
UC Riverside
UC Riverside Electronic Theses and Dissertations

Title
Approximation Algorithms for Covering Problems

Permalink
https://escholarship.org/uc/item/6s01g4z5

Author
Koufogiannakis, Christos

Publication Date
2009

Peer reviewed|Thesis/dissertation

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6s01g4z5
https://escholarship.org
http://www.cdlib.org/

UNIVERSITY OF CALIFORNIA
RIVERSIDE

Approximation Algorithms for Covering Problems

A Dissertation submitted in partial satisfaction
of the requirements for the degree of

Doctor of Philosophy

in

Computer Science

by

Christos Koufogiannakis

December 2009

Dissertation Committee:

Dr. Neal E. Young, Chairperson
Dr. Marek Chrobak
Dr. Stefano Lonardi

Copyright by
Christos Koufogiannakis

2009

The Dissertation of Christos Koufogiannakis is approved:

Committee Chairperson

University of California, Riverside

Acknowledgments

I am grateful to my advisor, without whose help, I would not have been here.

I also thank the Greek State Scholarships Foundation (IKY) for their financial support.

iv

To my parents for all the support.

v

ABSTRACT OF THE DISSERTATION

Approximation Algorithms for Covering Problems

by

Christos Koufogiannakis

Doctor of Philosophy, Graduate Program in Computer Science
University of California, Riverside, December 2009

Dr. Neal E. Young, Chairperson

In this thesis we present sequential and distributed approximation algorithms for cover-

ing problems.

First, we give a sequential δ-approximation algorithm for Monotone Cover-

ing, a generalization of many fundamental NP-hard covering problems. The approxima-

tion ratio δ is the maximum number of variables on which any constraint depends. (For

example, for vertex cover, δ is 2.) The algorithm unifies, generalizes, and improves many

previous algorithms for fundamental covering problems such as Vertex Cover, Set

Cover, Facility Location, and Covering Mixed-Integer Linear Programs

with upper bound on the variables.

The algorithm is also a δ-competitive algorithm for online Monotone Cover-

ing, which generalizes online versions of the above-mentioned covering problems as well

as many fundamental online paging and caching problems. As such it also generalizes

many classical online algorithms, including LRU, FIFO, FWF, Balance, Greedy-

Dual, Greedy-Dual Size (a.k.a. Landlord), and algorithms for connection caching,

where δ is the cache size. It also gives new δ-competitive algorithms for upgradable vari-

ants of these problems, which model choosing the caching strategy and an appropriate

vi

hardware configuration (cache size, CPU, bus, network, etc.).

Then we show distributed versions of the sequential algorithm. For Weighted

Vertex Cover, we give a distributed 2-approximation algorithm taking O(log n) rounds.

The algorithm generalizes to covering mixed integer linear programs (CMIP) with two

variables per constraint (δ = 2). For any Monotone Covering problem, we show a

distributed δ-approximation algorithm takingO(log2 |C|) rounds, where |C| is the number

of constraints.

Last, we extend the distributed algorithms for covering to compute δ-approx-

imate solutions for Fractional Packing and Maximum Weighted b-Matching in hy-

pergraphs, where δ is the maximum number of packing constraints in which a variable

appears (for Maximum Weighted b-Matching δ is the maximum edge degree — for

graphs δ = 2).

vii

Contents

List of Figures x

1 Introduction 1
1.1 Monotone Covering . 1
1.2 Related Problems . 2

1.2.1 Covering Problems . 3
1.2.1.1 Vertex Cover . 3
1.2.1.2 Set Cover . 3
1.2.1.3 Set Multicover . 4
1.2.1.4 Covering Integer Programs 4
1.2.1.5 Hardness of Approximation Results 5
1.2.1.6 Alternatives to δ-approximation 5

1.2.2 Online Problems . 5
1.2.2.1 Online Covering Problems 6
1.2.2.2 Paging and Caching Problems 6
1.2.2.3 Upgradable Caching . 7

1.2.3 Distributed Covering Problems 9
1.2.3.1 Distributed Vertex Cover 10
1.2.3.2 Other Related Results 11

1.2.4 Distributed Fractional Packing and Maximum Weighted
Matching . 12
1.2.4.1 Distributed Maximum Weighted Matching 12
1.2.4.2 Distributed Fractional Packing 13
1.2.4.3 Other Related Results 14

1.3 Summary of Results . 14
1.3.1 Sequential Algorithms . 14
1.3.2 Distributed Algorithms for Covering 16
1.3.3 Distributed Algorithms for Fractional Packing and Maximum Weighted

Matching . 17

2 Sequential Algorithm 18
2.1 The Greedy Algorithm for Monotone Covering 18
2.2 Linear time algorithm for Vertex Cover, Set Cover and Facility Location 22
2.3 Nearly Linear-Time Implementation for Covering Mixed Integer Linear

Programs . 23
2.4 Online Monotone Covering and Caching with Upgradable Hardware . . 24

viii

2.4.1 Upgradable online problems. 26
2.5 Randomized Variant of Alg. 1 and Stateless Online Algorithm 28
2.6 Relation to the Local-Ratio Method . 30

3 Distributed Covering 34
3.1 Distributed Weighted Vertex Cover . 34

3.1.1 Distributed Model . 34
3.1.2 Distributed Algorithms for Weighted Vertex Cover 35

3.2 Distributed Mixed Integer Programs with Two Variables per Constraint 39
3.3 Distributed Monotone Covering . 48

4 Distributed Algorithm for Fractional Packing 52
4.1 Covering and packing . 52
4.2 Distributed Fractional Packing with δ = 2 60

4.2.1 Distributed model for δ = 2 . 60
4.2.2 Distributed algorithm for δ = 2 60

4.3 Distributed Fractional Packing with general δ 64
4.3.1 Distributed model for general δ 64
4.3.2 Distributed algorithm . 65

5 Conclusions 67
5.1 Summary of Results . 67
5.2 Future Work . 68

5.2.0.1 Sequential Setting . 68
5.2.0.2 Distributed Setting . 69

Bibliography 70

A Proofs 78

ix

List of Figures

2.1 Greedy δ-approximation algorithm for Monotone Covering (Alg. 1). . . . 19
2.2 Implementation of stepsize(x, S) for CMIP(Alg. 2). 23
2.3 Randomized and Stateless implementation of stepsize(x, S) (Alg. 3, Alg. 4). 28

3.1 Distributed 2-approximation algorithm for Weighted Vertex Cover (Alg. 5). 35
3.2 Analysis of Alg. 5. Each node is labeled with its cost. Roots are circles;

leaves are squares; star edges from leaves other than v (the cost-5 leaf)
are determined as shown. Each edge (v, w) is labeled with the chance
that v would enter the cover if v were to choose (v, w) for its star edge
(assuming each xw = xv = 0 and each root w considers its star edges
counter-clockwise). 37

3.3 Distributed 2-approximation algorithm for CMIP2 (Alg. 6). 43
3.4 Distributed δ-approximation algorithm for Monotone Covering (Alg. 7). 50

4.1 Sequential δ-approximation algorithm for Fractional Covering (Alg. 8). . 54
4.2 Sequential δ-approximation algorithm for Fractional Packing (Alg. 9). . 56
4.3 Distributed 2-approximation algorithm for Fractional Packing where each

variable appears in at most 2 constraints and Maximum Weighted Match-
ing on graphs (Alg. 10). 63

4.4 Distributed δ-approximation algorithm for Fractional Packing and Max-
imum Weighted Matching on hypergraphs (Alg. 11). 66

x

Original Publications

This thesis is based on the following original publications:

• C. Koufogiannakis and N.E. Young. Greedy ∆-approximation algorithm for cov-

ering with arbitrary constraints and submodular cost. In the thirty-sixth Interna-

tional Colloquium on Automata, Languages and Programming, LNCS 5555:634–

652, 2009.

DOI http://dx.doi.org/10.1007/978-3-642-02927-1 53.

The original publication is available at www.springerlink.com.

c©Springer-Verlag Berlin Heidelberg 2009. With kind permission of Springer Sci-

ence+Business Media.

• C. Koufogiannakis and N.E. Young. Distributed and parallel algorithms for weighted

vertex cover and other covering problems. In the twenty-eighth ACM symposium

Principles of Distributed Computing, pages 171–179, 2009.

DOI http://doi.acm.org/10.1145/1582716.1582746.

c©2009 ACM.

• C. Koufogiannakis and N.E. Young. Distributed fractional packing and maximum

weighted b-matching via tail-recursive duality. In the twenty-third International

Symposium on Distributed Computing. Lecture Notes in Computer Science, LNCS

5805:221–238, 2009.

DOI http://dx.doi.org/10.1007/978-3-642-04355-0 23

The original publication is available at www.springerlink.com.

c©Springer-Verlag Berlin Heidelberg 2009. With kind permission of Springer Sci-

ence+Business Media.

xi

Chapter 1

Introduction

In this thesis we present research done by the author on approximation algo-

rithms for covering problems. In Section 1.1 we introduce the basic covering problem

that we study. In Section 1.2 we describe specific problems and related results for each

one of them. Finally in Section 1.3 we summarize our results.

1.1 Monotone Covering

The main result of this thesis is a simple greedy approximation algorithm for

Monotone Covering. An algorithm is called c-approximation if the cost of the solution

produced by the algorithm is at most c ·OPT, where OPT is the cost of the optimal

solution.

A Monotone Covering instance is specified by a collection C of constraints

and a non-negative, non-decreasing, submodular1 objective function, c : IRn+ → IR+.

The problem is to compute x ∈ IRn+ minimizing c(x) and on the same time satisfying

1Formally, c(x)+ c(y) ≥ c(x∧y)+ c(x∨y), where x∧y (and x∨y) are the component-wise minimum
(and maximum) of x and y. Intuitively, there is no positive synergy between the variables: let ∂jc(x)
denote the rate at which increasing xj would increase c(x); then, increasing xi (for i 6= j) does not
increase ∂jc(x). Any separable function c(x) =

∑
j cj(xj) is submodular, the product c(x) =

∏
j xj is

not. The maximum c(x) = maxj xj is submodular, the minimum c(x) = minj xj is not.

1

all constraints S ∈ C. We write the problem in the following more compact form,

min{c(x) : x ∈ IRn+, (∀S ∈ C) x ∈ S}. Each constraint S ∈ C must be monotone, but can

be non-convex.

Monotone Covering allows each variable to take values throughout IR+, but

can still model problems with restricted variable domains. For example, formulate

Vertex Cover as min{
∑

v cvxv : x ∈ IRV+ , (∀(u,w) ∈ E) bxuc + bxwc ≥ 1}. Given

any 2-approximate solution x to this formulation (which allows xu ∈ IR+), rounding

each xu down to its floor gives a 2-approximate integer solution. Generally, to model

problems where each variable xj should take values in some closed set Uj ⊂ IR+ (e.g.

Uj = {0, 1} or Uj = ZZ+), one allows x ∈ IRn+ but replaces each monotone constraint

x ∈ S by the monotone constraint x ∈ µ̂(S), where µ̂(S) = {x : µ(x) ∈ S} and

µj(x) = max{z ∈ Uj , z ≤ xj}. If x ∈ IRn+ is any δ-approximate solution to the modified

problem, then µ(x) will be a δ-approximate solution respecting the variable domains.

(For Vertex Cover each Uj = ZZ+ so µj(x) = bxjc.)2

We give here a single greedy δ-approximation algorithm for a combinatorially

rich class of monotone covering problems, including many classical covering problems as

well as online paging and caching problems. The approximation ratio, δ, is the maximum

number of variables on which any constraint depends. (For Vertex Cover, δ = 2.)

1.2 Related Problems

Monotone Covering generalizes many fundamental covering problems. For

some problems in the class, no greedy (or other) δ-approximation algorithms were known.

2In this setting, if the cost is defined only on the restricted domain, it should be extended to IRn
+ for

the algorithm. One way is to take the cost of x ∈ IRn
+ to be the expected cost of x̂, where x̂j is rounded

up or down to its nearest elements a, b in Uj such that a ≤ xj ≤ b: take x̂j = b with probability
b−xj

b−a
,

otherwise take x̂j = a. If a or b does not exist, let x̂j be the one that does.

2

For others, previous greedy δ-approximation algorithms were known, but with non-

trivial and seemingly problem-specific analyses. In this section we describe problems

that are special cases of Monotone Covering and we discuss related work.

1.2.1 Covering Problems

1.2.1.1 Vertex Cover

Given a graph G = (V,E), the Vertex Cover problem asks for a minimum

cardinality set of vertices C such that every edge e ∈ E is touching a vertex in C. In

the more general weighted version of the problem, vertices have non-negative cost, and

one should find a set of vertices C of minimum total costs that covers all edges. We

can formulate weighted Vertex Cover as an integer program of the form min{c · x :

xu + xv ≥ 1 (∀(u, v) ∈ E);x ∈ {0, 1}|E|}.

For weighted Vertex Cover, in the early 1980’s, Hochbaum gave a 2-approxi-

mation algorithm that rounds a solution to the standard LP relaxation [62]. Bar-Yehuda

and Even gave a 2-approximation linear-time greedy algorithm based on the local-ratio

technique [13].

1.2.1.2 Set Cover

Set Cover is a more general problem. Given a universe U of elements,a collec-

tion S of subsets of U find a subcollection C ⊆ S of sets whose union is U . The integer

linear programming formulation is min{c · x :
∑

s3e xs ≥ 1 (∀e ∈ U);x ∈ {0, 1}|S|}.

The previous algorithms for Vertex Cover give straightforwardly δ-approximation al-

gorithms for Set Cover, where δ is the maximum number of variables on which any

constraint depends — the maximum number of sets that contain any element.

3

1.2.1.3 Set Multicover

Set Multicover is a natural generalization of Set Cover. Here an element e ∈

U has to be covered at least be times, min{c·x :
∑

s3e xs ≥ be (∀e ∈ U);x ∈ {0, 1}|S|}. In

1986, Hall and Hochbaum gave a quadratic-time primal-dual δ-approximation algorithm

[54].

1.2.1.4 Covering Integer Programs

A problem that includes all the above as special cases is Covering Integer

Programs (CIP). Given a non-negative cost function c, a matrix A, vectors b and u, all

with non-negative entries, a CIP with upper bounds on variables is a problem of the

form min{c · x : Ax ≥ b;x ∈ ZZm+ , x ≤ u}). Again, let δ be the maximum number of

variables on which any constraint depends.

