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Abstract

To study intermolecular interactions involving radicals at the correlated level, the

Energy Decomposition Analysis scheme for Second-Order Møller-Plesset Perturbation

Theory based on Absolutely Localized Molecular Orbitals (ALMO-MP2-EDA) is gener-

alized to unrestricted and restricted open-shell MP2. The benefit of restricted open-shell

MP2 is that it can provide accurate binding energies for radical complexes where density

functional theory can be error prone due to delocalization errors. As a model appli-

cation, the open-shell ALMO-MP2-EDA is applied to study the first solvation step of

halogenated benzene radical cations, where both halogen and hydrogen bonded isomers

are possible. We determine that the lighter halogens favor the hydrogen-bonded form,

while the iodine-substituted species prefers halogen bonding due to larger polarizability

and charge transfer at the halogen. As a second application, relevant to the activation

of CO2 in photoelectrocatalysis, complexes of CO2
−• interacting with both pyridine

and imidazole are analyzed with ALMO-MP2-EDA. The results reveal the importance

of charge transfer into the π∗ orbital of the heterocycle in controlling the stability of

the carbamate binding mode, which is favored for pyridine, but not for imidazole.

1 Introduction

Intermolecular interactions describe attractive or repulsive forces between molecular species

that govern important chemical processes, like the formation and structure of biological

macromolecules and a wide range of catalyst systems.1–10 Their energy scale ranges from a

few kJ/mol for weak van der Waals complexes to more than 150 kJ/mol for strong hydrogen

bonds or metal ligand interactions. The origin of these interactions can be understood readily

for simple cases like rare gas dimers which bind because of dispersion. However, it can be

difficult to understand the interaction for a more complicated system such as a complex

formed by cationic halogenated benzene radical and water, where other intermolecular terms

such as electrostatics, polarization, and charge transfer are all in play.
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Modern quantum chemical methods are able to predict most intermolecular binding en-

ergies quite accurately, but there lacks a direct bridge between these energies and chemical

concepts.11 To this end, energy decomposition analysis (EDA)12–14 aims to unravel the ori-

gin of the interaction by decomposing the binding energy into chemically motivated compo-

nents. Admittedly, the resulting decomposition cannot be uniquely defined in the overlapping

regime, and consequently there are multiple approaches in the literature for providing chem-

ical interpretations of molecular complexes. Important seminal EDA schemes include the

Kitaura-Morokuma (KM)-EDA that decomposes the Hartree-Fock (HF) interaction energy

into electrostatic, Pauli repulsion, polarization and charge transfer contributions,15–17 and

the extended transition state (ETS) method developed by Ziegler and Rauk, which parti-

tions interactions calculated from density functional theory (DFT) into electrostatics, Pauli

repulsion, and orbital interaction.18,19

A significant improvement to the KM-EDA for HF and DFT was made possible by

the variational treatment of polarization, accomplished via imposing a fragment-blocking

constraint on the molecular orbital (MO) coefficient matrix.20,21 Solving the resulting con-

strained variational equations leads to absolutely localized MOs (ALMOs)22 that are used

in the Block-Localized Wavefunction EDA (BLW-EDA)23–25 and the ALMO-EDA26–28 ap-

proaches, both of which separate the interaction energy into a “frozen" term and allow for

separability of general induction into the polarization and charge transfer contributions. The

frozen energy corresponds to the interaction between monomers with their MOs optimized

for each isolated fragment, the polarization energy is then defined by the relaxation of each

fragment’s MOs in the presence of other fragments, and finally charge transfer corresponds

to the energy lowering resulting from inter-fragment orbital mixing. Furthermore, each

intermediate energy exhibits correct asymptotic behavior and is a well-defined variational

quantity. Recently a second generation ALMO-EDA28 was developed, which includes two

further improvements: first, the frozen term can be further decomposed into contributions

from Pauli repulsion, permanent electrostatics, and dispersion;29 and second, the use of a ba-
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sis constructed from fragment electric response functions (FERFs) in the ALMO-constrained

SCF calculation enables a well defined basis set limit for the separation between polarization

and charge transfer.30 The resulting second generation ALMO-EDA scheme28 also permits

any underlying representation with no restriction to atomic orbitals. Other recent advances

in ALMO-EDA include decomposition of molecular properties31 and an extension to singly

excited-state methods.32,33

In principle, EDAs can be extended to more accurate interaction energies obtained from

correlated wavefunctions methods.34 The simplest correlation method is second-order Møller-

Plesset perturbation theory (MP2), which is accurate and widely used for molecular interac-

tions such as hydrogen bonding,35,36 as well as being fast and efficient with the use of density

fitting or resolution of the identity (RI).37,38 MP2 also performs well for radical-solvent in-

teractions,39 provided that a restricted open shell reference is used when the HF reference is

spin-contaminated. The KM scheme has been extended to post-HF methods such as MP2,

by assigning the entire contribution from correlation energy to dispersion.40 However, the in-

clusion of correlation also has an effect on electrostatic interactions, polarization and charge

transfer,41,42 and thus other EDAs were developed to understand the full correlation effects on

intermolecular binding. The local second-order Møller-Plesset perturbation theory (LMP2)

approach naturally allows for a decomposition of the correlation energy into an intramolec-

ular correlation, a dispersion and an ionic contribution.43 However, MP2 can overestimate

binding in dispersion-dominated interactions like π-stacking,44–47 while coupled cluster the-

ory provides significantly higher accuracy if triples are included (e.g. via CCSD(T)), albeit at

significant computational cost. A similar concept to LMP2 has been applied at the CCSD(T)

level to define the Local Energy Decomposition (LED) scheme, which distinguishes between

intra- and intermolecular correlation contributions.48–51 Perhaps the most widely used EDA

approach is symmetry-Adapted Perturbation Theory (SAPT), which computes the interac-

tion energy via a perturbative expansion starting with non-interacting fragments. High-level

SAPT with intramolecular correlation taken into account can yield accuracy comparable to
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CCSD(T),52 and it decomposes the interaction energy into an electrostatic, an exchange, an

induction and a dispersion term.53–56

We have developed an alternative post-HF approach, the ALMO-MP2-EDA scheme,42,57

which builds on local correlation models58,59 and on an earlier pilot effort60 which did not

correct the mean-field frozen and polarization terms for the effect of correlation. The original

