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ABSTRACT 

Theoretical modelling of the seismic radiation impedance 

for circular vibrator baseplates suggests methods in which 

impedance measurements might be used to determine the material 

properties of the medium below the baseplate. These studies 

also provide physical insight into the phenomena of vibrator -

earth interraction. 

The radiation impedance of a circular disk vibrating 

torsionally on an anelastic half-space has resonance peaks 

with a spacing that is a function of the ratio between baseplate 

radius and seismic wavelength. At low frequencies the shape 

of the impedance function is nearly independent of the source 

behavior, although the magnitude is affected. At high frequencies 

the impedance depends strongly on the flexibility of the 

baseplate. The mass of the baseplate introduces an additional 

resonant effect, the frequency of which is a function of the 

baseplate mass. 

The presence of a surface layer produces an impedance 

curve which oscillates around the half-space response. The 

amplitude of the oscillations is a function of the acoustic 

impedance contrast and depends on the radiation pattern of 

the source. The oscillations are resonances caused by reflections 

within the surface layer, and both the period and amplitude 

of the oscillations are inversely proportional to the layer 

thickness. The amplitude of the layer resonance decreases 

rapidly as material damping increases. 
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With impedance measurements over a sufficiently broad 

frequency range, it may be feasable to use the half-space 

oscillations and the layer resonances to determine the shear 

velocity and thickness of the layer of material beneath the 

baseplate. 
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I. INTRODUCTION 

During the last two decades the vibrating seismic source 

or Vibroseis (a registered Trademark of the Continental Oil 

Co. Inc.) has become an increasingly important tool in land 

seismic exploration.A significant amount of progress has been 

made over that period of time in data collection, processing 

and analysis for vibrator surveys. There has been relatively 

little progress, however, toward understanding the interaction 

of vibrators and the earth. 

In this paper the study of the radiation impedance function 

is used to develop an understanding of the interraction of a 

vibrator and the medium to which it is bonded in terms of 

physical phenomena occurring in the vicinity of the baseplate. 

From this analysis methods are suggested for using source 

related measurements to determine some physical parameters of 

the medium on which the vibrator rests. 

The radiation impedance may be thought of as the load 

the vibrator experiences as it radiates energy into the medium. 

An analogy may be drawn between the radiation impedance and the 

impedance of an electric circuit. The circuit impedance, the 

load on the current source, is a function of the components in 

the circuit. The seismic radiation impedance, the load on the 

vibrator, depends on the components in its "circuit", which 

includes the baseplate and the medium on which it rests. 
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The impedance of a torsional source is considered 

in detail in this paper because such a vibrator on the 

surface of a plane-layered half-space produces only hori­

zontally polarized ahear (SH) waves. As a result, the 

theory is somewhat simplified, and the impedance curves 

are simpler in form and more easily interpreted than those 

due to a vertical or horizontal vibrator. The observations 

made concerning the relationship between the vibrator 

impedance function and the properties of the medium can 

be extended to the vertical and horizontal impedance 

functions. 

Most of the research on the impedance of a dynamically 

vibrating torsional source has been directed toward solving 

the mixed boundary value problem for a rigid source (displace­

ment boundary condition at the source). Relatively little 

published literature is available on the solution of the 

simpler boundary value problem that involves a stress 

condition at the source. 

The earliest solution for the radiation impedance of an 

oscillating rigid source was obtained by Sagoci (1944) using 

oblate spheroidal coordinates. He derived an exact solution 

in terms of infinite series of spheroidal functions. Although 

this solution is exact for a rigid baseplate on the surface 

of a half-space, it is numerically somewhat intractable. 
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Most of the research on torsional impedance functions 

between 1944 and 1970 was devoted to finding approximate 

solutions for thishalf-space problem appropriate for various 

ranges of frequency. 

Collins (1962), Awojobi and Grootenhuis (1965) and 

Robertson (1967) each derived the same power series expansion 

for the problem of a rigid baseplate vibrating on the 

surface of an elastic half-space valid for low frequencies, 

using different methods. Robertson (1967) also suggested 

a method of obtaining the shear modulus of the elastic 

half-space using the impedance function. Stallybrass (1962, 

1967) used variational techniques and asymptotic approxima-

tions to derive an expansion for the rigid source over a 

half-space valid at low frequencies, and a second expansion 

for high frequencies. Another high frequency solution has 

been presented by Thomas (1968). 

Miller and Pursey (1954) have calculated the torsional 

radiation impedance at low frequencies for an elastic 

half-space with a stress distribution under the source 

which is proportional to radius (r). The impedance at 
k 

low frequencies for a stress proportional to r(l-r 2
)

2 

has been calculated by Arnold et al. (1955) for a half­

space, and by Bycroft (1956) for a half-space and an elastic 

stratum. 

. Several of the papers that contain solutions for the 

torsional source also present solutions for vertical and 
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horizontal vibrators (Miller and Pursey, 1954; Arnold 

et al., 1955; Bycroft, 1956; Awojobi and Grootenhuis, 

1965). Although there appear to be no published radiation 

impedance calculations for a torsional vibrator over a 

layered medium, there have been several studies of the 

response of vertical and horizontal vibrators over layered 

media. Prominent among these are those by Luco (1974, 1976), 

Kashio (1970) and Wei (1971). 

Since most research on radiation impedance functions 

has been directed toward determining the response of vibrating 

foundations, there has been little effort to interpret the 

response in terms of physical processes occuring in the medium 

(exceptions are the studies of Kashio, 1970, and Wei, 1971). 

Similarly there has been no extensive study of the effects 

of varying material properties or source parameters on the 

impedance .. 

The first step in calculating the radiation impedance 

is the solution of the elastodynamic wave equation. This 

equation is solved for the displacement at the surface of 

a plane-layered anealstic medium for an arbitrary torsional 

source. The torsional radiation impedance is then formulated 

in terms of this surface displacement and the stress beneath 

the baseplate 

The majority of this paper is devoted to a parametric 

study of the torsional radiation impedance for half-space and 

layered models. The effects of changing material properties, 
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layer thickness and source type are analyzed in an effort to 

determine the physical phenomena giving rise to the effects and 

to obtain methods of deriving material properties from impedance 

measurements. 

THEORY 

Consider the layered model and the circular cylindrical 

coordinate system shown in Figure 1. For a torsional vibrator, 

the radiation impedance is the total torque per unit area, 

divided by the mean angular velocity beneath the baseplate: 

(1) 

where (u/r) is the mean angular displacement under the 

baseplate. Assuming displacements are harmonic with time, 

u(r,z,t)=u(r,z)eiwt, then iw(u/r) is the mean angular velocity. 

The total torque is r, and a is the baseplate radius. 

In order to calculate ZT, the elastodynamic wave equation 

must be solved for the displacement produced by a torsional 

source at the surface of a plane-layered anelastic medium. 

