UC Davis

Neurological Surgery

Title

Decrease in neuronal firing rate in the STN after microelectrode insertion during DBS surgery for Parkinson's disease

Permalink

https://escholarship.org/uc/item/6s06z6bk

Authors

Clark, Austin J Izadi, Ali Overton, Jacqueline et al.

Publication Date

2022

Data Availability

The data associated with this publication are not available for this reason: N/A

Decrease in neuronal firing rate in the STN after microelectrode insertion during DBS

surgery for Parkinson's disease

UCDAVIS SCHOOL OF MEDICINE

Austin J.S. Clark, Ali Izadi, Jacqueline Overton, Kevin N O'Connor, Gene Gurkoff, Ignacio Saez, Kiarash Shahlaie Department of Neurological Surgery, University of California, Davis, CA, USA

Introduction

Background

Characterization of electrophysiological recordings during deep brain stimulation (DBS) surgery is critical for anatomical targeting and is extensively utilized to investigate physiologic markers of Parkinson's Disease (PD).^{1,2} Transient improvement in clinical symptoms has been reported after microelectrode penetration, but the mechanism(s) underlying this improvement are not well understood.³ DBS treatment leads to a suppression of the increased tonic firing rates of the Subthalamic Nucleus (STN) for PD.4 Thus, we sought to determine the acute electrophysiologic effects of microelectrode penetration in the STN.

Methods

Patients

We obtained microelectrode recordings from six patients with advanced PD who underwent surgical implantation of bilateral DBS electrodes in the STN.

Microelectrode Recordings

Single- (SU) and multi-unit (MU) recordings were collected beginning at the entrance of the dorsal border of the STN as determined by electrophysiological criteria.^{5,6} These recordings were 8 seconds in duration and were obtained at 0.3mm steps until the ventral border was reached (Figure 1). The microelectrode was then extracted in a step-wise fashion using 0.3mm-step increments to ensure repeat 8-second recordings obtained from the same anatomic positions.

Data Pre-processing and Analysis

Data was processed and analyzed in MATLAB 2020a using custom scripts and the Fieldtrip toolbox. Significance was determined using Wilcoxon signed-rank nonparametric tests. A pof statistically significant.

Figure 1 - Path of recordings (orange line representing direction of insertion; green line representing direction of extraction; red targets indicating recording locations; not to scale).

Hypothesis: Microelectrode penetration will cause decreased firing rates in single-/multi-unit recordings.

Patient Demographics						
Patient	Age/Gender	Handedness	Sx Dominant Side	Disease duration/yrs	Awake/Asleep	
STN 1	62M	RHD	Right (bilateral)	9	Awake	
STN 2	46M	RHD	Right	9	Awake	
STN 3	57F	LHD	Right	~20	Asleep	
STN 4	65F	RHD	Right	5	Awake	
STN 5	81M	RHD	Bilateral	8	Asleep	
STN 6	53M	RHD	Right (bilateral)	9	Awake	

Methods (Cont.)

Waveforms were filtered and thresholded to obtain timepoints for spikes processed by sliding rectangular window functions along the spike trains to determine firing rates for each 8-second recording. Waveform analysis performed to filter out noise causing artifacts prior to performing data analyses. The MU firing rates for each location were then normalized by converting raw rates to a % rate between extraction and insertion recordings. All patient data was then pooled for larger data analysis.

Results

Firing Rate Differences Within Patients

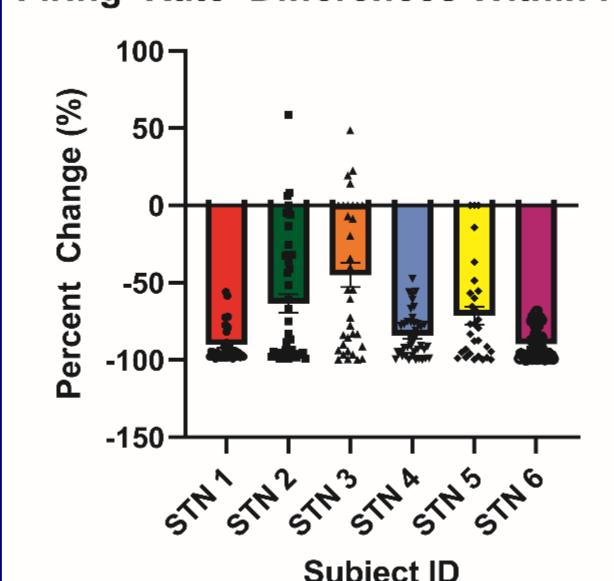


Figure 2 – Percent differences (bars) in firing rates during insertion of microelectrode compared to those during extraction of microelectrode for each patient's recordings (both hemispheres combined).

