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Abstract

Large Language models (LLM) exhibit human-like proficiency
in various tasks such as translation, question answering, es-
say writing, and programming. Emerging research explores
the use of LLMs in collective problem-solving endeavors,
such as tasks where groups try to uncover clues through dis-
cussions. Although prior work has investigated individual
problem-solving tasks, leveraging LLM-powered agents for
group consensus and decision-making remains largely unex-
plored. This research addresses this gap by (1) proposing an
algorithm to enable free-form conversation in groups of LLM
agents, (2) creating metrics to evaluate the human-likeness of
the generated dialogue and problem-solving performance, and
(3) evaluating LLM agent groups against human groups using
an open source dataset. Our results reveal that LLM groups
outperform human groups in problem-solving tasks. LLM
groups also show a greater improvement in scores after par-
ticipating in free discussions. In particular, analyses indicate
that LLM agent groups exhibit more disagreements, complex
statements, and a propensity for positive statements compared
to human groups. The results shed light on the potential of
LLMs to facilitate collective reasoning and provide insight into
the dynamics of group interactions involving synthetic LLM
agents.

Keywords: Small Group, Language Model, Simulation

Introduction
Large Language Models (LLMs) are gaining widespread
adoption due to their seemingly remarkable reasoning power
and emergent generalization ability, which have the potential
to construct intelligent agents, driving recent advancements in
a variety of human language tasks (Ouyang et al., 2022; Wei
et al., 2022), including tasks such as web surfing (Nakano et
al., 2021; Yao et al., 2022), complex video games (Y. Chang
et al., 2023), and other applications (Ahn et al., 2022). In a
recent work, Zeims et al. found that LLM agents were able
to achieve a fair level of performance conducting tasks in-
volved in computational social science research, for exam-
ple, achieving sufficient agreement with human annotators
and providing explanations that surpass those generated by
crowd workers (Ziems et al., 2023). Despite these achieve-
ments, the current focus of LLM research mainly revolves
around individual tasks, leaving the potential of these models
in collective problem-solving tasks largely understudied.

Small groups play an important role in connecting peo-
ple within larger social systems and in fostering social

cohesion (Fine, 2014). These groups serve as plat-
forms for individual interactions, including virtual meet-
ings (Karl, Peluchette, & Aghakhani, 2022), workplace dis-
cussions (Forsell, Forslund Frykedal, & Hammar Chiriac,
2020), recreational activities (Vernham, Granhag, & Mac Gi-
olla, 2016), and educational settings (Liu & Tsai, 2008;
Yadgarovna & Husenovich, 2020). A deeper understanding
of human conversational dynamics within small groups is es-
sential to improve teamwork, resolve conflicts, and foster ef-
fective problem-solving. However, the limited availability of
group corpora (J. P. Chang et al., 2020) poses a significant
challenge to advance research in this area. LLMs, trained on
human datasets, offer a promising way to address this data
scarcity (Bommasani et al., 2021).

Recent research has explored the potential of LLMs to em-
ulate human-like behavior at the group level. (Aher, Arriaga,
& Kalai, 2023) examined LLMs in the context of human stud-
ies and showed that LLMs can replicate various experiments
that span the domains of economic, psycholinguistic, and so-
cial psychology. Other recent contributions from social sim-
ulation used a prompt chain methodology to generate con-
cise natural language descriptions of personas and their be-
haviors (Park et al., 2023). Additionally, (Zhou et al., 2023)
introduced an open-ended environment designed to simulate
social interactions between language agents, evaluating their
ability to achieve social objectives.

However, existing research has predominantly focused on
evaluating individual agent performance, neglecting to ex-
plore the emergent behavior of the interaction between agents
within small groups. Our research addresses this gap by intro-
ducing a model designed to emulate free-form conversation
for problem-solving within small groups. This algorithm, in-
tegrated with LLMs, generates group discussions aimed at
solving complex tasks. Using the publicly available Win-
ter Survival Task dataset (Humphreys, Johnson, & Johnson,
1982), developed to understand the dynamics of team build-
ing and group problem solving, we propose a mechanism that
enables free-form discussions among an arbitrary number of
agents without imposing predefined interaction rules. We
conducted a comparative analysis between the synthetic cor-
pus generated by our model and the human corpus collected
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by Braley and Murray (2018), focusing on metrics related to
performance and efficiency, affect and satisfaction, and group
action and airtime. Our findings reveal that LLM groups out-
perform human groups in the Winter Survival Task, mainly
by participating in more disagreements, complex statements,
and more positive rather than negative statements compared
to human groups.