In a source free region, this equation is: 

(2) 

For a torsional source in a plane layered medium, ur=u
2
=0, 

+ u = u¢$, and this equation reduces to a scalar differential 

equation in u¢: 
8 2 u 
~+ 

8z 2 
= 0 (3) 
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where ks is the shear wave number. It is convenient to write 

equation (3) in a completely dimensionless form. Using the 

subscript o to indicate a dimensionless parameter, and scaling 

all distances to the baseplate radius, a, equation (3) becomes: 

8 
2
u 8 (l 8 (r u ) J ____ o + __ _ o o + k2 u = 0 

8z 2 8r r 8r · os 0 
0 0 0 0 

(4) 

where k =k a is the dimensionless shear wave number, and where 
OS S 

the subscript ~ has been dropped for convenience. 

Applying a J 1 Hankel transform as defined in Table 1 to 

equation (4) reduces the problem to the solution of an ordinary 

differential equation: 

8 2u 
__ o + (k2 - ~2)u == o 

dZ2 OS 0 0 
0 

(5) 

where u
0 

is· the transform of u
0 

and ~0 is the transform variable. 

In the mth layer of the N-layered medium shown in Figure 1 

equation (5) has a solution of the form: 

-s z +s z 
= A e om om + B e om om 

om om (6) 

where: 

At each interface in the layered medium, the displacement 

and stress are continuous: 
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uom(ro,hom) = uom+l(ro,O) 

au (r h ) au +l (r ,0) om o' .om om o 
11m = 11m+l az az0 0 

Applying the Hankel transform to these boundary conditions 

and substituting for the transformed displacem~nt using 

equation (6), an expression may be derived for the ratio of 

the coefficients of the upgoing and downgoing waves in the 

mth layer: 

B om = -
A om 

where: · 

aom + Kom Yom+l 

Kom + aom Yom+l 

a = (1 om 

Kom = (1 + 

11m+l 
e:om+l = 

11m 

-2S h 
e om om (7) 

e:om+l) 

e:om+ 1) 

som+l 

som 

In an N-layered medium, where the Nth layer is the lower 

half-space, y0N= 0 because there is no upgoing wave in the lower 

half-space. Starting withy N' the y . , j = N-1, N-2, ... , 1 
0 OJ 

may be calculated recursively using equation (7). 

In order to calculate A01 and B01 from ol' the stress 

beneath the vibrator baseplate must be known. Two approaches 

may be taken to solve this problem. If the surface boundary 
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condition is specified in terms of the stress beneath the 

baseplate, the resulting boundary value problem may be solved 

by a straightforward application of transform techniques. 

If the source is defined by a displacement boundary condition 

at the surface, the resulting mixed boundary value problem 

must be solved for the stress beneath the source before the 

displacement can be calculated. 

Once the stress under the baseplate is known, the solution 

for the displacement proceeds in the following manner. Suppose 

the stress distribution beneath the baseplate is some function 

f(r), known either analytically or numerically. Then the surface 

boundary condition in dimensionless form is: 

r < 1 
0 

r > 1 
0 

(8) 

where To¢z= T¢2 /~1 , f(r) = ~ 1P0 f0 (r0 ), r
0
= r/a, and where 

P is arbitrary and unitless. For convenience let P = 1 in 
0 0 

the following development. 

Shear stress and displacement are related by: 

Applying the Hankel transform to this equation and to equation 

(8), the relation between transformed stress and displacement 

at the surface is: 

(9) 
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uol from equation (6) into equation (9) and using equation (7)' 

the coefficients in the first layer are: 

Aol = 
fo(i;o) 

(10) 
6ol(yol- 1) 

Bol = 
Yolfo(i;o) 

6ol(yol- l) (11) 

The dimensionless displacement at the surface is obtained by 

substituting equations (10) and (11) into equation (6), applying 

the inverse Hankel transform, and setting 2 ol= 0: 
00 

uol(ro,O) = 

J 
ro (i;.o) 

(yol+ l)i;oJl(i;oro)di;o 
sol (y ol- l) 

0 

The unsealed displacement is given by: 

u1 (r,O) = aP u 1 (r ,0) 
0 0 0 

(12) 

To this :point the entire derivation has been for an 

elastic medium. To extend the solution.to anelastic media 

I allow the shear modulus to be a complex valued quantity, 

the imaginary part of which is a function of frequency 

(Appendix A) . 

Stress Boundary Condition 

The most straightforward method of determining f
0

(i;
0

) is 

to specify the stress beneath the baseplate: 
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T ~ (r ,0) = f (r ) 
o~z o o o 

The unknown term f0 (~0 ) is obtained as the Hankel transform 

of f
0

(r
0
). I apply two constraints to the choice of the 

function f (r ): first, f (r) = 0 at r
0 

= 0, and second, 
0 0 0 0 

I must be able to calculate f0 (~ 0 ) analytically. The first 

constraint is required by the physics of the problem. The 

second constraint makes the problem more manageable numerically. 

A general stress distribution which satisfies these 

requirements is: 

v >-1 (13) 

and its Hankel transform is: 

Since v may take on any value greater than -1, a wide variety 

of stress distributions is possible. 

Stress distributions represented by equation (13) are shown 

in Figure 2. For any value of v less than 0 the stress is 

singular ar r
0
=1. For v = 0 the stress varies linearly over 

the disk from 0 in the center to 1 at the edge. For v > 0 the 

stress at r
0 

= 1 is 0. 

The stress distribution for v = -1/2 is that obtained for 

a statically rotated rigid disk. None of the stresses represented 

by equation (13) is that of a dynamically rotating rigid disk. 

These stress distributions represent sources which flex as they 
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are dynamically rotated. The manner in which they flex is a 

function of frequency. 

Displacement Boundary Condition 

If the boundary condition at the source is expressed in 

terms of the source displacement, the stress that gives rise 

to this displacement must be calculated to obtain f0 (~0 ). 

The boundary condition at the surface, written in terms of 

dimensionless parameters, is: 

r < 1 
0 

r > 1-o 

(15) 

where g (r ) is known and P
0 

is arbitrary and unitless. For 
0 0 

convenience let P
0 

= 1. 

Since u01 and u01 , and To¢z and To¢z are related by 

a Hankel transform, equations (15) may be rewritten in the 

form: 

Hl. {uol(~o,O);ro} = go(ro) r < 1 
0 

(16) 

['u 1<' ,o) l Hl o o ·r = 0 r > 1 
' 0 0 3z

0 

Using equations (6) and (7) these equations become: 
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H1 · {6 1 (1- y 1)A 1 (~ );r } = 0 0 0 0 0 0 

r
0 

< 1 

(17) 
r > 1 

0 

where the second equation in (17) has been multiplied by -1 

for convenience. Equation (17) is a dual integral equation 

that must be solved for the unknown A 1 (~ ) to determine the 
0 0 

stress beneath the vibrator. 

