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Abstract

Context—Risk profiling of oncology patients based on their symptom experience assists
clinicians to provide more personalized symptom management interventions. Recent findings
suggest that oncology patients with distinct symptom profiles can be identified using a variety of
analytic methods.
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Objectives—To evaluate the concordance between the number and types of subgroups of
patients with distinct symptom profiles using latent class analysis (LCA) and K-modes analysis.

Methods—Using data on the occurrence of 25 symptoms from the Memorial Symptom
Assessment Scale (MSAS), that 1329 patients completed prior to their next dose of chemotherapy
(CTX), Cohen’s kappa coefficient was used to evaluate for concordance between the two analytic
methods. For both LCA and K-modes, differences among the subgroups in demographic, clinical,
and symptom characteristics, as well as quality of life outcomes were determined using parametric
and nonparametric statistics.

Results—Using both analytic methods, four subgroups of patients with distinct symptom profiles
were identified (i.e., All Low, Moderate Physical and Lower Psychological, Moderate Physical and
Higher Psychological, All High). The percent agreement between the two methods was 75.32%
which suggests a moderate level of agreement. In both analyses, patients in the All High group
were significantly younger and had a higher comorbidity profile, worse MSAS subscale scores,
and poorer QOL outcomes.

Conclusion—Both analytic methods can be used to identify subgroups of oncology patients with
distinct symptom profiles. Additional research is needed to determine which analytic methods and
which dimension of the symptom experience provides the most sensitive and specific risk profiles.

Keywords

symptom clusters; cancer; latent class analysis; machine learning; clustering; chemotherapy; k-
modes analysis

INTRODUCTION

Both clinical experience and research findings suggest that oncology patients experience
significant interindividual variability in their symptom experience.12 In the era of precision
medicine,3 which focuses on the identification of patients who are at greater risk for chronic
conditions like cancer, it is imperative that the optimal methods to risk profile patients based
on their symptom burden is identified. In two reviews of the state of the science in symptom
clusters research,*® it was noted that future studies need to focus on an evaluation of the
concordance between the various analytic methods that can be used to identify patients who
are at greatest risk for a higher symptom burden.

Recent findings from our group®-14 and others>-18 have identified subgroups of patients
with distinct symptom experiences using approaches like hierarchical cluster analysis and
latent class analysis (LCA). In the earliest of these studies, 71516 different clustering
methods were used to create the patient subgroups. In the later studies,®14.18 _CA was the
preferred analytic approach. While across these thirteen studies, the number of subgroups
ranged from two to five, a common finding across all of these studies was the identification
of a group of patients who reported low levels of symptoms and a group of patients who
reported high levels of symptoms. However, none of these studies determined whether the
use of two different analytic approaches produces congruent results (e.g., the percentages of
patients in the “all high” groups are equal and are the same patients).

J Pain Symptom Manage. Author manuscript; available in PMC 2019 February 01.
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As noted in a recent review,> machine learning techniques may provide useful approaches to
identify subgroups of patients with distinct symptom profiles. Some specific machine
learning techniques that can be used for this purpose include: K-means,19 K-modes,20-21
spectral clustering,22 birch,23 or agglomerative hierarchical clustering (AHC).2425 For
binary variables (e.g., symptom occurrence), K-means and K-modes are two centroid based
algorithms that calculate the distance between each pair of data points using Euclidean
distance or a simple dissimilarity measure (e.g., Hamming distance), respectively. The
clusters derived from K-means and K-modes analyses are described by the “centroid”, which
is the multidimensional mean and mode, respectively, of the samples inside them 19.21
Spectral clustering is a graph distance based algorithm that performs a dimensionality
reduction before clustering the lower-dimension dataset in a similar fashion to K-means. It is
used when the clusters are not linearly separated in the original space, providing better
results than algorithms such as K-means (which tends to find spherical clusters).26 Birch is a
hierarchical clustering algorithm that can provide an advantage in datasets that are non-
uniformly distributed and every data point is not equally important. It concentrates on
densely occupied partitions and follows a hierarchical order of analysis that focuses on
calculating and updating measurements that capture the natural closeness of data. Therefore,
it is more robust to “noise” (i.e., data points that are not part of the underlying pattern).23
Finally, AHC is a decision tree, bottom-up clustering method that starts with every single
data point in a single cluster. In each successive iteration, it agglomerates (merges) the
closest pair of clusters by satisfying a similarity criterion, until all of the data are in one
cluster. A matrix tree plot visually demonstrates the hierarchy within the final cluster, where
each merger is represented by a binary tree. AHC can be both informative for data display
and helpful for the discovery of smaller clusters.24