Related Work

Dialogue Systems. Dialogue systems are widely applied in
various big data domains, including computer vision and rec-
ommender systems (Chen, Liu, Yin, & Tang, 2017). Exist-
ing dialogue systems fall into two categories: task-oriented
systems and conversational agents. Task-oriented dialogue
systems are characterized by clearly defined goals, struc-
tured dialogue behavior, closed domains, and a focus on ef-
ficiency (Raux, 2008; Cole et al., 2018). They operate by
tracking dialogue states and generating responses based on
them, with their performance assessed mainly by task success
rates and user ratings (Cuayáhuitl, Keizer, & Lemon, 2015;
Schmitt & Ultes, 2015). In contrast, conversational agents are
designed for unstructured, open-domain conversations with
users (Tulshan & Dhage, 2019). Evaluating conversational
dialogue systems remains a challenge (Deriu et al., 2021),
typically relying on metrics such as response appropriateness
(e.g., coherence, relevance) and human likeness, measured
by their ability to mimic humans convincingly. However,
these metrics focus on individual conversational properties.
We propose a novel approach for evaluating conversational
agents by assessing their human likeness regarding group be-
havior.

Conversation Analysis. Communication or conversation
analysis involves studying socially organized human inter-
action, aiming to understand the shared procedures guiding
participants in producing and recognizing meaningful actions
(Liddicoat, 2021). Human discourse is studied as a dy-
namic interplay driven by informational and relational mo-
tives (Yeomans, Schweitzer, & Brooks, 2022). At the core
of this process lies turn-taking, marking transitions between
speakers (Seuren, Wherton, Greenhalgh, & Shaw, 2021).
Past work has found that turn-taking is challenging to analyze
because transitions can happen with or without gaps, turn or-
der could vary, and the relative distribution of turn allocation
cannot be pre-determined or modeled (Sacks, Schegloff, &
Jefferson, 1978).

On the basis of these findings, we propose a novel, free-
form conversation algorithm capable of generating locally or-
ganized and interactionally managed dialogues. In our ap-
proach, the ”next speaker” is self-selected, contingent upon
each agent’s individual decision to contribute to the conver-
sation. Since it is impossible to find a decontextualized set
of linguistic forms of turns, our algorithm empowers LLM
agents to autonomously determine speech turns within the
conversational flow.

Method
We utilized an existing dataset collected from an exper-
iment conducted using the winter survival task paradigm
(Humphreys et al., 1982). The dataset was used to model
and analyze LLM’s performance in emulating conversations
in small groups. First, we briefly describe the winter survival
task (WST) and the dataset from the experiment conducted
using WST. Later, we describe the algorithm used to con-
struct LLM agents to model and emulate the conversations
observed within human teams in the experiment.

Task and Human Corpus
Winter Survival Task. The winter survival task (Humphreys
et al., 1982) is a group decision-making exercise consisting
of a hypothetical scenario of a plane crash. Participants in ex-
periments using this paradigm are told they are stranded in a
remote place and must survive using 15 items that were sup-
posedly salvaged from the plane they traveled. Examples in-
clude a compress kit, a fluid-free cigarette lighter, a compass,
and a family-sized chocolate bar. Participants are presented
with these 15 items and must work in small groups to discuss
and rank each item according to its importance for their sur-
vival in that situation. Participants are instructed to indepen-
dently rank the 15 items before the group discussion begins.
Following individual rankings by each participant within the
group, each group is given a maximum of 15 minutes to col-
lectively deliberate and reach a consensus as a group on the
final ranking of the items. The group’s conversations and de-
liberations during this task were recorded as conversations.
Rankings submitted by the individuals and groups are scored
according to the human expert ranking.1 Finally, the partic-
ipants answered a questionnaire on five-point Likert scales
to how strongly they agreed with statements concerning the
meeting.