ALMO-MP2-EDA scheme was designed to decompose the correlation energy into the same

terms as the mean-field ALMO-EDA scheme through the addition of an explicit dispersion

term. The core idea was to assign the excitations that contribute to the MP2 energy into

different classes (see Fig. 1): intra-fragment for frozen and polarization, charge conserving for

dispersion and charge transferring for charge transfer. However, the previous ALMO-MP2-

EDA scheme and implementation were both limited to interactions between closed-shell

molecules. In this work the ALMO-MP2-EDA scheme is generalized to unrestricted and

restricted open-shell MP2 to permit the study of intermolecular interactions of radicals with

a correlated wavefunction method, for which DFT methods are shown to be error prone.39,61

We verify that the correct asymptotic behaviour of frozen, polarization, dispersion and charge

transfer is operative, and the method is applied to understand the hydration of halogenated

benzene radical cations.,62 as well as the different interaction motifs of the CO2
−• radical

anion with N-heterocycles in the gas phase.63,64

2 Theory

The notation used in this manuscript employs indices i, j, k, ... for occupied orbitals, a, b, c,

... for virtual and p, q, r, ... for either. As far as possible, the discussion is presented in

the spin-orbital basis. However, at some points we specifically discuss unrestricted spatial

orbitals where p̄ represents the β spin space. Labels for fragments are denoted as A,B,C ...

and P,Q,R refer to the auxiliary (RI) basis functions.
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type I type II type III

type I type III

A A AB B B

A B A B

Figure 1: A representation for each of the three types of double excitations for a two-fragment
system (A and B): on fragment (type I), charge conserving (type II) and charge transferring
(III). In the case of RMP2 single excitations are also included, for which the on fragment and
charge conserving constraints are identical. The lower level represents the occupied space
and upper level the virtual space of each fragment.

2.1 Summary of MP2 Theory

The Hylleraas functional, JH , is a variational formulation that when minimized yields the

first order wave function and MP2 energy. The Fock operator (F̂ ) is the usual choice for the

zeroth-order Hamiltonian:65–67

JH [Ψ̃] =
〈

Ψ(0)
∣∣∣V − E(0)

∣∣∣Ψ̃〉+
〈

Ψ̃
∣∣∣H(0) − E(0)

∣∣∣Ψ̃〉+
〈

Ψ̃
∣∣∣V − E(1)

∣∣∣Ψ(0)
〉

(1)

or in a more compact matrix-vector notation:

JH [̃t] = t̃†∆t̃ + t̃†III + III†t̃ (2)

Here t̃ is a vector composed of the wave function amplitudes, t̃abij , III is a vector composed of

two-electron integrals, 〈ij||ab〉, and ∆ is a supermatrix whose elements are defined as:

∆(ab
ij ),(cd

kl)
=
〈
Ψab
ij

∣∣F̂ − E(0)
∣∣Ψcd

kl

〉
(3)

Unlike restricted or unrestricted MP2, the choice of the zeroth-order Hamiltonian is not
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unique for ROHF, and, consequently, there are multiple approaches to MP2 with restricted

open-shell HF references. Those approaches include ROMP2 by Amos et al.,68 OPT1 and

OPT2 by Murray and Davidson,69 HCPT by Hubač and Čársky,70 Z-averaged PT (ZAPT) by

Lee and Jayatilaka,71 RMP2 by Knowles and co-workers72 and ROHF-MBPT2 by Bartlett

and co-workers.73 This paper follows the RMP2 approach of Knowles et al.72 where the

occupied-occupied and virtual-virtual blocks of the pseudo-canonicalized F̂α and F̂ β are de-

fined as the zeroth-order Hamiltonian. This results in similar equations to unrestricted MP2

(UMP2). However, Brillouin’s theorem does not hold and therefore singles contributions are

included in the first-order MP wave function, yielding the following open-shell RMP2 energy

expression:

E(2) = −
∑
ia

taiFai −
1

4

∑
ijab

tabij 〈ij||ab〉 (4)

Here as usual 〈ij||ab〉 = (ia|jb) − (ib|ja). After pseudo-canonicalization, the singles and

doubles amplitudes are defined as

tai =
Fai

εa − εi
(5)

tabij =
〈ij||ab〉

εa + εb − εi − εj
(6)

Of course in UMP2, tai = 0. In RMP2, the energy is spin-pure (though the amplitudes are

not).

We will also use the RI approximation for the two-electron integrals:

(ia|jb) '
Naux∑
Q

[
Naux∑
P

(ia|P )(P |Q)−1/2

][
Naux∑
R

(Q|R)−1/2(R|jb)

]
(7)

=
Naux∑
Q

BQ
iaB

Q
jb
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2.2 The MP2-EDA Scheme

The total binding energy is defined as the energy difference between the complex and the

isolated non-interacting fragments. It can be divided into a geometry distortion term, which

is the energy required to deform isolated fragments from their optimum geometry to their

geometry in the complex, and the interaction energy at the supersystem geometry (∆EINT).

This interaction energy can be further partitioned into a mean-field contribution ∆EHF
INT and

a correlation contribution ∆EMP2
INT . In this work, the mean-field contribution is decomposed

using the original ALMO-EDA scheme:26

∆EHF
INT = ∆EHF

FRZ + ∆EHF
POL + ∆EHF

CT (8)

The frozen and polarized intermediate energies are evaluated using constrained HF wave

functions. At the frozen level, a single determinant is constructed by combining the isolated

fragments into a supersystem using unrelaxed fragment MOs. This captures the HF-level

electrostatic and Pauli repulsion contributions. For polarization, the MOs are variationally

optimized subject to the fragment-blocking constraint, leading to polarized ALMOs from

solving the locally projected SCF scheme (SCF-MI).20–22,74 This allows the electron densities

on each fragment to adjust to the supersystem environment and naturally excludes charge

transfer, which is finally obtained using the unconstrained HF energy.