No studies were identified that evaluated for congruence between two methods of classifying
oncology patients based on their distinct experiences with common symptoms associated
with cancer treatment. Based on how well the machine learning methods described above
performed during our initial analyses,2’ for this paper, K-modes was selected as the method
to compare with LCA. The purpose of this study, in a sample of patients (h=1329) who were
undergoing chemotherapy (CTX) for breast, lung, gastrointestinal (Gl), or gynecological
(GYN) cancers was to evaluate the concordance between the number and types of subgroups
of patients with distinct symptom experiences that were identified using LCA and K-modes
analyses. We hypothesized that the number and types of subgroups would be similar using
these two analytic methods.

METHODS

Patients and Settings

This study is part of a longitudinal study of the symptom experience of oncology outpatients
receiving CTX. The methods for this study are described in detail elsewhere.13:28.29
According to the study’s eligibility criteria: patients were =18 years of age; had a diagnosis
of breast, GI, GYN, or lung cancer; had received CTX within the preceding four weeks;
were scheduled to receive at least two additional cycles of CTX; were able to read, write,
and understand English; and gave written informed consent. Patients were recruited from
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two Comprehensive Cancer Centers, one Veteran’s Affairs hospital, and four community-
based oncology programs.

A demographic questionnaire obtained information on age, gender, ethnicity, marital status,
living arrangements, education, employment status, and income. The Karnofsky
Performance Status (KPS) scale30 was used to evaluate patients’ functional status. The Self-
administered Comorbidity Questionnaire (SCQ)3! evaluated the occurrence, treatment, and
functional impact of thirteen common comorbid conditions (e.g., diabetes, arthritis).

A modified version of the Memorial Symptom Assessment Scale (MSAS) was used to
evaluate the occurrence, severity, frequency, and distress of 38 symptoms commonly
associated with cancer and its treatment. In this study, six symptoms were added to the
original list of 32 MSAS symptoms (i.e., hot flashes, chest tightness, difficulty breathing,
abdominal cramps, increased appetite, weight gain). The MSAS is a self-report
questionnaire designed to measure the multidimensional experience of symptoms. Patients
were asked to indicate whether or not they had experienced each symptom in the past week
(i.e., symptom occurrence). If they had experienced the symptom, they were asked to rate its
frequency of occurrence, severity, and distress. The reliability and validity of the MSAS is
well established in oncology patients.32:33

Three subscale scores (i.e., physical [MSAS-PHYS], psychological [MSAS-PSYCH], global
distress index [MSAS-GDI]) were calculated. The MSAS-PHYS is the average of the
frequency, severity, and distress ratings for twelve physical symptoms (i.e., lack of energy,
feeling drowsy, pain, nausea, vomiting, change in the way food tastes, lack of appetite, dry
mouth, constipation, feeling bloated, dizziness, and weight loss). The MSAS-PSYCH is the
average of the frequency, severity, and distress ratings for six psychological symptoms (i.e.,
worrying, feeling sad, feeling nervous, feeling irritable, difficulty in sleeping, difficulty
concentrating). The MSAS-GDI is the average of the distress ratings for six physical
symptoms (i.e., lack of energy, feeling drowsy, pain, lack of appetite, dry mouth,
constipation) and the frequency ratings for four psychological symptoms (i.e., worrying,
feeling sad, feeling nervous, feeling irritable).

Quality of life (QOL) was evaluated using disease-specific (i.e., Quality of Life Scale-
Patient Version (QOL-PV))34-36 and generic (i.e., Medical Outcomes Study-Short Form-12
(SF-12))37 measures. The QOL-PV is a 41-item instrument that measures four dimensions
of QOL (i.e., physical, psychological, social, and spiritual well-being) in oncology patients,
as well as a total QOL score. Each item is rated on a 0 to 10 numeric rating scale (NRS) with

higher scores indicating a better QOL. The QOL-PV has established validity and reliability.
36,38-40

The SF-12 consists of 12 questions that evaluate physical, mental, and overall health status.
Individual items on the SF-12 are evaluated. In addition, the instrument is scored into
physical component summary (PCS) and mental component summary (MCS) scores. These
scores can range from 0 to 100. Higher PCS and MCS scores indicate a better QOL. The
SF-12 has well established validity and reliability.3”
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Study Procedures

The study was approved by the Committee on Human Research at the University of
California, San Francisco and by the Institutional Review Board at each of the study sites.
Written informed consent was obtained from all patients. For this analysis, symptom
occurrence data from the enrollment assessment, that asked patients to report on their
symptom experience for the week prior to the administration of the next cycle of CTX, were
analysed (i.e., recovery from previous CTX cycle).

