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TEST OF CRANKING PLUS RPA ON AN EXACTLY SOLUBLE BACKBENDING MODEL
| + N - %
S. Bose , J. Krumlinde , and E. R. Marshalek
Lawrence Berkeley Laboratory -
University of California
Berkeley, California 94720 -
July 1974
Self-consistent cranking with additional RPA correlations is tested on
the exactly soluble R(5) model of Krumlinde an& Szyménski. Excellent agreement
between approximate and exact solutions is obtained excepting a couple of points

-

very near the critical spin.

Much atﬁention has recently been focused on the béhavior of the nﬁclear
moment of inertia at high spin [l]. The sudden increasé*in the moment of inertia
and.ﬁhe occﬁrrenée of "backbending" has been qualitatively accounted for in a
niée way through self-consistent Hartree~Bogoliubov cfanking calculationé [2].

In this conneg?ion,_it is natural to wonder_Whether the self~consistent crénk—
ing (SCC) model ié apriori é.sufficiently accurate calcﬁlational tool,'espepially
in the critical region. The correspondence with e#peri@ent achieyed thus

far could concéivably be fortuitbus since the effecti?e:iﬁteractions were.
somewhat crudé.v Previous theoretical estimates of the accuracy of the.SCC

nodel depand on infinite power-series expansions in the angular momentum,
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which cannot'bé expected to converge in the critical region r3].

Our first aim heré is to shed light on this ques;ion by applying the
SCC approximation to the R(5) model of Krumlinde and éZyménski and comparing
the results with exact solutions [4,5]. Our second aim,is to test the idea
of introducing random-phase approximation (RPA) correlations as the next
improvement to the SCC calculation of yras£ energies. The importance of
particle-number and angular—momehtum conservation in calculations of yrast
levels has recently been emphasized [6]. This is usuaily éccomplished by
generator-coordinate techniques. The RPA automaticallylfake; care of the
éonservation laws within the accuracy of the approximatién and in a much more
simple way. It can also describe the leveljstructure'above the yrast line and
provide a simple way to calculate the yrast cascade. As a bonus, the RPA
provides a check on the stability of the SCC solution,.which is of special
interest for the baékbending parts of the trajectories.l

The R(5) médel consists of 2{) identical fermioﬂs‘ihteracting via a
pairing force, dis#ributgd among two 2{-fold degenerate siﬁgle—particle levels
separated by an amount 2; and coupled to an external rotor with fixed moment

of inertia a—l. The motion is confined to two dimensions. The Hamiltonian is

+ H + H R v v (1)

o
1
N |
sV
L
-t
|
I

where
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H =¢€ :?: (aa +a a - b+b - b+ b )
sp | -V =V vV -V =V ! |
t t T
p ~ -6 Z (aya_y * byby) Z A3y PRy : @
v=1 V=1 .

The total angular momentum of the system is I,‘the particle angular
momentum is jx' while Hsp is the single—particle'Hamiltqhian and Hp the pairing

force; The operator a$ creates a fermion in a substate of the upper level and
. /

e

bi.in'the lower levél, the indices V and -V distinguiShinq £ime—revérsal conjugatg
étates. Since (1) is_composed'of generatoré of‘the group'R($), the exéct
éi&gonalization ié‘greatly simplified as discussed elsewherev[4,5].

The SCC model is obtained by applying HartreéfBogbliUbov factorizaﬁion

to (1) leading to the approximate Hamiltonian

, Q .
C t + t+ :
= . - - + h.c.): '
H, EC + 'Hsp wj .A ZE; (ava_v +'bvb—v h.c ) o (3)
: . 7 v=1 : :
where Ec is the cranking energy,
1 2 2 v o ,
= — -<j > < > -
B, = alI=<j 2> ) +<da_ > - 876 S (4
and self-consistency requires that
w=a(l - <j > : T - ®

and
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Q . , ' 3
= > < > . .
:E: + <b_ b, , - (6)

Here, { >w»denotes the expectation value with respectnto the ground state of (3)
and : : normal ordering with respect to‘this vacuum.

It is worthwhile to note that in the present case, the cranking
potential - wj# needAnet be added as a Laérange multipiier te;m but_afises
automatically'sinee the rotor cranks the system. In_mere realistic models,
such a rotor could be added as a useful formal device and its'monent of
inertia equated to zero at the end, or it could replace an inert cere to
improve empirical fits.