The MP2 correlation energy is decomposed into the same terms by enforcing similar

constraints; however, an additional term for dispersion naturally arises:42

∆EMP2
INT = ∆EMP2

FRZ + ∆EMP2
POL + ∆EMP2

DISP + ∆EMP2
CT (9)

The intermediate energies are presented in this section, largely following the notations used

previously42 where energies are given parenthetical labels that indicate (system-size/basis-

type) at each stage of the analysis. System-size will be either “frag” for a fragment, or “sys”
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for the supersystem.

At the mean-field level both frozen and polarized wave functions are constructed using

fragment-blocked ALMO orbitals. The molecular orbitals in this basis are only orthogonal

within each fragment. However, the MP2 energy expression is only well-defined for sepa-

rated occupied and virtual spaces. Thus, both the frozen orbitals and converged ALMOs

need to be properly prepared by projecting the occupied subspace out of the virtual orbitals.

The occupied orbitals are then symmetrically orthonormalized75 (globally) and the virtual

orbitals are symmetrically orthonormalized on each fragment after being projected against

the occupied space, yielding the pFRZ and pALMO basis, respectively.42 The MP2 contri-

bution to frozen energy, which captures the pure electrostatic effects and Pauli repulsion, is

obtained using

∆EMP2
FRZ =

Nfrag∑
A

Efrz(frag/pFRZ)A −
Nfrag∑
A

Eiso(frag)A − ABSSE (10)

where Eiso(frag)A is the standard MP2 energy of each fragment evaluated in the canonical

basis and ABSSE refers to the auxiliary basis set superposition error (vide infra). The frozen

MP2 energy of each fragment, Efrz(frag/pFRZ)A, is obtained by freezing both fragment

orbitals and t-amplitudes. The Hylleraas functional is employed to evaluate the MP2 energy

with non-stationary t-amplitudes, using the full system frozen Fock matrix in the pFRZ MO

basis for each fragment.

However, the MP2 wave function is not stationary with respect to occupied-virtual (ov)

orbital rotations (θai). As a consequence, the relaxed second-order density matrix incor-

porating first-order orbital response effects is required for evaluting the frozen energy (see

previous work by some of us for a more detailed derivation42). The final expression for the

frozen energy has the following form:

EfrzA = JH [tisoA ,CA,FA]− 2
∑
ia

P
(2)
iaAFiaA (11)
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where tisoA refers to the isolated t-amplitudes in the canonical fragment basis, FiaA is the

frozen Fock matrix transformed into the pFRZ MO basis of each fragment, and the ov block

of the second-order density matrix, P (2)
ia = −Zia (the so-called Z-Vector76). The Z-vector

(Zia) is obtained by contracting the inverse of HF electronic hessian with the MP2 orbital

gradient:

Zjb =
∑
ia

(
∂2ESCF

∂θai∂θbj

)−1
∂E(2)

∂θai
(12)

The explicit expressions and derivations for these terms can be found elsewhere.66,67,77

For restricted open-shell MP2 methods like RMP2, the derivation of the Z-vector is more

involved, and interested readers are referred to refs. 78,79. The important point is that the

RMP2 CPSCF equation can be expressed in a form that is equivalent to UMP2 gradient

theory. In summary, obtaining the frozen energy at the MP2 level requires calculating the

t-amplitudes on each isolated fragment, evaluating the Hylleraas functional and solving a

CPSCF equation for each fragment.

Next, the MP2 contribution to polarization energy is obtained using

∆EMP2
POL =

Nfrag∑
A

Epol(frag/pALMO)A −
Nfrag∑
A

Efrz(frag/frz)A (13)

After the SCF-MI is converged the ALMOs on each fragment are transformed into the

pALMO basis. The ALMO basis allows the assignment of molecular orbitals to fragments.

The polarization constraint, like the frozen system, permits only paired double substitutions

on the same fragment. This allows for obtaining Epol(frag/pALMO) with standard MP2

energy evaluation using the pALMO basis of each fragment.

The dispersion energy is obtained using

∆EMP2
DISP = Eccc(sys/ALMO)−

Nfrag∑
A

Epol(frag/ALMO)A (14)

where the charge conserving correlation (CCC) constraint is imposed. This constraint only
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permits excitations that conserve the charge on each fragment as shown in Fig. 1 (types I

and II). The CCCMP2 energy (Eccc(sys/ALMO)) is evaluated for the whole system in the

pALMO basis, which is neither orthonormal nor canonical. The derivative of the Hylleraas

functional with respect to the amplitudes yields a set of linear equations to obtain the MP2

amplitudes:
∂JCCC

H

∂tCCC
= 0⇒∆CCCtCCC = IIICCC (15)

∑
i′j′a′b′

(∆CCC)
(ab
ij ),

(
a′b′
i′j′

)(tCCC)a
′b′

i′j′ = 〈ij||ab〉CCC (16)

where ∆ represents an 8 th-rank tensor that has the following form:

(
∆CCC)

(ab
ij ),

(
a′b′
i′j′

) = −Fii′gaa′gjj′gbb′ + gii′Faa′gjj′gbb′ − gii′gaa′Fjj′gbb′ + gii′gaa′gjj′Fbb′ (17)

where grr′ refers to the MO-overlap matrix.

Utilizing the internal structure of ∆ tensor arising from the properties of the basis as well

as the CCC constraint (ia ∈ A, i.e., pairs must be on the same fragment) simplifies the con-

traction on the left-hand side of Eq. 16. An efficient iterative algorithm to solve Eq. 16 was

developed previously and is applied here as well.57 The coupling terms
(

(∆CCC)
(ab
ij ),

(
a′ b̄′
i′ j̄′

))
for the same-spin (tabij ) and opposite-spin (tab̄ij̄ ) blocks of the t-amplitudes are zero. As a con-

sequence, the three spin blocks of the t-amplitudes can be solved independently. In contrast

to the same-spin case, the opposite-spin ∆ tensor has no symmetry between the first and

third or between the second and fourth terms, rendering the contraction over the opposite-

spin amplitudes in Eq. 16 twice as costly. Finally, the energy is obtained by contracting

the amplitudes with the charge-conserving two-electron integrals in the pALMO basis. For