Using a method described in detail by Gladwell (1980) 

this equation may be reduced to a Fredholm integral equation 

of the second kind (Dorn, 1980): 
1 

go(xo) = ~o(xo) + J ~o(yo)Mo(xo,yo)dyo (18) 

0 

where: 

M0 (x0 ,y0) = ~ J H01 (~0 )sin(~0y0 )sin(~0x0 )d~0 (19) 

go(xo) = 

and: 

0 

x-1 
0 

X < 1 
0 

_3_ A 
3x 1 

0 

r < 1 
0 

{r 2 g (r );x} 0 0 0 0 

Hol(~o) 
[(1 + Ya1) ~0 

= ---
(1 - Yol) 6ol 

r < 1 0 (20) 

1] (21) 

A1 is the Abel operator defined in Table 1. For r 0 < 1 and 

x0 < 1, g0 (x0) is known, M0 (x0 ,y0) may be calculated using 

equation (19) and equation (18) may be solved for the 

unknown ~0 (x0 ). The stress beneath the baseplate is given 

by: 
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T (r 0) = -H '{F ·{''' (x )·~} ·r} (22) o¢z o' 1 s ~o o 'so ' o 

and the Hankel transform of the stress is (Dorn, 1980): 

(23) 

for x < 1 and r < 1. Once equation (18) is solved for 
0 0 

1J;
0

(x
0
), then f0 (~0 ) may be calculated from equation (23) 

and the solution for the displacement is obtained from 

equation (12). 

Numerous functions g
0

(r
0

) could be chosen as the 

displacement boundary condition. The one condition that 

all such functions must satisfy for a torsional source is 

that g
0

(r
0

) = 0 at r
0 

= 0. For ease of calculation I also 

require that g
0

(x
0

) be calculated analytically. 

Five possible displacement distributions are represented 

gov(ro) = rv \) = 1, ... ,5 (24) 
0 

The corresponding expressions for g- (x ) 
0 0 

are: 

l 

gol(xo) = 2 r;J~xo 

go2(xo) = 3 [~)\~ 2 
l 

go3(xo) :::::: 8 r;J~ X~ 
3 

(25) 

15 ( J% go4(xo) = .!I.. x4 
3 2 0 

l 

go5(xo) = 16 (;J~ X~ 
5 

by: 
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The displacement distributions represented by equation 

(24) are shown in Figure 3. For v = 1 the displacement is 

that of a perfectly rigid disk. For the remaining values of 

v the outer edge of the disk rotates more than the inner 

portion. The stress distribution beneath these sources 

is a function of frequency. 

Calculation of the Impedance 

As shown in equation (1) the torsional impedance is a 

function of the total torque and the mean angular displacement 

given by: a 

r = -2rr [ r 2f(r)dr 
a rr 

[ [

2 ul (rr' 0) 1 rdr d¢ 
1Ta2 

(26) 

(27) 

Written in terms of dimensionless parameters equations (26) 

and (27) become: 

1 

ro = -21T [ r2 f
0

(r
0
)dr

0 0 
(28) 

[u::l 
1 

= 2 [ u 1dr 
0 0 

(29) 

where: 

r = v a 3 r 1 0 
(30) 
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Using the definitions of ~l and a
0

,equation (1) may be 

rewritten in terms of dimensionless parameters: 

From equation (31) it is clear that the torsional radiation 

impedance has units of acoustic impedance (plvsl) times distance 

squared (a 2
). The "extra" factor of a 2 occurs because torque 

per unit area and angular velocity must be used for a torsional 

source instead of stress and linear velocity, which would be 

appropriate for a vertical source. 

BT is the zero frequency solution for the quantity in the 

innermost brackets in equation (31), for an undamped half-space. 

~ is factored out because it is a convenient normalization, 

and most of the dependance of the impedance function on source 

behavior at low frequencies is contained in BT. For a vertical 

vibrator Bv is a function of source behavior and Poisson's 

ratio. For a torsional source BT is only a function of source 

behavior. 

Equations (28) and (29) show that it is not necessary to 

set P = 1 in the stress or displacement boundary conditions. 
0 

If P
0 

is not 1, a factor of P
0 

enters the numerator through 

the torque term cancelling a factor of P
0 

that enters the 

denominator through the displacement term. So as long as the 

restrictions of elastic theory (infinitesimal stress and strain) 

are met, the impedance is independent of the amplitude of the 
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baseplate vibration. 

When the surface boundary condition is specified interms 

of the stress distributions presented in equation (13) the 

equations for r 0 , (u01 /r0 ) and BT are: 

BT 

r 
0 

= -n r(v+l) 
r(v+3) 

[uol]= 2 J [l + Yol] 
r 1 - y 1 0 0 0 

= 2r 2 (v+5/2) 

r(v+3){n%r(v+5/2) 

(Jo(~o)-l) 

sol 

- r(v+2)} 

where f (~) is given by equation (14). 
0 0 

(32) 

fo(~o)d~o (33) 

(34) 

When the source is defined by using the displacement 

condition in equation (24) the resulting expressions are: 

ro = 4 /TIT J xowo<xo)dxo 

[u::l = 

0 

2 

v+l 
\) = 1,2, ... ,5 

(35) 

(36) 

There is no general closed form expression for BT as a 

function of v for the displacement conditions in equation (24). 

Since the quantity in brackets in equation (31) is a 

complex valued function, the impedance function can always be 

written in the form: 
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ZT 
2" i I} (37) = BTplvsla {R -

a 
0 

or: 

ZT = 2' { icp} BTplvs 1a A e 

The factor of a~ 1 is removed from the imaginary part to eliminate 

a singularity at a
0 

= 0. R and I are referred to as the equiva­

lent damping and stiffness coefficients, respectively. A and <P 

are the dimensionless impedance magnitude and phase. The results 

presented in this paper will consist of plots of R, I, A and <P 

as functions of dimensionless frequency, a
0

. 

Program Tests 

Two programs have been written to calculate the radiation 

impedance of torsional vibrators. TORIMP implements the solution 

for the stress boundary condition, and TORIES implements the 

solution for the displacement boundary condition. The accuracy 

of these programs has been checked by comparing results obtained 

from them with results in the published literature.In order 

to compare the program results with the undamped literature 

solutions, the programs were run with the appropriate source 

types over a half-space model with a frequency independent 

Q = 106 , so that the models are essentially undamped. 

The accuracy of TORIMP is checked by comparing its results 

for a stress distribution with v = 0 with Miller and Pursey's 

(1954) results, and for v = -1/2 with Collins' (1962) results. 

These authors presented results for the radiation impedance at 
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low dimensionless frequencies. Although Collins' solution 

is for a dynamically vibrating rigid disk (displacement 

boundary condition), and the results obtained from TORIMP 

with v = -1/2 are for the stress under a ststically rotated 

rigid disk, at low frequencies good agreement can be antici­

pated. 

The accuracy of TORIES has been checked by comparing its 

results for a rigid baseplate with those obtained by Collins 

(1962) and the few tabulated results for the exact solution 

for a rigid baseplate obtained formally by Sagoci (1944) and 

tabulated by Stallybrass (1962, 1967). 