In the late 1990’s, Bertsimas and Vohra showed a quadratic-time primal-dual

algorithm for CIP, restricted to {0, 1}-variables and integer constraint matrix A, and

with approximation ratio maxi
∑

j Aij ≥ δ [19]. Most recently, in 2000, Carr et al.

gave the first δ-approximation for general CIP with {0, 1} variables [24].3 They state

(without details) that their result extends to allow general upper bounds on the variables

(restricting xj ∈ {0, 1, 2, . . . , uj}). In 2009 (independently of our work), Pritchard gives

details of an extension to CIP with general upper bounds on the variables [105]. Both [24]

and [105] use exponentially many valid “Knapsack Cover” (KC) inequalities to reduce

the integrality gap to δ. Their algorithms solve the LP using the ellipsoid method, so

the running time is a high-degree polynomial.

3The standard LP relaxation has an arbitrarily large integrality gap (e.g. min{x1 : 10x1 + 10x2 ≥
11;x2 ≤ 1} has gap 10).

4

1.2.1.5 Hardness of Approximation Results

The special case of CIP where all A, b, c, u take values 0/1, is the same as δ-

Bounded Hypergraph Vertex Cover (a.k.a. Set Cover with maximum element frequency

δ). For any fixed ε > 0, if P 6= NP this problem is not approximable to a (δ−1−ε) factor

[37]. In addition it is not approximable to (δ − ε) under the unique games conjecture

[75].

1.2.1.6 Alternatives to δ-approximation

As an alternative when δ is large, many covering problems considered here

also admit O(log δ̂)-approximation algorithms, where δ̂ is the maximum number of con-

straints in which any variable occurs. Examples include a greedy algorithm for Set

Cover [69, 94, 28] (1975) and greedy O(log maxj
∑

iAij)-approximation algorithms

for CIP with {0, 1}-variables and integer A [38, 43] (1982). Srinivasan gave O(log δ̂)-

approximation algorithms for general CIP without variable upper bounds [111, 112]

(2000); these were extended to CIP with variable upper bounds by Kolliopoulos et

al. [78] (2005). (The latter algorithm solves the CIP relaxation with KC inequalities,

then randomly rounds the solution.) The class of O(log(δ̂))-approximation algorithms

for general CIP is not yet fully understood; these algorithms could yet be subsumed by

a single fast greedy algorithm.

1.2.2 Online Problems

A problem is called online if the input is given and processed piece-by-piece.

An algorithm for solving such a problem must give the solution to each piece knowing

only the pieces that it has seen so far and ignoring the pieces to be given in the future.

An algorithm is c-competitive if the cost of the solution produced by the algorithm is

5

bounded by c ·OPT + b where OPT is the cost of the optimal solution and b depends

only on the starting configurations of the online and optimal (offline) algorithms.

1.2.2.1 Online Covering Problems

Following [22], in the online version of the classical covering problems above

(Vertex Cover, Set Cover, Set Multicover, CIP) the algorithm knows the cost

function (the cost of each variable) but it does not know all the covering constraints.

Constraints are revealed one-by-one. Once the algorithm is given a constraint, it should

increase some variables to satisfy the constraint, but it can never decrease any variable.

Bar-Yehuda and Even’s algorithm is δ-competitive for Vertex Cover and Set Cover

[13]. However, to the best of our knowledge there was no previously known δ-competitive

algorithm for online Set Multicover and CIP.

1.2.2.2 Paging and Caching Problems

Online paging and caching algorithms (paging, weighted caching, file caching,

(generalized) connection caching, etc.) are also (online) Monotone Covering problems,

as they can be formulated as online Set Cover [6].

Paging is a problem where the input is an online sequence of requests r1, r2, . . .

for pages to be brought into a cache of size k = δ. The goal is to minimize the number

of page faults. Paging can be formulated as Monotone Covering as follows [6]. Let

xt indicate whether page rt is evicted before the next request to rt after time t, so the

total cost is
∑

t xt. For any k-subset Q = {rs : s < t, rs 6= rt}, at least one page rs ∈ Q

must have been evicted (s is the time of the most recent request to rs), so the following

constraint is met,
∑

rs∈Qbxsc ≥ 1.

These problems also have a rich history (see [21]). They are known to have

6

deterministic δ(=k)-competitive algorithms [110, 106, 117, 23, 29, 2, 118]. For most on-

line problems here, no deterministic online algorithm can be better than δ-competitive.

But many online problems admit better-than-δ-competitive randomized algorithms. Ex-

amples include paging [42, 96], weighted caching [6, 23], connection caching [29], and

file caching [7]. Some cases of online Monotone Covering (e.g. Vertex Cover) are

unlikely to have better-than-δ-competitive randomized algorithms.

1.2.2.3 Upgradable Caching

Standard online caching problems model only the caching strategy. In practice

other parameters (e.g., the size of the cache, the speed of the CPU, bus, network, etc.)

must also be chosen well. In upgradable caching, the algorithm chooses not only the

caching strategy, but also the hardware configuration. The hardware configuration is

assumed to be determined by how much has been spent on each of some d components.

The configuration is modeled by a vector y ∈ IRd+, where yi has been spent so far on

component i.

In response to each request, the algorithm can upgrade the hardware by in-

creasing the yi’s. Then, if the requested item rt is not in cache, it is brought in. Then

items in cache must be selected for eviction until the set Q of items remaining in cache is

cachable, as determined by some specified predicate cachablet(Q, y). The cost of evicting

an item rs is specified by a function cost(rs, y).

The cachable() predicate and cost() function can be specified arbitrarily, subject

to the following restrictions. Predicate cachablet(Q, y) must be non-decreasing in y

(upgrading the hardware does not cause a cachable set to become uncachable) and non-

increasing with Q (any subset of a cachable set is cachable). The function cost(rs, y)

must be non-increasing in y (upgrading the hardware does not increase the eviction cost

7

of any item). To model (standard, non-upgradable) file caching, take cachablet(Q, y) to

be true if
∑

rs∈Q size(rs) ≤ k.

In general, the adversary is free to constrain the cache contents at each step t

in any way that depends on t and the hardware configuration, as long as upgrading the

cache or removing items does not make a cachable set uncachable. Likewise, the cost

of evicting any item can be determined by the adversary in any way that depends on

the item and the hardware configuration, as long as upgrading the configuration does

not increase any eviction cost. This gives a great deal of flexibility in comparison to

the standard model. For example, the adversary could insist (among other constraints)

that no set containing both of two (presumably conflicting) files can be cached. Or,

upgrading the hardware could reduce the eviction cost of some items arbitrarily, even

to zero.

The optimal cost is achieved by choosing an optimal hardware configuration at

the start, then handling all caching decisions optimally. To be competitive, an algorithm

must also choose a good hardware configuration: an algorithm is δ-competitive if its total

cost (eviction cost plus final hardware configuration cost,
∑

i yi) is at most δ times the

optimum. Naturally, when the algorithm evicts an item, it pays the eviction cost in its

current hardware configuration. Later upgrades do not reduce earlier costs.

Next we describe how to model the upgradable problem via online Monotone

Covering with at most δ = k + d variables per constraint, where k is the maximum

number of files ever held in cache and d is the number of hardware components.

Let variable yi for i = 1, . . . , d denote the amount invested in component i, so

that the vector y gives the current hardware configuration. Let xt be the cost (if any)

incurred for evicting the tth requested item rt at any time before its next request. The

total final cost is
∑

i yi +
∑

t xt. At time t, if some subset Q ⊆ {rs : s ≤ t} of the items

8

is not cachable, then at least one item rs ∈ Q − {rt} (where s is the time of the most

recent request to rs) must have been evicted, so the following constraint is met:

cachablet(Q, y) or
∑

rs∈Q−{rt}bxs/cost(rs, y)c ≥ 1. St(Q)

The restrictions on cachable and cost ensure that this constraint is monotone

in x and y.

We know of no previous results for upgradable caching, although the classical

online Rent-or-Buy (a.k.a. Ski Rental) problem [70] and its “multislope” generalization

[93] have the basic characteristic (paying a fixed cost now can reduce many later costs;

these are special cases of online Monotone Covering with δ = 2).

1.2.3 Distributed Covering Problems

Assume that a covering problem is represented by a graph. There are several

graph representations but they are equivalent in the sense that one can simulate the

other. For example consider a graph in which nodes are covering variables and edges

connect variables that appear in the same constraint. Or imagine a graph where nodes

are constraints and there is an edge between two nodes if they share a variable. Another

possible representation, is a graph where we have nodes for both variables ands con-

straints. There is an edge between a variable node to a constraint node if the variable

appears in the constraint.

In the distributed setting, given such a representation of a covering problem,

computation takes place in rounds at nodes using only local information. In the stan-

dard synchronous distributed model, in each round, nodes can exchange a constant

number of messages with neighbors, and perform some local computation [104]. We

assume no restriction on message size and local computation. (Note that a synchronous

model algorithm can be transformed into an asynchronous algorithm with the same time

9

complexity [104].) The goal here is to compute a solution, that is, each node or edge

knows its own value. An efficient computation should finish in a number of rounds that

is poly-logarithmic in the network size [90]:

It is of specific interest to see which fundamental combinatorial optimization

problems admit efficient distributed algorithms that achieve approximation guarantees

that are as good as those of the best sequential algorithms. Research in this spirit

includes works on Dominating Set (Set Cover) [68, 86, 87], Capacitated Dominating

set [83], Capacitated Vertex Cover [48, 49], Weighted Matching [115, 64, 92, 91]

and many other problems. Thus, studying distributed δ-approximation algorithms for

covering problems, is also very important in this direction.

1.2.3.1 Distributed Vertex Cover

In the distributed setting, in the case of unweighted Vertex Cover, a 2-

approximate solution can be found efficiently by computing any maximal matching and

then taking the cover to contain the endpoints of the edges in the matching. A maximal

matching can be computed deterministically in O(log4 n) rounds using the algorithm

of Hańćkowiak, Karonski and Panconesi [58] or in O(∆ + log∗ n) rounds using the al-

gorithm of Panconesi and Rizzi [103], where ∆ is the maximum vertex degree. Using

randomization, a maximal matching can be computed in an expected O(log n) rounds

via the algorithm of Israeli and Itai [67]. Maximal matching is also in NC [25, 95, 74]

and in RNC (parallel poly-log time with polynomially many randomized processors) [67]

and so is 2-approximate unweighted Vertex Cover.

For Weighted Vertex Cover, no such result is known. The first distributed

approximation algorithm for weighted Vertex Cover (and weighted Set Cover) ap-

peared in 1994 by Khuller, Vishkin and Young [76]. It takes O(δ log n log 1/ε) rounds

10

to produce a δ(1 + ε)-approximation (δ = 2 for Weighted Vertex Cover). Assuming

the vertex weights are integers, taking ε = 1/(nĈ + 1), where Ĉ is the average vertex

weight, the algorithm can compute a δ-approximate cover in O(δ log n(log n + log Ĉ))

rounds.

Grandoni, Konemann and Panconesi give a distributed 2-approximation al-

gorithm for Weighted Vertex Cover that takes O(log n + log Ĉ) rounds [50]. Their

algorithm assumes integer vertex weights.

As noted in [84], no previous algorithm takes a number of rounds that is poly-

logarithmic in the number of vertices. Also, there was no previously known parallel 2-

approximation NC or RNC algorithm (running in time poly-logarithmic in the number

of vertices with polynomially many processors).

1.2.3.2 Other Related Results

Kuhn, Moscibroda and Wattenhofer describe distributed approximation algo-

rithms for fractional covering (and packing) linear programs [85]. Their algorithms give

constant-factor approximations in O(log |C|) rounds, where |C| is the number of cover-

ing constraints. The approximation ratio is greater than 2 for the case of fractional

Weighted Vertex Cover. For (integer) Weighted Vertex Cover and Weighted Set

Cover (where each Aij ∈ {0, 1}) combining their algorithms with randomized rounding

gives O(log δ̂)-approximate integer solutions in O(log n) rounds, where δ̂ is the maximum

number of constraints in which any variable occurs.

The best known lower bounds for Weighted Vertex Cover are by Kuhn,

Moscibroda and Wattenhofer [84]. They prove that to achieve even a poly-logarithmic

approximation ratio for Vertex Cover, the number of rounds required is at least

Ω(
√

log n/ log logn) and Ω(log ∆/ log log ∆), where ∆ is the maximum vertex degree.

11

1.2.4 Distributed Fractional Packing and Maximum Weighted

Matching

1.2.4.1 Distributed Maximum Weighted Matching

Given a (hyper)graph H(V,E), vertex capacities c ∈ ZZ
|V |
+ and an edge weight

vector w ∈ IRm+ , the Maximum Weighted b-Matching problem is to compute a vec-

tor y ∈ ZZ
|E|
+ maximizing

∑
e∈E weye and meeting all the vertex capacity constraints∑

e∈E(u) ye ≤ cu (∀u ∈ V), where E(u) is the set of edges incident to vertex u. For this

problem, δ is the maximum (hyper)edge degree (for graphs δ = 2).

Maximum Weighted b-Matching is a cornerstone optimization problem in

graph theory and Computer Science. As a special case it includes the ordinary Maximum

Weighted Matching problem (cu = 1 for all u ∈ V). In the sequential setting, Maximum

Weighted b-Matching on graphs belongs to the “well-solved class of integer linear

programs” in the sense that it can be solved in polynomial time [40, 41, 99]. Moreover,

finding a 2-approximate4 solution for Maximum Weighted Matching is relatively easy,

since the obvious greedy algorithm, which selects the heaviest edge that is not conflicting

with already selected edges, gives a 2-approximation. For hypergraphs the problem is

NP-hard, since it generalizes Set Packing, one of Karp’s 21 NP-complete problems [73].

In the distributed setting, the problem seems to be more difficult. There are

several works considering distributed Maximum Weighted Matching on edge-weighted

graphs. Uehara and Chen present a constant time O(∆)-approximation algorithm [113],

where ∆ is the maximum vertex degree. Wattenhofer and Wattenhofer improve this

result, showing a randomized 5-approximation algorithm taking O(log2 n) rounds [116].

Hoepman shows a deterministic 2-approximation algorithm taking O(m) rounds [64].

4Since it is a maximization problem it is also referred to as a 1/2-approximation

12

Lotker, Patt-Shamir and Rosén give a randomized (4 + ε)-approximation algorithm

running in O(ε−1 log ε−1 log n) rounds [92]. Lotker, Patt-Shamir and Pettie improve

this result to a randomized (2 + ε)-approximation algorithm taking O(log ε−1 log n)

rounds [91]. Their algorithm uses as a black box any distributed constant-factor ap-

proximation algorithm for maximum weighted matching which takes O(log n) rounds

(i.e. [92]). Moreover, they mention (without details) that there is a distributed (1 + ε)-

approximation algorithm taking O(ε−4 log2 n) rounds, based on the parallel algorithm

by Hougardy and Vinkemeier [65]. Nieberg presents a (1 + ε)-approximation algorithm

in O(ε−2 + ε−1 log(ε−1n) log n) rounds [101]. The latter two results give randomized

2-approximation algorithms for Maximum Weighted Matching in O(log2 n) rounds.