Human Corpus. The human dataset comprises 28
groups, a total of 84 participants. The group sizes range from
two to four members. There were 6 groups with 2 members,
16 groups with 3 members, and 6 groups with 4 members.
Speaker-level data includes demographics and answers to the
post-experiment questionnaire. Utterance-level data includes
text transcription, timestamp, sentiment annotation (positive,
negative), and decision annotation. Decision annotation de-
notes a group decision process, and possible values include
proposal, agreement, disagreement, and confirmation. More
details of the dataset can be found in (Braley & Murray,
2018). Each person belongs to one group, and each group
has one conversation.

LLM-simulated Corpus
Language Agent. Figure 1 illustrates the architecture of the
language agent. The rest of this section describes the com-
ponents presented in the architecture: Utterance, Conversa-
tion History, Reflection, and Actions (speak/silent). Ope-
nAI’s API querying system (Achiam et al., 2023) is used to

1https://ed.fnal.gov/arise/guides/bio/1-
Scientific%20Method/1b-WinterSurvivalExercise.pdf
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Figure 1: Language Agent

drive interactions between agents. To ensure the validity and
reproducibility of our evaluations, we use fixed versions of
these models in our experiments. Specifically, we utilized the
0613 version of GPT-4-32k.

The architecture is developed to emulate conversations in
a small group. Each agent in the group observes utterances
made by other agents during the conversation and remembers
the conversation using a conversation history. This conver-
sation history is then used to reflect and make decisions on
whether to interject or remain silent after each utterance made
by other agents in the group.

Utterance and Conversation history Utterance within the
architecture represents text uttered by the agent currently
speaking and observed by other agents in the group. We
assume the agents could remember the entire conversation
because the duration of group discussions emulated is rel-
atively short (15 minutes discussion). Thus, each agent is
programmed to store and maintain the conversation history
as a data structure that persists across calls/prompts made to
LLMs to choose an action during the conversation, akin to
working memory. Specifically, this conversation history is
maintained as a list data structure that consists of a series of
(speaker id, text) pairs in the order they appeared during the
conversation.

At each prompt to LLM, the conversation history is pro-
vided as input for decision-making and utterance generation.
The agents have no episodic memory since they only ”par-
ticipate” in this group task once, which does not require the
storage of experience from multiple group decision cycles.
We rely on the implicit knowledge stored in the LLM weights
and do not initialize the agents with external semantic knowl-
edge support.

Actions. Actions can be divided into two types: ”Reason-
ing actions” and ”Statement actions”. The reasoning action
consists of two sub-actions performed in a sequence: rank-
ing update and floor action. In this sequence the agents are
first prompted to update their ranking (ranking update) of
the 15 items at the end of each utterance they observe. The
agents then synthesize their ranking and conversation history
to make a floor action decision: grab the conversation floor or
release the floor. If the agent determines to talk, the statement

action talk will be triggered to generate natural languages that
convey its opinion.

Four prompts are involved in the simulation. The Task De-
scription prompt is identical to the one used in the human
experiment to describe the task to LLM agents, abbreviated
for the sake of space. The ranking update prompt asks the
agents to consider the propositions by other agents during the
conversation, integrate them, and update their ranking of the
15 items. The floor action prompt reflects humans’ decisions
and actions on the conversation floor during the discussion,
e.g., interject or remain silent. Finally, the talk prompt is used
to generate text when the agent decides to speak up. The word
limit is empirically set as 40 (maximum utterance length in
human corpus) to avoid lengthy sentences. An auxiliary re-
plyTo attribute is included to improve the coherence of the
conversation and to explicitly show whether the speaker is
specifically talking to one of the other agents or broadcasting
to the entire group.

The prompts were designed to follow a role-based system
to differentiate between system roles and user roles (Oren,
Sagawa, Hashimoto, & Liang, 2019). The system roles are
used to configure the LLM identity (i.e., survivor x). We
leave the customization of the model’s tone, style, and per-
sona for future exploration. The user roles are used to con-
figure the task description and task prompt. The reasoning
attribute is an auxiliary one to explicitly show the LLM de-
duction process, which has been widely used to improve their
performance in a variety of applications such as knowledge-
intensive tasks (Yao et al., 2022) and decision-making tasks
(Shinn, Labash, & Gopinath, 2023).

