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Abstract

Prophylactic vaccination is a powerful tool for reducing the burden of infectious diseases,

due to a combination of direct protection of vaccinees and indirect protection of others via

herd immunity. Computational models play an important role in devising strategies for vacci-

nation by making projections of its impacts on public health. Such projections are subject to

uncertainty about numerous factors, however. For example, many vaccine efficacy trials

focus on measuring protection against disease rather than protection against infection, leav-

ing the extent of breakthrough infections (i.e., disease ameliorated but infection unimpeded)

among vaccinees unknown. Our goal in this study was to quantify the extent to which uncer-

tainty about breakthrough infections results in uncertainty about vaccination impact, with a

focus on vaccines for dengue. To realistically account for the many forms of heterogeneity

in dengue virus (DENV) transmission, which could have implications for the dynamics of

indirect protection, we used a stochastic, agent-based model for DENV transmission

informed by more than a decade of empirical studies in the city of Iquitos, Peru. Following 20

years of routine vaccination of nine-year-old children at 80% coverage, projections of the

proportion of disease episodes averted varied by a factor of 1.76 (95% CI: 1.54–2.06)

across the range of uncertainty about breakthrough infections. This was equivalent to the

range of vaccination impact projected across a range of uncertainty about vaccine efficacy

of 0.268 (95% CI: 0.210–0.329). Until uncertainty about breakthrough infections can be
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addressed empirically, our results demonstrate the importance of accounting for it in models

of vaccination impact.

Author summary

Vaccines are vital tools for safeguarding public health from a variety of infectious disease

threats. When decisions are being made about investments in vaccination, computational

models provide decision makers with projections of the benefits of vaccination. There are

many types of uncertainty that can affect these projections, such as statistical uncertainty

about the extent to which vaccination reduces one’s risk of experiencing disease. While

this type of uncertainty is well accounted for by vaccine trials, a different type of uncer-

tainty often is not: whether the vaccine blocks infection altogether or simply reduces the

severity of disease symptoms. In the case of the latter, “breakthrough infections” occur,

meaning that those who are vaccinated are protected but those who are not receive little

or no indirect benefit from herd immunity. Focusing on a newly licensed vaccine for den-

gue, we developed and applied a new simulation model of dengue virus transmission to

assess the extent to which uncertainty about breakthrough infections contributes to uncer-

tainty about vaccination impact. We found that a vaccine that prevents breakthrough

infections is capable of nearly doubling the impact of vaccination as compared to a vaccine

that confers protection solely by reducing the severity of disease symptoms.

Introduction

Computational models have much to contribute to the advancement of vaccines as tools for

public health benefit. These contributions range from aiding the design and interpretation of

vaccine trials [1] to projecting the impact of vaccination policies on public health [2]. Project-

ing impact has been a major focus of modeling efforts over several decades [3], with applica-

tions to a wide range of vaccine-preventable diseases. A challenge common to all of these

projections is accounting for the many forms of uncertainty that are relevant to vaccination

impact. These can include alternative scenarios for how vaccination could be targeted [4,5],

unknown aspects of the pathogen’s natural history [6,7], and uncertainty about the vaccine’s

profile [8,9].

Uncertainty about a vaccine’s profile is something that all projections of vaccination impact

must confront. At a minimum, a vaccine’s profile is characterized by the relative risk, RR, of

some outcome in vaccinees as compared to unvaccinated people. This quantity is related to

vaccine efficacy, VE, as VE = 1-RR. Other aspects of a vaccine’s profile can include whether

protection is “leaky” (reduces per-event risk uniformly for all) or “all or none” (reduces risk

fully, but only for some), or whether protection wanes over time or depends on an individual’s

age or other characteristics. Uncertainty about these and other aspects of a vaccine’s profile

can be addressed through sensitivity analysis [10,11] or by fitting a model to vaccine trial data

[12,13]. By either approach, uncertainty about a vaccine’s profile can be propagated into

uncertainty about vaccination impact.

One vaccine with a complex profile for which impact projections [14] have played an

important role in shaping recent policy decisions [15] is CYD-TDV (brand name Dengvaxia,

by Sanofi-Pasteur). This vaccine was developed to protect against dengue, a major viral disease

of humans caused by any of four serotypes of dengue virus (DENV) and transmitted among
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humans by Aedes aegypti mosquitoes. Following a series of efficacy trials [16], VE estimates for

CYD-TDV were significantly lower for children under nine years of age (0.45) than for chil-

dren nine years of age or older (0.66). VE estimates were also greater for individuals with

prior, natural exposure to DENV (referred to as seropositive), especially for children under

nine (seropositive: 0.70, seronegative: 0.14). Additionally, VE estimates varied by serotype,

ranging 0.34–0.62 in children under nine. Assumptions about vaccine profile used in projec-

tions of CYD-TDV vaccination impact to date have focused primarily on reconciling these age

and serotype differences in VE [13,17].

One aspect of CYD-TDV profile that has not been explored in impact projections concerns

the clinical nature of trial endpoints. Specifically, the primary endpoint for efficacy trials of

CYD-TDV was virologically confirmed dengue among trial participants who experienced

acute febrile illness; i.e., a fever of�38˚C for at least two consecutive days [16]. Among trial

participants for whom acute febrile illness was averted due to vaccination, the vaccine could

have either blocked DENV infection altogether or ameliorated symptoms but still allowed

infection [18]. If we denote the relative risk of infection conditional on exposure as RRinf|exp

and disease conditional on infection as RRdis|inf, it follows that relative risk of the disease end-

point is RRdis = RRdis|inf x RRinf|exp. Without measuring a secondary endpoint related to infec-

tion, RRinf|exp cannot be estimated and we are left knowing only the product RRdis.

The distinction between RRdis|inf and RRinf|exp is an important one, because people with

clinically inapparent DENV infections have been shown to transmit DENV to mosquitoes [19]

and have been estimated to contribute appreciably to transmission [20]. This raises the possi-

bility of breakthrough DENV infections among CYD-TDV vaccinees, particularly if RRinf|exp

is large. Vaccines that prevent breakthrough infections can have a substantial impact on public

health outcomes [21], due to the fact that they provide both direct protection of vaccinees and

indirect protection of others. Indirect protection derives from a population-level phenomenon

known as herd immunity [22], projections of which require assumptions about population-

level transmission dynamics. To the extent that there is uncertainty about breakthrough infec-

tions among vaccinees, there will inevitably be uncertainty about the extent of indirect protec-

tion of those who go unvaccinated [23].

Our primary interest here was in assessing the extent of uncertainty in CYD-TDV impact

projections attributable to uncertainty about breakthrough infections. The effect of break-

through infections on vaccination impact is a function of the extent to which they erode indi-

rect protection, which depends in part on the nature of contact between vaccinated and

unvaccinated people and on the structure of transmission more generally [24,25]. To obtain a

realistic portrayal of the structure of transmission in an endemic setting, we used an agent-

based simulation model of DENV transmission developed and calibrated for the city of Iqui-

tos, Peru, which has had ongoing studies of dengue epidemiology for more than a decade

[26,27]. We simulated DENV transmission in the presence and absence of routine vaccination

across a range of assumptions about breakthrough infections. To place these results into con-

text, we compared them to results from simulations with varying values of VE under two dif-

ferent models of dengue vaccine profile.

