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Abstract

Genetic Algorithms (GAs) make use of an internal repre-
sentation of a given system in order to perform optimiza-
tion functions. The actual structural layout of this rep-
resentation, called a genome, has a crucial impact on the
outcome of the optimization process. The purpose of this
paper is to study the effects of different internal representa-
tions in a GA, which generates neural networks. A second
GA was used to optimize the genome structure. This struc-
ture produces an optimized system within a shorter time
interval.

Introduction

Though the field of natural genetics is progressing quite
rapidly, understanding of the genetic process is still quite
incomplete. Even so, knowledge of the natural genetic pro-
cess has not been completely incorporated into the field of
Genetic Algorithms (GAs). To this end, the research re-
ported here tests some new approaches and functions to be
used with GAs. In a previous paper (Marti, 1992), and in
several other sources (Garis, 1990; Miller, Todd, & Hegde,
1989; Harp, Samad, & Guha, 1989) it has been shown how
GAs can be used to generate optimal and novel neural net-
work architectures. Also, it is widely understood how in-
fluential the genome representation can be in the success of
the genetic search (Davis, 1991; Louis, 1991; Marti, 1992).
Here, a genetic algorithm has been used to explore alter-
native genome representations of another genetic system.
When examined carefully, it becomes clear that natural
genetics must possess this functionality in order to provide
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the flexible evolution that we observe today. Natural ge-
netic evolution is capable of adding new functionality to
a species represented by relatively stable genetic material.
How new material is added may vary, but one method con-
sists of duplicating a section of existing material. Once
this material has been duplicated, variations of it (result-
ing from other genetic operations such as mutation and
crossover) will result in the exhibition of the new function-
ality. The representation of this new functionality in the
chromosome can be based on the representation of the orig-
inal functionality. But this representation should be able
to vary in order to find a more appropriate representation
and to survive as stable genetic material.

How these alternative representations are generated and
tested is far from being fully understood, but both rep-
resentation descriptions and actual function descriptions
must coexist in the same genetic material. However they
do not necessarily reside on the same gene. This paper has
assumed that the representation description is more stable
than the actual functions. This assumption seems logical
if one believes that this representation description must be
older genetically than any functions controlled by it, and
that older genetic material becomes more stable. An exam-
ple of this can be seen in the appearance of “homeoboxes”
(Gould, 1991) in natural genetic evolution.

In order to carry out the simulation within a reasonable
time, a few unbiological simplifications have been made.
The representation description was made as simple as pos-
sible in order to facilitate its analysis. Even with these sim-
plifications, the system is quite complex to simulate. The
representation description is referred to as the “Outer Ge-
netic System” and implemented as a completely separate
genetic engine. The function controlled by it is referred
to as the “Inner Genetic System”. The genome layout of
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the Inner Genetic System will be optimized by the Outer
Genetic System.

GAs can be seen as a Boltzmann-like massively parallel,
stochastic gradient descent system, if only mutations are
considered. As such, it is uniquely qualified to avoid local
minima or sub-optimal results. The separation of genetic
material and the genetic engine allow for a certain degree
of application independence. It is for these reasons, that
GAs are well suited to search the space of possible network
topologies. This is a problem space which is too large to
be searched exhaustively.

Genetic Environment

A Genetic Algorithm makes use of a string of alleles, called
a genome, where it represents the necessary information to
describe an individual. This information can be tested for
fitness, and the resulting fitness can be compared with that
of other individuals. As in natural selection, the individuals
with better fitness have a higher probability of reproducing
and therefore maintaining their genetic material in subse-
quent generations. As better organisms appear, and are
maintained, the overall fitness of the population also rises.

The genetic engine implemented here makes use of just
two genetic operations: mutation and crossover. Muta-
tion consists of randomly selecting an allele and altering its
value with certain probability. In all the simulations car-
ried out here, the mutation probability was set unchanged
at 0.01 per allele. Crossover is carried out by selecting two
genomes and choosing a point where the genomes will be
split. At this point, the genomes will be split and recom-
bined with the remaining section of the alternate genome.
The crossover probability was also fixed and it was set at
0.85 per chromosome.

In addition, the genome of the best individual of each
generation was copied, unchanged, for the next generation.

Inner Genetic System

The Inner Genetic System is the same as the one used in
Marti (1992). The purpose of the Inner Genetic System
is to generate Neural Networks. Each pair of alleles de-
termines the connectivity among two nodes in a 4 node
neural network. Each allele contains a binary value, and
when combined determines the connectivity according to
the table shown in Table 1. The location of each pair
of alleles determines which connection is being specified
as a 4x4 connectivity matrix. In the previous paper, this
specification remained fixed. For example alleles 1 and 2
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determine the connectivity from node 1 to itself, alleles 3
and 4 determine the connectivity from node 1 to node 2
and so on. This representation requires 32 alleles to deter-
mine the connectivity of all 4 nodes or 16 connections with
2 alleles per connection.

Allele | Connection
pair type
00 Inhibitory
01 Disconnected
10 Disconnected
11 Excitatory

Table 1: Table of allele representation of connections.

In order to calculate the fitness of each individual, a sys-
tem of equations for the network specified was solved. The
target configuration of the network was a competitive feed-
back circuit (Grossberg, 1982). The system of equations
used was:

W = Azt (B-2)(h+ Y fz) -2+ D) Y fon)

Where z; is node i, 1 ranging from 1 to 4, A,B and D
are constants set at 6.0, 5.0, 5.0 respectively, f(z) is the
neuron’s feedback equation (f(z) = z; if z > 0), g is the
set of excitatory nodes, and h the set of inhibitory nodes.
The sets of inhibitory and excitatory nodes are determined
by the genome. For the target circuit, g was the node itself
(f(2i)), and h consisted of every other node (3_,4; f(za)).
The fitness function used was:

100
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where K is the optimal output value at time ¢, and y
the actual output from the network at time ¢.