RMP2, we also need to include the contribution from the singles.72 The CCC constraint for

singles is identical to the on-fragment constraint. Therefore, the singles contribution from

the polarization calculation is added to obtain Eccc.
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At last the MP2 contribution to charge transfer energy can be evaluated using

∆EMP2
CT = E(sys)− Eccc(sys/ALMO)− BSSE + ABSSE (18)

where E(sys) corresponds to the full MP2 energy of the supersystem, BSSE to the stan-

dard basis set superposition error in MP2 correlation energy calculated from applying a

counterpoise correction,80 and ABSSE to the auxiliary basis set superposition error, which

corresponds to the difference between isolated fragment MP2 energies evaluated with and

without auxiliary basis function on the ghost atoms.42

3 Computational Details

All geometries were fully optimized with ωB97X-D81/def2-TZVPPD82,83 and with an ECP

for iodine84 in the gas phase. The aug-cc-pVTZ basis set85–87 in combination with the

corresponding auxiliary basis88,89 was employed for the MP2-EDA calculations. Reference

calculations for the interaction energies were performed with the double-hybrid ωB97M(2)

functional90 with either the def2-QZVPPD or def2-TZVPPD basis set,83 with their corre-

sponding auxiliary basis set and an ECP for iodine.84,91

The electron density plots were visualized with an isovalue of 0.1 a.u., and a smaller

isovalue (0.001 a.u.) was used for the density difference plots. A further analysis of CT

using complementary occupied-virtual orbital pairs (COVPs)92 is currently only available

for mean-field methods, and thus we used EDA results with the ωB97M-V functional93 to

generated the COVPs (with an isovalue of 0.05 a.u.). ωB97M-V has been identified as one

of the most accurate density functionals for intermolecular interactions by recent extensive

benchmarks.94,95 Furthermore, the calculated ωB97M-V interaction energies were similar to

the RMP2 results (see Tables S4 and S6 in the Supporting Information (SI)).
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3.1 Implementation Details

We implemented the EDA scheme for RMP2 (UMP2) in a development version of the Q-

Chem 5 package,96 which comprises the following steps:

1. Perform fragment ROHF (UHF) and subsequently canonical MP2 calculations based

on these references.

2. Evaluate the frozen HF energy and compute Efrz for each fragment (Eq. 11).

3. Perform an ROSCF-MI (USCF-MI) calculation enforcing fragment-blocking of the MO

coefficients and subsequently evaluate Epol for each fragment.

4. Iteratively solve for the CCC t-amplitudes and evaluate Eccc.

5. Perform a fully relaxed ROSCF (USCF) calculation for the supersystem followed by a

canonical MP2 calculation.

6. Perform ROSCF (USCF) and canonical MP2 calculations for each individual fragment

with other fragments as ghost atoms for BSSE and ABSSE corrections.

In cases where the radical is a single atom (e.g. Cl•) or of a highly symmetric geometry

(e.g. •OH), there can be multiple degenerate electronic configurations with the unpaired

electron residing in different orbitals, yielding non-uniquely defined frozen states as illus-

trated by the Cl•···H2O complex in Fig. 2. For such systems, it is desirable to obtain the

orientation of fragment spin that yields the most favorable frozen energy. We achieve this by

recalculating the isolated fragments after the SCF-MI step with the corresponding block of

the ALMO coefficient matrix as the initial guess in combination with the Maximum Overlap

Method (MOM).97 Note that the proper alignment of the radical was suggested in the EDA

scheme for chemical bonds previously developed by Levine et al.98,99 To obtain the Z-vectors,

we iteratively solve a CPSCF equation (either RO or U) for each fragment which avoids the

direct inversion of the electronic hessian.
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Figure 2: Illustration of the degenerate electronic configuration of the Cl• radical, which then
yields distinct frozen energies for the Cl•···H2O complex depending on the initial orientation
of the Cl• spin density.

The linear equation to obtain the three sets of t-amplitudes (Eq. 16) follows an adaption

of the efficient procedure of the closed-shell MP2-EDA scheme.57 The initial guess is the t-

amplitudes of the polarization calculations and a diagonal preconditioner is used to accelerate

convergence. The construction of the charge conserving two-electron integrals for CCCMP2

follows a modified approach:

• Loop over all fragment pairs (AA, AB, AC, ...)

• For a given fragment pair AB, construct an intermediate W containing all two-electron

integrals of the given fragment subspaces WAB = (iAaA|j̄B b̄B):

WAB = BQ†
ai∈A ·B

Q

b̄j̄∈B

• Map each WAB into the IIICCC tensor

All parts of the code are parallelized using a shared-memory programming model (OpenMP).

The correct behavior of all terms were verified with simple test cases (see SI Sec. S1). The

correct long-range decay of the polarization (1/r4) was confirmed using an isolated lithium

atom (Li•) interacting with an external charge. The correct long-range behavior of disper-

sion (1/r6) and charge transfer (exponential) were confirmed with He· · ·Li• complex (see SI

Figs. S1(a)–(d)).
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4 Results

The method is first applied to the binary radical-solvent complexes from the TA13 benchmark

set.39 Next, we use this method to investigate the first solvation step of cationic halogenated

benzene radicals. As the final example, we study the different interaction motifs of a CO2
−•

radical with N-heterocycles (pyridine and imidazole) in the gas phase. With UMP2, there is

spin contamination in at least one example in all three sets of applications: HF−CO+ in the

TA13 benchmark set (〈S2〉 = 0.83), the halogen-bonded chlorobenzene radical cation–water

complex (〈S2〉 = 0.88), and the Py−CO2
−• complex (〈S2〉 = 0.94). Furthermore, the RMSDs

of UMP2 and RMP2 for the TA13 benchmark set (8.9 and 6.9 kJ/mol, respectively) suggest

that RMP2 yields more accurate interaction energies. Hence, the following discussion focuses

on the RMP2-EDA results only, which are also consistent with DFT-EDA (ωB97M-V) results

(Tables S4 and S6 in the SI).