1.2.4.2 Distributed Fractional Packing

Given a weight vector w ∈ IRm+ , a coefficient matrix A ∈ IRm×n+ and a vector

c ∈ IRn+, the Fractional Packing problem is to compute a vector y ∈ IRm+ to maximize∑m
i=1wiyi and at the same time meet all the constraints

∑m
i=1Aijyi ≤ cj (∀j = 1 . . . n).

We use δ to denote the maximum number of packing constraints in which a variable

appears, that is, δ = maxi |{j| Aij 6= 0}|. In the sequential setting, Fractional Packing

can be solved optimally in polynomial time using linear programming. Alternatively,

one can use a faster approximation algorithm (i.e. [79]).

In the distributed setting, Kuhn, Moscibroda and Wattenhofer show a (1 +

ε)-approximation algorithm for Fractional Packing with logarithmic message size,

but the running time depends on the input coefficients. For unbounded message size

they show a constant-factor approximation algorithm for Fractional Packing which

takes O(logm) rounds. If an integer solution is desired, then distributed randomized

rounding ([86]) can be used. This gives an O(δ)-approximation for Maximum Weighted

13

b-Matching on (hyper)graphs with high probability in O(logm) rounds, where δ is the

maximum hyperedge degree (for graphs δ = 2). (The hidden constant factor in the

big-O notation of the approximation ratio can be relative large compared to a small δ,

say δ = 2) .

1.2.4.3 Other Related Results

The best lower bounds known for distributed packing and matching are given

by Kuhn, Moscibroda and Wattenhofer [85]. They prove that to achieve a constant

or even a poly-logarithmic approximation ratio for fractional maximum matching, any

algorithms requires at least Ω(
√

log n/ log logn) rounds and Ω(log ∆/ log log ∆), where

∆ is the maximum vertex degree.

For unweighted Maximum Matching on graphs, Israeli and Itai give a random-

ized distributed 2-approximation algorithm running in O(log n) rounds [67]. Lotker,

Patt-Shamir and Pettie improve this result giving a randomized (1 + ε)-approximation

algorithm taking O(ε−3 log n) rounds [91]. Czygrinow, Hańćkowiak, and Szymańska

show a deterministic 3/2-approximation algorithm which takes O(log4 n) rounds [33]. A

(1 + ε)-approximation for Maximum Weighted Matching on graphs is in NC [65].

1.3 Summary of Results

1.3.1 Sequential Algorithms

Chapter 2 describes our greedy δ-approximation algorithm (Alg. 1 in Sec-

tion 2.1) for Monotone Covering. It is roughly the following: consider the constraints

in any order; to satisfy a constraint, raise each variable in the constraint continuously

and simultaneously, at rate inversely proportional to its cost. At termination, round x

14

down to µ(x) if appropriate.

The proof of the approximation ratio is relatively simple: with each step, the

cost incurred by the algorithm is at most δ times the reduction in the residual cost —

the minimum possible cost to augment the current x to feasibility. The algorithm is

online (as described below), and admits distributed implementations (Chapter 3).

The running time depends on the implementation, which is problem specific,

but can be fast. Section 2.2 describes linear-time implementations for Vertex Cover,

Set Cover, and (non-metric) Facility Location. Section 2.3 describes a nearly linear-

time implementation for covering mixed integer linear programs with variable upper

bounds (CMIP). (In contrast, the only previous δ-approximation algorithm (for CIP, a

slight restriction of CMIP) uses the ellipsoid method; its running time is a high-degree

polynomial [24].)

Section 2.4 discusses online Monotone Covering. The greedy algorithm (Alg. 1)

is an online algorithm. Thus, it gives δ-competitive algorithms for online versions of all

of the covering problems mentioned above. It also generalizes many classical determin-

istic online algorithms for paging and caching, including LRU, FIFO, FWF for pag-

ing [110], Balance and Greedy Dual for weighted caching [26, 117], Landlord [118],

a.k.a. Greedy Dual Size [23], for file caching, and algorithms for Connection Caching

[29, 30, 31, 2]. The competitive ratio δ is the cache size, commonly denoted k, or, in

the case of file caching, the maximum number of files ever held in cache — at most k

or k + 1, depending on the specification. This is the best possible competitive ratio for

deterministic online algorithms for these problems.

Section 2.4.1 illustrates the generality of online Monotone Covering by de-

scribing a (k+d)-competitive algorithm for a new class of upgradable caching problems.

In the competitive ratio, d is the number of configurable hardware parameters. We know

15

of no previous results for upgradable caching, although the classical online rent-or-buy

(a.k.a. ski rental) problem [70] and its “multislope” generalization [93] have the basic

characteristic (paying a fixed cost now can reduce many later costs; these are special

cases of online Monotone Covering with δ = 2).

Section 2.5 describes a natural randomized generalization of Alg. 1, with more

flexibility in incrementing the variables. This yields a stateless online algorithm, gen-

eralizing the Harmonic k-server algorithm (as it specializes for paging and weighted

caching [106]) and Pitt’s Weighted Vertex Cover algorithm [10].

Section 2.6 concludes by discussing the relation of the analysis here to the local-

ratio method. Greedy approximation algorithms can sometimes be analyzed naturally

via the local-ratio method. The results here extend many local-ratio results. The

analysis of our algorithm can be recast as a local-ratio analysis, but in a non-traditional

form.

1.3.2 Distributed Algorithms for Covering

In Chapter 3 we present distributed implementations of the greedy δ-approxi-

mation algorithm.

Section 3.1 gives a true 2-approximation algorithm for the well-studied Weighted

Vertex Cover that takes O(log n) rounds. It also gives a parallel versions take poly-

log n time. The best previous comparable works gave only (2+ε)-approximate solutions

for any fixed ε > 0 or had weight-dependent run times.

In Section 3.3 we describe the first efficient distributed δ-approximation algo-

rithm for Monotone Covering. The algorithm runs in O(log2 |C|) rounds in expectation

and with high probability, where |C| is the number of constraints. Special cases include

CMIP, Facility Location, Weighted Set Cover and Weighted Vertex Cover. Pre-

16

viously, no efficient distributed O(δ)-approximation algorithm was known for CIP, and

no efficient distributed δ-approximation algorithm was known even for Weighted Ver-

tex Cover.

1.3.3 Distributed Algorithms for Fractional Packing and Maximum

Weighted Matching

In Chapter 4 we present efficient distributed δ-approximation algorithms for

Fractional Packing and Maximum Weighted Matching. Here we use a non-standard

primal-dual extension of our algorithm for covering.

In Section 4.2, for Fractional Packing where each variable appears in at most

two constraints (δ = 2), we show a distributed 2-approximation algorithm running in

O(logm) rounds in expectation and with high probability, where m is the number of

packing variables. This is the first 2-approximation algorithm requiring only O(logm)

rounds. This also gives the first 2-approximation algorithm for Maximum Weighted

b-Matching on graphs that takes O(log n) rounds.

In Section 4.3, for Fractional Packing where each variable appears in at most

δ constraints, we give a distributed δ-approximation algorithm running in O(log2m)

rounds in expectation and with high probability, where m is the number of variables.

For small δ, this improves over the best previously known constant factor approximation

[85], but the running time is slower by a logarithmic-factor. For Maximum Weighted

b-Matching on hypergraphs with maximum hyperedge degree δ this is also a distributed

δ-approximation algorithm running in O(log2m) rounds in expectation and with high

probability, where m is the number of hyperedges. Our result improves over the best

previously known O(δ)-approximation ratio by [85], but it is slower by a logarithmic

factor.

17

Chapter 2

Sequential Algorithm

In this chapter we describe the core δ-approximation algorithm for Monotone

Covering1. We also show specific implementations of Vertex Cover, Set Cover,

Facility Location and CMIP. We also describe applications in the online setting and

we give randomized and stateless implementations. Finally we discuss the connection

to the local-ratio technique.

2.1 The Greedy Algorithm for Monotone Covering

Fix an instance of Monotone Covering, min{c(x) : x ∈ IRn+, (∀S ∈ C) x ∈ S}.

Let Vars(S) denote the variables in x that constraint x ∈ S depends on, so that δ =

maxS∈C |Vars(S)|.

The algorithm (Alg. 1) starts with x = 0, then repeats the following step until

all constraints are satisfied: choose any unmet constraint and a step size β > 0; for

1The results in this chapter appear in:
C. Koufogiannakis and N.E. Young. Greedy ∆-approximation algorithm for covering with arbitrary
constraints and submodular cost. In the thirty-sixth International Colloquium on Automata, Languages
and Programming, LNCS 5555:634–652, 2009. DOI http://dx.doi.org/10.1007/978-3-642-02927-1 53.
The original publication is available at www.springerlink.com. c©Springer-Verlag Berlin Heidelberg
2009. With kind permission of Springer Science+Business Media.

18

Greedy algorithm for Monotone Covering (monotone constraints C,
submodular objective c) alg. 1

output: feasible x ∈ S (∀S ∈ C), δ-approximately minimizing c(x) (see Thm. 1)
1. Let x← 0. . . . δ is the max # of vars any constraint depends on.
2. While ∃ S ∈ C such that x 6∈ S, do step(x, S) for any S such that x 6∈ S.
3. Return x. . . . or µ(x) in the case of restricted variable domains.

subroutine stepc(x, S): . . .makes progress towards satisfying x ∈ S.
1. Choose a scalar step size β ≥ 0. . . . choose β subject to restriction in Thm. 1.
2. For j ∈ Vars(S), let x′j ∈ IR+ ∪ {∞} be the maximum such that raising xj to x′j

would raise c(x) by at most β.
3. For j ∈ Vars(S), let xj ← x′j if c is linear, then x′j = xj + β/cj

Figure 2.1: Greedy δ-approximation algorithm for Monotone Covering (Alg. 1).

each variable xj that the constraint depends on (j ∈ Vars(S)), raise that variable so as

to increase the cost c(x) by at most β. (The step increases the total cost by at most

δβ.) The algorithm returns x (or, if variable domains are restricted as described in the

introduction, µ(x)).

The algorithm returns a δ-approximation, as long as each step size β is at most

the minimum cost to optimally augment x to satisfy S, that is, min{c(x̂) − c(x) : x̂ ∈

S, x̂ ≥ x}. Denote this cost distancec(x, S). Also, let residualc(x) be the residual cost of

x — the minimum cost to augment x to full feasibility, i.e., distancec(x,∩S∈CS).

Theorem 1 For Monotone Covering, the greedy algorithm (Alg. 1) returns a δ-ap-

proximate solution as long as it chooses step size β ≤ distancec(x, S) in each step (and

eventually terminates).

Proof. First, a rough intuition. Each step starts with x 6∈ S. Since the optimal

solution x∗ is in S and S is monotone, there must be at least one k ∈ Vars(S) such that

xk < x∗k. By raising all xj for j ∈ Vars(S), the algorithm makes progress “covering”

at least that coordinate x∗k of x∗. Provided the step increases xk to x′k ≤ x∗k, the cost

incurred can be charged to a corresponding portion of the cost of x∗k (intuitively, to the

19

cost of the part of x∗k in the interval [xk, x
′
k]; formally, to the decrease in the residual

cost from increasing xk, provably at least β). Since the step increases c(x) by at most

βδ, and results in a charge to c(x∗) of at least β, this proves the δ-approximation.

Here is the formal proof. By inspection (using that c is submodular) each step

of the algorithm increases c(x) by at most β|Vars(S)| ≤ βδ. We show that residual(x)

decreases by at least β, so the invariant c(x)/δ + residual(x) ≤ OPT holds, proving the

theorem.

Let x and x′, respectively, be x before and after a given step. Let feasible

x∗ ≥ x be an optimal augmentation of x to full feasibility, so c(x∗)− c(x) = residual(x).

Let x ∧ y (resp. x ∨ y) denote the component-wise minimum (resp. maximum) of x and

y. By the submodularity of c, c(x′) + c(x∗) ≥ c(x′ ∨ x∗) + c(x′ ∧ x∗). (Equality holds if

c is separable (e.g. linear).)

Rewriting gives [c(x∗)− c(x)]− [c(x′ ∨ x∗)− c(x′)] ≥ c(x′ ∧ x∗)− c(x).

The first bracketed term is residual(x). The second is at least residual(x′),

because x∗ ∨ x′ ≥ x′ is feasible. Thus,

residual(x)− residual(x′) ≥ c(x′ ∧ x∗)− c(x). (2.1)

To complete the proof, we show the right-hand side of (2.1) is at least β.

Case 1. Suppose x′k < x∗k for some k ∈ Vars(S). (In this case it must be that increasing

xk to x′k costs β.)

Let y be x with just xk raised to x′k. Then c(x′ ∧ x∗) ≥ c(y) = c(x) + β.

Case 2. Otherwise x′ ∧ x∗ ∈ S, because x∗ ∈ S and x′j ≥ x∗j for all j ∈ Vars(S). Also

x′ ∧ x∗ ≥ x.

Thus, the right-hand side of (2.1) is at least distancec(x, S). By assumption

this is at least β.

20

Choosing the step size, β. In a sense, the algorithm reduces the given problem

to a sequence of subproblems, each of which requires computing a lower bound on

distance(x, S) for the current x and a given unmet constraint S. To completely specify

the algorithm, one must specify how to choose β in each step.

Thm. 1 allows β to be small. At a minimum, distance(x, S) > 0 when x 6∈ S,

so one can take β to be infinitesimal. Then Alg. 1 raises xj for j ∈ Vars(S) continuously

at rate inversely proportional to ∂c(x)/∂xj (at most until x ∈ S).

Another, generic, choice is to take β just large enough to satisfy x ∈ S. This

also satisfies the theorem:

Observation 2 Let β be the minimum step size so that Step(x, S) brings x into S.

Then β ≤ distancec(x, S).

Thm. 1 can also allow β to be more than large enough to satisfy the constraint.

Consider min{x1 + 2x2 : x ∈ S} where S = {x : x1 + x2 ≥ 1}. Start with x = 0. Then

distance(x, S) = 1. The theorem allows β = 1. A single step with β = 1 gives x1 = 1

and x2 = 1/2, so that x1 + x2 = 3/2 > 1.

Generally, one has to choose β small enough to satisfy the theorem, but large

enough so that the algorithm does not take too many steps. The computational com-

plexity of doing this has to be addressed on a per-application basis. Consider a simple

Subset-Sum example: min{c · x : x ∈ S} where the single constraint S contains x ≥ 0

such that
∑

j cj min(1, bxjc) ≥ 1. Computing distance(0, S) is NP-hard, but it is easy

to compute a useful β, for example β = minj:xj<1 cj(1 − xj). With this choice, the

algorithm will satisfy S within δ steps.