Data Analyses

Symptom Occurrence Data—In order to have a sufficient number of patients who
endorsed each symptom, the LCA and K-modes analyses were done with the 25 symptoms
that occurred in 230% of the patients (i.e. difficulty concentrating, pain, lack of energy,
cough, feeling nervous, hot flashes, dry mouth, nausea, numbness or tingling in hands or
feet, feeling drowsy, difficulty sleeping, feeling bloated, diarrhea, feeling sad, sweats,
problems with sexual interest or activity, worrying, lack of appetite, dizziness, feeling
irritable, hair loss, constipation, change in the way food tastes, | do not look like myself,
changes in skin).

Latent Class Analysis—LCA identifies latent classes based on an observed response
pattern.4142 |t is a statistical method for finding subtypes of related cases (i.e., latent classes)
from multivariate categorical data. The LCA was performed using Mplus™ Version 7.43
Estimation was carried out with robust Maximum-Likelihood (MLR) and the Expectation-
Maximization (EM) algorithm.** The optimal number of latent classes for this LCA was
selected based on the Bayesian Information Criterion (BIC), the Vuong, Lo, Mendel, and
Rubin (VLMR) likelihood ratio test, and entropy. Theoretically, the best fitting LCA model
has the lowest BIC. Nevertheless, the BIC can be supplemented by an evaluation of the
VLMR*® which tests whether a model with K classes fits the data better than a model with
one fewer class (the K-1 class model). When this VLMR is significant, the K-class model is
considered to be a better fit for the data. When models are evaluated sequentially, with each
new model having one more class than the previous model, if a model is identified for which
the VLMR is not significant, then too many classes were extracted and the K-1 class model
is considered to fit the data better than the current K-class model. Furthermore, well-fitting
models produce entropy values of >0.80.46 In addition, the optimal fitting model should
“make sense” conceptually and its classes should differ as might be expected on variables
not used in the generation of the model.

K-modes analysis—K-modes is a centroid method that is optimized for use with
categorical variables.2! It defines clusters based on the number of matching categories
between data points and not on their Euclidean distance (a common similarity index in
agglomerative clustering methods). Although its performance is comparable to K-means,2’
the K-modes distance measurement approach is theoretically a more appropriate approach to
use to cluster the categorical variable of symptom occurrence.?147 The K-modes analysis
was implemented with PyCharm Professional Edition 4.5 and the Scikit-Learn library.48

J Pain Symptom Manage. Author manuscript; available in PMC 2019 February 01.
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The optimal number of clusters for the K-modes analysis was assessed using the Silhouette
Coefficient (SC).4° The SC represents how well each case (i.e., patient) lies within its cluster
and how appropriate each case’s assignment is inside a specific cluster. The average SC,
called the Silhouette Index (Sl), allows one to evaluate the overall quality of the separation
between the clusters. The SC is calculated using its intra-cluster distance and its nearest-
cluster distance.2” The SC is bounded between -1 for inappropriate clustering and +1 for
highly compact clustering. A SC around zero indicates that a case is assigned inside
overlapping clusters. In general, the average Sl is high when clusters are dense and well
separated.

Evaluation of Congruence—In order to evaluate the congruence between the LCA and
K-modes solutions (i.e., number of subgroups identified), we compared the solutions using
SCI diagrams (see Figures 1A and 1B, respectively).*® When the SC for a case is >0, its
assignment to this cluster is considered appropriate. When the SC for a case is <0, this case
may have equal similarities with cases in another, overlapping cluster and its assignment
inside a specific cluster may not be an appropriate fit. In addition, Cohen’s kappa coefficient
was used to evaluate the agreement between the two analytic approaches.