4.1 TA13 Benchmark Set

The TA13 benchmark set39 includes thirteen binary radical-solvent complexes with non-

bonded interactions, which are considered to be challenging non-covalent interactions for

DFT due to a prominent self-interaction error.61,94,100,101 The popular B3LYP functional

has an RMSD of 16.1 kJ/mol for the interaction energies, and ωB97M-V, the overall best-

performing functional according to extensive benchmarking, has an RMSD of 11.5 kJ/mol.94

Both UMP2 and RMP2 calculations were performed for the interaction energies on all 13

molecules with significantly smaller RMSD values of 8.9 and 6.9 kJ/mol (for full results

see SI Tables S1 (U) and S2 (RO)), respectively. The UMP2 vs. RMP2 difference stems

mainly from the CO+−HF complex because UMP2 exhibits significant spin contamination

(〈S2〉 = 0.83 for the complex and 0.93 for the CO+ monomer). The correlation energy is

significant in most cases: e.g., it accounts for ∼ 50% of the binding energy for Al−H2O. The

frozen terms at the MP2 level are all positive as the perturbation theory tends to correct
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for the overestimation of the dipole moments of the HF reference (see SI Table S2). The

radical alignment scheme (see Sec. 3.1) is crucial for radicals with degenerate electronic

configurations such as Cl−OH2, for which there can be a difference up to 40 kJ/mol in the

resulting frozen term otherwise, depending on how the fragment spins are aligned initially.

The RMP2-EDA results are presented in Table 1 and are categorized into three groups

based on the interaction motifs: electron-rich metal-water complexes, electron-poor hemi-

bonded complexes, and hydrogen-bonded complexes. Additional details are provided in

Table S2 in the SI, such as the break-down into HF and correlation contributions. The

electron-rich metal-water complexes (Li, Al, Be+) display large polarization and relatively

small charge transfer. This is already an interesting and surprising result, because it suggests

that the strong interaction is primarily non-bonded rather than having a substantial cova-

lent contribution, as had been inferred from natural bond orbital (NBO) analysis.102 The

optimized geometry of these complexes involves interaction of the O atom of water with the

metal center, which is the main reason that CT from the electron-rich metal center to the

solvent is somewhat suppressed. As a fraction of the binding energy, CT is most important

for the Al−H2O complex, which also has a prominent contribution from dispersion.

The interaction of the family of electron-poor hemibonded complexes is mainly driven

by charge transfer. Both Cl– and Br–water complexes show a significant charge transfer

contribution to overcome Pauli repulsion at the frozen level. The cationic carbonyl complex

with HF also shows a large CT contribution. However, in contrast to the halogen complexes,

its short bond distance (r(O-F) = 1.8 Å) results in a strongly repulsive frozen term and the

charged fragment induces significant polarization. The NH +
3 −H2O complex shows balanced

contributions from all terms, which is more similar to the typical scenario of the hydrogen-

bonded motifs.26,103 The strong electrostatic interaction renders the frozen term already

attractive as the charge on the NH +
3 radical and dipole moment of the water are favorably

aligned. The charge also results in significant polarization. The last member of this group,

F−OH2, exhibits the largest error among the RMP2 interaction energies in this benchmark
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Table 1: RMP2-EDA results for the TA13 benchmark set evaluated with the
aug-cc-pVTZ basis. Energies are in kJ/mol and r refers to the complex bond
distance.

System ∆EFRZ ∆EPOL ∆EDISP ∆ECT ∆ETOT r(Å)

electron-rich metal-water complexes
H2O−Al 96.9 -86.1 -21.5 -16.7 -27.5 2.20
H2O−Be+ 102.8 -306.9 -11.8 -42.7 -258.6 1.57
H2O−Li 40.5 -66.2 -8.0 -11.5 -45.2 1.88

electron-poor hemibonded complexes
H2O−F 60.6 -9.5 -11.7 -36.3 3.1 2.11
H2O−Cl 28.9 -7.1 -12.2 -19.7 -10.0 2.60
H2O−Br 28.9 -8.5 -12.9 -17.6 -10.2 2.70
HF−CO+ 121.5 -101.8 -22.1 -117.4 -119.9 1.80
H2O−NH +

3 -14.3 -21.5 -12.3 -22.8 -70.8 2.32
hydrogen bonded complexes

HOH−CH3 6.8 -2.9 -5.5 -5.1 -6.7 2.33
H2O−HNH +

2 -3.2 -54.9 -13.5 -32.6 -104.2 1.54
FH−BH2 11.1 -8.6 -5.6 -13.3 -16.4 2.22
FH−NH2 12.9 -24.0 -9.9 -20.6 -41.7 1.75
FH−OH 5.7 -12.0 -6.6 -10.8 -23.7 1.81

set. This complex has significant static correlation and is consequently not very accurately

described by MP2 (or DFT) methods as discussed in Ref. 39. Hence, the EDA terms are

just reported for completeness.

The hydrogen-bonded complexes have more balanced contributions from all energy com-

ponents including significant charge transfer similar to results reported for closed-shell hy-

drogen bonding.31,103,104 However, there are variations in the weight of these terms: the

importance of charge transfer (measured relative to the total interaction energy) is higher

for the more electropositive radicals such as CH3 and BH2, while complexes of the more

electronegative radicals (NH2, OH and HNH +
2 ) exhibit stronger attractive electrostatic in-

teraction (resulting in a less repulsive frozen term) and more significant polarization.
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4.2 Halogenated Benzene Radical Cation: Halogen or Hydrogen

Bonding?