Table 2 contains the results of these comparisons. The 

precision of the numbers listed for Miller and Pursey (1954) 

and Sagoci (1944) is limited by the number of significant 

figures presented by Miller and Pursey (1954) and Stallybrass 

(1962, 1967). ' 

MODEL RESULTS 

Half-Space Models 

The equivalent damping and stiffness coefficients (R and 

I) are shown in Figure 4 as a function of dimensionless frequency 

for a half-space model. The data shown were calculated for a 

stress distribution at the source with v = 0 and a frequency 

independent Q = 100. Several general comments regarding 

the radiation impedance of a torsional source over a half-space 
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may be made with reference to this figure. For a massless 

baseplate over an undamped half-space, R = 0 and I = 1 

at a
0
= 0. The equivalent stiffness (I) is 1 at zero frequency 

because of the normalization by BT. The dominance of the 

imaginary part at low frequencies is further accentuated by the 

fact that I/a
0 

is singular at a
0
= 0. As a result, the half-space 

at low frequencies is purely reactive - it behaves as if 

the medium consisted of a spring with no dashpot. 

At high dimensionless frequencies I remains finite 

(oscillating in Figure 4) so that I/a approaches 0. The 
0 

real part of the impedance dominates and the half-space 

is essentially resistive it reacts as if the medium consisted 

of a dashpot without any associated spring. 

The curves plotted in Figure 4 show oscillations with 

a period of about 2~. From the definition of dimensionless 

frequency (a
0
= 2~a/A, where A is the wavelength) it is clear 

that each increase in a by 2~ means that another wavelength 
0 

of the seismic wave would fit on the baseplate. This combined 

with the fact that the first oscillation occurs for a
0

> 2~ 

suggests that the oscillations in the half-space curve 

may be associated with the number of wavelengths of the 

seismic wave per baseplate radius. 

Kashio (1970) reports similar oscillations in the half-

space radiation impedance curves derived for a vertically 

vibrating foundation. He shows that the resonance is due 
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to Rayleigh waves originating at one edge of the baseplate 

interracting with the opposite edge. In the case of the 

torsional vibrator the effect is caused by the interaction 

of horizontally travelling SH body waves with the edges of 

the baseplate. Since the torsional vibrator generates a smaller 

proportion of waves travelling horizontally as frequency 

increases (Dorn, 1980) the amplitude of the resonances caused 

by these waves would be expected to decrease with increasing 

frequency, as shown in Figure 4. 

In Figure 5 the equivalent damping and stiffness coefficients 

are plotted for 4 different sources over a half-space model. 

The sources used were a rigid baseplate (displacement boundary 

condition, v = 1), and three flexible baseplates (stress 

boundary condition, v =-1/2, 0 and 1). For a
0 

less than 1 

the equivalent stiffness and damping are relatively independent 

of source type. The effect of changing source type at low 

frequencies has been absorbed into the term BT. As shown in 

Tables 2 and 3 BT, and as a result the impedance ZT, decreases 

as v increases for the stress distributions and as v decreases 

for the displacement distributions. Qualitatively this means 

that the low frequency radiation impedance decreases as the 

outer portion of the disk rotates through a smaller angle 

than the inner portion of the source. 

The oscillations described earlier are present for all 

source types excepth the rigid baseplate. Although the oscilla­

tion period remains nearly constant at 2n, the location of the 
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first peak or trough and the oscillation amplitude depends 

on the source type. 

The effects of anelasticity on the radiation impedance 

are shown in Figure 6. The model consists of a torsional 

source defined by a stress distribution with v = 0, on the 

surface of a homogeneous, isotropic half-space. The quality 

factor (Q) is independent of frequency and ranges in value 

from 100 to 2. 

The presence of frequency independent damping in the 

model produces a singularity in the equivalent damping 

coefficient at a = 0 because the imaginary part of the 
0 

complex shear modulus for this type of damping does not 

approach 0 as a goes to 0. The width of the singularity 
0 

increases as damping increases (Q decreases). The oscillations 

in the real part of the impedance function are rapidly damped 

out, but are apparent in the imaginary part of the impedance 

even for Q = 2. As damping increases the imaginary part 

becomes increasingly negative in value. Although the 

magnitude of the oscillations is a function of the damping, 

the location of the peaks and troughs in the stiffness and 

damping coefficients is independent of damping. 

The real and imaginary parts of the radiation impedance 

(R and I) are unitless functions of dimensionless frequency. 

For a half-space model, R and I are completely independent 

of the density and shear wave velocity. This result is shown 

in Figure 7. The top pair of plots present the results 

obtained for the equivalent damping and stiffness coefficients 
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for three different models. These models have densities of 

2, 2 and 4 g/cm 3 and velocities of 2.5, 5 and 2.5 km/sec 

respectively. In each case the source is represented by a 

stress distribution with v = 0. The medium has a Q of 100. 

All three models produce exactly the same curves for 

the equivalent stiffness and damping. For a half-space 

model, all of the dependance on density and velocity is 

contained in the product pvs in equation (37). 

If the total torque and mean angular velocity are measured 

in the field and ZT is calculated, then: 

where f is the 

R z 

I z 

frequency 

i I 
z f 

in Hertz ~d where: 

= Real (ZT) = BTpvsa 2R 

[ -::-] 
B pv 2 

Imag. (ZT) T s I = = 
2rr 

(38) 

(39) 

(40) 

The functions R and I defined by equations (39) and (40) z z 
are plotted for the three half-space models as a function of 

frequency (f) in kHz in the lower pair of plots in Figure 7. 

Although the dimensionless parameters R and I are unnaffected 

by changes in density and velocity for a half-space, the 

real and imaginary parts of ZT are affected. As velocity 

decreases both the amplitude and frequency of the oscillations 

decrease. As density decreases only the amplitude of the 
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oscillation decreases, the frequency does not change. The 

amplitude effects are caused by the pvs product in equation 

(37). The frequency shift is inherent in the relationship 

between dimensionless frequency (a
0

) and frequency (f). 

The locations of the oscillations in R and I for a 

half-space are independent of velocity, density and damping, 

and are only a function of the source type. Suppose that 

the behavior of a torsional source is known in terms of 

its stress or displacement distribution. Then regardless 

of the half-space on which it vibrates, the first peak in 

the equivalent damping coefficient will always occur at 

the same dimensionless frequency, a1 . If the actual frequency 

of this first peak, f 1 , could be measured, then the definition 

of dimensionless frequency provides a relation to determine 

the shear wave velocity of the half-space: 

v = s (41) 

Suppose for the particular source being used that the first 

peak in the equivalent damping occurs at a dimensionless 

frequency a 1 = 2TI, the baseplate radius is 0.5 meters, and 

the shear velocity of the medium is 500 m/sec. Then, solving 

equation (41) for the frequency f 1 , the first peak would occur 

at a freauency of 1000 Hz. This is well beyond the range of 

hydraulically actuated exploration vibrators. If the baseplate 
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radius is doubled, the frequency of the first resonance is 

reduced to 500 Hz. Such frequencies might be obtained by 

an electromagnetically actuated vibrator. 