Differences in Demographic, Clinical, and Symptom Characteristics and QOL
Outcomes—Descriptive statistics and frequency distributions were calculated for
demographic and clinical characteristics using SPSS version 23 (IBM, Armonk, NY). For
each analytic approach, differences in demographic and clinical characteristics and QOL
outcomes, among the groups, were evaluated using analyses of variance, Kruskal-Wallis, and
Chi Square analyses. Post hoc contrasts were calculated using the Bonferroni corrected
alpha of 0.008 (0.05/6 pairwise comparisons).

Number of Subgroups Identified Using LCA and K-modes Approaches

For the LCA, the fit indices for the candidate models are shown in Table 1. The four class
solution was selected because its BIC was lower than for the 3- and 5-class solutions. In
addition, the VLMR indicated that a 4-class solution was better than a 3-class solution.
However, the VLMR for the 5-class solution was not better than the 4-class solution
indicating that too many classes were extracted.

Using K-modes, while the average Sl for the 3-class solution was slightly larger than the
average Sl for the 4-class solution (Table 2), given this trivial difference and in order to
compare the differences in demographic, clinical, and symptom characteristics and QOL
outcomes between the two methods, we used the 4-class solution from the K-modes
analysis.

As shown in Figures 2 and 3, for the LCA and K-modes analyses, respectively, the four
subgroups were named based on the probability of occurrence of the 25 MSAS symptoms
that occurred in =230% of the patients. The All High and All Low groups included patients
who reported relatively high and low occurrence rates for most of the 25 MSAS symptoms,
respectively. The Moderate Physical and Higher Psychological and Moderate Physical and

J Pain Symptom Manage. Author manuscript; available in PMC 2019 February 01.
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Lower Psychological groups included patients who reported relatively moderate occurrence
rates for the majority of the physical symptoms and relatively higher or lower occurrence
rates, respectively, for the five psychological symptoms (i.e., worrying, feeling irritable,
feeling sad, feeling nervous, | don’t look like myself).

The SC diagrams for all of the patient cases within each of the 4 clusters for the LCA and K-
modes analyses (Figures 1A and 1B) showed that their inefficient assignments were mostly
within two specific groups (i.e. Moderate Physical and Higher Psychological, Moderate
Physical and Lower Psychological). Both well (SC >0) and inappropriately (SC <0)
clustered cases were included within these clusters. As illustrated in the SC diagrams, K-
modes assigned a larger proportion of cases to these two groups (SC >0). Of note, the two
other groups (All Low, All High) were well defined and separated using both the LCA and
K-modes approaches (SC >0.4).

Pairwise Agreement Between the LCA and K-modes Approaches

As shown in Table 3, the observed agreement among the four groups was 75.32% and the
expected agreement was 26.08%. The two analyses separated patients into 4 distinct groups
with substantial agreement beyond chance (range 0.6-0.7) as measured by the Cohen’s
coefficient (kappa=0.666).(50) The biggest disagreements between the LCA and K-modes
approaches were between: a) the Moderate Physical and Lower Psychological (LCA) and
All Low (K-modes) and b) the Moderate Physical and Higher Psychological (LCA) and All
High (K-modes) groups, with 92 and 101 divergent classifications, respectively.

Group Characteristics Identified with LCA and K-modes Approaches

The All Low group consisted of 31.5% (n=419) of the sample using LCA and 40.3%
(n=536) using K-modes. The probability of occurrence of the MSAS symptoms for this
group ranged from 0.064 to 0.549 for LCA and 0.093 to 0.647 for K-modes.

The second largest group identified using LCA was named Moderate Physical and Higher
Psychological and consisted of 31.3% (n=416) of the sample. Using K-modes, this group
consisted of 21.1% (n=280) of the patients. The occurrence rates for the majority of the
physical symptoms ranged from 0.293 to 0.930 for LCA and from 0.236 to 0.939 for K-
modes. For the psychological symptoms, the occurrence rates were relatively high. They
ranged from 0.541 to 0.906 for LCA and from 0.582 to 0.811 for K-modes.

The third largest group identified using LCA (23.8%, n=316) was named the Moderate
Physical and Lower Psychological group. Using K-modes, this group was the smallest one
identified (15.4%, n=205). The probability of occurrence for the physical symptoms ranged
from 0.241 to 0.987 for LCA and from 0.210 to 0.956 for K-modes. For the psychological
symptoms, the range was from 0.142 to 0.282 for LCA and from 0.185 to 0.278 for K-
modes.

The All High group was the smallest one for LCA (13.4%, n=178) and the second largest for
the K-modes analysis (23.2%, n=308). The probability of occurrence of the MSAS
symptoms for this group ranged from 0.562 to 0.994 for LCA and from 0.429 to 0.974 for
K-modes.