Ionic hydrogen bonds (IHBs) constitute a subclass of hydrogen bonding between radical ions

and polar molecules with a binding energy ranging from -20 to -140 kJ/mol.62,105 Halogen

bonds are defined according to IUPAC as a linear binding motif R−X···Y where X denotes a

covalently bonded halogen atom acting as a Lewis acid (electron-poor) and Y is an electron-

rich Lewis base (e.g. halide anion, water, etc.).106 Halogen bonding is a type of intermolecular

interaction that in part arises from the favorable electrostatic interaction between the halogen

atom and the acceptor (Lewis base), which is often described in terms of the so-called σ-

hole.107,108 However, many recent studies suggest that the n → σ∗ charge transfer plays an

important and even dominant role in halogen bonding.109–114 While a consensus has almost

been reached that permanent electrostatics alone is inadequate to describe halogen bonds,

there is still an ongoing debate especially about the role of charge transfer.108,109,111–116

A recent study by El-Shall and co-workers discovered two competing mechanisms for

the first hydration step of halogen-substituted benzene radical cations using mass-selected

ion mobility spectroscopy. Depending on the halogen atom there is a preference for either

IHBs, as depicted in Fig. 3(a), or ionic halogen bonds (IXBs), as depicted in Fig. 3(b).62

The authors found that C6H5F
+• solely forms IHB while C6H5I

+• solely forms IXB, and

the chloro- and bromobenzene radical cations show an equilibrium between IXB and IHB

isomers.62 The substituent dependence of the IHB vs. IXB competition makes this class of

systems interesting candidates for an EDA analysis. These insights on the control of halogen

bonding strengths can be useful for the design of new catalysts.117

The RMP2-EDA was employed to understand the competition between IHB and IXB in

complexes of H2O with C6H5X
+•: a total of eight different isomers were analyzed. As an

example, the optimized geometries of the IHB and IXB complexes formed by bromobenzene

are shown in Fig. 4. All RMP2 interaction energies are in good agreement with the results

of an accurate double-hybrid functional (ωB97M(2)) with the def2-TZVPPD basis (see SI
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H O
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X

X = F, Cl, Br, I

Figure 3: Two competing binding motifs for the interaction between a halogenated benzene
radical cation (C6H5X

+•) and a water molecule: (a) Ionic hydrogen bonding (IHB) and (b)
ionic halogen bonding (IXB).

(a) (b)

Figure 4: Optimized geometries for two isomers of the halogenated benzene radical cation–
water complex: (a) the IHB structure (rH···O in Å: F: 2.02, Cl: 2.04, Br: 2.05, I: 2.08); (b)
the IXB structure (rX···O in Å: F: 2.97, Cl: 2.78, Br: 2.78, I: 2.83).

Table S3). Furthermore, it is verified that the trends in both the total interaction energies

and the individual energy components are consistent with the results of DFT-based ALMO-

EDA with ωB97M-V (see SI Table S4).

The full results for the bromobenzene–water complex are shown in Fig. 5, whose IHB

and IXB isomers are of the closest total interaction energies (with the IXB isomer being

slightly more favorable by 2.8 kJ/mol) among all halogenated benzene radicals investigated

here. The relative EDA energies with respect to fluorobenzene for both binding motifs are

shown in Fig. 6, which help uncover the trends within each binding mode. Finally, the energy

differences between IHB and IXB in the total interaction energies and each individual energy

component is depicted in Fig. 7 to help understand the different binding preferences for each

halogenated benzene radical cation.

The EDA results for the IHB bromobenzene radical cation (see the left panel of Fig. 5)

show an interaction that is dominated by attractive frozen (due to permanent electrostatics)

and polarization terms, and the contributions from dispersion and charge transfer are also
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Figure 5: Individual EDA terms (in kJ/mol) for the two binding motifs of the water–
bromobenzene radical cation complex, separated into HF and MP2 contributions.

not negligible. Although the MP2 contribution to the total IHB interaction energy is small,

its contributions to the individual terms are not, especially its effect on the frozen term where

MP2 corrects the overly attractive electrostatic interaction evaluated at the HF level.41 The

EDA results uncover a favorable error cancellation for the IHB motif at the HF level as the

overestimated permanent electrostatic interaction compensates for the missing dispersion

contribution that only arises at the MP2 level. The IXB motif has a more significant net

MP2 contribution, and it is noteworthy that IXB is more favorable than IHB for this complex

only when the effects of electron correlation are incorporated.

For the IHB isomers H2O· · ·C6H5X
+•, as shown in the left panel of Fig. 6, the magnitude

of the total interaction energy monotonically decreases from lighter to heavier halogens. This

trend stems mainly from the changes in the frozen and polarization terms (i.e. permanent

and induced electrostatics), and can be readily rationalized with the increasing strength of

the mesomeric effect (donating lone pairs to the benzene ring) of the halogens that makes

the para-carbon more electron-rich and the C–H bond less polar. The CT term appears

to be nearly independent of the halogen, which can be rationalized by analyzing the most

important COVP. As shown in Fig. S2(a) in the SI, the CT in the IHB isomer is primarily
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Figure 6: Changes in the total interaction energy and individual EDA terms for the heav-
ier halogenated benzene radical cations relative to the fluorobenzene results with the two
bonding motifs of the H2O· · ·C6H5X

+• complexes.

from the oxygen lone pair on H2O to the C−H σ∗ orbital. This acceptor orbital is not

strongly affected by the para-substitution.

The EDA results for the IXB bromobenzene (the right panel of Fig. 5) show significant

contributions from all terms with polarization and dispersion being the most important

contributions. The MP2 term has the same sign for EPOL and ECT but has an opposite

sign for the frozen term, for the reason discussed above. The importance of all interaction

energy components (permanent electrostatics, polarization, dispersion, and charge transfer)

to overcome the Pauli repulsion for the IXB binding motif is in line with the conclusion

reached by a previous study on halogen bonding by some of us.112

As shown in Fig. 6, the IXB interaction energy increases strongly for the heavier halo-

gens. The interaction with fluorobenzene is the weakest, and in fact, the IXB isomer for

fluorobenzene could only be obtained with a symmetry constraint (C2v) in the geometry

optimization (i.e. it is not the global minimum on the PES). The increase in halogen bond

strength is mainly attributed to an increase in polarization, dispersion and charge transfer.

The increase in dispersion and polarization can be rationalized by the increasing softness

and ionic radius down the halogen series. Interestingly, the frozen term exhibits an oppo-
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site trend and is most favorable for the fluorobenzene, which is mainly attributed to the

increase in Pauli repulsion as the halogen becomes more diffuse from F to I while the equi-

librium X· · ·O distances do not change significantly (see the distances given in the caption

of Fig. 4). The increase in charge transfer can be rationalized by analyzing the COVP (see

SI Fig. S2(b)): the charge transfer is dominated by the donation from the oxygen lone pair

to the C−X σ∗ orbital whose energy is lowered (which facilitates CT) monotonically for the

heavier halogens.