21

2.2 Linear time algorithm for Vertex Cover, Set Cover and

Facility Location

Here we give linear-time implementations for Facility Location, Set Cover,

and Vertex Cover.

Theorem 3 For (non-metric) Facility Location, Set Cover, and Vertex Cover,

the greedy δ-approximation algorithm (Alg. 1) has a linear-time implementation. For

Facility Location δ is the maximum number of facilities that might serve any given

customer.

Proof. Formulate (non-metric) Facility Location as minimizing the submodular ob-

jective
∑

j fj maxi xij +
∑

ij dijxij subject to, for each customer i,
∑

j∈N(i)bxijc ≥ 1

(where j ∈ N(i) if customer i can use facility j).2

The implementation starts with all xij = 0. It considers the customers i in

any order. For each it does the following: let β = minj∈N(i)[dij + fj(1 − maxi′ xi′j)]

(the minimum cost to raise xij to 1 for any j ∈ N(i)). Then, for each j ∈ N(i), raise

xij by min[β/dij , (β + fj maxi′ xi′j)/(dij + fj)] (just enough to increase the cost by β).

By maintaining, for each facility j, maxi′ xi′j , the above can be done in linear time,

O(
∑

i |N(i)|).

Vertex Cover and Set Cover are the special cases when dij = 0.

2The standard ILP is not a covering ILP due to constraints xij ≤ yj . The standard reduction to Set
Cover increases ∆ exponentially.

22

subroutine stepsizec(x, S(I, Ai, u, bi)) (for CMIP) alg. 2

1. Order I = (j1, j2, . . . , jk) by decreasing Aij So Aij1 ≥ Aij2 ≥ · · · ≥ Aijk .
Let J = J(x, S) contain the minimal prefix of I such that x 6∈ S(J,Ai, u, bi).
Let S′ denote the relaxed constraint S(J,Ai, u, bi).

2. Let U = U(x, S) = {j : xj ≥ uj ;Aij > 0} contain the variables that have hit
their upper bounds.

3. Let βJ = minj∈J−U (1− xj + bxjc)cj be the minimum cost to increase any
floored term in S′.

4. Let βJ = minj∈J−U cjb
′
i/Aij , where b′i is the slack (bi minus the value of the

left-hand side of S′),
be the min cost to increase the sum of fractional terms in S′ to satisfy S′.

5. Return β = min{βJ , βJ}.

Figure 2.2: Implementation of stepsize(x, S) for CMIP(Alg. 2).

2.3 Nearly Linear-Time Implementation for Covering Mixed

Integer Linear Programs

Theorem 4 For CMIP (covering mixed integer linear programs with upper bounds), the

greedy algorithm (Alg. 1) can be implemented to return a δ-approximation in O(N log δ)

time, where δ is the maximum number of non-zeros in any constraint and N is the total

number of non-zeros in the constraint matrix.

Proof. Fix any CMIP instance min{c · x : x ∈ IRn+;Ax ≥ b;x ≤ u;xj ∈ ZZ (j ∈ I)}.

Model each constraint Aix ≥ bi using a monotone constraint S ∈ C of the form∑
j∈I

Aijbmin(xj , uj)c+
∑
j∈I

Aij min(xj , uj) ≥ bi S(I, Ai, u, bi)

where set I contains the indexes of the integer variables.

Given such a constraint S and an x 6∈ S, the subroutine stepsize(x, S) (Alg. 2)

computes a step size β satisfying Thm. 1 as follows. Let S′, J , U , βJ , βJ , and β be as in

Alg. 2. That is, S′ = S(J,Ai, u, bi) is the relaxation of S(I, Ai, u, bi) obtained by relaxing

the floors in S (in order of increasing Aij) as much as possible, while maintaining x 6∈ S′;

J ⊆ I contains the indexes j of variables whose floors are not relaxed. Increasing x to

23

satisfy S′ requires (at least) either: (i) increasing
∑

j∈J−U Aijbxjc, at cost at least βJ ,

or (ii) increasing
∑

j∈J−U Aijxj by at least the slack b′i of the constraint S′, at cost at

least βJ . Thus, distance(x, S) ≥ distance(x, S′) ≥ min{βJ , βJ} = β. This choice satisfies

Thm. 1, so the algorithm returns a δ-approximate solution.

Lemma 5 For any S, Alg. 1 calls Step(x, S) with β = stepsize(x, S) (from Alg. 2) at

most 2|Vars(S)| times.

Proof. Let j be the index of the variable xj that determines β in the algorithm (βJ in

case (i) of the previous proof, or βJ in case (ii)). The step increases xj by β/cj . This

may bring xj to (or above) its upper bound uj . If not, then, in case (i), the left-hand

side of S′ increases by at least Aij , which, by the minimality of J(x) and the ordering

of I, is enough to satisfy S′. Or, in case (ii), the left-hand side increases by the slack b′i

(also enough to satisfy S′). Thus the step either increases the set U(x) or satisfies S′,

increasing the set J(x).

The naive implementations of stepsize() and Step() run in time O(|Vars(S)|)

(after the Aij ’s within each constraint are sorted in preprocessing). By the lemma, with

this implementation, the total time for the algorithm is O(
∑

S |Vars(S)|2) ≤ O(Nδ). By

a careful heap-based implementation, this time can be reduced to O(N log δ) (Lemma 30

in the appendix).

2.4 Online Monotone Covering and Caching with Upgrad-

able Hardware

Recall that in online Monotone Covering, each constraint S ∈ C is revealed one at a

time; an online algorithm must raise variables in x to bring x into the given S, without

24

knowing the remaining constraints. Alg. 1 (with, say, Step(x, S) taking β just large

enough to bring x ∈ S; see Observation 2) can do this, so it yields a δ-competitive

online algorithm.3

Corollary 6 The greedy algorithm (Alg. 1) gives a δ-competitive online Monotone

Covering algorithm.

Example: generalized connection caching. As discussed in the introduction (fol-

lowing the formulation of weighted caching as online Set Cover from [6]) this result nat-

urally generalizes a number of known results for paging, weighted caching, file caching,

connection caching, etc. To give just one example, consider connection caching. A

request sequence r is given online. Each request rt = (ut, wt) activates the connection

(ut, wt) (if not already activated) between nodes ut and wt. If either node has more than

k active connections, then one of them other than rt (say rs) must be closed at cost

cost(rs). Model this problem as follows. Let variable xt indicate whether connection rt

is closed before the next request to rt after time t, so the total cost is
∑

t cost(rt)xt. For

each node u and each time t, for any (k+ 1)-subset Q ⊆ {rs : s ≤ t;u ∈ rs}, at least one

connection rs ∈ Q − {rt} (where s is the time of the most recent request to rs) must

have been closed, so the following constraint4 is met:
∑

rs∈Q−{rt}bxsc ≥ 1.

Corollary 6 gives the following k-competitive algorithm for online connection

caching. When a connection request (u,w) occurs at time t, the connection is activated

and xt is set to 0. If a node, say u, has more than k active connections, the current

x violates the constraint above for the set Q containing u’s active connections. Node

u applies the Step() subroutine for this constraint: it raises xs for all the connections

3If the cost function is linear, in responding to S this algorithm needs to know S and the values of
variables in S and their cost coefficients. For general submodular costs, the algorithm may need to know
not only S, but all variables’ values and the whole cost function.

4This presentation assumes that the last request must stay in cache. If not, don’t subtract {rt} from
Q in the constraints. The competitive ratio goes from k to k + 1.

25

rs ∈ Q − {rt} at rate 1/cost(rs) simultaneously, until some xs reaches 1. It closes any

such connection rs.

2.4.1 Upgradable online problems.

Standard online caching problems model only the caching strategy. In practice

other parameters (e.g., the size of the cache, the speed of the CPU, bus, network, etc.)

must also be chosen well. In upgradable caching, the algorithm chooses not only the

caching strategy, but also the hardware configuration. The hardware configuration is

assumed to be determined by how much has been spent on each of some d components.

The configuration is modeled by a vector y ∈ IRd+, where yi has been spent so far on

component i. Upgradable caching allows a fair ammount of flexibility as described

in Section 1.2.2.3. For this problem, our greedy algorithm gives a (d + k)-competitive

online algorithm.

Theorem 7 Upgradable caching has a (d+ k)-competitive online algorithm, where d

is the number of upgradable components and k is the maximum number of files that can

be held in the cache.

Proof. Let variable yi for i = 1, . . . , d denote the amount invested in component i, so

that the vector y gives the current hardware configuration. Let xt be the cost (if any)

incurred for evicting the tth requested item rt at any time before its next request. The

total final cost is
∑

i yi +
∑

t xt. At time t, if some subset Q ⊆ {rs : s ≤ t} of the items

is not cachable, then at least one item rs ∈ Q − {rt} (where s is the time of the most

recent request to rs) must have been evicted, so the following constraint is met:

cachablet(Q, y) or
∑

rs∈Q−{rt}bxs/cost(rs, y)c ≥ 1. St(Q)

26

The restrictions on cachable and cost ensure that this constraint is monotone

in x and y.

The greedy algorithm initializes y = 0, x = 0 and Q = ∅. It caches the subset

Q of requested items rs with xs < cost(rs, y). To respond to request rt (which adds rt

to the cache if not present), the algorithm raises each yi and each xs for rs in Q− {rt}

at unit rate. It evicts any rs with xs ≥ cost(rs, y), until cachablet(Q, y) holds for the

cached set Q. The degree5 δ is the maximum size of Q− {rt}, plus d for y.

This result generalizes easily to “upgradable” Monotone Caching, where in-

vesting in some d components can relax constraints or reduce costs.

Restricting groups of items (such as segments within files). The http protocol

allows retrieval of segments of files. To model this in this setting, consider each file f as

a group of arbitrary segments (e.g. bytes or pages). Let xt be the number of segments

of file rt evicted before its next request. Let c(xt) be the cost to retrieve the cheapest xt

segments of the file, so the total cost is
∑

t c(xt). Then, for example, to say that the cache

can hold at most k segments total, add constraints of the form (for appropriate subsets

Q of requests)
∑

s∈Q size(rs) − bxsc ≤ k (where size(rs) is the number of segments in

rs). When the greedy algorithm increases xs to x′s, the online algorithm evicts segments

bxsc+ 1 through bx′sc of file rs (assuming segments are ordered by cheapest retrieval).

Generally, any monotone restriction that is a function of just the number of

segments evicted from each file (as opposed to which specific segments are evicted), can

be modeled. (For example, “evict at least 3 segments of rs or at least 4 segments from

rt”: bxs/3c + bxt/4c ≥ 1.) Although the caching constraints constrain file segments,

the competitive ratio will be the maximum number of files (as opposed to segments)

5The algorithm enforces just some constraints St(Q); δ is defined w.r.t. the problem defined by those
constraints.

27

subroutine rstepc(x, S) alg. 3

1. Fix an arbitrary probability pj ∈ [0, 1] for each j ∈ Vars(S). . . . taking each
pj = 1 gives Alg. 1

2. Choose a scalar step size β ≥ 0.
3. For j ∈ Vars(S) with pj > 0, let Xj be the max. s.t. raising xj to Xj would raise
c(x) by ≤ β/pj .

4. For j ∈ Vars(S) with pj > 0, with probability pj , let xj ← Xj these events
can be dependent if desired!

subroutine stateless-rstepc(x, S, U): · · · do rstep, and keep each xj in its
(countable) domain Uj · · · alg. 4

1. For j ∈ Vars(S), let Xj = min{z ∈ Uj ; z > xj} (or Xj = xj if the minimum is
undefined).

2. Let αj be the increase in c(x) that would result from increasing just xj to Xj .
3. Do rstepc(x, S), choosing any β ∈ (0,minj αj] and pj = β/αj (or pj = 0 if
Xj = xj).

Figure 2.3: Randomized and Stateless implementation of stepsize(x, S) (Alg. 3, Alg. 4).

referred to in any constraint.

2.5 Randomized Variant of Alg. 1 and Stateless Online

Algorithm

This section describes a randomized, online generalization of Alg. 1. It has more

flexibility than Alg. 1 in how it increases variables. This can be useful, for example, in

distributed settings, in dealing with numerical precision issues, and in obtaining stateless

online algorithms (an example follows).

The algorithm is Alg. 1, modified to call subroutine rstepc(x, S) (shown in

Alg. 3) instead of Stepc(x, S). The subroutine has more flexibility in incrementing x.

Its step-size requirement is a bit more complicated.

Theorem 8 For Monotone Covering suppose the randomized greedy algorithm termi-

nates, and, in each step, β is at most min{E[c(x ↑p x̂) − c(x)] : x̂ ≥ x; x̂ ∈ S}, where

x ↑p x̂ is a random vector obtained from x by raising xj to x̂j with probability pj for

28

each j ∈ Vars(S). Then the algorithm returns a δ-approximate solution in expectation.

If the objective c(x) is linear, the required upper bound on β above simplifies to

distancec′(x, S) where c′j = pjcj .

Proof. We claim that, in each step, the expected increase in c(x) is at most δ times the

expected decrease in residual(x). This implies (by the optional stopping theorem) that

E[c(xfinal)] ≤ δ × residual(0), proving the theorem.

Fix any step starting with a given x. Let (r.v.) x′ be x after the step. Fix

feasible x∗ ≥ x s.t. residual(x) = c(x∗)− c(x). Inequality (2.1) holds; to prove the claim

we show Ex′ [c(x
′ ∧ x∗)− c(x)] ≥ β. Since x∗ ≥ x and x′ = x ↑p X, this is equivalent to

E[c(x ↑p X)− c(x)] ≥ β.

(Case 1.) Suppose Xk < x∗k for some k ∈ Vars(S) with pk > 0. Let y be obtained

from x by raising just xk to Xk. Then with probability pk or more, c(x ↑p X) ≥ c(y) ≥

c(x) + β/pk. Thus the expectation is at least β.

(Case 2.) Otherwise, Xj ≥ x∗j for all j with pj > 0. Then E[c(x ↑p X) − c(x)] ≥

E[c(x ↑p x∗) − c(x)]. Since x∗ ≥ x and x∗ ∈ S, this is at least β by the assumption on

β.

A stateless online algorithm. As described in the introduction, when the variables

have restricted domains (xj ∈ Uj), Alg. 1 constructs x and then “rounds” x down to

µ(x). In the online setting, Alg. 1 maintains x as constraints are revealed; meanwhile,

it uses µ(x) as its current online solution. In this sense, it is not stateless. A stateless

algorithm can maintain only one online solution, each variable of which should stay in

its restricted domain.