All impedance results discussed to this point assume a 

massless baseplate. A method of including the baseplate mass 

in the radiation impedance for a torsional vibrator has been 

described by Robertson (1967). The equation for the impedance, 

including the baseplate mass, is: 

where: 

and: 

Z = B pv a
2 [R- i I'] T T s 

ao 

I' = I - _]_ M a 2 

16 0 0 

where M is the moment of inertia of the baseplate. 

(42) 

(43) 

(44) 

From equations (42) and (43), the imaginary part of the 

impedance function is: 

I' I -= 3 -M a 
16 0 0 

(45) 

Although I/a approaches 0 as a becomes large, the second 
0 0 

term in equation (45) becomes infinite as a
0 

approaches 

infinity. A plot of I' as a function of a (Figure 8) shows 
0 

that the equivalent stiffness coefficient rapidly acquires 
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large negative values as a increases. 
0 

The magnitude and phase of the impedance are also shown 

in Figure 8. The baseplate mass produces a minimum in the 

impedance magnitude, the frequency of which depends on the 

baseplate mass. Robertson (1967) has suggested that this 

phenomenon could be used to determine the shear modulus of 

the medium. Using a similar method, the shear velocity of the 

medium can be calculated. From equations (42) and (43) a 

plot can be constructed of the frequency (aomin) at which the 

minimum in impedance magnitude occurs as a function of the 

dimensionless moment of inertial M
0

. If the density of the 

medium can be estimated or determined in some fashion, then 

the baseplate mass can be adjusted to achieve any desired 

dimensionless moment of inertia. The frequency of vibration 

of the baseplate could be varied until the freauency of the 

minimum impedance is attained (w . ). The shear velocity is mln 

then computed from the equation: 

(46) 

The advantage of determining the shear wave velocity 

of the medium using the method based on the location of the 

half-space oscillation peak is that the shear velocity is 

determined independently of any other physical parameters. 

The method described here relies on an independent determination 

. of the density of the medium. The first method has the disad­

vantage of requiring either very large baseplates (a > 1 m) 
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or very high frequencies (a >500Hz), while the method 
0 

that relies on the baseplate mass could be arranged to yield 

results at much lower frequencies. 

Layered Models 

Typical results obtained for a model involving a single 

layer over a half-space are shown in Figure 9 as the solid 

curves. The scaled thickness of the layer was 3.0 and the 

shear wave velocities of the layer and the half-space were 

2 and 2.5 km/sec, respectively. The densities of the layer and 

the half-space were 1.5 and 2 g/cm 3 and Q was 100. The source 

was defined by a stress distribution with v = 0. The dashed 

curve of Figure 9 was obtained for a half-space model. 

A layered model produces an impedance curve that 

oscillates about the curve due to a half-space. The amplitude 

of the oscillations due to the layer (the layer resonance) 

increases as a function of frequency for low levels of damping. 

The effects of changing thickness of the surface layer 

on the impedance function are shown in Figure 10. Equivalent 

damping coefficients are plotted for four different layer 

thicknesses ranging from a scaled thickness (h01 = h1/a) 

of 0.5 to 3.0. In each case the velocities of the surface layer 

and the half-space are 2.0 and 2.5 km/sec, and the densities 

are 1.5 and 2.0 g/cm 3 , respectively. A frequency independent 

Q = 100 is used in both the layer and the half-space. The 

source is defined by a stress distribution with v = 0. Only 
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the equivalent damping coefficients are presented since 

the equivalent stiffness coefficients show similar features. 

As the thickness of the surface layer increases, both 

the period (P in Figure 11) and the amplitude of the layer 
0 

resonance decrease. In the limit as the scaled thickness 

approaches 0 or oo a half-space impedance curve results. 

The physical process that gives rise to these results 

is revealed by a study of the layer resonance. With the 

half-space trend removed, the resonance due to the layer 

oscillates around 0 and, for thick layers (eg a scaled thickness 

of 3 or more), this oscillation appears to be very nearly 

sinusoidal. Subtracting the half-space impedance from the 

results for a layer with a scaled thickness of 5, and 

using an FFT to obtain a time domain representation of the 

residual layer resonance, results in the plot shown in Figure 11. 

The two way travel time for a seismic wave to travel 

vertically from the surface to the layer interface and back 

is: 

T = (47) 

If an impulse is measured at time T on the surface, the 

Fourier transform of the impulse would be a sine wave with 

a period given by: 

P = 1/T (48) 
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Using the definition of dimensionless frequency, P (dimension­a 

less period) and P are related by: 

p = (49) 

Using equations (47), (48) and (49) there are simple relations 

between the scaled thickness of the surface layer , the 

dimensionless period of the layer resonance, and the dimension-

less arrival time of the impulse: 

p 'IT = -·-
0 h ol 

(50) 

h ol T :::::: 

0 
'IT 

(51) 

Substituting the thickness of the layer used to generate 

Figure 11 into equation (51), the dimensionless two way 

travel time is 1.59. This is exactly the arrival time shown 

for the first event in Figure 11. It also is the separation 

between each successive event. The layer resonance, then, is 

primarily due to seismic waves being reflected between 

the baseplate and the layer interface. Figure 11 shown the 

first arrival as well as the first, second and third multiples. 

The amplitude fall-off between multiples is due to a combination 

of material damping, spreading of of the wavefront from the 

finite-sized source, and the reflection coefficient of the 

layer/half-space interface. 
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Equation (50) may be successfully applied to layered 

impedance curves in the literature for vertical and horizontal 

vibrators to determine either the period from a given thickness 

or the thickness from measured period. This suggests that the 

layer resonance for those vibrators is also primarily due 

to reflections. 

The layer resonance amplitude decreases to nearly 0 as 

dimensonless frequency approaches 0 because at low frequencies 

the torsional vibrator is a poor radiator in near vertical 

directions. Since vertical and horizontal vibrators radiate 

relatively efficiently vertically at low frequencies (Miller 

and Pursey, 1954; Cherry, 1962), the layer resonance would 

be expected to continue with a large amplitude at low frequencies. 

The conclusion is supported by the results of Luco (1974). 

An intriguing possibility exists in determining the 

unnormalized layer thickness from the impedance function. If 

the shear velocity of the first layer can be obtained using 

one of the methods described earlier, then the thickness of the 

layer could be obtained from the dimensionless period of the 

layer resonance: 

(52) 

Since the layer resonance is primarily due to reflections, 

the acoustic impedance contrast across the interface 

(p 1vs 1/p2vs 2) should play an important role in the response. 