Methods

Model overview

We developed a stochastic, agent-based model for simulating DENV transmission that is

parameterized in a number of respects around studies of dengue epidemiology conducted in

Iquitos, Peru. The model simulates DENV transmission in a population of approximately

Uncertainty about breakthrough infections influences public health impact projections
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200,000 people residing in the core of Iquitos, which consists of 38,835 geo-referenced houses

and 2,004 other buildings [28]. Events such as mosquito biting, mosquito death, and move-

ments by humans and mosquitoes are scheduled to occur at continuous time points through-

out the day (Fig 1), with updating of individuals’ statuses with respect to infection, immunity,

and demographics occurring once daily. The only abiotic factor incorporated into the model

explicitly was temperature, which influenced several time-varying parameters and was

informed by daily mean temperature recordings from a weather station at the Iquitos Interna-

tional Airport. We describe the model in full detail in S1 Text, following the ODD (Overview,

Design concepts, Details) Protocol [29,30] for describing agent-based models. In the para-

graphs below, we provide an overview of key features of the model pertaining to humans, mos-

quitoes, and viruses.

Fig 1. Example of events that occur at the individual level (lines) at a single location (gray house shape) over the course of a single day. Red lines correspond to

individual mosquitoes, with dashed and solid lines representing host-seeking and resting states, respectively. Blue lines refer to individual people, with thin dotted lines

indicating that the person is at another location at that time and thick solid lines indicating their presence at the location at that time. The thickness of the solid blue lines

indicates the relative attractiveness of each person to blood feeding by mosquitoes.

https://doi.org/10.1371/journal.pcbi.1006710.g001
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Humans are populated in the city consistent with national age and sex distributions for

Peru and in individual houses consistent with demographic data collected over the course of

studies in Iquitos. Birth and death processes are parameterized consistent with demographic

estimates and future projections by the United Nations [31], with age- and year-specific death

rates, year-specific population birth rates, and age- and year-specific relative fertility among

females aged 15–49. Aging involves the acquisition of lifelong, serotype-specific immunity as

each person is exposed, and sex-specific growth of an individual’s body size over the course of

childhood to allow for an effect of body size on propensity to be bitten by mosquitoes [32].

Each individual human possesses a unique “activity space,” which is defined as an average pat-

tern of time allocation across all the locations that they frequent between 05:00 and 22:00,

when risk of biting from Ae. aegypti mosquitoes is expected to be highest [33]. Individuals

move about this activity space in a manner based on retrospective interviews performed on

residents of Iquitos and modeled in a way described previously by Perkins et al. [34].

The number of adult female mosquitoes in the area is determined by a combination of mos-

quito emergence and death processes. Mosquito death occurs according to unique daily, tem-

perature-dependent rates derived from Brady et al. [35]. Mosquito emergence occurs

differentially by location according to unique daily emergence rates that were estimated by

determining what emergence patterns, when combined with the death process in our model,

would yield spatiotemporal patterns of mosquito density consistent with statistical estimates

by Reiner et al. [36]. In addition to emergence and death, mosquitoes move from their current

location to a nearby location on any given day with a fixed probability [37]. They engage in bit-

ing at temperature-dependent rates that differ depending on whether it is the mosquito’s first

bite [38] or a subsequent bite [39]. They select an individual on whom to blood feed based on

the body size of each person present at a location at the time that a mosquito bites [32,34].

Because the emphasis of the present analysis is on vaccination rather than vector control, we

deferred the inclusion of additional entomological details for future work.

The model allows for the transmission of all four DENV serotypes, which are assumed to be

identical in the following respects based on empirical studies: infectiousness [19,40], intrinsic

and temperature-dependent extrinsic incubation periods [41], and rate of symptomatic disease

[20,42]. For infectiousness of mosquitoes to people, we adopted a value used by another

modeling study (0.9, [43]), given the difficulty of estimating this parameter empirically. For

infectiousness of people to mosquitoes, we used a time-varying function of infectiousness

based on empirical data [44], which peaks on the day of symptom onset and lasts for a total of

five days. Individual people can experience up to four distinct infections over the course of

their lifetimes, as they experience lifelong immunity to each serotype to which they have been

exposed and temporary cross-immunity to all serotypes following exposure [45]. The probabil-

ity that an individual infected with DENV develops symptomatic disease depends on whether

the infection is primary (0.18), secondary (0.24), or post-secondary (0.14) [20,42].

To seed transmission, viruses of each serotype are introduced into the population at a time-

varying rate through infected people that are each simulated to have an activity space identical

to a randomly chosen resident for the duration of their infection. Because currently available

data in the geographic information system only permits us to simulate approximately half the

population of the metropolitan area, we viewed these infections in temporary individuals pri-

marily as representative of people from other parts of the city moving DENV into the popula-

tion represented explicitly in our model. Were we to model the entire population of Iquitos,

we expect that fewer such infections would be necessary to seed transmission within our syn-

thetic population. In addition, although Iquitos is relatively isolated in general, some limited

introduction of DENV is known to occur from surrounding areas [46].

Uncertainty about breakthrough infections influences public health impact projections
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Model calibration

Wherever possible, we parameterized the model directly based on empirical estimates from

Iquitos or from studies conducted elsewhere and reported in the literature. This included

human demography [31,32], human mobility [34], human-mosquito encounters [32], mos-

quito abundance patterns in space and time [36,47,48], mosquito movement [37], mosquito

mortality [35], mosquito blood-feeding rates [38,39], virus incubation in mosquitoes and

humans [41], infectiousness of humans to mosquitoes [44], and naturally acquired immunity

to DENV [45].

Two primary uncertainties that we were not able to quantify a priori were DENV importa-

tion into Iquitos and the scaling relationship between household mosquito surveys and true

mosquito abundance. We calibrated those parameters such that simulated model behavior was

consistent with empirical estimates of time-varying, serotype-specific patterns of incidence of

DENV infection [49]. These empirical estimates to which our model was calibrated were based

on interval-censored, serotype-specific seroconversions obtained through longitudinal cohort

studies conducted over a period of 11 years [49]. The basis of our calibrations was maximiza-

tion of the goodness of fit of simulated incidence Is,t of serotype s at time t to probabilistic esti-

mates of Is,t by Reiner et al. [49]. For each month between January, 2000 and June, 2010, we

first performed maximum-likelihood fitting of a Dirichlet distribution to 1,000 draws of the

serotype proportions of Is,t and a normal distribution to 1,000 draws of the total incidence It at

time t from the posterior distribution estimated by Reiner et al [49]. We then used the product

of the probability densities of those distributions evaluated at the simulated values of Is,t for

each serotype as our measure of goodness of fit.

Using this measure of goodness of fit, we obtained estimates of unknown parameters for

DENV importation and scaling of mosquito abundance using a particle filtering algorithm.

The premise of this algorithm is to make use of the fact that most of the unknown parameters

pertain to only a portion of the time series—and thereby only a portion of the likelihood—to

allow for calibrating different subsets of the unknown parameters sequentially rather than

simultaneously. There are a wide range of particle filtering algorithms, but ours most closely

resembles a sequential importance resampling algorithm [50].