Next we use Thm. 8 to give a stateless online algorithm. The algorithm gen-

eralizes the Harmonic k-server algorithm as it specializes for paging and caching [106],

29

and Pitt’s weighted Vertex Cover algorithm [10]. Given an unsatisfied constraint

S, the algorithm increases each xj for j ∈ Vars(S) to its next largest allowed value,

with probability inversely proportional to the resulting increase in cost. (The algorithm

can be tuned to increase just one, or more than one, xj . It repeats the step until the

constraint is satisfied.)

Formally, the stateless algorithm is the randomized algorithm from Thm. 8,

but with the subroutine rstepc(x, S) replaced by stateless-rstepc(x, S, U) (in Alg. 4),

which executes rstepc(x, S) in a particular way. (A¡ technicality: if 0 6∈ Uj , then xj

should be initialized to minUj instead of 0. This does not affect the approximation

ratio.)

Theorem 9 For Monotone Covering with discrete variable domains as described above,

there is a stateless randomized online δ-approximation algorithm.

Proof. By inspection stateless-rstepc(x, S, U) maintains each xj ∈ Uj .

We show that stateless-rstepc(x, S, U) performs rstepc(x, S) in a way that

satisfies the requirement on β in Thm. 8. Let x̂ be as in the proof of Thm. 8, with the

added restriction that each x̂j ∈ Uj . Since x̂ ∈ S but x 6∈ S, there is a k ∈ Vars(S) with

x̂k > xk. Since x̂k ∈ Uk, the choice of Xk ensures x̂k ≥ Xk. Let y be obtained from x

by raising xk to Xk. Then, E[c(x ↑p x̂)− c(x)] ≥ pk[c(y)− c(x)] = pkαk = β, satisfying

Thm. 8.

2.6 Relation to the Local-Ratio Method

The local-ratio method has most commonly been applied to problems with

variables xj taking values in {0, 1} and with linear objective function c · x (see [14, 10,

16, 12]; for one exception, see [15]). In these cases, each step of the algorithm is typically

30

interpreted as modifying the problem by repeatedly reducing selected objective function

weights cj by some β. At the end, the x, where xj is raised from 0 to 1 if cj = 0, gives

the solution. At each step, the weights to lower are chosen so that the change must

decrease OPT’s cost by at least β, while increasing the cost for the algorithm’s solution

by at most δβ. This guarantees a δ-approximate solution.

In contrast, recall that Alg. 1 raises selected xj ’s fractionally by β/cj . At the

end, xj is rounded down to bxjc. Each step costs βδ, but reduces the residual cost by

at least β.

For problems with variables xj taking values in {0, 1} and with linear objective

function c ·x, Alg. 1 can be given the following straightforward local-ratio interpretation.

Instead of raising xj by β/cj , reduce cj by β. At the end, instead of setting xj to bxjc,

set xj = 1 if cj = 0. With this reinterpretation, a standard local-ratio analysis applies.

To understand the relation between the two interpretations, let c′ denote the

modified weights in the above reinterpretation. The reinterpreted algorithm maintains

the following invariants: Each modified weight c′j stays equal to cj(1− xj) (for c and x

in the original interpretation; this is the cost to raise xj the rest of the way to 1). Also,

the residual cost residual(x) in the original interpretation equals (in the reinterpreted

algorithm) the minimum cost to solve the original problem but with weights c′.

This local-ratio reinterpretation is straightforward and intuitive for problems

with {0, 1} variables and a linear objective. But for problems whose variables take values

in more general domains, it does not extend cleanly. For example, suppose a variable

xj takes values in {0, 1, 2, . . . , u}. The algorithm cannot afford to reduce the weight cj ,

and then, at termination, set xj to u for j with cj = 0 (this can lose a factor of u in

the approximation). Instead, one has to reinterpret the modified weight c′j as a vector

31

of weights c′j : {1, . . . , u} → IR+ where c′j(i) is the cost to raise xj from max{xj , i − 1}

to min{xj , i} (initially c′j(i) = cj). When the original algorithm increases xj by β/cj ,

reinterpret this as leaving xj at zero, but lowering the non-zero c′j(i) with minimum i

by β. At the end, take xj to be the maximum i such that c′j(i) = 0. We show next that

this approach is doable (if less intuitive) for Monotone Covering.

At a high level, the local-ratio method requires only that the objective be

decomposed into “locally approximable” objectives. The common weight-reduction pre-

sentation of local ratio described above gives one decomposition, but others have been

used. A local-ratio analysis for an integer programming problem with non-{0, 1} vari-

able domains, based on something like residual(x), is used in [15]. Here, the following

decomposition (different than [15]) works:

Lemma 10 Any algorithm returns a δ-approximate solution x provided there exist {ct}

and r such that

(a) for any x, c(x) = c(0) + r(x) +
∑T

t=1 c
t(x),

(b) for all t, and any x and feasible x∗, ct(x) ≤ ct(x∗)δ,

(c) the algorithm returns x such that r(x) = 0.

Proof. Let x∗ be an optimal solution. Applying properties (a) and (c), then (b), then

(a),

c(x) = c(0) +
∑T

t=1 c
t(x) ≤ c(0)δ +

∑T
t=1 c

t(x∗)δ + r(x∗)δ = c(x∗)δ.

Next we describe how to use the proof of Thm. 1 (based on residual cost) to

generate such a decomposition.

Let distance(x, y) = c(x ∨ y)− c(x) (the cost to raise x to dominate y).

For any x, define ct(x) = distance(xt−1, x)−distance(xt, x), where xt is Alg. 1’s

x after t calls to Step().

32

Define r(x) = distance(xT , x), where xT is the algorithm’s solution.

For linear c note ct(x) =
∑

j cj
∣∣[0, xj] ∩ [xt−1

j , xtj]
∣∣, the cost for x “between”

xt−1 and xt.

Lemma 11 These ct and r have properties (a-c) from Lemma 10, so the algorithm gives

a δ-approximation.

Proof. Part (a) holds because the sum in (a) telescopes to

distance(0, x)− distance(xT , x) = c(x)− c(0)− r(x).

Part (c) holds because the algorithm returns xT , and

r(xT) = distance(xT , xT) = 0.

For (b), consider the tth call to Step(). Let β be as in that call.

The triangle inequality holds for distance(), so, for any x̂,

ct(x̂) ≤ distancec(x
t−1, xt) = c(xt)− c(xt−1).

As proved in the proof of Thm. 1, c(xt)− c(xt−1) is at most βδ.

Also in the proof of Thm. 1, it is argued that

β ≤ distance(xt−1,∩S∈CS)− distance(xt,∩S∈CS).

By inspection that argument holds for any x∗ ∈ ∩S∈CS, giving

β ≤ distance(xt−1, x∗)− distance(xt, x∗).

The latter quantity is ct(x∗). Thus, ct(x̂) ≤ βδ ≤ ct(x∗)δ.

33

Chapter 3

Distributed Covering

In this chapter we give distributed implementations of the basic sequential

algorithm1. We start by giving a 2-approximation algorithm for Weighted Vertex

Cover and CMIP with at most two variables per constraint. Then we show a distributed

δ-approximation algorithm for Monotone Covering.

3.1 Distributed Weighted Vertex Cover

3.1.1 Distributed Model

We assume the the standard synchronous communication model, where in each

round, nodes can exchange a constant number of messages with neighbors, and perform

some local computation [104]. We assume no restriction on message size and local

computation. The goal here is to finish in a poly-logarithmic number of rounds.

1The results in this chapter appear in:
C. Koufogiannakis and N.E. Young. Distributed and parallel algorithms for weighted vertex cover and
other covering problems. In the twenty-eighth ACM symposium Principles of Distributed Computing,
pages 171–179, 2009. DOI http://doi.acm.org/10.1145/1582716.1582746. c©2009 ACM.

34

distributed 2-approximation algorithm for Weighted Vertex Cover

(G = (V,E), c : V → IR+) alg. 5

1. At each node v: initialize xv ← 0.
2. Until all vertices are finished, perform rounds as follows:
3. At each node v: if all of v’s edges are covered, finish; else, choose to be a

leaf or root, each with probability 1/2.
4. At each leaf node v: Label each not-yet covered edge (v, w) active if w is

a root and Step(x, (v, w)) (with the current x) would add v to the cover.
Choose, among these active edges, a random star edge (v, w).

5. At each root node w, flip a coin, then run the corresponding subroutine below:

heads(w): For each star edge (v, w) (in some fixed order) do: if w is not yet
in the cover, then do Step(x, (v, w)).

tails(w): Do Step(x, (v, w)) just for the last edge for which heads(w) would
do Step(x, (v, w)).

Step(x, (v, w)):
6. Let scalar β ← min

(
(1− xv)cv, (1− xw)cw

)
. . . . just enough to ensure v or w is

added to the cover below
7. Set xv = xv + β/cv. If xv = 1, add v to the cover, covering all of v’s edges.
8. Set xw = xw + β/cw. If xw = 1, add w to the cover, covering all of w’s edges.

Figure 3.1: Distributed 2-approximation algorithm for Weighted Vertex Cover (Alg. 5).

3.1.2 Distributed Algorithms for Weighted Vertex Cover

Theorem 12 For weighted vertex cover:

(a) There is a distributed 2-approximation algorithm running in O(log n) rounds in

expectation and with high probability.

(b) There is a parallel 2-approximation algorithm in “Las Vegas” RNC.

First, consider the sequential 2-approximation algorithm (Alg. 1) for Weighted

Vertex Cover. The algorithm starts with x = 0. To cover edge (v, w), it calls

Step(x, (v, w)), which raises xv and xw at rates inversely proportional to their respec-

tive costs, until xv or xw reaches 1 (increase xv by β/cv and xw by β/cw, where

β = min{(1 − xv)cv, (1 − xw)cw}). When a variable xv reaches 1, v is added to the

cover. The algorithm stops when all edges are covered.

35

In each round, the distributed algorithm performs Step(x, e) simultaneously on

a large subset of the not-yet-covered edges, as follows. Each node randomly chooses to

be a leaf or a root. A not-yet-satisfied edge (v, w) is called active if v is a leaf, w is a root

and if Step(x, (v, w)) were to be performed, v would enter the cover. Each leaf v chooses

a random active edge (v, w). The edges chosen by the leaves are called star edges; they

form stars with roots at their centers.

Each root w then flips a coin. If heads comes up (with probability 1/2), w does

heads(w): that is, it does Step(x, (v, w)) for its star edges (v, w) in any order, until w

enters the cover or all of w’s star edges have steps done. Or, if tails comes up, w does

tails(w): that is, it simulates heads(w), without actually doing any steps, to determine

the last edge (v, w) that heads(w) would do a step for, and performs step Step(x, (v, w))

for just that edge. For details see Alg. 5.

Proof of Thm. 12, part (a). We show that, in each round, a constant

fraction of the not-yet-covered edges are covered in expectation, proving part (a) of the

theorem.

Any not-yet-covered edge (v, w) is active for the round with constant probabil-

ity, because Step(x, (v, w)) would bring at least one of v or w into the cover, and with

probability 1/4 that node is a leaf and the other is a root. So, with constant probabil-

ity a constant fraction of the remaining edges are active. Assume this happens. Next,

condition on all the choices of leaves and roots (assume these are fixed).

It is enough to show that, for an arbitrary leaf v, in expectation a constant

fraction of v’s active edges will be covered. To do so, condition on the star edges chosen

by the other leaves. (Now the only random choices not conditioned on are v’s star-edge

choice and the coin flips of the roots.)

36

4

4

100

10

54 6

4

1

2

8

1

1

9

6

100%

50%

50%

0%

Figure 3.2: Analysis of Alg. 5. Each node is labeled with its cost. Roots are circles;
leaves are squares; star edges from leaves other than v (the cost-5 leaf) are determined
as shown. Each edge (v, w) is labeled with the chance that v would enter the cover if
v were to choose (v, w) for its star edge (assuming each xw = xv = 0 and each root w
considers its star edges counter-clockwise).

(At least) one of the following two cases must hold.

Case 1: A constant fraction of v’s active edges (v, w) have the following property: if v

were to choose (v, w) as its star edge, and w were to do heads(w), then heads(w) would

not perform Step(x, (v, w)). That is, w would enter the cover before heads(w) would

consider (v, w) (in Fig. 3.2, see the cost-10 node).

For such an edge (v, w), on consideration, heads(w) will bring w into the cover

whether or not v chooses (v, w) for its star edge. So, edge (v, w) will be covered in this

round, regardless of v’s choice of star edge, as long as w does heads(w). Since w does

heads(w) with probability 1/2, edge (v, w) will be covered with probability 1/2.

Since this is true for a constant fraction of v’s active edges, in expectation, a

constant fraction of v’s active edges will be covered during the round.

Case 2: A constant fraction of v’s active edges (v, w) have the following property: if v

were to choose (v, w) as its star edge, and w were to do heads(w), then heads(w) would

perform Step(x, (v, w)).

37

For such an edge (v, w), heads(w) would bring v into the cover as long as

Step(x, (v, w)) would not be the last step performed by heads(w) (in Fig. 3.2, the cost-8

and cost-100 nodes). Or, if Step(x, (v, w)) would be the last step performed by heads(w),

then tails(w) would do only Step(x, (v, w)), which would bring v into the cover (by the

assumption that, at the start of the round (v, w) is active so that Step(x, (v, w)) would

bring v into the cover) (in Fig. 3.2, the cost-9 node). Thus, for such an edge (v, w), one

of heads(w) or tails(w) would bring v into the cover. Recall that w has a 50% chance of

doing heads(w) and a 50% chance of doing tails(w). Thus, if v chooses such an edge, v

enters the cover with at least a 50% chance.

In the case under consideration, v has a constant probability of choosing such

an edge. Thus, with constant probability, v will enter the cover and all of v’s edges

will be deleted. Thus, in this case also, a constant fraction of v’s edges are covered in

expectation during the round.

Thus, in each round, in expectation a constant fraction of the remaining edges

are covered. By standard arguments, this implies that the number of rounds is O(log n),

both in expectation and with high probability. This completes the proof of Thm. 12,

part (a).

Parallel (RNC) implementation

Proof of Thm. 12, part (b). To obtain the parallel algorithm, implement

heads(w) as follows. For w’s kth star edge ek, let βk be the β that Step(x, ek) would

use if given x at the start of the round. If heads(w) eventually does Step(x, ek) for

edge ek, the step will increase xw by βk/cw, unless ek is the last edge heads(w) does

a step for. Thus, the edges for which heads(w) will do Step(x, ek) are those for which

xw +
∑k−1

j=1 βj/cw < 1. These steps can be identified by a prefix-sum computation,

38

then all but the last can be done in parallel. This gives an NC implementation of

heads(w). The RNC algorithm simulates the distributed algorithm for O(log n) rounds;

if the simulated algorithm halts, the RNC algorithm returns x, and otherwise it returns

“fail”. This completes the proof of Thm. 12.