Figures 12 and 13 present the equivalent damping coefficients 
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obtained for several models with varying velocity and density 

contrasts. The base model in each case is a single layer with 

a scaled thickness of 1 over a half-space. The density and 

velocity of the lower half-space are 2 g/cm 3 and 2.5 km/sec, 

respectively, and remain constant for all models. In Figure 12 

the density of the surface layer is varied while the shear 

velocity of the layer is a constant 2.5 km/sec. In Figure 13 

the velocity of the surface layer varies while the density 

is a constant 2 g/cm 3
• In each figure, the solid curves were 

obtained for models with plvsl > p2vs 2 ' while the dashed 

curves represent models with plvsl < P2vs2' 

In Figure 12 the density of the surface layer is 

6, 4, 1 and 0.667 g/cm 3
• These values were chosen so that 

the ratio of acoustic impedances of the layer over the half­

space has values of 3, 2, 1/2 and 1/3. These same values of 

acoustic impedance contrast are used in Figure 13 by choosing 

velocities in the first layer to be 7.5, 5, 1.25 and 0.8333 

km/sec. So in each of the two figures, the acoustic impedance 

contrasts represented by the solid and dashed curves is the 

same in magnitude but opposite in sense. Also, the acoustic 

impedance contrasts for curves in Figure 12 are the same as the 

acoustic impedance contrasts for the corresponding curves in 

Figure 13. 

From Figures 12 and 13 it is apparent that a change in 

the sense of the acoustic impedance contrast causes a 180° 

phase shift in the layer resonance. The solid curves have 

peaks where the dashed curves have troughs. This result could 
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have been readily predicted. Since most of the response is 

due to reflections of nearly vertically travelling waves 

by the layer interface, plane wave theory predicts a change 

in the sign of the reflection coefficient depending on the 

sense of the acoustic impedance contrast. 

As expected, the resonance amplitude increases as the 

contrast in acoustic impedance increases because a greater 

proportion of the seismic energy incident upon the interface 

is reflected. 

A comparison of the solid curves in Figures 12 and 13 

shows that, for a given acoustic impedance contrast, the 

curves are essentially identical regardless of whether the 

contrast is due to a high density or a high velocity in the 

surface layer. However, a comparison of the dashed curves 

in these two figures reveals that the curves for a low 

density surface layer are noticeably different from the 

curves for a low velocity surface layer. The most significant 

differences are the amplitude of the resonances, especially 

the resonance peak located near a
0 

= 10, and the shift in 

locations of the peaks for the low velocity surface layers. 

A possible explanation for the differences associated 

with a low velocity surface layer is suggested by studying 

a hypothetical model in which the layer and the underlying 

half-space have the same acoustic impedance, but have different 

velocities and densities. The results for a series of models 

with no acoustic impedance contrast, but with density and 
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velocity contrasts, are shown in Figure 14. The solid curve 

was obtained for a half-space with a source having a stress 

distribution with v = 0, and a frequency independent Q = 100. 

Two curves are plotted in addition to the half-space 

impedance function, although one of these curves is only 

evident on the plot of the equivalent stiffness coefficient. 

For the dashed curves the densities for the layer and the 

underlying half-space are 4 and 2 g/cm 3 , respectively, 

and the respective velocities are 2 and 4 km/sec. These 

layered models have a low velocity surface layer over a high 

velocity half-space. For the curve plotted with the long 

dashes, the scaled layer thickness is 0.5. For the curve 

with short dashes, the scaled thickness of the overburden 

is 3. For the thin layer, the presence of the low velocity 

layer results in an impedance function that shows resonances 

similar to those caused by reflections. As the thickness 

increases these resonances rapidly disappear. Since there 

is no acoustic impedance contrast, and since the "resonance" 

effect occurs only for very thin layers with a low velocity 

overlying a high velocity half-space, these resonances are 

apparently due to refracted arrivals. 

Using ray theory, and the velocity contrast used in 

Figure 14, if the layer has a scaled thickness less than 

1.732 it is possible for energy from one edge of the baseplate 

to be refracted and to interract with the opposite edge. Modelling 

shows that as the scaled thickness exceeds 1. 732 for this 
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velocity contrast, the resonance rapidly disappears and the 

response returns to the half-space impedance curve. 

The results obtained for a layered model with varying 

hysteretic damping are shown in Figure 15. The model consists 

of a single layer of scaled thickness 1 over a half-space. 

The shear velocity and density are 2 km/sec and 1.5 g/cm 3 

for the surface layer and 2.5 km/sec and 2 g/cm 3 for the 

half-space. A stress distribution with v = 0 is used at the 

source and the quality factor (Q) has values of 100, 10, 

3.3 and 2. These values are the same as those used for the 

half-space models shown in Figure 6 so that a direct comparison 

may be made. 

Comparing Figures 15 and 6, the effect of the layer on 

the impedance function is evident at all damping levels 

except Q = 2. As the damping increases, the amplitude of the 

layer resonance decreases, and the curves become more similar 

to those obtained for a half-space. 

One problem of particular interest to exploration 

seismologists is the determination of weathered layer para­

meters including the thickness and seismic velocity. In 

order to assess the feasability of using radiation impedance 

measurements to determine the thickness of the weathered 

layer, impedance functions are presented in Figure 16 for 

several models that incorporate values of density, velocity 

and damping that might be encountered in a field survey. 
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The model used in Figure 16 is a single layer over a 

half-space with both media having a frequency independent Q 

of 10. The velocity and density are 0.3 km/sec and 1.3 g/cm 3 

in the surface layer, and 2.4 km/sec and 2.6 g/cm 3 for the 

lower half-space. Curves are presented for three different 

scaled thicknesses of the weathered layer. 

As shown in the graph, the layer resonance is detectable 

for layers that are 1 or 3 baseplate radii thick. However, 

the impedance for a layer 5 baseplate radii thick is 

indistinguishable from the half-space impedance function. 

This result is significant because most weathered material 

with the shear velocity and density used in these models 

would have a quality factor on the order of 10. So for 

typical surface materials, the torsional impedance would not 

show any effect due to the interface between the weathered 

layer and the material below it unless the layer thickness 

is less than about 5 baseplate radii. 

The radiation impedance for a two layered model is 

shown in Figure 17 along with the curve for the same surface 

layer but with the second interface removed. The shear wave 

velocities, starting with the surface layer, are 1, 2 and 3 

km/sec, and the densities are 1.5, 1.5 and 2 g/cm 3
• The 

frequency independent quality factor is 100 for all layers. 

The surface layer has a scaled thickness of 1 and the second 

layer is 0.5 baseplate radii thick. 

The difference between the two layer impedance function 
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(solid curves) and the one layer impedance funciton (dashed 

curves) is clear. The dominant oscillation in the two layer 

curves is due to the surface layer. There are secondary 

oscillations and distortions introduced by the second 

interface. The dominant period of the resonance could 

be estimated fairly reliably from these results. However, it 

is unlikely that the secondary period related to the depth 

to the second interface, or any other period due to 

various multiples, could be determined reliably from such 

data. 

CONCLUSIONS 

In this paper the problem of vibrator - earth interaction 

has been studied by calculating the radiation impedance of 

torsionally vibrating sources on the surface of a plane­

layered anelastic medium. 