The first step in our algorithm involved proposing a set of 1,000 initial particles spanning a

range of parameter values, simulating the first year of the model for each particle, evaluating

the goodness of fit measure described above on a monthly basis within the first year, and com-

bining the monthly goodness of fit measures to obtain an annual goodness of fit measure for

each particle for the first year. Next, we resampled the particles 1,000 times with replacement

weighted by

weighti ¼
expð� c LLiÞX

i
expð� c LLiÞ

ð1Þ

for each particle i, where c is a scaling parameter that we tuned to a value of 0.1 to result in

resampled particles containing at least 10% of the original particles. We then obtained maxi-

mum-likelihood estimates of the means and covariance matrix describing the distribution of

the particles. Using that fitted multivariate normal distribution, we then drew 1,000 new parti-

cles and simulated both the first and second year of transmission. We then computed the

goodness of fit measure for the first two years by aggregating monthly goodness of fit measures

across the first two years. Additional steps in the algorithm were repeated in the same way in

yearly increments through the last year for which empirical estimates of time-varying, sero-

type-specific incidence were available. Finally, we performed two additional rounds of resam-

pling on the full time series following the last year of simulation and particle resampling. The

Uncertainty about breakthrough infections influences public health impact projections

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1006710 March 20, 2019 6 / 32

https://doi.org/10.1371/journal.pcbi.1006710


resulting set of 1,000 particles constituted our distributional estimate of parameter values most

consistent with available empirical estimates.

Vaccine profile

CYD-TDV vaccine. The mode of action of CYD-TDV is not completely clear, given that

there are multiple mechanisms by which results from clinical trials could have come about

[51]. We modeled VE against the primary trial endpoint of virus-confirmed disease as a func-

tion of age and serostatus, which is consistent with one hypothesis for how the vaccine achieves

its efficacy [16,51] but differs from others [13]. Specifically, for a given serostatus, we modeled

the relationship between age and VE against disease as

VEdisðageÞ ¼ 1 �
c1

1þ expð c2 ðage � c3ÞÞ
ð2Þ

using values of c1, c2, and c3 fitted separately to data from groups that were seropositive or sero-

negative at baseline. This functional form was chosen based on the fact that its shape is rela-

tively flexible and that it yields a monotonic relationship between age and VE that allows for

VE to assume negative values at young ages (increase in risk of endpoint) and to approach 1

(full protection) at older ages, consistent with assumptions about the profile of CYD-TDV

[51]. To obtain point estimates of c1, c2, and c3 for both serostatus groups, we fitted Eq (2)

under different values of these parameters to mean estimates of VE for seropositive and sero-

negative 2–9 and 10–16 year-olds reported in Fig 2 of Hadinegoro et al. [16]. Fitting was per-

formed on the basis of least squares using the Nelder-Mead algorithm as implemented in the

optim function in R [52]. These calculations assumed an even age distribution within each age

class in the trials.

We modeled statistical uncertainty around estimates of VE with a parameter s that

describes the standard deviation of the log of the relative risk (RR), defined mathematically as

sðlnðRRdisÞÞ ¼ ð1=ðc4 þ c5Þ þ 1=ðc4ð1 � VEdisÞ þ c5ÞÞ
1
2 ð3Þ

to yield a one-to-one relationship between VEdis and the standard deviation of the log of RRdis.

To fit values of c4 and c5, we used a method based on the assumption of asymptotic normality

of the log of the ratio of Poisson rates [53], applied to standard errors presented in Fig 2 of

Hadinegoro et al. [16]. To draw a quantile q of VEdis for a given instance of the simulation, we

drew the q quantile from a normal random variable with mean 0 and standard deviation 1,

multiplied it by sðlnðRRdisÞÞ; added the result to ln(1-VEdis), exponentiated the result, and sub-

tracted it from 1 [16]. In all simulations, we applied the same value of q to the calculation of

VEdis for both seropositive and seronegative vaccine recipients.

Generic dengue vaccine. To examine the robustness of our results to assumptions about

the profile of CYD-TDV, we also considered a hypothetical and more generic dengue vaccine

with a wide range of possible profiles. We characterized this vaccine’s profile with three param-

eters: VEmean, VEserostatus, and VEserotype. Under this model, an individual’s RRdis depends on

their pre-vaccination serostatus and the DENV serotype to which they were exposed, but not

their age. To ensure that VEmean does in fact represent a mean, each individual’s VE began

there and was adjusted up or down by VEserostatus and VEserotype. One half of VEserostatus was

always subtracted from VEmean for seronegative individuals and added for seropositives. From

there, an increment was added or subtracted such that the four serotype-specific VEs spanned

a range of VEserotype. Which serotypes had higher or lower VE was randomized across simula-

tions. Following these steps, RR was calculated as 1 less the VE determined by an individual’s

serostatus and the infecting serotype.

Uncertainty about breakthrough infections influences public health impact projections
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For example, consider values of VEmean = 0.6, VEserostatus = 0.1, and VEserotype = 0.06. Under

these parameters, the average VE would be 0.6, and the average VEs for seropositive and sero-

negative groups would be 0.65 and 0.55, respectively. For seropositive (seronegative) individu-

als, VE would be 0.68 (0.58), 0.66 (0.56), 0.64 (0.54), and 0.62 (0.52) against four randomly

ordered serotypes. Although we selected specific values of these parameters here to illustrate

how these calculations work, these values are only illustrative. We intentionally chose a wide

range of values of each parameter to consider in our analysis.

Protection against breakthrough infections. Due to the relationship RRdis = RRdis|inf x

RRinf|exp, a vaccine could derive its efficacy against disease solely through amelioration of

symptoms (RRdis|inf = RRdis), solely through blocking breakthrough infections (RRinf|exp =

RRdis), or from some combination of RRdis|inf and RRinf|exp along a continuum between these

two extremes. To fully explore that continuum, we define a parameter p, which quantifies the

relationship among these three different versions of RR as RRinf|exp = RRdis
p and RRdis|inf =

RRdis
1-p. Constraining values of p to range between 0 and 1, this guarantees that the

Fig 2. Relative risk of disease, RRdis, as a function of age and serostatus (blue: seronegative, red: seropositive)

estimated from vaccine trial data [16]. Each line represents a distinct random draw from the distribution of these

relationships. Black circles correspond to point estimates of relative risk of disease in the trial for a given age group (2–

9 left, 9–16 right) and serostatus (red vs. blue), and error bars indicate 95% confidence intervals around those

estimates.

https://doi.org/10.1371/journal.pcbi.1006710.g002
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definitional relationship among these RR variables is followed. The extreme of p = 1 represents

complete blocking of breakthrough infection, and the extreme of p = 0 represents protection

deriving only from amelioration of symptoms. In all simulations, we assumed that the vaccine

is leaky, meaning that an individual has some chance of becoming infected each time they are

exposed and has some chance of developing disease each time they are infected. Definitions of

parameters related to vaccine profile are summarized in Table 1.

Vaccination impact projections

For each of the two sets of assumptions about vaccine profile, we performed 1,000 pairs of sim-

ulations with model parameters drawn from the final set of parameter samples obtained

through the calibration process. In both cases, we randomly sampled values of p between 0 and

1 for each simulation pair. For the CYD-TDV vaccine, we also sampled values of a parameter q
that represents the quantile of the RRdis estimates. For the generic dengue vaccine, we sampled

values of VEmean of 0.15–0.85, VEserostatus of 0–0.15, and VEserotype of 0–0.15. Values of the lat-

ter three parameters were chosen to ensure that the maximum VE could not exceed 1 or fall

below 0 and that a broad range of VEmean was covered. Parameter draws were performed with

the sobol function in the pomp package [54] in R [52] to maximize the evenness of our cover-

age of parameter space.

The two simulations in each pair exhibited identical dynamics for the first 11 years, because

they were both driven by the same parameter particle and both shared common random num-

ber seeds for processes related to mosquito-human contact and DENV infection, respectively.