Noting that the chemicalﬂpetential is always.zefo.in:thisnmode%( one

may diagonalize (3) by a Bogoliubov transformation.of the form

/+\ t
a\) a\)
8] b
= U (W
oV v/ | , R S

where U isva ax4 matrix independent of the index V, so that (3) takes the

form

H =E +E Z(a o, + a—a\-)) + E Z(Bvﬁv B B5) (8)

in terms of the qua51part1cle operators (0,0 ,B,Bf). Thé quasiparticle energies

are given by E, q 2+ (a2 —-w) .

The'gap’equation (6) then takes the form
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2 2 .

E, E_

ey [A+£w A-%_“”] S (9)

An equation of'this type has been previously derived by Valatin [ 7] and by
S . Krumlinde and'Szyménski [5]. solution of (9) for A(w) determines everything. -

The total angular momentum, for example, is obtained from (5) in the form

I—‘;+5[A+2w~_A—5w] Sy . - (10)
' E, E_ '

and the moment of inertia is given by the usual ekpreésion'

g?I/w‘ | o . - . (11)

The correiatiqns in (1) pot included by the scé model can be syStemaﬁically
taken into account by a generalized Holstein-Primakoff bbéon éxpan;ion in éowers |
of =1, This ty?e of.expansion for the R(S)Ialgebra ﬁas_been discussed by
Evans and Krauss {8]. Within the representation'containing the ground.state,
everything can beé expressed in terms éf four péirs of‘commﬁting boson éreation and
annihilation épéfatoré, corresponding to quasiparticle péiré.

~

ThroughvthébRPA (formerly called the "quasibosén abproximation") order,
the Hamiltonian iS a quadratic form-in‘these bosons. 1In diagonali;ing iﬁ, one
must diséinguish ﬁhe two cases when the SCC solution has A% 0 of A=o0. 1If |

- A*vo, there 1is a zero-energy mode corresponding to’a.bairing rotation. Then,
the Hamiltonian can be written in the diagonal form:

Hepa = Eo - (E+v+ E)) + (E_ +E)) (c+c— %)‘ +% (ﬁ(l)-zﬁ)z/é_p o

.7+'.€.'+(D+TD+ + %) + 6:_(D_+D_ ""%) ' .:_ T (12a)
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where C1 ,D+ ,Driware independent boson creation operators for the normal
modes. The boson operators all commute with N(l), which is the linear boson
approximation to the particle-number operator, and with a canonically-conjugate

phase angle Y. - é’p is the inertial parameter for pairing rotations given by

2 | 2
é{p =4 & - (e, -E)]

_ ) o a3
EE(E + E)
+ =+ -

The excitation energies €+ are given by

€2 _1 \ | 2 2

+ =3 [L1++u_i (u+— u) o+ 4v ],
2 2 oy

u, = 4E° + e (av26) WE, . '

v = 82(a+2G) Q/ EE_ : . .. D v (14)
If A = O, HRpA can be written in the dlagonal form

1.

— _ o F 1..°€ . 1 S
H =E, -2E+ €& _(A'A+B B+l) + 2E(C c- )+ +(D+ D* +‘2) ' (12b)

P

U . e :
where the bosons A ,B , create particle and hole pairing vibrations, respectively,

and E = ‘E+ =E_ = J €2 + w2/4. The pair-vibrational excitation energy €_

takes the form - : . ‘
€ = ZE‘)l-GQE (A= 0) . - (15)

The energy of the yrast states, W, is the sum of the cranking energy

and the zero-point energy, E

Zp

+ of the RPA model, W = Ec + EZP' which can be

i
)
i
i
H
H
:
i
i
{
|
i
\
i
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read off from Eq. (12). One then obtains a corrected rotational freéuency
w{RPA) from the usual relation w(RPA) = dw/4aI. Inasmuch as the cranking

frequency w = dEc/dI, one may write

W(RPA) = w + dw ’

S0 = A /dI . | (16)
. zp - :

The general rglation (11) then implies a corrected moment of inertia
Q/(RPA)?' -sum L oan

.We présen£ the résﬁlts of calculations, both exaCt and apgroximaté,_
“for tﬂé.parameters =6, a= .05 on the oné hand, and = 14, a = .075 on
tﬁe ofhér,;wifh’GQ = .6 and € = .l,v.3, and .45‘in each case. The degreé of

- ba&kbending is.maiﬁly determinéd by the ratio €/(GQ):;thé shaller the ratio,
tﬁe weaker the band mixing and thg greéter‘the tendénéy to bend back.