The torsional radiation impedance for a half-space is a 

function of source behavior, material properties and baseplate 

mass. The oscillations in the impedance for a flexible 

baseplate on a half-space are caused by horizontally travelling 

SH body waves interacting with the baseplate. The spacing 

between peaks or troughs is related to the number of wavelengths 

per baseplate radius. The exact dimensionless frequency at which 

the peaks and troughs occur is a function of source behavior, 

but is not a function of material properties. If the baseplate 



38 

behavior is known, a measurement of the frequency (Hz) at 

which the first. resonance occurs would provide a means of 

estimating the shear wave velocity of the medium. The 

primary difficulty with this procedure is that for shear wave 

velocities encountered in the weathered layer the source 

must either operate at frequencies between 500 and 1000 Hz, 

or the baseplate radius must be somewhat larger than 1/2 meter. 

An electromagnetically actuated vibrator might operate in 

the necessary frequency range. 

At low frequencies, the effect of changing source behavior 

is contained in the term BT, the static solution of the 

equivalent stiffness coefficient. As the source becomes more 

flexible BT decreases so that the total torque required to impart 

a given signal to the medium decreases. This suggests that a 

vibrator's efficiency might be increased by modifying the 

structure or strength of the baseplate. 

Increasing the amount of anelasticity in the medium 

decreases the amplitude of the half-space resonance. However, 

if the quality factor is independent of frequency, the 

oscillations are still noticeable for Q as low as 3. 

The baseplate mass modifies the imaginary part of the 

impedance function and produces a minimum in the impedance 

magnitude. The dimensionless frequency at which this minimum 

occurs is afunction of the dimensionless moment of inertia of 

the baseplate. This effect could be used to estimate the 
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shear wave velocity of the medium if an estimate of the 

density is made independently. 

The presence of a layer results in an impedance function 

that oscillates around the impedance due to a half-space. 

the period of the oscillation and the amplitude both vary 

inversely with the thickness of the layer. This layer 

oscillation is a resonance effect produced by near vertical 

reflections between the layer interface and the baseplate. 

If the shear wave velocity of the medium is known, the 

period of the resonance may be used to provide a reliable 

estimate of the layer thickness. 

The layer resonance amplitude decreases as frequency 

approaches 0 because the preferred direction of radiation 

from a torsional source at low frequencies is horizontal. 

As shown by Miller and Pursey (1954) and Cherry (1962) 

horizontal and vertical vibrators produce large displacements 

in the vertical direction even at low frequencies. As a result, 

the layer resonance produced by those sources should persist 

as frequency approaches 0. The modelling results obtained by 

Kashio (1970) and Luco (1974, 1976) support this conclusion. 

The amplitude of the layer resonance increases as acoustic 

impedance contrast increases, but the location of the resonance 

peaks and troughs is independent of the contrast. ~~en the 

sense of the contrast is changed from a lower to a higher 

velocity in the surface layer, the layer resonance undergoes 



40 

a 180° phase shift, as the plane wave reflection coefficient 

would suggest. 

The amplitude of the layer resonance also decreases as 

damping increases. The combined effects on the amplitude of 

the layer resonance due to material damping and thickness 

indicate that impedance measurements made over a weathered 

layer with a Q of 10 and a thickness greater than about 

5 baseplate radii will show only a half-space response. As 

a result, it would be very unlikely that the presence of a 

second interface at depth would be detected using the 

radiation impedance. 

It would be useful to study the impedance function in 

more detail in the frequency range in which exploration 

vibrators operate (a
0 

< 1). The primary interest might be 

more directed toward the idea of matching the baseplate 

to the particular medium on which it is to vibrate. A possible 

method of overcoming the proble~ of a relatively small 

baseplate, and as a result a low dimensionless frequency, 

might be to operate several sources close to each other. 

Radiation pattern modelling (Dorn, 1980) suggests that there 

would be little effect due to mutual coupling if the sources 

are placed about 5 baseplate radii apart. 

If design problems could be overcome in building a 

vibrator with a sufficiently high frequency range and a large 

enough baseplate to make use of the procedures discussed here 

to obtain material properties, there are still several practical 



41 

problems to overcome in actually measuring the radiation 

impedance. For a torsional source, the impedance is defined 

as the total torque divided by the mean angular velocity. 

Although the total torque might be readily measured in an 

actual experiment, it probably would not be possible to 

obtain the mean velocity as defined in this thesis. It 

would be possible, however, to measure the velocity at a 

point near the baseplate - either laterally or vertically 

displaced slightly. The effect of this approximation on the 

impedance function should be determined. 



42 

ACKNOWLEDGEMENTS 

I would like to acknowledge the valuable advice and suggestions 

of Dr. W. E. Farrell of Systems, Science and Software, 

and Professors H. F. Morrison and L. Johnson of the University 

of California, Berkeley, all of whom helped guide this 

research. This study was supported in part by the Department 

of Energy through Lawrence Berkeley Laboratory under contract 

number GF 26760, and in part by the Director, Office of Basic 

Energy Sciences, Division of Engineering, Mathematics and 

Geosciences of the U.S. Department of Energy under contract No. 

W-7405-ENG-48. 



43 

APPENDIX A 

For a problem that involves only shear waves material 

damping may be included in the model by allowing the shear 

modulus to be a complex quantity: 

with real and imaginary parts which are functions of 

frequency. This may be written in the form: 

-;"\ 
~ (w) = ~R(w) (1 + i8(w)) 

The use of such a shear modulus has been discussed in detail 

by Futterman (1962) and Konamori and Anderson (1977). 

For the purposes of this paper, the simplification is 

made of assuming a ~R independent of frequency, such that 

in the mth layer: 

where ~m is the real shear modulus and em is the specific 

dissipation constant. The specific dissipation constant 

and the quality factor are inversely related: 

and: 
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where ~ is called the damping constant and is independent m 

of frequency, and where j is arbitrary. Thus if j = 0 

~ is independent of frequency and the medium is hysteretically 

damped. If j = 1, ~ is inversely proportional to frequency 

and the medium has Voigt damping. 
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Table 1 

List of Symbols 

a = Baseplate radius 

a
0 

= wa/vsl' dimensionless frequency 
A = Magnitude of torsional radiation impedance 

A = Coefficient for displacement of downgoing wave in 
m 

mth layer 

Bm = Coefficient for displacement of upgoing wave in mth 

layer 
BT = Zero frequency limit for impedance function 

f = frequency 

f(r) = Stress under baseplate 

I(~) = Jl Hankel transform of f(r) 
g(r) = Displacement under baseplate 
g(x) = Abel transform of g(r) 

h 
m 

= Thickness of mth layer 

I=T i = 
I = Equivalent stiffness coefficient 

J 1 = First order Bessel function of the first kind 

ks = Shear wave number 
P

0 
= Dimensionless magnitude in stress or displacement 

Q 

r 

R 

t 

u 

vs 
z 

m 
ZT 

= 
= 
= 
= 
= 
= 
= 
= 

boundary condition 
Quality factor 
Radial distance from center of baseplate 

Equivalent damping coefficient 

Time 
Displacement 

Shear wave velocity 
Depth below the top of the mth layer, positive down 

Torsional radiation impedance 
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Table 1 

List of Symbols (cont.) 