Following that initial time period, we continued one simulation without vaccination but com-

menced the other with routine vaccination at age nine, both for an additional 20 years. Consis-

tent with other CYD-TDV impact projections [14], we assumed 80% coverage. For each

simulation pair, we recorded the following in the population as a whole: proportion of cumula-

tive infections averted and proportion of cumulative disease episodes averted, with both accru-

ing over the period that followed the time period calibrated to Iquitos. Despite taking steps to

reduce noise by controlling random number seeds, simulation results were still relatively noisy

due to the highly stochastic nature of the model. To distinguish signal from noise when

Table 1. Definitions of key terms.

Term Symbol Definition

Relative risk of disease conditional on

infection

RRdis|inf Proportion of vaccine recipients that experience disease

after becoming infected relative to the proportion of

placebo recipients that experience disease after becoming

infected.

Relative risk of infection conditional on

exposure

RRinf|exp Proportion of vaccine recipients that become infected after

being bitten by an infectious mosquito relative to the

proportion of placebo recipients that become infected after

being bitten by an infectious mosquito.

Relative risk of disease RRdis Proportion of vaccine recipients that experience disease

after being bitten by an infectious mosquito relative to the

proportion of placebo recipients that experience disease

after being bitten by an infectious mosquito. This is equal to

the product of RRdis|inf and RRinf|exp.

Vaccine efficacy against disease VEdis 1—RRdis

Proportion of protection against disease

derived from protection against infection

p This parameter relates RRinf|exp to RRdis according to the

relationship RRinf|exp = RRdis
p. Likewise, it is implied that

RRdis|inf = RRdis
1-p and RRdis = RRdis|inf x RRinf|exp.

Quantile of RRdis estimate q Quantile between 0 and 1 applied to the uncertainty

distribution of the RRdis estimate.

https://doi.org/10.1371/journal.pcbi.1006710.t001
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examining relationships between predictor and response variables in these simulation analyses,

we fitted generalized additive models (GAMs) to these relationships using the mgcv package

[55] in R.

Sensitivity analysis

To assess the robustness of our conclusions about the effect of breakthrough infections on vac-

cination impact projections, we performed a series of sensitivity analyses. These analyses

repeated the full process of model calibration and vaccination impact projection under alterna-

tive assumptions about several parameters: duration of cross-immunity, mosquito infectious-

ness, human infectiousness, mosquito movement probability, extrinsic incubation period,

mosquito death rate, and mosquito biting rate (Table 2). Analyses identical to the primary

analysis with default parameter values were performed on each of the sets of vaccination

impact projections associated with each of these alternative parameter scenarios. Our primary

interest in these sensitivity analyses was assessing the consistency of differences in infections

and disease episodes averted across the range of values of parameters describing different

aspects of vaccine profile.

Results

Model calibration

Over the course of the calibration process, the marginal distributions of individual parameters

narrowed relative to their starting ranges, particularly during three final iterations that made

use of the full time series (S1–S9 Figs). Correlations among parameters all started at zero but

diversified over the course of successive iterations of the calibration process (S10 Fig), suggest-

ing that effects of some parameters on model performance interacted with effects of others. In

general, the strongest correlations tended to be between the e0 and e1 parameters for scaling

mosquito emergence and parameters describing DENV introduction patterns in years with

large epidemics. To account for uncertainty associated with correlations among parameter

estimates, replicate parameter draws sampling from the final set of parameters (rightmost col-

umns in S1–S9 Figs) were used in all simulations subsequent to calibration.

The behavior of the calibrated model (Fig 3, colored bands) was largely in agreement with

the estimates of time-varying, serotype-specific incidence of infection to which it was

Table 2. Scenarios examined through sensitivity analysis. As each parameter was varied from its default value, all other parameters were held at their default values.

Under each parameter scenario, a separate calibration was performed prior to performing vaccination impact projections.

Parameter Low Default High

Human infectiousness Asymptomatic infections have ~80% infectiousness

[20]

All infections follow the same trajectory of infectiousness

[44]

–

Duration of cross-immunity 180 days 686 days [45] –

Distribution of cross-

immunity

Fixed Exponential –

Mosquito infectiousness 0.5 1.0 –

Mosquito biting rate Multiply default by 0.5 Temperature-dependent [38,39] Multiply default by

2

Mosquito death rate Multiply default by 0.5 Temperature-dependent [35] Multiply default by

2

Extrinsic incubation period Multiply default by 0.5 Temperature-dependent [41] Multiply default by

2

Mosquito movement

probability

0.1 0.3 [37] 0.5

https://doi.org/10.1371/journal.pcbi.1006710.t002
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calibrated (Fig 3, gray bands). For all serotypes, the 95% prediction interval of simulations

from our agent-based model and estimates from Reiner et al. [49] overlapped for the majority

of the 2000–2010 timeframe. Both patterns reflected relatively low and seasonally variable pat-

terns of DENV-1 and DENV-2 transmission, and both captured large seasonal peaks in 2002–

2003 for DENV-3 and in 2009–2010 for DENV-4, coinciding with the respective invasions of

those serotypes. Note that y-axis ranges span a full order of magnitude (Fig 3: 0.008–0.08) for

panels corresponding to different serotypes. These results were largely similar under eleven

alternative scenarios about model parameters described in Table 2 (S11–S22 Figs), indicating

that the model’s ability to reproduce dynamics from Iquitos was robust to these assumptions

Fig 3. Monthly, serotype-specific incidence of infection per capita, as estimated by Reiner et al. [49] (gray bands) and as reproduced by our calibrated model

(colored bands). Bands show the range of values in which 95% of simulated values lie for a given serotype in a given month. These values were obtained under default

parameter assumptions detailed in Table 2.

https://doi.org/10.1371/journal.pcbi.1006710.g003
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and that our algorithm for calibrating the model led to convergent estimates across multiple

runs.

Although the calibrated model was in relatively good agreement with estimates of incidence

patterns by Reiner et al. [49] for large transmission seasons early in the occurrence of a given

serotype, the model had a tendency to produce somewhat lower incidence patterns afterwards

(Fig 3). These periods of lower incidence were associated with lower population susceptibility

to a given serotype (Fig 4) and tended to require a larger number of infections to seed trans-

mission (Fig 5). The relatively low number of infections required to seed the larger epidemics

Fig 4. Proportion of the population during the period of the calibration that was not immune to a given serotype (colored), temporarily

cross-immune to that serotype (light gray), or permanently immune to that serotype (dark gray). Values shown reflect medians across 1,000

simulations drawing parameters from across the set of particles obtained through the calibration process under default parameter assumptions

detailed in Table 2.

https://doi.org/10.1371/journal.pcbi.1006710.g004
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was encouraging with regard to the model’s ability to reproduce large epidemics in Iquitos on

the basis of the model’s characterization of local transmission processes. The relatively high

number of infections required to seed inter-epidemic transmission is likely a result of the lim-

ited population size of 200,000 and the highly stochastic nature of transmission at times of low

incidence.

Vaccine profile

We obtained estimates of the parameters for relative risk in Eq (2) that best matched empirical

estimates [16] of c1 = 0.47, c2 = 0.148, and c3 = 9.17 for seropositive vaccine recipients and c1 =

1.26, c2 = 0.28, and c3 = 9.27 for seronegative vaccine recipients. We obtained estimates of the

Fig 5. Median numbers of infections on a monthly basis for each serotype, stratified by whether the infection was acquired through biting by an infectious

mosquito (colored) or by exogenously driven infections (gray) that were used to seed transmission in the model. These bands represent median values across the set of

calibrated parameter values, and the colored bands are added on top of the gray bands. These values were obtained under default parameter assumptions detailed in

Table 2.

https://doi.org/10.1371/journal.pcbi.1006710.g005
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parameters determining the standard error of the log of the risk ratio in Eq (3) of c4 = 100 and

c5 = 0.5. Under this model and with these parameters, relative risk decreased steeply with age

until around age 20, when it began to decrease more slowly towards almost no risk in older

people (Fig 6). As in the CYD-TDV trial data, relative risk under our model was several fold

lower in seropositive than seronegative children, and relative risk in excess of 1 was likely only

at ages below nine years (Fig 6).