The comparison between the IHB and IXB isomers for each halogenated benzene radical

cation is shown in Fig. 7, in which the differences (IHB − IXB) in both the total interaction

energy and each individual component are plotted. The IHB is more favorable than the IXB

motif by over 20 kJ/mol for fluorobenzene, while the interaction energies of IHB and IXB

are very similar for both Cl- and Br-substituted benzene radical cations. Iodobenzene, on

the other hand, prefers the IXB motif by more than 27 kJ/mol. This trend can be explained

by the increase of polarization, dispersion, and charge transfer of the IXB motif due to the

increasing softness, atomic radius, and lower-lying C−X σ∗ from F to I contrasting with the

almost constant behavior of the hydrogen bonding side.

Figure 7: Term-by-term energy differences between the IHB and IXB binding motifs of the
H2O· · ·C6H5X

+• complexes.
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4.3 Anionic CO2 radical N-heterocycle complexes

Fossil fuel emission is yielding unprecedentedly high concentrations of CO2 in the atmosphere,

which acts as one of the main driving forces of global climate change. This has attracted

considerable attention on artificial photosynthesis.118,119 Both pyridine (Py), C6H5N, and

imidazole (Im), C3N2H, are known to be active catalysts in the photoelectrochemical con-

version of CO2.120,121 Interestingly, two distinct mechanisms are proposed for the initial CO2

activation: pyridine forms a C−N bond via a carbamate intermediate; in contrast, imida-

zole forms a C−C bond with the C2 carbon.121 In the quest for the elucidation of catalytic

mechanisms, structural information about possible intermediates is both crucial and scarce.

Johnson and co-workers characterized possible intermediates via the reaction of both N-

heterocycles with small anionic CO2 clusters ((CO2)m−•, m=2−7)122–124 in the gas phase.

They obtained vibrational spectra of both anionic complexes: Py−CO2
−• and Im−CO2

−•.63,64

The stable carbamate Py−CO2
−• radical anion (Fig. 8(a)) was discovered by the reaction of

(CO2)m−• clusters with pyridine in the gas phase.63,125 The carbamate motif was identified

via a C-N stretch feature in the vibrational predissociation spectra of Py−CO ·–
2 · (CO2)3.63

A similar study using imidazole instead of pyridine found a different interaction motif

(Fig. 8(b)): hydrogen bonding of CO2
−• to the H−N group yields a strong red-shift in

the N-H stretching frequency.64

O

O
+

N

O

O
+ NHN

N
O

O

NHN
O

O

a)

b)

Figure 8: Different binding motifs for the association of a CO2
−• with nitrogen heterocycles:

(a) pyridine (Py) resulting in a carbamate radical anion and (b) imidazole (Im) resulting in
hydrogen bonding.

Since the different nature of these interactions could be relevant to their different cat-

alytic mechanisms, we employ RMP2-EDA to gain insights into these two distinct binding
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motifs. In particular, by comparing the EDA results for the four complexes shown in Fig. 9

(Py−CO2
−• and Im−CO2

−• with two binding modes for each), we elucidate why different

binding motifs are preferred by pyridine and imidazole. All RMP2 interaction energies are

in good agreement with reference interaction energies calculated at the ωB97M(2)/def2-

QZVPPD level of theory (see SI Table S5). Furthermore, the same trends in both the total

interaction energies and the individual EDA terms are obtained using DFT-EDA with the

ωB97M-V functional (see SI Table S6).

The calculated total binding energies are similar for Py−CO2
−• and Im−CO2

−•, which

are −140 and −104 kJ/mol, respectively. However, as shown in Fig. 10, the energy com-

ponents reveal dramatically different nature of these interactions. The carbamate motif is

strongly repulsive at the frozen level. This can be understood by the fact that the unpaired

electron is localized in a CO2 π
∗ orbital, which localizes most of the spin density on the

carbon atom (see SI Fig. S3(a)). In addition, the C−N bond distance is very short at only

1.49 Å, rendering the frozen term dominated by the Pauli repulsion between the lone pair of

the N atom and the π* of the CO2
−•-fragment. The polarization term is strongly attractive,

which is most likely due to the redistribution of charges on the CO2
−• fragment induced by

the lone pair on nitrogen. This effect can be rationalized by the electron density difference of

CO2
−• with and without a partial negative charge (0.5e−) located 1.5 Å away from the car-

bon atom on the bisector, which demonstrates how an electronegative species redistributes

the spin density from C to both O atoms (see SI Fig. S3(b)). CT also plays an important

role in this interaction, and it is bidirectional with both forward and backward donations

being significant. The spin density of the fully relaxed Py−CO2
−• complex reveals a forward

donation of the unpaired electron into the pyridine’s π* orbital (see SI Fig. S3(c)). However,

the bent O−C−O angle indicates a reduced CO2 fragment, implying significant backward

CT from the lone pair into the CO2 fragment. Note that polarization of the CO2 fragment,

as discussed above, makes the carbon more positive and thus more prone to nucleophilic

attacks).
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r = 1.45 Å

(a)

r = 1.71 Å

(b)

r = 1.49 Å

(c)

r = 2.18 Å 

(d)

Figure 9: Geometries of the four possible isomers using both binding motifs for the reaction
of a CO2

−• with nitrogen heterocycles: (a) carbamate Im−CO2
−•; (b) hydrogen-bonded

Im−CO2
−•; (c) carbamate Py−CO2

−•; (d) hydrogen-bonded Py−CO2
−•.

In contrast, the EDA fingerprints of the hydrogen-bonded Im−CO2
−• complex (the right

panel of Fig. 10) shows more balanced contributions from various components, which is simi-

lar to the IHB motifs discussed in Sec. 4.2. The O−H bond distance (1.71 Å) is slightly longer

than the carbamate motif for Py−CO2
−•. The largest contribution comes from polarization,
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Figure 10: RMP2-EDA results (using the aug-cc-pVTZ basis) for the carbamate and hydro-
gen bonding motifs of CO2

−•, separated into HF and MP2 contributions.

followed by also significant contributions from dispersion and charge transfer. The dominant

role of polarization can be readily rationalized by the anionic CO2 fragment that has large

polarizability and the polar N−H bond. Interesting, the HF and MP2 contributions to the

frozen term almost perfectly cancel each other for this complex, rendering the overall frozen

term close to zero.

