

Table 3.3: Key Metrics and Sample Size

3.5 Launch Experiment

One of the most essential parameters to know when launching a test is the test duration,

which is based on the calculated minimum sample size. To avoid calling conclusive results

too quickly, we need to estimate how long the test should run given the sample size based on

the historical traffic. In addition to be able to reach right conclusion, it is also important for

the team to know the test length and collaborate with other teams on A/B testing calendar

so that we do not run multiple related tests in the same market simultaneously. In this case,

the test consists of 8 variants, and each of the variants requires at least 5,000 samples to

detect statistical significance with enough power. This gives us of 40,000 users as a minimum

sample size. As a result, we decided to run this A/B testing for 14 days.

When turning on the test on the setup page, one important configuration is equal size

distribution for each variant group, which is 1/8 in this test. In general, the best approach

to split the traffic for each variant group in A/B testing is to split it equally across the test

groups. Equal split not only helps in reaching the statistical significance faster but also gives

a more reliable result. We are sometimes concerned about allocating huge traffic to a variant

as it could lead to a negative impact, so it is safer to only assign the number of users based

on the minimum sample size if we want to be more conservative about the test.

When choosing a target experimental group, we would usually want to test users globally,

since the mobile app is used worldwide. Sampling users globally would help reduce bias

towards certain regions and be more representative of all population. It is important to

make sure to isolate this experiment from all others that test on the same feature page at

13



the same time. It is common for a large organization to run hundreds of experiments on

any given day. We just need to make sure to communicate and coordinate ahead with other

teams for a clean experiment environment. It is also very important to sample randomly for

statistical inferences.

Figure 3.3: Equal Split Test Assignment

14



CHAPTER 4

Results Analysis

4.1 Results Summary

The analysis script is set to run two weeks from the test start day. Users were assigned equally

across the eight test groups. As expected, we had enough users for each test group at the

end of two weeks. For the test parameters, we used the standard significance level of 0.05.

Since we ran 21 comparisons for the seven variants and three key metrics simultaneously,

we corrected the significance level to be 0.05/21=0.0025 based on the Bonferroni Correction

method. The following is the summary tables of the significant changes from this test.

variant baseline metric significant changes winner (Y/N)

Variant 1 Control Mean location cards opens — N

Variant 2 Control Mean location cards opens +1.5% N

Variant 3 Control Mean location cards opens +4% N

Variant 4 Control Mean location cards opens +6% N

Variant 5 Control Mean location cards opens +10% N

Variant 6 Control Mean location cards opens +12% N

Variant 7 Control Mean location cards opens +15% Y

Table 4.1: Location Card Opens
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variant baseline metric significant changes winner (Y/N)

Variant 1 Control Location card open Coverage +1% N

Variant 2 Control Location card open Coverage +1% N

Variant 3 Control Location card open Coverage +3% N

Variant 4 Control Location card open Coverage +4% N

Variant 5 Control Location card open Coverage +6% N

Variant 6 Control Location card open Coverage +8% N

Variant 7 Control Location card open Coverage +10% Y

Table 4.2: Location Card Open Coverage

variant baseline metric significant changes winner (Y/N)

Variant 1 Control Mean days active in “Location” — N

Variant 2 Control Mean days active in “Location” — N

Variant 3 Control Mean days active in “Location” — N

Variant 4 Control Mean days active in “Location” +1% N

Variant 5 Control Mean days active in “Location” +1.5% N

Variant 6 Control Mean days active in “Location” +2% N

Variant 7 Control Mean days active in “Location” +4% Y

Table 4.3: Days Active in “Location”

4.2 Learnings

As we can see from the significance summary table above, the clear winner variant is the

variant 7, UX list + sort result by the number of profiles. Location cards open coverage is a

metric measuring how good the UX entices users to interact with the location cards at least

once. The goal is to drive more users to engage and drive users to engage more. The large

increase on the cards open coverage in variants indicates that users are more interested in
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exploring the location cards in depth when they come to the feature. This would confirm

our hypotheses about this product that more relevant location cards being shown first will

increase users engagement. More specifically, we can see that the lifts among variant 4 to

variant 8 are much higher than the ones among variant 1 to variant 3. It seems that the new

sort algorithms alone performed slightly better than the original, and they performed much

better when combing the UX list layout design. By comparing variant 4 and the control,

where the only difference is the UX layout change, the lift is 4% just due to the UX list. This

seems to suggest that the list layout is effective at getting users to interact with location

cards. It is probably more efficient to find cards that users show high interest in from a long

list. This seems to verify our hypothesis about the designs.

The significant lifts on days active in “Location” seem to suggest that users who have

experienced the new designs and changes become stickier with the feature and retain more

frequently. This suggests positive impacts on the app ecosystem because stickier with the

“Location” feature will likely ultimately get them to use the app more often. The 4% lift

from the variant 7 suggests a big success, as increase on retention is usually hard to achieve.