3.2 Distributed Mixed Integer Programs with Two Vari-

ables per Constraint

Next we generalize the results of Section 3.1 to CMIP2 (CMIP with at most two non-zero

coefficients Aij in each constraint).

Sequential Implementation

Consider first an implementation of the sequential δ-approximation algorithm

(Alg. 1) for the special case of CMIP2. Model the CMIP constraints (including the

upper bounds and integrality constraints) by allowing each xj to range freely in IR+ but

replacing each constraint Aix ≥ b by the following equivalent monotone constraint Si:

∑
j∈I

Aijbmin(xj , uj)c+
∑
j∈I

Aij min(xj , uj)≥ bi

where set I contains the indexes of the integer variables.

The algorithm starts with x = 0, then repeatedly does Step(x, S), defined

below, for any unsatisfied constraint S:

subroutine Step(x, S):

1. Let β ← stepsize(x, S).

2. For each j with Aij > 0, increase xj by β/cj.

Once all constraints are satisfied, the algorithm rounds each xj down to bmin(xj , uj)c

39

and returns the rounded x.

As discussed in Section 2.1, for the algorithm to produce a 2-approximate

solution, it suffices for stepsize(x, S) to return a lower bound on the minimum cost of

augmenting x to satisfy S, that is, on distancec(x, S) = min{c(x̂)− c(x)|x̂ ∈ S, x̂ ≥ x}:

Compute stepsize(x, Si) as follows. Consider any relaxation of Si that can be

obtained from Si by relaxing any subset of the integrality constraints or variable upper

bounds. (That is, replace bmin(xj , uj)c by min(xj , uj) for any subset of the j’s in I,

and then replace min(xj , uj) by xj for any subset of the j’s.) Since there are at most

two variables per constraint there are at most sixteen such relaxed constraints.

Define the potential Φ(x, Si) of constraint Si to be the number of these relaxed

constraints not satisfied by the current x. Compute stepsize(x, Si) (in constant time) as

the minimum cost to increase just one variable enough to reduce Φ(x, Si).

Observation 13 With this stepsize(), Step(x, Si) is done at most sixteen times before

constraint Si is satisfied.

Also, this step size satisfies the necessary condition for the algorithm to produce a

2-approximate solution:

Lemma 14 stepsize(x, Si) ≤ distancec(x, Si)

Proof. Consider a particular relaxed constraint S′i obtained by relaxing the upper

bound constraints for all xj with xj < uj and enforcing only a minimal subset J of the

floor constraints (while keeping the constraint unsatisfied). This gives S′i, which is of

the form ∑
j∈J

Aijbxjc+
∑
j∈J ′

Aijxj ≥ bi −
∑
j∈J ′′

uj

for some J , J ′, and J ′′.

40

What is the cheapest way to increase x to satisfy S′i? Increasing any one term

bxjc for j ∈ J is enough to satisfy S′i (increasing the left-hand side by Aij , which by the

minimality of J must be enough to satisfy the constraint).

Or, if no such term increases, then the sum
∑

j∈J ′ Aijxj must be increased by

enough so that increase alone is enough to satisfy the constraint. The cheapest way to

do that is to increase just one variable (xj for j ∈ J ′ maximizing Aij/cj).

In sum, for this S′i, distance(x, S′i) is the minimum cost to increase just one

variable so as to satisfy S′i. Thus, by its definition, stepsize(x, Si) ≤ distance(x, S′i). It

follows that stepsize(x, Si) ≤ distance(x, S′i) ≤ distance(x, Si).

Example. Minimize x1 + x2 subject to 0.5x1 + 3x2 ≥ 5, x2 ≤ 1, and x1, x2 ∈ ZZ+.

Each variable has cost 1, so each step will increase each variable equally. There are eight

relaxed constraints:

0.5x1 + 3x2 ≥ 5 (3.1)

0.5x1 + 3bx2c ≥ 5 (3.2)

0.5x1 + 3 min{x2, 1} ≥ 5 (3.3)

0.5x1 + 3bmin{x2, 1}c ≥ 5 (3.4)

0.5bx1c+ 3x2 ≥ 5 (3.5)

0.5bx1c+ 3bx2c ≥ 5 (3.6)

0.5bx1c+ min{x2, 1} ≥ 5 (3.7)

0.5bx1c+ 3bmin{x2, 1}c ≥ 5 (3.8)

At the beginning, x1 = x2 = 0. No relaxed constraint is satisfied, so Φ(x, S) = 8. Then

stepsize(x, S) = 5/3 (constraint (3.1) or (3.5) would be satisfied by raising x2 by 5/3).

The first step raises x1 and x2 to 5/3, reducing Φ(x, S) to 6.

41

For the second step, stepsize(x, S) = 1/3 (constraint (3.2) or (3.6) would be

satisfied by raising x2 by 1/3). The step raises both variables by 1/3 to 2, lowering

Φ(x, S) to 4.

For the third step, stepsize(x, S) = 2, (constraint (3.3), (3.4), (3.7), or (3.8)

would be satisfied by raising x1 by 2). The step raises both variables by 2, to 4, decreas-

ing Φ(x, S) to 0.

All constraints are now satisfied, and the algorithm returns x1 = bx1c = 4 and

x2 = bmin{x2, 1}c = 1.

Distributed implementation

Theorem 15 For covering mixed integer linear programs with at most two vari-

ables per constraint (CMIP2):

(a) there is a distributed 2-approximation algorithm running in O(log |C|) rounds in

expectation and with high probability, where |C| is the number of constraints.

(b) there is a parallel 2-approximation algorithm in “Las Vegas” RNC.

To prove part (a) of Thm. 15, we describe a distributed implementation of the

above sequential algorithm. The algorithm (Alg. 6) generalizes Alg. 5.

We assume the network in which the distributed computation takes place has

a node v for every variable xv, with an edge (v, w) for each constraint S that depends

on variables xv and xw. (The computation can easily be simulated on, say, a network

with vertices for constraints and edges for variables, or a bipartite network with vertices

for constraints and variables.)

In Alg. 5, a constant fraction of the edges were likely to be covered each round

42

distributed 2-approximation algorithm for CMIP2 (c, A, b, u, I) alg. 6

1. At each node v ∈ V : initialize xv ← 0;
if there are unmet constraints S that depend only on xv, do Step(x, S) for the
one maximizing stepsize(x, S).

2. Until all vertices are finished, perform rounds as follows:

3. At each node v: if v’s constraints are all met, finish (round xv down to
min(xv, uv), or bmin(xv, uv)c if v ∈ I); Otherwise, choose to be a leaf or a
root, each with probability 1/2.

4. Each leaf v does: for each unmet constraint S that can be hit by xv
(Defn. 16), label S active if S’s other variable is xw for a root w; choose,
among these active constraints, a random one to be xv’s star constraint
(rooted at w).

5. Each root w does either heads(w) or tails(w) below, each with probability
1/2.

heads(w):
6. For each star constraint S rooted at w, let tS be the minimum threshold such

that increasing xw to tS would either hit S (i.e., decrease Φ(x, S)) or make it
so S’s leaf variable xv could no longer hit S (and xw could).
If there is no such value, then take tS =∞.

7. For each star constraint S rooted at w, in order of decreasing tS , do the
following:

If xw < tS then do Step(x, S) (hitting S); otherwise, stop the loop and do
the following:
Among the star constraints rooted at w that have not yet been hit this round,
let Sr (the “runt”) be one maximizing stepsize(x, Sr). Do Step(x, Sr) (hitting
Sr and all not-yet-hit star constraints rooted at w).

tails(w):
8. Determine which constraint Sr would be the runt in heads(w). Do Step(x, Sr).

Figure 3.3: Distributed 2-approximation algorithm for CMIP2 (Alg. 6).

because a step done for one edge could cover not just that edge, but many others also.

Here we take a similar approach. Recall the definition of Φ(x, S) in the definition of

stepsize(). We want the total potential of all constraints, Φ(x) =
∑

S Φ(x, S), to decrease

by a constant fraction in each round.

Definition 16 Say that a constraint S is hit during the round when its potential Φ(x, S)

decreases as the result of some step.

By the definition of stepsize(), for any x and any constraint S there is at least

one variable xv such that raising just xv to xv + stepsize(x, S)/cv would be enough to

43

hit S.

Say such a variable xv can hit S (given the current x).

We want a constant fraction of the unmet constraints to be hit in each round.

Note that the observation implies, for example, that, among constraints that

can be hit by a given variable xv, doing a single step for the constraint S maximizing

stepsize(x, S) will hit all such constraints. Likewise, doing a single step for a random

such constraint will hit in expectation at least half of them (those with stepsize(x, S′) ≤

stepsize(x, S)).

In each round of the algorithm, each node randomly chooses to be a leaf or

a root. Each (two-variable) constraint is active if one of its variables xv is a leaf and

the other, say xw, is a root, and the leaf xv can hit the constraint at the start of the

round. (Each unmet constraint is active with probability at least 1/4.) Each leaf v

chooses one of its active constraints at random to be a star constraint. Then each root

w does (randomly) either heads(w) or tails(w), where heads(w) does steps for the star

constraints rooted at w in a particular order; and tails(w) does just one step for the last

star constraint that heads(w) would have done a step for (called w’s “runt”).

As heads(w) does steps for the star constraints rooted at w, xw increases. As

xw increases, the status of a star constraint S rooted at w can change: it can be hit

by the increase in xw or it can cease to be hittable by xv (and instead become hittable

by xw). For each constraint S, define threshold tS to be the minimum value of xw

at which S’s would have such a status change. Then heads(w) does steps in order of

decreasing tS until it reaches a constraint S with xw ≥ tS . At that point, each of

w’s not-yet-hit star constraints S has tS ≤ xw, and can still be hit by xw. (As xw

increases, once S changes status, S will be hittable by xw at least until S is hit.) Then

44

heads(w) does Step(x, Sr) for the “runt” constraint Sr — the one, among w’s not-yet-

hit star constraints, maximizing stepsize(x, Sr). This step hits all of w’s not-yet-hit star

constraints. See Alg. 6 for details.

Lemma 17 The total potential
∑

Si
Φ(x, Si) decreases by a constant factor in expecta-

tion with each round.

Proof. Any unmet constraint is active with probability at least one fourth, so with

constant probability the potential of the active edges is a constant fraction of the total

potential. Assume this happens. Consider an arbitrary leaf v. It is enough to show that

in expectation a constant fraction of v’s active constraints are hit (have their potentials

decrease) during the round. To do so, condition on any set of choices of star constraints

by the other leaves, so the only random choices left to be made are v’s star-constraint

choice and the coin flips of the roots. Then (at least) one of the following three cases

must hold:

Case 1. A constant fraction of v’s active constraints S have the following property: if

v were to choose S as its star constraint, and the root w of S were to do heads(w), then

heads(w) would not do Step(x, S).

Although heads(w) would not do Step(x, S) for such an S, it nonetheless would

hit S: just before heads(w) does Step(x, Sr), then xw ≥ tS , so either S has already been

hit (by the increases in xw) or will be hit by Step(x, Sr) (because xw can hit S and, by

the choice of Sr, Step(x, Sr) increases xw by stepsize(x, Sr)/cw ≥ stepsize(x, S)/cw).

On consideration, for a constraint S with the assumed property, the steps done

by heads(w) will be the same even if v chooses some constraint S′ with a root other than

w as its star constraint. (Or, if v chooses a constraint S′ 6= S that shares root w with

S, the steps done by heads(w) will still raise xw by as much as they would have had v

45

chosen S for its star constraint.) Thus, for such a constraint S, heads(w) (which w does

with probability at least 1/2) will hit S whether or not v chooses S as its star constraint.

If a constant fraction of v’s active constraints have the assumed property, then

a constant fraction of v’s active constraints will be hit with probability at least 1/2, so

in expectation a constant fraction of v’s active constraints will be hit.

Case 2. A constant fraction of v’s active constraints S have the following property: if

v were to choose S as its star constraint, and the root w of S were to do heads(w), then

heads(w) would do Step(x, S) when xw < tS (S would not be the runt).

Let H denote the set of such constraints. For S ∈ H let h(S) be the value to

which heads(w) (where w is the root of S) would increase xv. Whether or not v chooses

S as its star constraint, if xv increases to h(S) in the round and w does heads(w), then

S will be hit.

Let S and S′ be any two constraints in H where h(S) ≥ h(S′). Let w and

w′, respectively, be the root vertices of S and S′. (Note that w = w′ is possible.) If

v chooses S′ as its star constraint and w and w′ both do heads(), then S will be hit

(because xv increases to at least h(S′) ≥ h(S) and heads(w) still increases xw at least to

the value it would have had just before heads(w) would have done Step(x, S), if v had

chosen S as its star constraint).

Since (in the case under consideration) a constant fraction of v’s active con-

straints are in H, with constant probability v chooses some constraint S′ ∈ H as its star

constraint and the root w′ of S′ does heads(w′). Condition on this happening. Then the

chosen constraint S′ is uniformly random in H, so, in expectation, a constant fraction

of the constraints S in H are hit (because h(S) ≤ h(S′) and the root w of S also does

heads(w)).

46

Case 3. A constant fraction of v’s active constraints S have the following property: if

v were to choose S as its star constraint, and the root w of S were to do tails(w), then

tails(w) would do Step(x, S) (S would be the runt).

Let T denote the set of such constraints. For S ∈ T let t(S) be the value to

which tails(w) (where w is the root of S) would increase xv. Whether or not v chooses

S as its star constraint, if xv increases to t(S) in the round then S will be hit (whether

or not w does tails(w)).

Let S and S′ be any two constraints in T where t(S′) ≥ t(S). Let w and w′,

respectively, be the root vertices of S and S′. (Again w = w′ is possible.) If v chooses

S′ as its star constraint and w′ does tails(w′), then (because xv increases to at least

t(S′) ≥ t(S)) S will be hit.

Since (in the case under consideration) a constant fraction of v’s active con-

straints are in T , with constant probability v chooses some constraint S′ ∈ T as its star

constraint and the root w′ of S′ does tails(w′). Condition on this happening. Then the

chosen constraint S′ is uniformly random in T , so, in expectation, a constant fraction

of the constraints S in T are hit (because t(S) ≤ t(S′)). This proves the lemma.

The lemma implies that the potential decreases in expectation by a constant

factor each round. As the potential is initially O(|C|) and non-increasing, standard

arguments imply that the number of rounds before the potential is less than 1 (and so

x must be feasible) is O(log |C|) in expectation and with high probability.

This completes the proof of Thm. 15, part (a).