The experimentally observed Py−CO2
−• carbamate has an interaction energy of −146.4

kJ/mol as calculated with RMP2. By contrast, the imidazole carbamate (Fig. 9(a)) is far

less stable with an interaction energy of only −20.7 kJ/mol. The EDA components of the

imidazole carbamate relative to the pyridine results are shown in the left panel of Fig. 11. The

frozen interaction is significantly more repulsive for imidazole carbamate, which, however, is

almost fully compensated by its more favorable polarization energy. There is also a significant

decrease in CT from pyridine to imidazole, even though the latter is a stronger base and

thus should exhibit a stronger forward donation from the nitrogen lone pair to CO2
−•. The

results imply that this is insufficient to compensate for the less favorable back donation of

the CO2
−• fragment into the π∗ orbital of imidazole.
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Figure 11: Left panel: comparison of the EDA components for the Py−CO2
−• carbamate

against those for its para-substituted (by −OH and −BH2) derivatives and the imidazole
carbamate; right panel: comparison of the Im−CO2

−• hydrogen-bonded complex against the
hydrogen binding of pyridine and its para-substituted derivatives with CO2

−•.

To probe the effect of substituent groups on the Py−CO2
−• carbamate complex, we

separately place an electron-donating hydroxyl (−OH) group and an electron-withdrawing

−BH2 group at the para carbon. The energy components relative to the unsubstituted

pyridine results are plotted on the left panel of Fig. 11. The −BH2 group yields a more

electron-deficient aromatic system, strengthening the interaction energy by ∼100 kJ/mol.

The comparison against the unsubstituted case manifests its less repulsive frozen term as

well as a less favorable polarization contribution, for which the differences largely cancel each

other. The −BH2 group also facilitates the donation from CO2
−• to the lowered π∗ orbital,

as reflected by the markedly stronger charge transfer stabilization. An opposite effect is

observed with the −OH group, which has a positive mesomeric effect by donating electron

to the π-system, and it reduces the interaction energy with CO2
−• by 28 kJ/mol. This net

decrease mainly stems from the more repulsive frozen interaction and the weaker donation

from CO2
−• to the π∗ orbital.

The RMP2 results for experimentally observed hydrogen-bonded Im−CO2
−• yields an in-
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teraction energy of−104.2 kJ/mol, while the hydrogen-bonded Py−CO2
−• complex (Fig. 9(d))

is only half as strongly bound (−51.5 kJ/mol). The EDA components of the hydrogen-

bonded pyridine relative to the hydrogen-bonded imidazole complex are shown on the right

panel of Fig. 11. All energy components are destabilized upon the replacement of imidazole

by pyridine. The N−H bond is more polar than C−H, which explains the more favorable

electrostatic interaction as well as the stronger polarization of CO2
−• in the complex with

imidazole. The COVPs reveal a donation from CO2
−• into the N−H σ* orbital, which is

more favorable than the donation into the C−H σ*, elucidating the difference in CT (see SI

Fig. S4). This is similar to the trend observed in Sec. 4.2. In contrast to the carbamate mo-

tif, there is no clear substituent effect for the hydrogen bonding motif because the π system

does not play a key role in this type of interaction as the same COVP implies.

5 Conclusion

In this work, we generalized the previously reported closed-shell MP2-EDA scheme42,57 to

unrestricted and restricted open-shell MP2. This permits decomposition of the correlation

energy of intermolecular interactions of radical systems into frozen, polarization, dispersion

and charge transfer components. The scheme is efficiently implemented using OpenMP

parallelism. In the case of a single atom or small radical fragments where the unpaired

electron is located in a non-spherically symmetric orbital (e.g. Cl•), a proper alignment of

the radical at the isolated fragment stage is necessary for obtaining unambiguously defined

frozen and polarization energies.

Restricted open-shell MP2 is able to provide reasonably accurate binding energies for

the radical-neutral complexes contained in the TA13 benchmark set, for which DFT can be

error prone due to the self-interaction problem. The EDA analysis revealed that the different

bonding motifs are driven by different energy components: the electron-rich metal-water

complexes by polarization, the electron-poor hemibonded complexes by charge transfer, and
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the hydrogen bonded complexes show more balanced contributions from all terms.

The MP2-EDA was applied to study the first solvation step of halogenated benzene

radical cations with water where two binding modes are possible: ionic hydrogen bonding

and ionic halogen bonding. The EDA results show that IXB becomes more favorable as the

halogen becomes heavier due to an increase in polarization, dispersion and charge transfer,

whereas the IHB binding site is not strongly affected by the type of halogen. This makes

the halogen bonding site more attractive for the iodobenzene-water complex.

Analysis of CO2
−• interacting with pyridine as a carbamate and with imidazole via hy-

drogen bonding revealed very different fingerprints for these interactions. The carbamate

shows very repulsive frozen interaction, strong polarization and bidirectional charge transfer.

The hydrogen bonding motif exhibits balanced contributions from polarization, dispersion

and charge transfer with a frozen term of very small magnitude. The carbamate motif is

preferred by pyridine as it allows for a stronger charge transfer interaction, whereas the hy-

drogen bonding motif is preferred by imidazole because the more polar N−H bond results in

stronger polarization of the CO2
−• fragment. Furthermore, the importance of charge transfer

into the π∗ orbital of the heterocycle was discovered as a parameter to control the stability

of the carbamate binding mode with a substituent effect.

While the MP2-EDA is already useful for chemical applications, as demonstrated by the

examples presented here, further methodological development is still desirable in the future.

Unlike the second generation ALMO-EDA for DFT that has a useful basis set limit for all

terms,28 our current MP2-EDA scheme does not have this desirable feature. We hope to

lift this limitation in future work. Additionally, it would be highly desirable to extend this

approach from MP2 to recently developed methods based on regularized orbital-optimized

MP2 (OOMP2)67,126,127 and double-hybrid density functionals.90,128 Furthermore, extending

it to higher-order MP approach using OOMP2 orbitals129 as well as revisiting coupled-cluster

methods60 are needed when a more accurate description for electron-electron correlation

effects is necessary.
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