J Pain Symptom Manage. Author manuscript; available in PMC 2019 February 01.
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Differences in Patient Characteristics Among the Groups ldentified with LCA and K-modes

Approaches

Tables 4 and 5 summarize the differences in demographic and clinical characteristics among
the four groups of patients identified using LCA and K-modes, respectively. For both
analyses, compared to the “All Low” group, patients in the “Moderate Physical and Higher
Psychological” and the “All High” groups were significantly younger, had a lower KPS
score, had a higher SCQ score, were more likely to have breast cancer, and were more likely
to report depression and back pain. In addition, for both analyses, compared to the
“Moderate Physical and Lower Psychological” group and the “Moderate Physical and
Higher Psychological” group, patients in the “All High” group had a lower KPS score and a
higher SCQ score.

Differences in Symptom Occurrence Rates Among the Groups Identified with LCA and K-

modes

Supplemental Table 1 summarizes differences in symptom occurrence rates among the four
groups of patients identified using LCA and K-modes. Both analyses identified two groups
of oncology patients who reported moderate levels of physical symptoms but differentiated
on the occurrence of five psychological symptoms (i.e., worrying, feeling irritable, feeling
sad, feeling nervous, | don’t look like myself). For patients in the Moderate Physical and
Higher Psychological group, worrying (LCA: 0.906, K-modes: 0.811), feeling sad (LCA:
0.813, K-modes: 0.811), and feeling irritable (LCA: 0.649, K-modes: 0.657) were among the
top symptoms. In contrast, in the Moderate Physical and Lower Psychological group,
worrying (LCA: 0.142, K-modes: 0.278), feeling sad (LCA: 0.161, K-modes: 0.259), and
feeling irritable (LCA: 0.256, K-modes: 0.224) were among the symptoms with the lowest
probability of occurrences. The remaining psychological symptoms, namely: “feeling
nervous” (Moderate Physical and Higher Psychological group: LCA: 0.606, K-modes:
0.693; Moderate Physical and Lower Psychological group: LCA: 0.184, K-modes: 0.185)
and “I don’t look like myself” (Moderate Physical and Higher Psychological group: LCA:
0.541, K-modes: 0.582; Moderate Physical and Lower Psychological group: LCA: 0.282, K-
modes: 0.259) had significant differences between the aforementioned groups for both
analyses.

Across all four groups, lack of energy was the most common symptom. While the
probability of its occurrence for the total sample was 0.832, values ranged from 0.549 to
0.994 for LCA and from 0.647 to 0.974 for K-modes. In addition, pain (LCA: 0.944-0.334,
K-modes: 0.834-0.360), difficulty in sleeping (LCA: 0.927-0.458, K-modes: 0.896-0.537),
numbness/tingling in hands/feet (LCA: 0.798-0.334, K-modes: 0.724-0.356), change in the
way food tastes (LCA: 0.837-0.274, K-modes: 0.802-0.323), and feeling drowsy (LCA:
0.966-0.243, K-modes: 0.860-0.321) occurred in the top ten symptoms across all four groups
for both analyses.

Differences in MSAS Summary Scores Among the Groups Identified with LCA and K-

modes

Table 6 summarizes differences in the MSAS summary scores among the four groups of
patients identified using LCA and K-modes. For the Physical subscale, the Psychological

J Pain Symptom Manage. Author manuscript; available in PMC 2019 February 01.
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subscale, and the Global Distress index, the differences among the four groups followed the
same pattern for both analyses. For the MSAS total score, as well as for the total number of
MSAS symptoms, the pattern observed using the LCA was in the expected direction (i.e.,
All Low < Moderate Physical and Lower Psychological < Moderate Physical and Higher
Psychological < All High). For the MSAS total score, as well as for the total number of
MSAS symptoms, the pattern observed using K-modes was as follows: All Low < Moderate
Physical and Lower Psychological, Moderate Physical and Higher Psychological and All
High (i.e., 0 < 1, 2, and 3), as well as Moderate Physical and Lower Psychological and
Moderate Physical and Higher Psychological < All High (i.e., 1 and 2 < 3).