Patient		Median (Right)	Median (Both)
STN 1	I: 107.1	I: 83.3	I: 91.8
	E: 13.3	E: 3.1	E: 5.1
STN 2	I: 99.4	I: 88.9	I: 98.1
	E: 10.1	E: 7.6	E: 9.3
STN 3	I: 3.6	I: 8.6	I: 6.3
	E: 2.9	E: 6	E: 4.3
STN 4	I: 57.4	I: 14.8	I: 18.3
	E: 6	E: 0.9	E: 2.6
STN 5	I: 7.3	I: 36.3	I: 17.4
	E:1.9	E: 5.7	E: 3.1
STN 6	I: 134.8	I: 138.3	I: 138.3
	E: 5.9	E: 8.3	E: 7.1
ALL	I: 59.4	I: 49.6	I: 55.9
DATA	E: 6.8	E: 4.9	E: 5.9

of recordings during insertion (I) and during (pooled data). extraction (E) of the microelectrode.

Firing Rate Differences

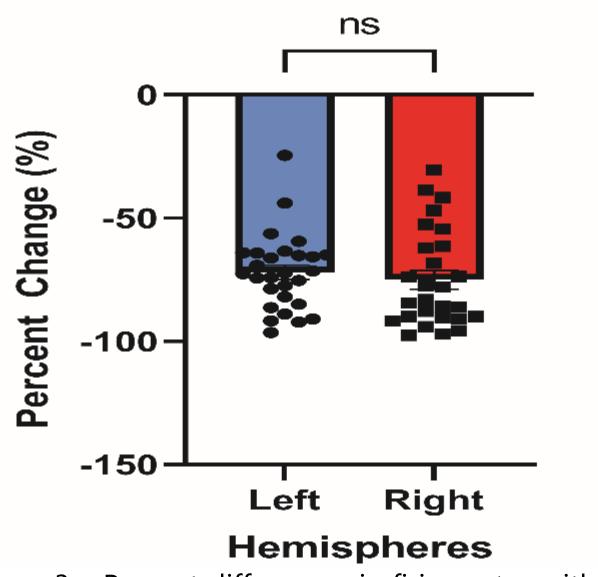


Figure 3 – Percent differences in firing rates within the Table 1 – Median firing rates (spikes per sec) left and right hemispheres of all patients combined

Summary of Results

Pooled Firing Rate Data

- Significant decrease in firing rate during extraction compared to insertion of microelectrode (5.9 vs. 55.9 spikes/second)
- Data significant at p<0.0001 (One-sample Wilcoxon signedrank test; n=242)

Left Hemisphere vs Right Hemisphere

No significant difference between left and right hemisphere data (p = 0.36), thus combined for overall analysis

Conclusions & Future Directions

Conclusions

- There is an effect of microelectrode penetration on the single-/multi-unit activity in electrophysiologic recordings of the STN:
- Could represent an electrophysiologic effect produced by a lesion from penetration
- May be related to electrophysiologic changes from subthalamotomies
- However, unable to determine if only a transient effect

Future Studies

- Larger sample size to verify results
- Longer recording times to determine transience vs permanence of effect
- Long-term recordings from implantable electrode
- More brain locations to expand generalizability
- Correlate with clinical outcomes for potential predictive modeling
- Spike-field correlational analyses

References

- Benazzouz A, Breit S, Koudsie A, Pollak P, Krack P, Benabid AL. Intraoperative microrecordings of the subthalamic nucleus in Parkinson's disease. Mov Disord. 2002;17 Suppl 3:S145-9.
- Amirnovin R, Williams ZM, Cosgrove GR, Eskandar EN. Experience with microelectrode guided subthalamic nucleus deep brain stimulatio Neurosurgery. 2006;58(1 Suppl):ONS96-102; discussion ONS96-Mann JM, Foote KD, Garvan CW, Fernandez HH, Jacobson CEt, Rodriguez RL, et al. Brain penetration effects of microelectrodes and DBS
- leads in STN or GPi. J Neurol Neurosurg Psychiatry. 2009;80(7):794-7 Milosevic, L., et al. (2019). "Subthalamic suppression defines therapeutic threshold of deep brain stimulation in Parkinson's disease." J
- Wang J, Hirschmann J, Elben S, Hartmann CJ, Vesper J, Wojtecki L, et al. High-frequency oscillations in Parkinson's disease: spatial
- distribution and clinical relevance. Mov Disord. 2014;29(10):1265-72.
- Yang Al, Vanegas N, Lungu C, Zaghloul KA. Beta-coupled high-frequency activity and beta-locked neuronal spiking in the subthalamic nucleus of Parkinson's disease. J Neurosci. 2014;34(38):12816-27.