Free-form Conversation Algorithm
Following the same procedure in the human-subject experi-
ment, each agent is first instructed to complete the WST indi-
vidually. The agents are then assigned to groups of 2, 3, and
4 members to complete the WST. The agents are instructed to
collaborate and discuss their individual rankings and come to
a consensus on a group ranking. Then, each agent is individ-
ually prompted to complete the post-task questionnaires.

Figure 2 illustrates the execution loop that allows free-form
conversation (FFC) among agents. The speaker who utters
the first sentence initiates the conversation and grabs posses-
sion of the ”conversation floor.” The remaining agents in the
group observe what is being said by the speaking agent. The
speaker keeps the floor until another agent tries to claim the
floor. Meanwhile, the listening agents monitor conversation
history, periodically deciding whether to claim the floor or re-
main silent. If no one attempts to claim the floor, the speaker
keeps talking until the agent determines to release the floor
to others. If more than one agent attempts to claim the floor,
one of them is randomly chosen as the next speaker. When
the conversation floor is free, and a consensus has not yet
been reached, the agents are repeatedly prompted to reassess
the situation and decide whether to speak up. If none of the
agents recognizes the obligation to speak up and continue
the discussion, the conversation is ceased, and the group task
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ends in failure.

Figure 2: Flow diagram to describe the process that agents
follow to generate free-form conversations

Group Decision-Making Annotations. Synthetic conver-
sation corpus generated from the LLM simulation was an-
notated with the same four group decision-making annota-
tions: Proposal, Agreement, Disagreement, and Confirma-
tion. The annotation process was automated using the ProS-
eqo (Kozareva & Ravi, 2019) method, which currently ranks
first on the leaderboard of dialogue act classification based
on the Switchboard Dialog Act Corpus (Jurafsky, Shriberg,
& Biasca, 1997). We fine-tuned the network on 60% of
the annotated human corpus and achieved 72.4% agreement
with human annotation on the remaining 40% human corpus.
72.4% is a satisfactory kappa value.

Sentiment Annotations. Synthetic corpus was also anno-
tated for sentiment. We follow the same annotation scheme
used to annotate the human corpus. The annotation process
for sentiment was also automated. DistilBERT (Sanh, De-
but, Chaumond, & Wolf, 2019; Wolf et al., 2019) was used
to automate the sentiment annotation process. We first fine-
tuned the network on 60% of the annotated human corpus and
achieved 81.3% agreement with the human annotation on the
remaining 40% human corpus. 81.3% is a satisfactory kappa
value.

Corpus Evaluation Metrics
To systemically evaluate the human likeness of language
agents’ behavior and the potential to use them in group re-
search, we propose to evaluate the agents on the following
metrics.

Score and Meeting Length. We measure the task per-
formance at both individual and group levels using the
task score. AIS (Absolute Individual Score) is calculated
based on the differences between the individual’s rank-
ing and the human expert ranking of each item [100 −

∑
i∈∥items∥

∥RankIndividual(i)− RankExpert(i)∥]. AGS (Absolute

Group Score) is calculated based on the differences be-
tween the group’s ranking and the human expert ranking
of each item [100− ∑

i∈∥items∥
∥RankGroup(i)−RankExpert(i)∥].

All members in groups with AGS ≥ 50 can survive. With
a score between (40,49], one might get frostbite. At most
3 members can survive with AGS ∈ (30,39]. Groups with
AGS ≤ 30 are in serious danger. As a baseline, The distribu-
tion of random performance was analyzed using a Gaussian
(normal) distribution model. The mean of the fitted Gaussian
distribution was estimated to be µ = 15.34 with a standard
deviation σ = 12.71, R2 = 0.95.

To analyze the efficiency of meetings, we measured the
Meeting Length in terms of the number of words used dur-
ing the conversations instead of the length of time since the
LLM agents are not embedded in the real world and they
can output text as fast as their CPU/GPU will allow. For a
fair comparison between verbal conversation among humans
and a text-based interaction among agents, the back channels
(e.g., cough, nod, or unclear utterances like ”uh”) in the hu-
man corpus were excluded from the analysis.