Differences in QOL Scores Among the Groups Identified with LCA and K-modes

Table 7 summarizes differences in MQOLS-CA subscale and total scores among the four
groups of patients identified using LCA and K-modes. For the MQOLS psychological and
social well-being subscales, and total QOL scores, the differences among the four groups
followed the same pattern for both analyses (i.e., All Low > Moderate Physical and Lower
Psychological > Moderate Physical and Higher Psychological > All High). In addition, for
the physical well-being subscale scores, the differences among the four groups followed the
same pattern for both analyses (i.e., All Low > Moderate Physical and Lower Psychological,
Moderate Physical and Higher Psychological, and All High (i.e., 0 > 1, 2, and 3) and
Moderate Physical and Lower Psychological and Moderate Physical and Higher
Psychological > All High (i.e., 1 and 2 > 3)).

For the SF12, for both analyses, the MCS scores followed a similar pattern (i.e., All Low >
Moderate Physical and Lower Psychological > Moderate Physical and Higher Psychological
> All High). For the PCS scores, the post hoc contrasts were different depending on the
method of analysis. For LCA, the pattern was All Low > Moderate Physical and Higher
Psychological > Moderate Physical and Lower Psychological > All High. For the K-modes
analysis, the pattern was as follows: All Low > Moderate Physical and Lower Psychological,
Moderate Physical and Higher Psychological and All High (i.e., 0 > 1, 2, and 3), as well as
Moderate Physical and Higher Psychological > Moderate Physical and Lower Psychological
and All High (i.e.,, 2> 1 and 3).

DISCUSSION

This study is the first to evaluate for congruence between the ability of two different analytic
approaches to identifiy subgroups of oncology patients with distinct symptom profiles.
Using both LCA and K-modes, four groups of patients with distinct symptom profiles were
identified. The Cohen’s kappa coefficient of 0.666 represents a moderate level of agreement
between the two approaches.>1-53 Potential reasons for only a moderate level of agreement
may be related to differences in the underlying assumptions of each of the methods. LCA is
a model based approach where “clusters” (i.e. classes) are defined by parametric probability
distributions that can be interpreted to generate homogenous points, while the whole data set
is modelled by a mixture of such distributions.>* Its key assumption is the conditional
independence of the observed variables given the latent class. Inside the same class, the
presence or the absence of one symptom is viewed as unrelated to the presence or absence of
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all of the others. On the other hand, K-modes is a distance-based clustering method that
separates clusters as data subsets that have small within-cluster distances and large
separation from other clusters. K-modes tries to find clusters that bring similar observations
together without making an assumption about their distribution or attempt to fit a mixture
distribution. Our findings, as well as others,34-56 suggest that further research is needed,
using both approaches, to determine the most sensitive and specific method(s) to risk profile
oncology patients based on symptom occurrence rates.

While the absolute percentages of patients in the four groups differed depending on the
analytic approach, the specific symptom profiles within each of the four groups were very
similar. In addition, previous work in heterogeneous samples of oncology patients, using a
different numbers of MSAS symptoms,®>7 found the same four phenotypic profiles
identified in the current study. Across these three studies, the percentage of patients in the
All Low group ranged from 28.0%° to 40.3% (using K-modes in the current study) and the
percentage of patients in the All High class ranged from 13.4% (using LCA in the current
study) to 27.8%.57 Across these three studies, these relatively wide ranges may be related to
differences in the number and types of symptoms evaluated, the timing of the symptom
assessments in relationship to cancer diagnosis and treatments, and/or the specific cancer
diagnoses of the patients in each of the studies. That said, these two extreme phenotypes
were identified in previous studies that used only four symptoms®7.10.11 or identified only
two or three groups.1>-17

Across the two previous studies®57 and with the two analytic methods used in the current
study, the consistent phenotypic characteristics associated with membership in the All High
group were younger age and poorer functional status. The association between younger age
and a higher symptom burden is consistent with previous studies.8:” While younger patients
may receive more aggressive cancer treatments,8 equally plausible hypotheses for this
association include: that older adults experience a “response shift” in their perception of
symptoms;° that chronological age may not be an accurate representation of the biological
age of oncology patients;%0 and/or that accelerated aging occurs with cancer and its
treatment.61-63

Similar to age, the association between a higher symptom burden and poorer functional
status was reported previously.11:16.18 |n the current study and in the one conducted in
Norway,’ that both used the KPS scale, compared to patients in the All Low group who had
KPS scores between 85 and 95, patients in the All High group reported KPS scores in the
mid-70s. This difference represents a clinically meaningful change in functional status on
this scale. Given that patients typically report lower KPS scores than their clinicians,54.65
patients should be interviewed not only about the number and severity of their symptoms but
about changes in functional status during and following cancer treatment.