These new designs not only improve the feature usage significantly but also make the feature

work better for users. We believe that matches received through “Location” should be more

relevant than ones received through the regular core stack. More user engagement with

“Location” could lead to more relevant matches received, and it will hopefully ultimately

lead to better conversations. So the increase on this days-active metric shows a strong signal

that this test is successful in optimizing the current feature in terms of better engagement.

Overall, based on the key metrics above, we have learned that both UX list and sort

results together did lead to much higher lifts than each of the two factors alone. Comparing

to the original recency sort result, recency without empty cards is slightly more effective

for engagement. It seems to suggest that users would be engaged more with this feature

by removing the empty cards. The sort result by distance is more effective than both

the original and the recency without empty cards. It seems to suggest that users are more

interested in engaging with closer distance locations than more recent visited locations. Most

17



importantly, users are interested most in cards that have many profiles to view and rate.

This would verify our hypothesis that the most important factor influencing users behaviors

in this feature remains the number of profiles, not recency and distance. It creates a more

efficient product environment that users can still consume large volumes of profile content in

a session and the location information of the profiles makes this experience more interesting.

4.3 Additional Analysis: Two Way ANOVA and Interactions

A factorial experiment with two factors A and B, with a levels and b levels, respectively, has

a× b treatments. The general ANOVA model, with r replicates for each treatment, can be

written as [2, 4]

Yijk = µ+ τi + βj + γij + εijk, i = 1, . . . , a; j = 1, . . . , b; k = 1, . . . , r

where µ is the overall mean response, τi is the treatment effect due to the i-th level of factor

A, βj is the treatment effect due to the j-th level of factor B, γij is the interaction effect

between the i-th level of A and the j-th level of B, and εijk is the error residual. The resulting

ANOVA table for a two-way factorial experiment is the following table

Source Degrees of Freedom SS (Sum of Squares) MS (Mean Square) F Statistic

A: UX Layout a-1 SSA MSA MSA/MSwithin

B: Sort Result b-1 SSB MSB MSB/MSwithin

A×B (a-1)(b-1) SSAB MSAB MSAB/MSwithin

Within ab(r-1) SSwithin MSwithin

Total abr-1 SStotal

Table 4.4: ANOVA Table

The total sum of squares can be partitioned as [2, 4]:

SStotal = SSA + SSB + SSAB + SSwithin
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a∑
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b∑
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2 = r · b ·
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(Ȳi.. − Ȳ...)
2 + r · a ·
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j=1

(Ȳ.j. − Ȳ...)
2

+
a∑
i=1

b∑
j=1

(Ȳij. − Ȳi.. − Ȳ.j. + Ȳ...)
2 +

a∑
i=1

b∑
j=1

r∑
k=1

(Yijk − Ȳij.)
2

Since this experiment has quantitative outcomes and two categorical factors with subjects

being exposed to any combination of one level of the two variables, two-way ANOVA is an

appropriate method to analyze the test data. This experiment has two factors at two levels

for UX layout and four levels for sort result. ANOVA will be conducted for each of the three

metrics for this factorial experiment.

4.3.1 Number of Location Card Opens

There are three types of null hypotheses of interest as follows:

• H0: Number of location card opens does not depend on the type of UX layout

• H0: Number of location card opens does not depend on the type of sort result

• H0: There is no interaction between UX layout and sort result

There are 2×4=8 different combinations of UX layout and sort result. We take 100 repli-

cates for each combination of the factors randomly from the entire samples. The following

is the resulting summary table for the number of location card opens.

Source Degrees of Freedom SS MS F value Pr(>F)

A: UX Layout 1 224 223.66 43.88 <6e-11***

B: Sort Result 3 158 52.67 10.33 <1e-06***

A×B 3 41 13.51 2.65 0.0477*

Residuals 792 4037 5.1

Table 4.5: ANOVA Table for Number of Location Card Opens
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As we can see from the ANOVA table above, the p-values of UX layout and sort result are

both very significant, which indicate that the levels of UX layout are significantly associated

with number of card opens, and the levels of sort result are significantly associated with

number of card opens. The p-value for the interaction between UX layout and sort result is

nearly 0.05. This significance will most likely be gone once adjusting significance level based

on the number of comparisons.

Figure 4.1: Interaction Plot for Card Opens

From the interaction plot, we can see that the lines are nearly parallel, suggesting that

there is no interaction between UX layout and sort result. This aligns with what we see in

the summary table.
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Figure 4.2: Residual Plot for Card Opens

The residual plot seems to suggest that there are no clear outliers and the variances of

the residuals seem equal, so this model is acceptable.

4.3.2 Location Card Open Coverage

There are three types of null hypotheses of interest as follows:

• H0: The coverage of opening a location card does not depend on the type of UX layout

• H0: The coverage of opening a location card does not depend on the type of sort result

• H0: There is no interaction between UX layout and sort result

Similarly, this time we take 100 replicates to get higher power for each combination of

the factors randomly from the entire samples. The following is the resulting summary table.
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Source Degrees of Freedom SS MS F value Pr(>F)

A: UX Layout 1 2.2 2.205 9.218 0.00248**

B: Sort Result 3 3.07 1.0233 4.278 0.00524**

A×B 3 0.15 0.0483 0.202 0.895

Residuals 792 189.46 0.2392

Table 4.6: ANOVA Table for Location Card Open Coverage

As we can see from the ANOVA table above, the p values are significant, and it seems to

suggest that the levels of UX layout and the levels of sort are significantly associated with

number of card open coverage. The p-value for the interaction between UX layout and sort

result is not significant, suggesting that there is no interaction between UX layout and sort

result.