Implementing either vaccine scenario in our simulations required an estimate of RR per

event, rather than RR over the course of a trial [16]. For a leaky vaccine, these two different

interpretations of RR may vary depending on how many times study participants are exposed

[56]. In S2 Text, we showed that these values of RR are unlikely to differ for a dengue vaccine

by more than 5%. Given that relatively small difference and in the absence of more detailed

information about the number of exposures that participants experienced during CTD-TDV

trials, we operated under the assumption that these two interpretations of RR were equal.

Under our assumptions about how efficacy observed in trials derived from two different

forms of protection, an assumption of equal parts protection against infection and protection

against disease (i.e., p = 0.5) gave, on average, relative risks of 48% for either infection or dis-

ease in seropositive nine-year olds and 80% for either in seronegative nine-year olds (Fig 6). In

the event that 90% of protection derived from protection against disease and only 10% from

protection against infection (i.e., p = 0.1), the relative risk for seropositive nine-year-olds was

27% for disease and 87% for infection and 68% for disease and 96% for infection for seronega-

tive nine-year-olds (Fig 6).

Vaccination impact projections

Example vaccination impact projections. In three pairs of simulations in which the

CYD-TDV vaccine derived its efficacy from protection against infection (p = 1), epidemic size

was noticeably smaller during outbreak years in simulations with vaccination (Fig 7, green

Fig 6. Relative risk of infection conditional on exposure (dashed) and of disease conditional on infection (solid) for seropositive (red) and

seronegative (blue) individuals of different ages. These relationships are shown for three different values of the parameter p that specifies the

proportion of the overall efficacy against disease that is attributable to protection against infection conditional on exposure.

https://doi.org/10.1371/journal.pcbi.1006710.g006
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lower than black in left column). In three pairs of simulations in which the vaccine derived its

efficacy from protection against disease but not infection (p = 0), epidemic size was somewhat

lower in terms of incidence of disease but essentially identical in terms of incidence of infec-

tion (Fig 7, green similar to black in right column). Across larger numbers of simulations, we

sometimes observed that a negative proportion of infections or disease episodes was averted

by vaccination (i.e., there were more cumulative infections or disease episodes in the simula-

tion with vaccination). This was a result of occasional chance differences in paired simulations

Fig 7. Examples of paired time series of annual incidence of human DENV infections simulated from the model with vaccination (green)

and without (black). Prior to year 0, both simulations in each pair are identical and follow dynamics calibrated as shown in Fig 2. Beginning

in year 0, routine vaccination commences in the simulation colored in green, but not in the one in black. Three different realizations are

shown for each of two scenarios (left: p = 1; right: p = 0), with different outcomes from the same realization plotted in each of four sets of

panels: a, d, g, and j; b, e, h, and k; c, f, i, and l.

https://doi.org/10.1371/journal.pcbi.1006710.g007
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with and without vaccination, due to the fact that random number seeds could maintain iden-

tical behavior with respect to some processes but not all.

Ensemble projections of CYD-TDV impact. Simulations conducted with the CYD-TDV

vaccine across the full range of the parameter p showed that, on average, the proportion of

infections averted (0.123, 95% CI: 0.113–0.133) and the proportion of disease episodes averted

(0.128, 95% CI: 0.118–0.137) were both maximized when vaccine efficacy derived from protec-

tion against infection (p = 1) (Fig 8, left). Under the opposite extreme (p = 0), a lower propor-

tion of disease episodes were averted (0.068, 95% CI: 0.059–0.078), reflecting direct protection

of vaccinees. The proportion of infections averted was approximately zero under this scenario

(0.005, 95% CI: -0.005–0.015), as infections experienced neither by vaccinees nor by others

were prevented by a vaccine that had no impact on the ability of vaccinees to transmit DENV

upon becoming infected. Differences in the proportion of infections averted and the propor-

tion of disease episodes averted were not as large across the range of uncertainty in VE cap-

tured by q (Fig 8, right). Across the full range of q (holding p at 0.5), the proportion of

infections averted varied from 0.073 (95% CI: 0.061–0.085) to 0.084 (95% CI: 0.072–0.096)

(Fig 8, right). Results for disease episodes averted were similar (from 0.095, 95% CI: 0.082–

0.107, to 0.108, 95% CI: 0.096–0.121).

Ensemble projections of generic dengue vaccine impact. Simulations conducted with

the generic dengue vaccine across the range of p also showed that proportions of infections

averted (0.076, 95% CI: 0.071–0.081) and disease episodes averted (0.075, 95% CI: 0.070–

0.081) were maximized when vaccine efficacy derived from protection against infection (p = 1)

(holding other parameters at the midpoints of their ranges: VEmean = 0.5, VEserostatus = 0.075,

VEserotype = 0.075) (Fig 9, left column). Likewise, the lowest proportions of infections averted

(0.004, 95% CI: -0.001–0.008) and disease episodes averted (0.041, 95% CI: 0.036–0.047) were

observed when p = 0. Because a much broader range of VEmean was explored in these simula-

tions than was represented by the range of q in simulations with the CYD-TDV vaccine, the

range of proportions of infections and disease episodes averted was much larger across the

range of VEmean (Fig 9, right column) than across the range of q (Fig 8, right column). Differ-

ences in vaccine efficacy associated with serostatus and serotype had a negligible effect on pro-

portions of infections and disease episodes averted (S23 Fig).

Summary across models of vaccine profile. Under both models of vaccine profile that

we considered, the assumption that efficacy derives from protection against disease (p = 0)

resulted in essentially no infections averted and relatively modest disease episodes averted (Fig

10). In contrast, the assumption that efficacy derives from protection against infection (p = 1)

resulted in disease episodes averted that were nearly twofold higher (median: 1.76; 95% CI:

1.54–2.06). In comparison, the extent of variation in infections and disease episodes averted

that was explained by variation across VE quantiles (q: 0–1) was small for the CYD-TDV vac-

cine. For the generic dengue vaccine, the proportion of disease episodes averted across the

range of uncertainty in p (0–1) was equivalent to a difference in VEmean of 0.268 (95% CI:

0.210–0.329). Differences in vaccination impact due to differences in VEserostatus and VEserotype

were more modest.

Sensitivity analysis

Under both models of vaccine profile that we considered, alternative parameter values yielded

results that were largely similar to those under default parameter values. Across all scenarios

with the CYD-TDV vaccine, differences in the proportion of infections and disease episodes

averted were relatively large across the range of p but small across the range of q (S24–S31

Figs). Across all scenarios with the generic dengue vaccine, differences in the proportion of
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Fig 8. Impacts of vaccination assessed in 1,000 pairs of simulations with and without vaccination under the CYD-TDV vaccine profile. Simulation pairs varied

with respect to the proportion of vaccine efficacy due to protection from infection, p, (left column) and the quantile of estimated vaccine efficacy, q (right column).