Parallel (RNC) implementation

Proof of Thm. 15, part (b). To adapt the proof of (a) to prove part (b), the

only difficulty is implementing step (2) of heads(w) in NC. This can be done using the

47

following observation. When heads(w) does Step(x, Sk) for its kth star constraint (except

the runt), the effect on xw is the same as setting xw ← fk(xw) for a linear function fk

that can be determined at the start of the round. By a prefix-sum-like computation,

compute, in NC, for all i’s, the functional composition Fk = fk ◦ fk−1 ◦ · · · ◦ f1. Let

x0
w be xw at the start of the round. Simulate the steps for all constraints Sk in parallel

by computing xkw = Fk(x
0
w), then, for each k with xk−1

w < tSk
, set the variable xv of

Sk’s leaf v by simulating Step(x, Sk) with xw = xk−1
w . Set xw to xkw for the largest k

with xk−1
w < tSk

. Finally, determine the runt S and do Step(x, S). This completes the

description of the NC simulation of heads(w).

The RNC algorithm will simulate some c log |C| rounds of the distributed al-

gorithm, where c is chosen so the probability of termination is at least 1/2. If the

distributed algorithm terminates in that many rounds, the RNC algorithm will return

the computed x. Otherwise the RNC algorithm will return “fail”.

This concludes the proof of Thm. 15.

3.3 Distributed Monotone Covering

Recall that the instance of Monotone Covering, defined by a cost function c and

constraint collection C, is

Find x ∈ IRn+ minimizing c(x) subject to (∀S ∈ C) x ∈ S.

Say that the cost function c(x) is locally computable if the increase in c(x) due

to raising xj can be determined knowing only the values of the variables that S depends

on. Any linear or separable cost function is locally computable. In what follows we

describe a distributed implementation of Alg. 1.

48

We assume the distributed network has a node for each constraint S ∈ C,

with edges from S to each node whose constraint S′ shares variables with S (Vars(S) ∩

Vars(S′) 6= ∅). (The computation can easily be simulated on a network with nodes for

variables or nodes for variables and constraints.) We assume unbounded message size.

Theorem 18 For Monotone Covering with a locally computable cost function there

is a distributed δ-approximation algorithm taking O(log2 |C|) communication rounds in

expectation and with high probability, where |C| is the number of constraints.

Proof. To start each phase, the algorithm finds large independent subsets

of constraints by running one phase of Linial and Saks’ (LS) decomposition algorithm

[89]2, below, with any k such that k ∈ Θ(log |C|) (in case the nodes don’t know such a

value see the comment at the end of this subsection). A phase of the LS algorithm, for

a given k, takes O(k) rounds and produces a random subset R ⊆ C of the constraints

(nodes), and for each constraint S ∈ R a “leader” node `(S) ∈ S, with the following

properties:

• Each constraint in R is within distance k of its leader:

(∀S ∈ R) d(S, `(S)) ≤ k.

• Edges do not cross components:

(∀S, S′ ∈ R) `(S) 6= `(S′)→ Vars(S) ∩ Vars(S′) = ∅.

• Each constraint has a chance to be in R:

(∀S ∈ C) Pr[S ∈ R] ≥ 1/c|C|1/k for some c > 1.

Next, each constraint S ∈ R sends its information (the constraint and its

variables’ values) to its leader `(S). This takes O(k) rounds because `(S) is at distance

2Decomposing the graph for packing and covering problems has been also used by Kuhn et al. to
compute distributively an approximate solution for fractional covering [85].

49

distributed algorithm for Monotone Covering alg. 7

1. Initialize x← 0.
2. Compute the Linial/Saks decomposition of the constraint graph G. Denote

it B1, B2, . . . , BO(log |C|).
3. For b = 1, 2, . . . , O(log |C|), do:
4. Within each connected component K of block Bb:
5. Gather all constraints in K at the leader vK.
6. At vK, do Step(x, S) to satisfy constraints S ∈ K.
7. Broadcast the variables to constraints in K and their neighbors.

Figure 3.4: Distributed δ-approximation algorithm for Monotone Covering (Alg. 7).

O(k) from S. Each leader then constructs (locally) the subproblem induced by the

constraints that contacted it and the variables of those constraints, with their current

values. Using this local copy, the leader repeatedly does Step(x, S) for any not-yet-met

constraint S that contacted it, until all constraints that contacted it are satisfied.

By the assumption that the cost is locally computable, stepsize(x, S) and the

subroutine Step(x, S) can be implemented knowing only the constraint S and the values

of the variables on which S depends. Thus, the leader can perform Step(x, S) for each

constraint that contacted it in this phase. Moreover, distinct leaders’ subproblems don’t

share variables, so they can proceed simultaneously.

To end the phase, each leader ` returns the updated variable information to

the constraints that contacted `. Each constraint in R is satisfied in the phase and drops

out of the computation (it can be removed from the network and from C; its variables’

values will stabilize once the constraint and all its neighbors are finished).

Analysis of the number of rounds. In each phase (since each constraint is in

R, and thus satisfied, with probability 1/c|C|1/k), the number of remaining constraints

decreases by at least a constant factor 1− 1/c|C|1/k ≤ 1− 1/Θ(c) in expectation. Thus,

the algorithm finishes in O(c log |C|) phases in expectation and with high probability

50

1− 1/|C|O(1). Since each phase takes O(k) rounds, this proves the theorem.

Comment. If the nodes don’t know a value k ∈ Θ(log |C|), use a standard doubling

trick. Fix any constant d > 0. Start with x = 0, then run the algorithm as described

above, except doubling values of k as follows. For each k = 1, 2, 4, 8, . . ., run Od(k)

phases as described above with that k. (Make the number of phases enough so that, if

k ≥ ln |C|, the probability of satisfying all constraints is at least 1 − 1/|C|d.) The total

number of rounds is proportional to the number of rounds in the last group of Od(k)

phases.

To analyze this modification, consider the first k ≥ log |C|. By construction,

with probability at least 1 − 1/|C|d, all constraints are satisfied after the Od(k) phases

with this k. So the algorithm finishes in Od(log |C|) phases with probability at least

1− 1/|C|d.

To analyze the expected number of rounds, note that the probability of not

finishing in each subsequent group of phases is at most 1/|C|d, while the number of

rounds increases by a factor of four for each increase in k, so the expected number of

subsequent rounds is at most Od(log |C|)
∑∞

i=0 4i/|C|di = Od(log |C|).

The following corollary is a subsequent result of Thm. 18.

Corollary 19 There is a distributed δ-approximation algorithm for Set Cover, CMIP

and (non-metric) Facility Location taking O(log2 |C|) communication rounds in expec-

tation and with high probability.

51

Chapter 4

Distributed Algorithm for

Fractional Packing

In this chapter we describe how to extend the distributed algorithms for cover-

ing to compute solution for Fractional Packing and Maximum Weighted b-Matching1.

In Section 4.1 we show a primal-dual algorithm that computes a δ-approximate solution

for these problems. Then in Section 4.2 we show a distributed implementation for δ = 2

and in Section 4.3 we show a distributed implementation for general δ.

4.1 Covering and packing

As a special case, Alg. 1 computes δ-approximate solutions for Fractional

Covering problems of the form min{
∑n

j=1 cjxj :
∑n

j=1Aijxj ≥ wi (∀i = 1..m), x ∈

IRn+}. The linear programming dual of such a problem is the following Fractional

1The results in this chapter appear in:
C. Koufogiannakis and N.E. Young. Distributed fractional packing and maximum weighted b-matching
via tail-recursive duality. In the twenty-third International Symposium on Distributed Computing. Lec-
ture Notes in Computer Science, LNCS 5805:221–238, 2009. DOI http://dx.doi.org/10.1007/978-3-642-
04355-0 23 The original publication is available at www.springerlink.com. c©Springer-Verlag Berlin
Heidelberg 2009. With kind permission of Springer Science+Business Media.

52

Packing problem: max{
∑m

j=1wiyi :
∑m

i=1Aijyi ≤ cj (∀j = 1 . . . n), y ∈ IRm+ }. For

packing, δ is the maximum number of packing constraints in which a packing variable

appears, δ = maxi |{j| Aij 6= 0}|.

Here we extend the sequential and distributed approximation algorithms for

Fractional Covering by [80] to compute δ-approximate solutions for Fractional

Packing using a non-standard primal-dual approach.

Notation. Let Ci denote the i-th covering constraint (
∑n

j=1Aijcj ≥ wi) and Pj denote

the j-th packing constraint (
∑m

i=1Aijyi ≤ cj). Let Vars(S) denote the set of (covering or

packing) variable indexes that appear in (covering or packing) constraint S. Let Cons(z)

denote the set of (covering or packing) constraint indexes in which (covering or packing)

variable z appears. Let N(ys) denote the set of packing variables that appear in the

packing constraints in which ys appears, that is, N(ys) = {yi|i ∈ Vars(Pj) for some j ∈

Cons(ys)} = Vars(Cons(ys)).

Fractional Covering. We start by repeating Alg. 1 tailored for Fractional Covering

and in a way that eases the subsequent primal-dual analysis. Let xt be the solution

after the first t steps have been performed. (Initially x0 = 0.) Given xt, let wti =

wi −
∑n

j=1Aijx
t
j be the slack of Ci after the first t steps. (Initially w0 = w.) The

algorithm is given by Alg. 8.

There may be covering constraints for which the algorithm never performs a

step because they are covered by steps done for other constraints with which they share

variables. Also note that increasing xj for all j ∈ Vars(Cs), decreases the slacks of all

constraints which depend on xj .

Our general approach. Our general approach is to recast the analysis as a primal-

dual analysis, showing that the algorithm (Alg. 8) implicitly computes a solution to the

53

Greedy δ-approximation algorithm for Fractional Covering alg. 8

1. Initialize x0 ← 0, w0 ← w, t← 0.
2. While there exist an unsatisfied covering constraint Cs do a step for Cs:
3. Set t = t+ 1.
4. Let βs ← wt−1

s ·minj∈Vars(Cs) cj/Asj .
5. For each j ∈ Vars(Cs):
6. Set xtj = xt−1

j + βs/cj .

7. For each i ∈ Cons(xj) update wti = wt−1
i −Aijβs/cj new slacks

8. Return x = xt.

Figure 4.1: Sequential δ-approximation algorithm for Fractional Covering (Alg. 8).

dual packing problem of interest here. To do this we use the tail-recursive approach

implicit in previous local-ratio analyses [16].

After the t-th step of the algorithm, define the residual covering problem to

be min{
∑n

j=1 cjxj :
∑n

j=1Aijxj ≥ wti (∀i = 1..m), x ∈ IRn+} and the residual packing

problem to be its dual, max{
∑m

i=1w
t
iyi :

∑m
i=1Aijyi ≤ cj (∀j = 1 . . . n), y ∈ IRm+ }. The

algorithm will compute δ-approximate primal and dual pairs (yt, xT−t) for the residual

problem for each t. As shown in what follows, the algorithm increments the covering

solution x in a forward way, and the packing solution y in a “tail-recursive” manner.

Standard Primal-Dual approach does not work. For even simple instances,

generating a δ-approximate primal-dual pair for the above greedy algorithm requires a

non-standard approach. For example, consider min{x1 +x2 +x3 : x1 +x2 ≥ 1, x1 +x3 ≥

5, x1, x2 ≥ 0}. If the greedy algorithm (Alg. 8) does the constraints in either order

and chooses β maximally, it gives a solution of cost 10. In the dual max{y12 + 5y13 :

y12 + y13 ≤ 1, y12, y13 ≥ 0}, the only way to generate a solution of cost 5 is to set

y13 = 1 and y12 = 0. A standard primal-dual approach would raise the dual variable for

each covering constraint when that constraint is processed (essentially allowing a dual

solution to be generated in an online fashion, constraint by constraint). That can’t work

here. For example, if the constraint x1 + x2 ≥ 1 is covered first by setting x1 = x2 = 1,

54

then the dual variable y12 would be increased, thus preventing y13 from reaching 1.

Instead, assuming the step to cover x1 + x2 ≥ 1 is done first, the algorithm

should not increase any packing variable until a solution to the residual dual problem is

computed. After this step the residual primal problem is min{x′1 + x′2 + x′3 : x′1 + x′2 ≥

−1, x′1 + x′3 ≥ 4, x′1, x
′
2 ≥ 0}, and the residual dual problem is max{−y′12 + 4y′13 :

y′12 +y′13 ≤ 1, y′12, y
′
13 ≥ 0}. Once a solution y′ to the residual dual problem is computed

(either recursively or as shown later in this section) then the dual variable y′12 for the

current covering constraint should be raised maximally, giving the dual solution y for

the current problem. In detail, the residual dual solution y′ is y′12 = 0 and y′13 = 1 and

the cost of the residual dual solution is 4. Then the variable y′12 is raised maximally to

give y12. However, since y′13 = 1, y′12 cannot be increased, thus y = y′. Although neither

dual coordinate is increased at this step, the dual cost is increased from 4 to 5, because

the weight of y13 is increased from w′13 = 4 to w13 = 5. In what follows we present this

formally.

Fractional Packing. We show that the greedy algorithm for covering creates an

ordering of the covering constraints for which it performs steps, which we can then use

to raise the corresponding packing variables. Let ti denote the time2 at which a step

to cover Ci was performed. Let ti = 0 if no step was performed for Ci. We define the

relation “Ci′ ≺ Ci” on two covering constraints Ci′ and Ci which share a variable and

for which the algorithm performed steps to indicate that constraint Ci′ was done first by

the algorithm.

Definition 20 Let Ci′ ≺ Ci if Vars(Ci′) ∩ Vars(Ci) 6= ∅ and 0 < ti′ < ti.

2In general by “time” we mean some reasonable way to distinguish in which order steps were per-
formed to satisfy covering constraints. For now, the time at which a step was performed can be thought
as the step number (line 3 at Alg. 8). It will be slightly different in the distributed setting.

55

Note that the relation is not defined for covering constraints for which a step

was never performed by the algorithm. Then let D be the partially ordered set (poset)

of all covering constraints for which the algorithm performed a step, ordered according

to “≺”. D is partially ordered because “≺” is not defined for covering constraints that

do not share a variable. In addition, since for each covering constraint Ci we have a

corresponding dual packing variable yi, abusing notation we write yi′ ≺ yi if Ci′ ≺ Ci.

Therefore, D is also a poset of packing variables.

Definition 21 A reverse order of poset D is an order Ci1 , Ci2 , . . . , Cik (or equivalently

yi1 , yi2 , . . . , yik) such that for l > j either we have Cil ≺ Cij or the relation “≺” is not

defined for constraints Cil and Cij (because they do not share a variable).

Then the following figure (Alg. 9) shows the sequential δ-approximation algo-

rithm for Fractional Packing.