Affect and Satisfaction. We measure the affection of the
groups of agents based on the sentiment of each utterance and
the peer evaluation in the post-experiment questionnaire. Pos-
itivity and Negativity are the number of utterances annotated
as positive or negative. The Satisfaction is the group average
of the Overall Satisfaction of each agent, which is the average
of the five Likert-scale in the post-experiment questionnaire.

Group Action and Airtime. The decision-making behav-
ior is measured in terms of both high-level speech acts and
low-level turn-taking. Group action proportions are the num-
ber of utterances labeled as proposal, agreement, disagree-
ment, confirmation divided by the total number of utterances
of the group conversation. Airtime proportion is the number
of words uttered by each speaker divided by the total word
count of the conversation.

Results
Performance
Figure 3 illustrates the group score and meeting length
of human and agent groups. One-way between-subjects
ANOVA with human or agent as the main factor shows that
the groups of language agents perform significantly better
than human groups across three group sizes [F(1,147) =
5.121, p < 0.05], while the length of agent meetings is signif-
icantly shorter than human meetings [F(1,147) = 355.7, p <
0.0001]. Post hoc comparisons using the Tukey HSD test
indicated that the meeting length for human groups with
4 members (M = 2209.00, SD = 860.28) was significantly
higher than groups with 3 (M = 1484.06, SD = 698.81) or 2
(M = 1349.83, SD = 88.85) members. There is no significant
difference in meeting length for agent groups with different
sizes.

Figure.4 further demonstrates the efficiency with which the
agent groups deliberated compared to human groups. One-
way between-subjects ANOVA was conducted to compare
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Figure 3: Left-panel: group score; Right-panel: meeting
length in word count

human versus agent groups’ improvement in groups of sizes
2, 3, and 4. The agent groups’ improvement is significantly
higher than humans in groups of size 2 [F(1,45) = 2.83, p <
0.1] and 4 [F(1,45) = 1.97, p < 0.1].

Figure 4: Average AIS before discussion → AGS after dis-
cussion

Affect
Table 1 shows the descriptive statistics of conversation sen-
timent and post-task peer evaluation scores. Both hu-
man and agent conversations have more utterances labeled
positive than negative. The negativity of agent group
conversations is significantly lower than that of human
group conversations[F(1,147) = 9.29, p < 0.01]. As for
peer evaluation, the agents report significantly lower scores
in terms of Time Management (Our group used its time
wisely)[F(1,147) = 25.41, p < 0.001] and Efficiency (Our
group struggled to work together efficiently on this task)
[F(1,147) = 23.08, p < 0.001], and significantly higher
scores in terms of Time Expectation (This task took longer
than expected to complete.) [F(1,147) = 31.52, p < 0.001],
Worked Well Together (Our group worked well together.)
[F(1,147) = 5.966, p < 0.05] and Quality of Work (Over-
all, our group did a good job on this task.) [F(1,147) =

19.72, p < 0.001]. In summary, agents show more positive
affection toward peers and ”care” more about efficiency.

Table 1: Descriptive Statistics of Sentiment and Peer-
Evaluation Score (One-way ANOVA Significance. codes: 0
‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1)

Human Agent
#Positive M=13.785,

SD=11.767
M=15.218,
SD=7.322

#Negative** M=5.285,
SD=6.759

M=3.075,
SD=2.046

Time Expectation*** M=3.059,
SD=1.434

M=3.647,
SD=0.659

Worked Well Together* M=4.398,
SD=0.684

M=4.559,
SD=0.502

Time Management*** M=4.422,
SD=0.778

M=4.014,
SD=0.638

Efficiency*** M=4.351,
SD=0.981

M=3.931,
SD=0.641

Quality of Work*** M=4.315,
SD=0.751

M=4.615,
SD=0.498

Leadership. M=3.452,
SD=0.974

M=3.609,
SD=0.661

Decision-Making
Figure.5 shows the distribution of group decision-making ac-
tions in human and agent groups. In general, agents make
Proposal more often than humans, especially together with
Agreement, Disagreement, and Confirmation. The agents also
express Disagreement significantly more often than humans.

Figure 5: Distribution of Group Decision-making Actions.
Note that one utterance can be labeled with more than one
action, e.g., ”I agree with the shortening over ski poles. Shall
we rank flashlight next?” is labeled as Proposal, Agreement.