The proportions of cumulative infections averted (top row) and cumulative disease episodes averted (bottom row) were based on the number of each in the simulation

without vaccination minus the number of each in the simulation with vaccination, both following 20 years of routine vaccination of 9-year olds at 80% coverage. Lines

show the proportion of cumulative infections and disease episodes averted as a function of p and q, as estimated by a generalized additive model with independent

smooth terms for p and q. When one of p or q is varied, the other is held constant at 0.5. Gray bands indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006710.g008
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Fig 9. Impacts of vaccination assessed in 1,000 pairs of simulations with and without vaccination under the generic dengue vaccine profile. Simulation pairs

varied with respect to the proportion of vaccine efficacy due to protection from infection, p, (left column) and mean vaccine efficacy, VEmean (right column). The

proportion of cumulative infections averted (top row) and cumulative disease episodes averted (bottom row) were based on the number of each in the simulation

without vaccination minus the number of each in the simulation with vaccination, both following 20 years of routine vaccination of 9-year olds at 80% coverage. Lines

show the proportion of infections or diseases episodes averted as a function of each parameter varied on the x-axis, as estimated by a generalized additive model with

independent smooth terms for each parameter. When one parameter is varied, the other is held constant at the midpoint of its range, as are VEserostatus and VEserotype.

Gray bands indicate 95% confidence intervals.

https://doi.org/10.1371/journal.pcbi.1006710.g009
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infections and disease episodes averted were large across the ranges of p and VEmean and small

across the ranges of VEserostatus and VEserotype (S32–S39 Figs).

Discussion

We developed an agent-based model for DENV transmission and used it to assess the extent of

uncertainty in dengue vaccination impact projections attributable to uncertainty about break-

through infections. Our analysis was not intended to represent a comprehensive assessment of

the suitability of the CYD-TDV vaccine as a public health tool or to make a recommendation

about its use. Instead, the value of this analysis is that it provides an assessment of the extent to

which a potentially important source of uncertainty about vaccine profile might affect vaccina-

tion impact projections. Our results indicate that uncertainty about the extent to which a den-

gue vaccine prevents breakthrough infections makes a contribution to uncertainty about

vaccination impact equivalent to not knowing whether VE is 0.70 or 0.43. In the event that

information about breakthrough infections remains lacking, limiting a model to a single

assumption about this aspect of a vaccine’s profile could result in the communication of rec-

ommendations to decision makers that convey a false sense of confidence.

Across two sets of assumptions about aspects of vaccine profile unrelated to breakthrough

infections and thirteen different assumptions about model parameterization, our results were

consistent in their suggestion that the projected impact of routine vaccination of nine-year

Fig 10. Summary of vaccination impact on infections and disease episodes (rows) under two sets of assumptions about vaccine

profile (columns) at extreme values of parameters that varied across simulations (colors). Bars display point estimates and 95%

confidence intervals obtained from fitting generalized additive models to simulation results across the range of each parameter while

holding others at the midpoints of their ranges. These values correspond to the extremes displayed in Fig 8 (p, q), Fig 9 (p, VEmean), and

S23 Fig (VEserostatus, VEserotype).

https://doi.org/10.1371/journal.pcbi.1006710.g010
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olds is sensitive to the extent to which vaccination prevents breakthrough infections. These

findings mirror conclusions from impact projections of vaccines for herpes simplex virus [10],

malaria [21], and tuberculosis [57]; i.e., that vaccines that protect against infection should

result in greater indirect protection of unvaccinated people than vaccines that primarily pro-

tect against disease. Compared to numerical uncertainty about VE for CYD-TDV, uncertainty

about breakthrough infections contributed much more to uncertainty about vaccination

impact in our analysis. This does not mean that precise numerical estimates of VE are unim-

portant, but instead that uncertainty about VE following trials is typically low relative to uncer-

tainty about the degree to which efficacy derives from protection against infection or

protection against disease. Echoing this, our results using a generic dengue vaccine across a

wide range of VE show that the numerical value of vaccine efficacy is indeed important. Effi-

cacy trials substantially narrow that range, because that is precisely what they are designed to

do. At present, however, they are generally not designed to narrow uncertainty about break-

through infections.

An important question following our analysis is whether, and how, information about pro-

tection against infection could be obtained empirically for a dengue vaccine. Disease is typi-

cally the preferred endpoint in efficacy trials, but arguments in favor of an infection endpoint

can also be made in certain cases [58]. For example, the possibility of a secondary endpoint of

infection has been proposed for efficacy trials for Zika vaccines [59]. Motivations for this

include the infrequent occurrence of the disease outcome of greatest interest (congenital Zika

syndrome, CZS) [60] and a clearer relationship between Zika virus infection and CZS than

between more common disease outcomes and CZS [61]. At the same time, the short duration

of Zika virus infection [62] makes reliable detection of active infection impractical, and issues

such as cross-reactivity with other flaviviruses [63] make serological surrogates of infection

problematic. Similar challenges would likely apply to estimation of efficacy against an infection

endpoint for dengue vaccines. In the event that these challenges for endpoint measurement

could be overcome, RRinf|exp could then be estimated directly (e.g., [64,65]). Until that hap-

pens, our work demonstrates that uncertainty in RRinf|exp can (and should) be accounted for in

vaccination impact projections.

The importance of understanding the extent of breakthrough infections owes to their criti-

cal role in determining the extent of indirect protection from vaccination. Still other factors

are expected to further modulate indirect protection in a given context [22]. First, vaccination

coverage—and, for that matter, naturally acquired immunity—clearly has an influence, with

high coverage potentially compensating somewhat for imperfections in a vaccine’s profile [66].

Second, contact structure is thought to play an important role in determining the extent of

indirect protection [24,25]. Recent modeling analyses of influenza [67] and onchocerciasis

[68] showed that realistic assumptions about contact structure can lead to substantial differ-

ences in intervention impact projections. Although we view our own realistic portrayal of mos-

quito-human contact patterns as a strength of our model, the realism of a model’s assumptions

does not necessarily translate into accuracy of a model’s predictions. To address that issue,

uncertainty about model structure can be propagated into uncertainty about vaccination

impact by combining projections from models with diverse structures and assumptions, as has

been done recently for malaria [69], dengue [14], and pneumococcal disease [7].

Although our model of vaccine efficacy is consistent with several key findings from clinical

trials of CYD-TDV [16], such as serostatus- and age-dependent efficacy against disease, there

are other findings that we did not account for. One notable feature of CYD-TDV that we have

not considered pertains to protection against severe disease [70]. In particular, to the extent

that vaccination serves as a “primary-like” infection in seronegative vaccine recipients [52], the

incidence of severe disease could increase as transmission is lowered by indirect effects of
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vaccination and the proportion of seronegative vaccine recipients increases [71]. Clinical trial

data indicate, however, that whatever protection against severe disease the vaccine does afford

may wane within a few years of vaccination [16]. In addition, direct protection against severe

disease could affect indirect protection of unvaccinated individuals, given that severe disease

could be associated with heightened [20] or attenuated [72] infectiousness. At the same time,

associations between disease severity and infectiousness may trade off with other factors [73],

such as limited mobility [74]. In the end though, the relatively infrequent occurrence of severe

disease may limit the overall impact of such effects on population-level transmission [20].