An equally important finding in this study and in the two previous studies®57 is the
identification of two groups of patients who differentiated based on the occurrence of
psychological symptoms. While our phenotypic data suggest that these two groups have
lower KPS scores and a higher comorbidity profile than the All Low group and better scores
for both characteristics than the All High group, the demographic and clinical characteristics
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that distinguish between these two “Moderate” groups are not readily apparent. These
findings are similar to previous reports®>7 and warrant investigation in future studies. An
evaluation of additional psychosocial characteristics (e.g., coping styles, personality, social
support) may improve the phenotypic characterization of these two “Moderate” groups.

In terms of the QOL outcomes, regardless of whether a generic (i.e., SF12) or disease-
specific (i.e., MQOLS-PV) measure was used, the pattern of the differences in scores were
in the expected direction, namely that as the symptom phenotype worsened, QOL decreased.
The one interesting finding on Table 7, relates to the PCS scores from the SF12. While none
of the groups had PCS scores of =50 (i.e., the normative value for the general population in
the United States), patients in the Moderate Physical and Lower Psychological group had
worse scores than patients in the Moderate Physical and Higher Psychological group. This
finding is consistent with the report by Astrup and colleagues.>’ Additional research is
warranted to explain this finding and to determine the specific phenotypic characteristics
that distinguish between these two Moderate groups.

In terms of study limitations, patients were recruited at various points in their CTX
treatment. In addition, the types of CTX were not homogeneous. While we cannot rule out
the potential contributions of clinical characteristics to patients’ symptom experiences, the
relatively similar percentages of cancer diagnoses, reasons for current treatment, time since
cancer diagnosis, and evidence of metastatic disease across the four groups, suggest that the
patients were relatively similar in terms of disease and treatment characteristics. Although it
is possible that patients in the “All Low” group were receiving more aggressive symptom
management interventions, the occurrence rates for the five most common symptoms were
relatively similar across the four classes for both analyses. It is possible that using ratings of
frequency, severity or distress to create patients groups would provide additional information
on inter-individual differences in the symptom experience of these patients.

Additional research is warranted using different analytic methods to optimize the
identification of oncology patients with a higher symptom burden. Future studies can
evaluate different machine learning approaches, as well as real time collection of different
dimensions of a patient’s symptom experience (i.e., occurrence, severity, distress) to
determine the most sensitive and specific methods to use to risk profile patients and design
and test more effective symptom management interventions.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1A. Silhouette coefficient diagram for the 4-class solution using latent class analysis.
The sizes of the clusters in the diagram are proportional to their size inside the total sample
of patients (n=1329). The labels represent the following clslusters: 0 (All Low (n=419,
31.5%)), 1 (Moderate Physical & Lower Psychological (=316, 23.8%)), 2 (Moderate
Physical & Higher Psychological (n=416, 31.3%)) and 3 (All High (n=178, 13.4%).

Figure 1B. Silhouette coefficient diagram for the 4-cluster solution using the K-modes
analysis. The sizes of the clusters in the diagram are proportional to their size inside the total
sample of patients (n=1329). The labels represent the following clusters: 0 (All Low (n=536,
40.3%)), 1 (Moderate Physical & Lower Psychological (n=205, 15.4%)), 2 (Moderate
Physical & Higher Psychological (n=280, 21.1%)), and 3 (All High (n=308, 23.2%)).
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Symptom occurrence for each of the subgroups identified using latent class analysis for the
25 symptoms on the Memorial Symptom Assessment Scale that occurred in >30% of the
total sample (n=1329) at Time 1 (i.e., prior to next dose of chemotherapy).
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Figure 3.
Symptom occurrence for each of the subgroups identified using K-modes analysis for the 25

symptoms on the Memorial Symptom Assessment Scale that occurred in =30% of the total
sample (n=1329) at Time 1 (i.e., prior to next dose of chemotherapy).
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Table 2

K-modes Solutions and Silhouette Indices for Three- Through Five-Class Solutions

Model Silhouette Index
3 Cluster? 0.159
4 Cluster 0.156
5 Cluster 0.129

a . . . .
Based on the Silhouette Index, the three-cluster solution performed higher than both the 4- and 5-cluster solutions.
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