Figure 6 shows the distribution of airtime proportion in
agent and human groups of various sizes. The distributions
of human and agent groups are the most different in groups
of size 4 (Agent: M=0.25, SD=0.097; Human: M=0.26,
SD=0.0.169). In groups of size 4, more than 40% agents
occupied 20% to 30% airtime, while only 33% humans oc-
cupied 20% to 30% airtime, which indicates that agents par-
ticipated in the discussion more equally than humans. As an
example, Figure.7 demonstrates the timeline of a 4-humans
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group conversation, which is significantly dominated by one
group member.

Figure 6: Distribution of Airtime Proportion

Figure 7: Conversation timeline of a 4-humans group vs a 4-
agent group

Discussion
In this work, we introduce an algorithm that allows multiple
LLM agents to engage in a problem-solving task through free
conversation. Inspired by research in computational linguis-
tics (Cohen & Perrault, 1979; Traum & Allen, 1994), which
elucidates human conversational behavior in terms of beliefs,
goals, intentions, and obligations, our agents are prompted
to reason about the scenario and determine moments to con-
tribute or terminate within the conversational flow. While
many conversational humanoids (e.g., (Thórisson, 1999))
maintain a conversational plan or agenda, they often aim to
optimize dialogue rather than human-like conversations with
diverse styles. In our approach, LLMs are designed to con-
sider conversation history and make sequential decisions re-
garding agents’ participation, facilitating the emulation of
natural, free-form conversations. We made several design
choices to minimize explicit instructions, provide zero-shot
prompts to the LLMs, intervene only when the conversation
ceased, and delegate problem-solving tasks to the agents.

We produced a synthetic corpus of group conversations us-
ing LLM agents configured to work in groups of 2, 3, or 4
members. These agents engaged in the free conversation us-
ing our algorithm while tackling the Winter Survival Task.
We compared the predictions generated by LLM agents with

a publicly available human data set, evaluating them based
on ranking scores, meeting length, and the change in ranking
scores after group discussions. Our results indicate that LLM
agent groups outperform human groups by achieving higher
scores in shorter time frames. Furthermore, LLM agents
enhance their scores after free-form group discussions com-
pared to human groups. Analyses of post-task questionnaires
and conversation dynamics indicate that agents are dissatis-
fied with their time management, perceiving tasks as taking
longer than expected. Agents also exhibit a tendency to make
positive remarks over negative ones, contrasting with human
groups. These differences result from the underlying design
philosophy used to build LLMs. It is possible that LLMs
are intentionally designed to exhibit politeness and humility
to please human users, potentially mitigating displeasure or
frustration.

Analyses of LLM agent discussions reveal greater dis-
agreement among agents within a group than among human
groups. Agent groups also tend to craft more intricate state-
ments that combine agreement and disagreement. However,
agent discussions exhibit faster progression from one item
to the next than human discussions. Agents achieve this
by quickly proposing subsequent steps after agreement, dis-
agreement, or confirmation. Also, agents engaged in turn-
taking without requiring a predefined order. In contrast, hu-
man groups often have a dominant speaker, reducing some
members to passive observers of the conversation. A possible
explanation is that the human groups consist of different peo-
ple with different background knowledge, biases, and prefer-
ences, while the agent groups can be less diverse.

Limitations & Future Work
Conversations encompass various modalities, including non-
linguistic activities. Our free-form conversation algorithm
lacks details such as backchannels, influenced by intonation
and tone, beyond text. Challenges in conversations, such as
overlapping talk or awkward silences, require a restoration
mechanism. Future research could integrate embodied lan-
guage models with sociometers to capture the conversation
dynamics at a finer granularity (Parker, Cardenas, Dorr, &
Hackett, 2020; Driess et al., 2023).

LLMs evolve continuously, and the simulation results re-
flect GPT-4 behavior. Despite its superior performance, the
inner workings of GPT-4 remain hidden. Automatic anno-
tation may be biased by pre-training data despite fine-tuning
and yielding satisfactory annotations. LLM agents only learn
by accumulating shared information. Augmenting them with
the ability to learn from peers could foster more human-
like group dynamics. Future work may involve augmenting
agents with cognitive mechanisms to enhance social intelli-
gence and foster believable conversations.
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