Although we expect that our overall conclusions have implications beyond the context of

dengue in Iquitos, we note that our quantitative projections of cumulative proportions of

infections and disease episodes averted are not directly applicable outside this setting. These

numerical results could vary as a function of vaccination coverage, overall transmission inten-

sity, and many other factors, similar to how estimates of vaccine efficacy can be context-depen-

dent [75,76]. That said, our projections of CYD-TDV vaccination impact are in rough

agreement with a study based on an earlier version of our model and seven others [14]. We

hope that our model’s detailed representation of a well-studied, dengue-endemic population

provides a tool for future studies to explore additional questions about vaccination impact in

ways that acknowledge realistic variability in transmission patterns of the four DENV

serotypes.
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S1 Fig. Marginal distributions of parameters describing the scaling relationship between

mosquito emergence derived from Reiner et al. [49] and mosquito emergence used in the

model. Calibration iteration refers to the iteration in the calibration process to which these dis-

tributions apply, with labels corresponding to the years up to which the calibration applies

(e.g., 00 corresponds to 2000) or to calibration iterations involving all data (i.e., All1 and All2).

Two parameters were used due to switch in data collection methods used in empirical work

underlying our description of mosquito population dynamics.

(TIF)

S2 Fig. Marginal distributions of parameters describing the modal timing of DENV-1

introductions into the simulated population in each year. Calibration iteration refers to the

iteration in the calibration process to which these distributions apply, with labels correspond-

ing to the years up to which the calibration applies (e.g., 00 corresponds to 2000) or to calibra-

tion iterations involving all data (i.e., All1 and All2).

(TIF)

S3 Fig. Marginal distributions of parameters describing the modal timing of DENV-2

introductions into the simulated population in each year. Calibration iteration refers to the

iteration in the calibration process to which these distributions apply, with labels correspond-

ing to the years up to which the calibration applies (e.g., 00 corresponds to 2000) or to
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calibration iterations involving all data (i.e., All1 and All2).

(TIF)

S4 Fig. Marginal distributions of parameters describing the modal timing of DENV-3

introductions into the simulated population in each year. Calibration iteration refers to the

iteration in the calibration process to which these distributions apply, with labels correspond-

ing to the years up to which the calibration applies (e.g., 00 corresponds to 2000) or to calibra-

tion iterations involving all data (i.e., All1 and All2).

(TIF)

S5 Fig. Marginal distributions of parameters describing the modal timing of DENV-4

introductions into the simulated population in each year. Calibration iteration refers to the

iteration in the calibration process to which these distributions apply, with labels correspond-

ing to the years up to which the calibration applies (e.g., 00 corresponds to 2000) or to calibra-

tion iterations involving all data (i.e., All1 and All2). No DENV-3 importation was simulated in

years in which DENV-3 was not observed empirically in Iquitos.

(TIF)

S6 Fig. Marginal distributions of parameters for scaling the magnitude of DENV-1 intro-

ductions into the simulated population in each year. Calibration iteration refers to the itera-

tion in the calibration process to which these distributions apply, with labels corresponding to

the years up to which the calibration applies (e.g., 00 corresponds to 2000) or to calibration

iterations involving all data (i.e., All1 and All2). No DENV-4 importation was simulated in

years in which DENV-4 was not observed empirically in Iquitos.

(TIF)

S7 Fig. Marginal distributions of parameters for scaling the magnitude of DENV-2 intro-

ductions into the simulated population in each year. Calibration iteration refers to the itera-

tion in the calibration process to which these distributions apply, with labels corresponding to

the years up to which the calibration applies (e.g., 00 corresponds to 2000) or to calibration

iterations involving all data (i.e., All1 and All2).

(TIF)

S8 Fig. Marginal distributions of parameters for scaling the magnitude of DENV-3 intro-

ductions into the simulated population in each year. Calibration iteration refers to the itera-

tion in the calibration process to which these distributions apply, with labels corresponding to

the years up to which the calibration applies (e.g., 00 corresponds to 2000) or to calibration

iterations involving all data (i.e., All1 and All2). No DENV-3 importation was simulated in

years in which DENV-3 was not observed empirically in Iquitos.

(TIF)

S9 Fig. Marginal distributions of parameters for scaling the magnitude of DENV-4 intro-

ductions into the simulated population in each year. Calibration iteration refers to the itera-

tion in the calibration process to which these distributions apply, with labels corresponding to

the years up to which the calibration applies (e.g., 00 corresponds to 2000) or to calibration

iterations involving all data (i.e., All1 and All2). No DENV-4 importation was simulated in

years in which DENV-4 was not observed empirically in Iquitos.

(TIF)

S10 Fig. Correlations between 64 parameters in the joint distribution of model parameters

at each iteration of the calibration. Calibration iteration refers to the iteration in the calibra-

tion process to which these distributions apply, with labels corresponding to the years up to
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which the calibration applies (e.g., 00 corresponds to 2000) or to calibration iterations involv-

ing all data (i.e., All1 and All2). Each line indicates the trajectory of the correlation between a

given pair of parameters over the course of the calibration process.

(TIF)

S11 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that the net infectiousness of

asymptomatic infections is half that of symptomatic infections. Other assumptions followed

the default set of assumptions.

(TIF)

S12 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that the average duration of

temporary cross-immunity is 180 days. Other assumptions followed the default set of assump-

tions.

(TIF)

S13 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that the duration of temporary

cross-immunity was identical for all individuals. Other assumptions followed the default set of

assumptions.

(TIF)

S14 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that mosquito infectiousness

was 0.5. Other assumptions followed the default set of assumptions.

(TIF)

S15 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that mosquito biting rate was

half that under default assumptions. Other assumptions followed the default set of assump-

tions.

(TIF)

S16 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that mosquito biting rate was

double that under default assumptions. Other assumptions followed the default set of assump-

tions.

(TIF)
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S17 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that mosquito death rate was

half that under default assumptions. Other assumptions followed the default set of assump-

tions.

(TIF)

S18 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that mosquito death rate was

double that under default assumptions. Other assumptions followed the default set of assump-

tions.

(TIF)

S19 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that the extrinsic incubation

period was half that under default assumptions. Other assumptions followed the default set of

assumptions.

(TIF)

S20 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that the extrinsic incubation

period was double that under default assumptions. Other assumptions followed the default set

of assumptions.

(TIF)

S21 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that mosquito movement

probability was 0.1. Other assumptions followed the default set of assumptions.

(TIF)

S22 Fig. Monthly, serotype-specific incidence of infection per capita, as estimated by Rei-

ner et al. [49] (gray bands) and as reproduced by our calibrated model (colored bands).

Bands show the range of values in which 95% of simulated values lie for a given serotype in a

given month. These values were obtained under the assumption that mosquito movement

probability was 0.5. Other assumptions followed the default set of assumptions.

(TIF)

S23 Fig. Impacts of vaccination assessed in 1,000 pairs of simulations with and without

vaccination with the generic vaccine. Simulation pairs varied with respect to variation in vac-

cine efficacy associated with serostatus, VEserostatus, (second column) and variation in vaccine

efficacy associated with serotype, VEserotype (right column). The proportion of cumulative

infections averted (top row) and cumulative disease episodes averted (bottom row) were based

on the number of each in the simulation without vaccination minus the number of each in the
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simulation with vaccination, both following 20 years of routine vaccination of 9-year olds at

80% coverage. Lines show the proportion of infections or disease episodes averted as a func-

tion of each parameter varied on the x-axis, as estimated by a generalized additive model with

independent smooth terms for each parameter. When one parameter is varied, the other is

held constant at the midpoint of its range, as are p and VEmean. Gray bands indicate 95% confi-

dence intervals.

(TIF)

S24 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the CYD-TDV vaccine profile at extreme values of parameters that varied across

simulations (rows) under different assumptions about human infectiousness (colors). Bars

display point estimates and 95% confidence intervals obtained from fitting generalized addi-

tive models to simulation results across the range of each parameter while holding others at

the midpoints of their ranges. These values are comparable to the extremes displayed in Fig 8

(p, q) but under different assumptions about human infectiousness.