Figureé l_and 2 summarize the results as conventional'plots_of moment
of inertia and ‘angular momentum, respectively, vs. tﬁeisquare of the angular
veiocity. The physicalvpoints on the continuous trajeétories correspond, of
course, to evén ihtegrai vaiﬁes of I. The trajectofiés_have two segments, one
with A# O,—which"may.or may not backbend, along whichiA_decreases continuously
untii the'intersectionAwith the A= 0 segment at'some w%Q* gorresponding ﬁo
'the cusp. For w<w*, the A= 0 solution is unstable. At_w=w*, the RPA enérgy

J 6i'= 0, signaling fhe transition from a pair-rotational ﬁo.a éaif-vibrational
scheme. .At this-pbint, aéi/al becomes iﬁfinite (Fig. 3).and so does dw. Hence,
the RPA corrections breakdown as this point is approachea,'acéounting for the

bfeak in the RPA curves.

-
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}n the presentfmodel, the A#% 0 solution can-bé unstable only along a
backbending pdftion, but this depends on the value éf a. For a sufficiently
large (small rotor), the backbending region is always:stabie, as is true in
the cases with 2 ; 14, a = .075.  For sufficiently smali,values of a (large
rotor), 6:2 caﬁ‘go through zefo and turn negative atfany‘point along the
backbending arc. It must return to zero again at.w=mf; This is illustrated
by the cases Qitﬁ Q= 6, é = .05, € = ;1 and .3.v'In:thevunstable.regions, I
decreasesvwith deéreasing w2 as ‘shown in Fig. 2. There.is a competition ,;
between the particles, which favor increasing I with décr-_éasiné'u)2 in this
region, and the rotor, which favors decreasing I with decreasing w?, and‘the
latter wins out.if_sufficiently massive. We concludé £hat, in practice,
stgbilify can always be insured by keeping the rotor sma1l enough. This provides
a counter-example to previous claims thét backbendinéhpér'se implies instability
of the‘éCC model [ 9]. | |

Another interesting sifuaﬁion is iliu§trated by the case with {1 =6,
and € = 1, namely, an overlap in I between the lower?éhd upper‘brahches. Thus,
there are states with I = 12,14 and 16 lying on stablé poftibné-of the super—
conducting and:normal segmehts; The crénking_energy:Eé,‘hqwever, is lower for
the superconducﬁing points-by'a small amount, in agreémént with exact solutions.

We see.that on the whole, the accﬁracy of the SCC model is very good
for points corresponding to physica; values of the spin, and is further iﬁproved
by the RPA correlations, with the possible exception of é-few points in the
tranéition regién.' It canAbe shown that SCC plus RPA:is exact in thé limit
€ = 0, which explains why the accuracy is greatest for sméll € and diminishes

as € increases. That self-consistent cranking is less accurate with no back-
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bending than with sharp backbending may be a general rule since it is a

‘consequence of the enlargement of the transition region in which the two

bands are strongly mixed and zero-point oscillations become important. 1In
general, the RPA then provides a significant improvement, éxcept near the cusp.

For € = .45, the effects of the cusp shift to low w2 éo'that the RPA correction

- is in the wrong direction on the lower segmeht, although“it is excellent on

the upper segment. 1In reélistic situations, the cuép problem should'not‘
arise since A.does not immediaFely vanish on‘the uppef bfénch because only
a. single pairvdf nucleons align their spins [2].

The plots show quite»élearly'the‘asymptotic accuracy of the SCC model
with increasing.i, in accordance with its quasiclassical nature. The small
quantum fluctuations are niéely taken care of by the RPA. This suggeéts that
SCC plus RPA should provide a géod tool for calculatiné the yrast cascade.

In this connection, Fig. 3 shows the energy of the first excited state above
the yrast state.-iThe accuracy of the RPA is bf the ofder‘of 1/80  except at

the cusp, which is what one would expect. The pairing vibrations built on

‘the yrast band present a fascinéting possibility, but no comparison with exact

solutions is made since these were'only available for N = 2{)particles.
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FIGURE CAPTIONS

3 3 ) X 4 Ry 2
Moment of inertia é’ vs. square of angular velocity w .
.y 2
Angular momentum I vs. square of angular velocity w .
Energy of first excited state above yrast line AE plotted as a

function of angular momentum I.
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