Figure 4.3: Interaction Plot for Card Open Coverage

From this interaction plot, we can see that the lines are nearly parallel, suggesting that

there is no interaction between the two factors. List UX clearly performs better than map,
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and sort 3 and sort 4 perform better than sort 1 and sort 2. This aligns with what we expect

because sort 2 is slight change based on sort 1 and sort 3 and sort 4 are visually different.

Figure 4.4: Residual Plot for Card Open Coverage

In this residual plot, there are no clear outliers and the variances of the residuals seem

equal. So this model is acceptable.

4.3.3 Days Active in “Location”

There are three types of null hypotheses of interest as follows:

• H0: The number of days active in “Location” does not depend on the type of UX layout

• H0: The number of days active in “Location” does not depend on the type of sort result

• H0: There is no interaction between UX layout and sort result
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Similarly, we take 100 replicates for each combination of the factors randomly from the

entire samples. The following is the resulting summary table.

Source Degrees of Freedom SS MS F value Pr(>F)

A: UX Layout 1 15.7 15.68 5.22 0.0226*

B: Sort Result 3 29.3 9.77 3.25 0.0212*

A×B 3 6.9 2.31 0.77 0.51

Residuals 792 2377.7 3

Table 4.7: ANOVA table for Days Active in “Location”

The ANOVA table suggests that both the levels of UX layout and the levels of sort result

are significantly associated with days active in Location, whereas there is no interaction

between UX layout and sort result.
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Figure 4.5: Interaction Plot for Days Active

The interaction plot shows that the lines are nearly parallel, suggesting that there is no

interaction between the two factors. This aligns with the result from the ANOVA table for

the interaction effect. For the same sort result, such as sort 1 and sort 4, the responses

change significantly more when the level of UX is list. The changes between sort 1 and sort

4 are larger than the ones between sort 2 and sort 3 because sort 2 removes empty location

cards and sort 3 is more similar to sort 2 than sort 1. This seems to still suggest that the

combination of UX list and sort by the number of profiles is still the winner in terms of the

days active metric.
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Figure 4.6: Residual Plot for Days Active

In this residual plot, there are no clear outliers and the variances of the residuals seem

equal, suggesting that this model is acceptable.
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CHAPTER 5

Summary

5.1 Challenges

Typical A/B testing assumes that individual units are independent, which is known as Stable

Unit Treatment Value Assumption (SUTVA) [3]. However, for A/B testing in social network

products, the assumption of individual independence might be violated inexplicitly due to

interactions between users, and this could result in inaccurate inference of the causal effect

of treatments. For example, users might chat about their experience using the Location

feature after they become matches through the feature. The users might feel confused about

hearing completely different UX designs in the same feature, and result in fewer interactions

or more interactions with the feature. There are different possible methods to deal with this

issue. Since we have not yet settled on one specific method that works effectively in our

mobile app context and this specific test does not suffer as much as a chatting feature does,

we decide to ignore network effect factor in this A/B testing analysis. There seems to be no

single simple solution yet to deal with the network issue, but it is worth putting more efforts

into research and explore the best approach to understand the impact of the network issue

for future testing.

In addition, due to our technical limitation, we only assign users when they log into the

app. The “Location” feature requires users to navigate to the feature main page, which

would result in only a portion of the assigned test users ever entering into this feature. This

would undermine the statistical power if we directly compare test results for all of the test

users, since many of them in this test never even tried the feature. If the true effect size is

small, the effect could be diluted so that it is harder to detect statistical significance when
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there is. A cleaner way to run this test is assigning users at random when they navigate to

the feature page. In order to better estimate the treatment effect treated, we only analyzed

users who have viewed the feature at least once during this test. This approach is based

on the randomized assignment (users get assigned into a test group at random when they

log in) so that users in any of the test groups navigate to “Location” feature at random.

This method seems to work well for us in this case after I have investigated the filtered user

cohort and ensured that each group still maintains the same proportions of subgroup, such

as gender and city.

5.2 Conclusion

All of the analyses suggest that the two factors have positive impacts on the key metrics.

As a result, the team has decided to roll out the new changes, UX list and sort result by

the number of profiles, globally. These studies from this experiment are impactful on the

team′s product strategies towards the feature of future iterations. We are positive that

we will reach our product goals through a series of experimentations. Statistics certainly

play a very important role in making informed decisions in new feature developments in the

organization. As the data volumes grow rapidly every day, more data scientific methods

are needed for better exploring the large datasets, understanding users′ preferences and

ultimately identifying business opportunities.
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