(TIF)

S25 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the CYD-TDV vaccine profile at extreme values of parameters that varied across

simulations (rows) under different assumptions about the duration of cross-immunity

(colors). Bars display point estimates and 95% confidence intervals obtained from fitting gen-

eralized additive models to simulation results across the range of each parameter while holding

others at the midpoints of their ranges. These values are comparable to the extremes displayed

in Fig 8 (p, q) but under different assumptions about the duration of cross-immunity.

(TIF)

S26 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the CYD-TDV vaccine profile at extreme values of parameters that varied across

simulations (rows) under different assumptions about inter-individual variability in the

duration of cross-immunity (colors). Bars display point estimates and 95% confidence inter-

vals obtained from fitting generalized additive models to simulation results across the range of

each parameter while holding others at the midpoints of their ranges. These values are compa-

rable to the extremes displayed in Fig 8 (p, q) but under different assumptions about inter-

individual variability in the duration of cross-immunity.

(TIF)

S27 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the CYD-TDV vaccine profile at extreme values of parameters that varied across

simulations (rows) under different assumptions about mosquito infectiousness (colors).

Bars display point estimates and 95% confidence intervals obtained from fitting generalized

additive models to simulation results across the range of each parameter while holding others

at the midpoints of their ranges. These values are comparable to the extremes displayed in Fig

8 (p, q) but under different assumptions about mosquito infectiousness.

(TIF)

S28 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the CYD-TDV vaccine profile at extreme values of parameters that varied across

simulations (rows) under different assumptions about mosquito biting rate (colors). Bars

display point estimates and 95% confidence intervals obtained from fitting generalized addi-

tive models to simulation results across the range of each parameter while holding others at

the midpoints of their ranges. These values are comparable to the extremes displayed in Fig 8
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(p, q) but under different assumptions about mosquito biting rate.

(TIF)

S29 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the CYD-TDV vaccine profile at extreme values of parameters that varied across

simulations (rows) under different assumptions about mosquito death rate (colors). Bars

display point estimates and 95% confidence intervals obtained from fitting generalized addi-

tive models to simulation results across the range of each parameter while holding others at

the midpoints of their ranges. These values are comparable to the extremes displayed in Fig 8

(p, q) but under different assumptions about mosquito death rate.

(TIF)

S30 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the CYD-TDV vaccine profile at extreme values of parameters that varied across

simulations (rows) under different assumptions about the extrinsic incubation period (col-

ors). Bars display point estimates and 95% confidence intervals obtained from fitting general-

ized additive models to simulation results across the range of each parameter while holding

others at the midpoints of their ranges. These values are comparable to the extremes displayed

in Fig 8 (p, q) but under different assumptions about the extrinsic incubation period.

(TIF)

S31 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the CYD-TDV vaccine profile at extreme values of parameters that varied across

simulations (rows) under different assumptions about mosquito movement probability

(colors). Bars display point estimates and 95% confidence intervals obtained from fitting gen-

eralized additive models to simulation results across the range of each parameter while holding

others at the midpoints of their ranges. These values are comparable to the extremes displayed

in Fig 8 (p, q) but under different assumptions about mosquito movement probability.

(TIF)

S32 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the generic dengue vaccine profile at extreme values of parameters that varied

across simulations (rows) under different assumptions about human infectiousness (col-

ors). Bars display point estimates and 95% confidence intervals obtained from fitting general-

ized additive models to simulation results across the range of each parameter while holding

others at the midpoints of their ranges. These values are comparable to the extremes displayed

in Fig 9 (p, VEmean) and S23 Fig (VEserostatus, VEserotype) but under different assumptions about

human infectiousness.

(TIF)

S33 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the generic dengue vaccine profile at extreme values of parameters that varied

across simulations (rows) under different assumptions about the duration of cross-immu-

nity (colors). Bars display point estimates and 95% confidence intervals obtained from fitting

generalized additive models to simulation results across the range of each parameter while

holding others at the midpoints of their ranges. These values are comparable to the extremes

displayed in Fig 9 (p, VEmean) and S23 Fig (VEserostatus, VEserotype) but under different assump-

tions about the duration of cross-immunity.

(TIF)

S34 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the generic dengue vaccine profile at extreme values of parameters that varied
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across simulations (rows) under different assumptions about inter-individual variability

in the duration of cross-immunity (colors). Bars display point estimates and 95% confidence

intervals obtained from fitting generalized additive models to simulation results across the

range of each parameter while holding others at the midpoints of their ranges. These values

are comparable to the extremes displayed in Fig 9 (p, VEmean) and S23 Fig (VEserostatus, VEsero-

type) but under different assumptions about inter-individual variability in the duration of

cross-immunity.

(TIF)

S35 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the generic dengue vaccine profile at extreme values of parameters that varied

across simulations (rows) under different assumptions about mosquito infectiousness (col-

ors). Bars display point estimates and 95% confidence intervals obtained from fitting general-

ized additive models to simulation results across the range of each parameter while holding

others at the midpoints of their ranges. These values are comparable to the extremes displayed

in Fig 9 (p, VEmean) and S23 Fig (VEserostatus, VEserotype) but under different assumptions about

mosquito infectiousness.

(TIF)

S36 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the generic dengue vaccine profile at extreme values of parameters that varied

across simulations (rows) under different assumptions about mosquito biting rate (col-

ors). Bars display point estimates and 95% confidence intervals obtained from fitting general-

ized additive models to simulation results across the range of each parameter while holding

others at the midpoints of their ranges. These values are comparable to the extremes displayed

in Fig 9 (p, VEmean) and S23 Fig (VEserostatus, VEserotype) but under different assumptions about

mosquito biting rate.

(TIF)

S37 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the generic dengue vaccine profile at extreme values of parameters that varied

across simulations (rows) under different assumptions about mosquito death rate (colors).

Bars display point estimates and 95% confidence intervals obtained from fitting generalized

additive models to simulation results across the range of each parameter while holding others

at the midpoints of their ranges. These values are comparable to the extremes displayed in Fig

9 (p, VEmean) and S23 Fig (VEserostatus, VEserotype) but under different assumptions about mos-

quito death rate.

(TIF)

S38 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the generic dengue vaccine profile at extreme values of parameters that varied

across simulations (rows) under different assumptions about the extrinsic incubation

period (colors). Bars display point estimates and 95% confidence intervals obtained from fit-

ting generalized additive models to simulation results across the range of each parameter while

holding others at the midpoints of their ranges. These values are comparable to the extremes

displayed in Fig 9 (p, VEmean) and S23 Fig (VEserostatus, VEserotype) but under different assump-

tions about the extrinsic incubation period.

(TIF)

S39 Fig. Summary of vaccination impact on infections and disease episodes (columns)

under the generic dengue vaccine profile at extreme values of parameters that varied
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across simulations (rows) under different assumptions about mosquito movement proba-

bility (colors). Bars display point estimates and 95% confidence intervals obtained from fitting

generalized additive models to simulation results across the range of each parameter while

holding others at the midpoints of their ranges. These values are comparable to the extremes

displayed in Fig 9 (p, VEmean) and S23 Fig (VEserostatus, VEserotype) but under different assump-

tions about mosquito movement probability.

(TIF)

S40 Fig. Relationship between vaccine efficacy against disease (VE) and per-exposure pro-

tection, θ, for different values of the infection attack rate, FOIΔt, over the period of a vac-

cine trial.

(TIF)
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