In this Genetic System, representation can be seen as
affecting the system in at least two forms. First, the form
the table takes, has been shown to heavily influence the
outcome of the system (Marti, 1992). The possible values
that this table can take are quite few, and can be studied
analytically and exhaustively and not treated here.

Another form in which representation plays a role, is in
the location of the description of each connection. It is
difficult to examine the effect of altering the location of
the description of each connection by testing all possible
location combinations within the genome. This will be
examined with the Outer Genetic System.



Original Resulting
Inner Genome Outer Genome Inner Genome
Connection Allele Polnter to Connect ion Allele
Number Content Number Connect ion Allele Number Content Number
Number Content  Number

1 11 1,2 2 0001 1-4 32 01 1,2

2 01 3,4 ___,/ 3 0010 5-8 > 3 00 3,4

3 00 B i | 1 0000 9-12 31 11 5,6

4 10 7,8 - ’...) 6 0101 13-16 > 6 00 7,8

5 11 9,10 o 16 1111 17-20 3 16 10 9,10

3 00 11,12 = 5 0100 21-24 >5 11 11,12

16 10 31,32 \) 4 0011 60-64 _} L] 10 31,32

Figure 1: Example of the effect of an outer genome on the location of the connections of an inner genome.

Outer Genetic System

In order to test the effects of placing the description of
each connection in different locations, an Quter Genetic
System was introduced. This Quter Genetic System can
be viewed in two different ways. First, it can be seen as
an entirely separate genetic system, where the fitness of
each individual depends upon the effectiveness of a certain
connection specification placement. The effectiveness of
this connection placement is determined by executing an
Inner Genetic System, and observing how well it performs.

Another way of viewing this Outer Genetic System is as
an additional set of alleles which determines the placement
of the description of each connection. According to this
view, the location description part of the chromosome (the
outer system) varies much slower than and independently
of the rest of the genetic material.

In either case, a second and quite independent set of ge-
netic material is needed. The information contained in this
genetic material should be able to specify the location of
each connection descriptor. Among all the possible man-
ners of determining these locations a relatively simple one
was chosen. Basically, the genome was used as a pointer
table. A set of four alleles determines the location of each
connection descriptor in a binary encoded form. For exam-
ple, alleles 1 through 4 determine the location where the
connection descriptor for the connection from node 1 to
itself is to be relocated. Similarly, alleles 5 through 8 de-
termine the location where the connection descriptor from
node 1 to node 2 is to be relocated. This representation re-
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quires 64 alleles to determine the location of 16 connection
descriptors and 4 alleles per connection descriptor. The
present system was chosen for its simplicity, and found to
be robust enough for the task at hand.

An example of the effect of an outer genome on the lo-
cation of connections of an inner genome can be seen in
Figure 1.

The fitness function for the outer genetic individuals was
the fitness of the best individual of the last generation of
the Inner Genetic System.

Results

The system was implemented on a Thinking Machines CM2
using 8K processors, and a Sun Sparcstation as the front
end. This allowed a population of 90 individuals for each of
the genetic systems. Therefore 8100 simultaneous ODE’s
were solved for each generation.

Figure 2 shows the results of the outer genetic search
over 20 generations. Each outer generation consisted of 20
inner generations. Whereas this is not enough to provide us
with the optimal population member, partial optimization
is sufficient to provide the outer system with the proper
direction for the search. This can be seen by the eventual
maximization of the best member of the population. But
even more importantly, the upward direction of the curve
for the average member as shown in Figure 2. This is also
seen by comparing a population run of the inner system at
an early generation of the outer system with a population
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Figure 2: Fitness of best, worst, and average population members of the Outer Genetic System over 20 generations.

Fitness of 100 is optimal.

run of the inner system at a later generation. Examples of
these two runs can be seen in Figure 3.

Conclusions

The purpose of this paper is not to find “the” optimal
representation for a genetic system. It rather intends to
show that such an optimization does not have to be done
heuristically by the system designer, but that it can be
aided by the genetic system itself. And that this leads to
an optimized representation.

Variants of the system presented may be suggested. The
choice of fitness functions can be changed. The inner sys-
tem may use a linear function instead of the inverse func-
tion used. The outer system may use an average or the best
result over many runs for the optimal individual, instead of
the last one obtained. As is, the outer system can specify
that more than one connection descriptor is located in the
same position. By the same token, it can render useless
areas of the inner genome. The choice of binary encoding
may be modified with the use of gray encoding.

At a more fundamental level, the organization of the
genetic material can also be modified. Perhaps a more bio-
logically based approach would be to use a chaotic system
to determine the shape of the network or location of each
node (Merrill & Port, 1990). Ultimately the two systems
can be combined into one genome.

The present paper represents a first step in genetically
aided system design and self optimization. Biological evi-
dence for such systems exists from research in natural ge-
netics. As already mentioned, the appearance of home-
oboxes represents one of them. Homeoboxes regulate tim-
ing and transcription of other genes. Also, the introduc-
tion of color vision in primates is believed to have been the
result of duplication and later alteration in the represen-
tation of specification of retinal cells (Cullis, 1988). At a
more basic level, the existence of diploidy in not all but
some organisms is yet another indication of a fundamental
variation in representation of similar genetic material.

Many more aspects of natural genetics remain to be suc-
cessfully integrated into artificial genetic system. As more
methods from natural genetics are incorporated into GAs,
these systems should become more useful and find a wider
range of applications.
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