1 
(3 :::: (t,:2-k2 )~ 
m sm 

Ym = Bm/Am 
r = Total torque 

r(v) = Gamma function 

A. = Lame's constant 

v = Shear modulus 
w = Angular frequency 

¢ = Azimuthal angle 
~(x) = Unknown in Fredholm integral equation of the second kind 

If = Damping constant 
p = Density 

T¢z = Stress, subscripts indicate component 

in cylindrical coordinates 
e = Phase of torsional radiation impedance 

8 = Specific dissipation constant 
t,: :::: Hankel transform variable 

v = Gradient operator 
vz = Laplacian operator 

Subscripts: m = mth layer 

s = Shear wave 

of stress tensor 

o =Parameter is dimensionless; parameters with 

units of distance are normalized by baseplate 

radius, a; parameters with units of stress are 

normalized by shear modulus, v1 . 

Mathematical Transforms: 

-Hankel: H: {E(r,z); t,:} 
J 

co 

= J E ( r , z) r J . ( t,: r) dr 
J 

0 co 

Fourier Sine: F~{f(t);x} = 1TTIT J f(t)sin(xt)dt 

0 



47 

Table 1 

List of Symbols (cont.) 

X 

Abel: Ai{f(t);x} = I27TI I f (t) dt 
/x2 -t 2 

0 

00 

A2{f(t);x} = I27TI f 
f (t) dt 
It 2 -x 2 

X 
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Table 2 

Comparison of Numerical Results with Literature Solutions 

Equivalent Damping Coefficient 

ao Miller & TOR IMP Collins TOR IMP Sagoci TORIES 
Pursey r (1962) r (l-r 2

) (1944) r 
(1954) 0 0 0 0 

0.1 .0011 .00109 .00141 .00142 .00141 
0.2 .0043 .00427 .00553 .00554 .0055 .00554 
0.3 .00936 .00937 .01209 .01212 .01212 
0.4 .0161 .01614 .02061 .02075 .02078 
0.5 .0243 .02426 .03042 .03098 .0310 .03104 
0.6 .04243 
0.7 .05450 
0.8 .06680 .06685 
0.9 .07919 
1.0 .09129 .09127 
2.0 .18313 .18310 
3.0 .23592 .23591 
4.0 .26675 .26674 
5.0 .27819 .27816 

Equivalent Stiffness Coefficient 

0.1 1. 00 .99820 .99801 .99782 .99801 
0.2 .99 .99291 .99217 .99142 .99 .99216 
0.3 .984 .98436 . 98285 .98113 .98280 
0.4 .973 .97294 .97068 .96748 .97045 
0.5 .959 .95910 .95655 .95110 .956 .95572 
0.6 .93924 
0.7 .92162 
0.8 .9034 .90337 
0.9 .88491 
1.0 .8666 .86658 
2.0 .71350 .71350 
3.0 .61930 .61934 
4.0 .59068 .59090 
5.0 .60205 .60272 
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Table 3 

BT for Stresses of the Form 

r (1 -
0 

r2)v 
0 

v Exact Approx. 

-0.5 16 1. 6977 
3rr 

0.0 9TI 1. 3030 
4(3TI-4) 

1.0 75TI .9463 
8(l5TI-16) 

2.0 1225TI .7714 
64(35TI-32) 

3.0 19845TI .6639 
128(315TI-256) 

Table 4 

BT for Displacements of the Form 

rv 
0 

v Exact Approx. 

1.0 16 1.6977 
3TI 

2.0 9 2.2500 
4 

3.0 128 2.7162 
ffi 

4.0 25 3.1250 
8 

5.0 1152 3.4923 
I051T 
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FIGURE CAPTIONS 

Figure 1: The N-layered elastic medium with a cylindrical coordi­

nate system centered at the source. The Nth layer is the lower 

half-space, h 0 m and Zorn are the scaled (dimensionless} thickness 

and depth of the mth layer, and u is the dimensionless displace-. om 
ment in the mth layer. [XBL 814-2897] 

Figure 2: 

Figure 3: 

Figure 4: 

The scaled stress f (r ) , beneath the baseplate. 
0 0 

[XBL 814-2898] 

The scaled displacement, g (r } , of the baseplate. 
0 0 

[XBL 814-2899] 

The equivalent damping (R} and equivalent stiffness (I} 

coefficients for a torsional source over a half-space. The source 

is represented by a stress distribution with v = 0. 

[XBL 814-2900] 

Figure 5: The effect of varying source type on the radiation 

impedance for a half-space. Represented are a rigid source (solid 

curve, displacement boundary condition} and three flexible sources 

(dashed curves, stress boundary condition). [XBL 814-2901] 

Figure 6: The effect of hysteretic damping on the radiation 

impedance for a half-space. [XBL 814-2902] 

Figure 7: The effect of changing velocity and damping on the 

radiation impedance for a half-space. The equivalent damping and 

stiffness (top pair of plots) are identical for all three models. 

The real and imaginary parts of ZT for the three models are shown 

in the bottom pair of plots. [XBL 814-2903] 

Figure 8: The effect of baseplate mass on the radiation impedance 

for a rigid source over a half-space [XBL 814-2904] 

Figure 9: An example of the torsional radiation impedance for a 

single layer over a half-space. The layer has a dimensionless 

thickness of 3, and the half-space curve (dashed curve) is presen-

ted for comparison. [XBL 814-2905] 

Figure 10: The effect of changing thickness of the surface layer 

on the radiation impedance. [XBL 814-2906] 
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FIGURE CAPTIONS (continued) 

Figure 11: The Fourier transform of the layer resonance. 

[XBL 814-2907] 

Figure 12: The effect of changing density contrast on the equi­

valent damping coefficient, plotted for various values of the 

ratio p1vs1;p 2vs2 . [XBL 814-2908] 

Figure 13: The effect of changing velocity contrast on the equi­

valent damping coefficient, plotted for various values of the 

ratio p1vs1;p 2vs 2 . [XBL 814-2909] 

Figure 14: The effect of a velocity contrast when there is no 

acoustic impedance contrast. The surface layer has a lower 

velocity than the half-space. [XBL 814-2910] 

Figure 15: The effect of hysteretic damping on the radiation 

impedance for a single layer over a half-space. [XBL 814-2911] 

Figure 16: The detectability of the layer/half-space interface 

for a "typical" weathered layer. The velocity and density are 

0.3 km/sec and 1.3 g/cm3 for the layer and 2.4 km/sec and 2.6 g/cm
3 

for the half-space. The frequency independent Q is 10. 

[XBL 814-2912] 

Figure 17: The radiation impedance for a model with two layers 

over a half-space. The solid curves represent the two layered 

model; the dashed curves represent the same model with the depth 

to the second interface extended to infinity (effectively a one 

layer over a half-space model). [XBL 814-2913] 
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