Greedy δ-approximation algorithm for fractional packing alg. 9

1. Run Alg. 8, recording the poset D.
2. Let T be the number of steps performed by Alg. 8.
3. Initialize yT ← 0, t← T note that t will be decreasing from T to 0
4. Let Π be some reverse order of D. . . . any reverse order works, see Lemma 22
5. For each variable ys ∈ D in the order given by Π do:
6. Set yt−1 = yt.
7. Raise yt−1

s until a packing constraint that depends on yt−1
s is tight, that is,

set yt−1
s = maxj∈Cons(yi)(cj −

∑m
i=1Aijy

t−1
i) .

8. Set t = t− 1.
9. Return y = y0.

Figure 4.2: Sequential δ-approximation algorithm for Fractional Packing (Alg. 9).

The algorithm simply considers the packing variables corresponding to covering

constraints that Alg. 8 did steps for, and raises each variable maximally without violating

the packing constraints. The order in which the variables are considered matters: the

variables should be considered in the reverse of the order in which steps were done for

56

the corresponding constraints, or an order which is “equivalent” (see Lemma 22). (This

flexibility is necessary for the distributed setting.)

The solution y is feasible at all times since a packing variable is increased only

until a packing constraint gets tight.

Lemma 22 Alg. 9 returns the same solution y using (at line 4) any reverse order of D.

Proof. Let Π = yj1 , yj2 , . . . , yjm and Π′ = yj′1 , yj′2 , . . . , yj′m be two different reverse

orders of D. Let yΠ,1...k be the solution computed so far by Alg. 9 after raising the first

k packing variables of order Π. We prove that yΠ,1...m = yΠ′,1...m.

Assume that Π and Π′ have the same order for their first q variables, that is

ji = j′i for all i ≤ q. Then, yΠ,1...q = yΠ′,1...q. The first variable in which the two orders

disagree is the (q+ 1)-th one, that is, jq+1 6= j′q+1. Let s = jq+1. Then ys should appear

in some position l in Π′ such that q + 1 < l ≤ m. The value of ys depends only on the

values of variables in N(ys) at the time when ys is set. We prove that for each yj ∈ N(ys)

we have yΠ,1...q
j = yΠ′,1...l

j , thus yΠ,1...q
s = yΠ′,1...l

s . Moreover since the algorithm considers

each packing variable only once this implies yΠ,1...m
s = yΠ,1...q

s = yΠ′,1...l
s = yΠ′,1...m

s .

(a) For each yj ∈ N(ys) with ys ≺ yj , the variable yj should have already been

set in the first q steps, otherwise Π would not be a valid reverse order ofD. Moreover each

packing variable can be increased only once, so once it is set it maintains the same value

till the end. Thus, for each yj such that ys ≺ yj , we have yΠ,1...q
j = yΠ′,1...q

j = yΠ′,1...l
j .

(b) For each yj ∈ N(ys) with yj ≺ ys, j cannot be in the interval [j′q+1, . . . , j
′
l−1)

of Π′, otherwise Π′ would not be a valid reverse order of D. Thus, for each yj such that

yj ≺ ys, we have yΠ,1...q
j = yΠ′,1...q

j = yΠ′,1...l
j = 0.

So in any case, for each yj ∈ N(ys), we have rΠ,1...q
j = yΠ′,1...l

j and thus yΠ,1...q
s =

yΠ′,1...l
s .

57

The lemma follows by induction on the number of edges.

The following lemma and weak duality prove that the solution y returned by

Alg. 9 is δ-approximate.

Lemma 23 For the solutions x and y returned by Alg. 8 and Alg. 9 respectively, we

have
∑m

i=1wiyi ≥ 1/δ
∑n

j=1 cjxj.

Proof. Lemma 22 shows that any reverse order of D produces the same solution, so

w.l.o.g. here we assume that the reverse order Π used by Alg. 9 is the reverse of the

order in which steps to satisfy covering constraints were performed by Alg. 8.

When Alg. 8 does a step to satisfy the covering constraint Cs (by increasing

xj by βs/cj for all j ∈ Vars(Cs)), the cost of the covering solution
∑

j cjxj increases by

at most δβs, since Cs depends on at most δ variables (|Vars(Cs)| ≤ δ). Thus the final

cost of the cover x is at most
∑

s∈D δβs.

Define Ψt =
∑

iw
t
iy
t
i to be the cost of the packing yt. Recall that yT = 0 so

ΨT = 0, and that the final packing solution is given by vector y0, so the the cost of the

final packing solution is Ψ0. To prove the theorem we have to show that Ψ0 ≥
∑

s∈D βs.

We have that Ψ0 = Ψ0−ΨT =
∑T

t=1 Ψt−1−Ψt so it is enough to show that Ψt−1−Ψt ≥ βs

where Cs is the covering constraint done at the t-th step of Alg. 8. Then, Ψt−1 −Ψt is

58

∑
i

(wt−1
i yt−1

i − wtiyti) (4.1)

= wt−1
s yt−1

s +
∑
i 6=s

(wt−1
i − wti)yt−1

i (4.2)

= wt−1
s yt−1

s +
∑

j∈Cons(ys)

∑
i∈{Vars(Pi)−s}

Aij
βs
cj
yt−1
i (4.3)

= βsy
t−1
s max

j∈Cons(ys)

Asj
cj

+
∑

j∈Cons(ys)

∑
i∈{Vars(Pj)−s}

Aij
βs
cj
yt−1
i (4.4)

≥ βs
1

cj

m∑
i=1

Aijy
t−1
i (for j s.t. constraint Pj becomes tight after raising ys)

(4.5)

= βs (4.6)

In equation (4.2) we use the fact that yts = 0 and yt−1
i = yti for all i 6= s. For

equation (4.3), we use the fact that the residual weights of packing variables in N(ys)

are increased. If xi > 0 for i 6= s, then xi was increased before ys (ys ≺ yi) so at the

current step wt−1
i > wti > 0, and wt−1

i − wti =
∑

j∈Cons(ys)Aij
βs
cj

. For equation (4.4),

by the definition of βs we have wt−1
s = βs maxj∈Cons(ys)

Asj

cj
. In inequality (4.5) we keep

only the terms that appear in the constraint Pj that gets tight by raising ys. The last

equality holds because Pj is tight, that is,
∑m

i=1Aijyi = cj .

The following lemma shows that Alg. 9 returns integral solutions if the coeffi-

cients Aij are 0/1 and the cj ’s are integers, thus giving a δ-approximation algorithm for

Maximum Weighted b-Matching.

Lemma 24 If A ∈ {0, 1}m×n and c ∈ ZZn+ then the returned packing solution y is

integral, that is, y ∈ ZZm+ .

Proof. Since all non-zero coefficients are 1, the packing constraints are of the form∑
i∈Vars(Pj) yi ≤ cj (∀i). We prove by induction that y ∈ ZZm+ . The base case is trivial

59

since the algorithm starts with a zero solution. Assume that at some point we have

yt ∈ ZZm+ . Let ys ∈ D, be the next packing variable to be raised by the algorithm. We

show that yt−1
s ∈ ZZ+ and thus the resulting solution remains integral. The algorithm

sets yt−1
s = minj∈Cons(ys){cj −

∑
i∈Vars(Pj) y

t−1
i } = minj∈Cons(ys){cj −

∑
i∈Vars(Pj) y

t
i} ≥ 0.

By the induction hypothesis, each yti ∈ ZZ+, and since c ∈ ZZn+, then yt−1
s is also a

non-negative integer.

4.2 Distributed Fractional Packing with δ = 2

4.2.1 Distributed model for δ = 2

We assume the network in which the distributed computation takes place has

vertices for covering variables (packing constraints) and edges for covering constraints

(packing variables). So, the network has a node uj for every covering variable xj . An

edge ei connects vertices uj and uj′ if xj and xj′ belong to the same covering constraint

Ci, that is, there exists a constraint Aijxj +Aij′xj′ ≥ wi (δ = 2 so there can be at most

2 variables in each covering constraint). We assume the standard synchronous commu-

nication model, where in each round, nodes can exchange messages with neighbors, and

perform some local computation [104]. We also assume no restriction on message size

and local computation.

4.2.2 Distributed algorithm for δ = 2

In this section we augment Alg. 6 (distributed algorithm for covering with

δ = 2) to compute 2-approximate solutions to the dual fractional packing problem

without increasing the time complexity. The high level idea is similar to that in the

previous section: run the distributed algorithm for covering to get a partial order of the

60

covering constraints for which steps were performed, then consider the corresponding

dual packing variables in “some reverse” order raising them maximally. The challenge

here is that the distributed algorithm for covering can perform steps for many covering

constraints in parallel. Moreover, each covering constraint, has just a local view of the

ordering, that is, it only knows its relative order among the covering constraints with

which it shares variables.

Note that Alg. 6 proceeds in rounds, and within each round it covers a number

of edges. Then, define the time at which a step to cover constraint Ci (edge ei) is done

as a pair (tRi , t
S
i), where tRi denotes the round in which the step was performed and

tSi denotes that within the star this step is the tSi -th one. Let tRi = 0 if no step was

performed for Ci. Overloading Definition 20, we redefine “≺” as follows.

Definition 25 Let Ci′ ≺ Ci (or equivalently yi′ ≺ yi) if Vars(Ci′) ∩ Vars(Ci) 6= ∅ (i′

and i are adjacent edges in the distributed network) and ([0 < tRi′ < tRi] or [tRi′ = tRi and

tSi′ < tSi]).

The pair (tRi , t
S
i) is adequate to distinguish which of two adjacent edges had

a step to satisfy its covering constraint performed first. Adjacent edges can have their

covering constraints done in the same round only if they belong to the same star (they

have a common root), thus they differ in tSi . Otherwise they are done in different rounds,

so they differ in tRi . Thus the pair (tRi , t
S
i) and relation “≺” define a partially ordered

set D of all edges done by the distributed algorithm for covering.

Distributed Fractional Packing with δ = 2. Alg. 10 implements Alg. 9 in a

distributed fashion. First, it runs Alg. 6 and recording D. Meanwhile, as it discovers

the partial order D, it begins the second phase of Alg. 9, raising each packing variable

as soon as it can. Specifically it waits to set a given yi ∈ D until after it knows that

61

(a) yi is in D, (b) for each yi′ ∈ N(yi) whether yi ≺ yi′ , and (c) each such yi′ is set. In

other words, (a) a step has been done for the covering constraint Ci, (b) each adjacent

covering constraint Ci′ is satisfied and (c) for each adjacent Ci′ for which a step was

done after Ci, the variable yi′ has been set. Subject to these constraints it sets yi as soon

as possible. Note that some nodes will be executing the second phase of the algorithm

(packing) while some other nodes are still executing the first phase (covering). This is

necessary because a given node cannot know when distant nodes are done with the first

phase.

All yi’s will be determined in 2T rounds by the following argument. After

round T , D is determined. Then by a straightforward induction on t, within T + t

rounds, every constraint Ci for which a step was done at round T − t of the first phase,

will have its variable yi set.

Theorem 26 For Fractional Packing where each variable appears in at most two

constraints there is a distributed 2-approximation algorithm running in O(logm) rounds

in expectation and with high probability, where m is the number of packing variables.

Proof. By Thm 15, Alg. 6 computes a covering solution x in T = O(logm) rounds in

expectation and with high probability. At the same time, the algorithm sets (tRi , t
S
i) for

each edge ei for which it performs a step to cover Ci, and thus defining a poset D of

edges. In the distributed setting the algorithm does not define a linear order because

there can be edges with the same (tRi , t
S
i), that is, edges that are covered by steps done

in parallel. However, since these edges must be non-adjacent, we can still think that the

algorithm gives a linear order (as in the sequential setting), where ties between edges

with the same (tRi , t
S
i) are broken arbitrarily (without changing D). Similarly, we can

analyze Alg. 10 as if it considers the packing variables in a reverse order of D. Then,

62

Distributed 2-approximation Fractional Packing with δ = 2 alg. 10

input: Graph G = (V,E) representing a fractional packing problem instance with
δ = 2 .

output: Feasible y, 2-approximately minimizing w · y.

1. Each edge ei ∈ E initializes yi ← 0.
2. Each edge ei ∈ E initializes donei ← false. . . . this indicates if yi has been set to

its final value

3. Until each edge ei has set its variable yi (donei == true), perform a round:
4. Perform a round of Alg. 6. . . . covering with δ = 2 augmented to compute

(tRi ,tSi)
5. For each node ur that was a root (in Alg. 6) at any previous round, consider

locally at ur all stars Str that were rooted by ur at any previous round t.
For each star Str perform IncreaseStar(Str).

IncreaseStar(star Str):
6. For each edge ei ∈ Str in decreasing order of tSi :
7. If IncreasePackingVar(ei) == UNDONE then BREAK (stop the for loop).

IncreasePackingVar(edge ei = (uj , ur)):
8. If ei or any of its adjacent edges has a non-yet-satisfied covering constraint

return UNDONE.

9. If tRi == 0 then:
10. Set yi = 0 and donei = true.
11. Return DONE.

12. If donei′ == false for any edge ei′ such that yi ≺ yi′ then return UNDONE.
13. Set yi = min

{
(cj −

∑
i′ Ai′jyi′)/Aij , (cr −

∑
i′ Ai′ryi′)/Air

}
and donei = true.

14. Return DONE.

Figure 4.3: Distributed 2-approximation algorithm for Fractional Packing where each
variable appears in at most 2 constraints and Maximum Weighted Matching on graphs
(Alg. 10).

by Lemma 22 and Lemma 23 the returned solution y is 2-approximate.

We prove that the y can be computed in at most T extra rounds after the

initial T rounds to compute x. First note that within a star, even though its edges are

ordered according to tSi they can all set their packing variables in a single round if none

of them waits for some adjacent edge packing variable that belongs to a different star.

So in the rest of the proof we only consider the case were edges are waiting for adjacent

edges that belong to different stars. Note that 1 ≤ tRi ≤ T for each yi ∈ D. Then, at

round T , each yi with tRi = T can be set in this round because it does not have to wait

63

for any other packing variable to be set. At the next round, round T + 1, each yi with

tRi = T − 1 can be set; they are dependent only on variables yi′ with tRi′ = T which have

been already set. In general, packing variables with tRi = t can be set once all adjacent

yi′ with tRi ≥ t+ 1 have been set. Thus by induction on t = 0, 1, . . . a constraint Ci for

which a step was done at round T − t may have to wait until at most round T + t until

its packing variable yi is set. Therefore, the total number of rounds until solution y is

computed is 2T = O(logm) in expectation and with high probability.

The following theorem is a direct result of Lemma 24 and Thm 26 and the fact

that for this problem |E| = O(|V |2).

Theorem 27 For Maximum Weighted b-Matching on graphs there is a distributed

2-approximation algorithm running in O(log |V |) rounds in expectation and with high

probability.

4.3 Distributed Fractional Packing with general δ

4.3.1 Distributed model for general δ

Here we assume that the distributed network has a node vi for each covering

constraint Ci (packing variable yi), with edges from vi to each node vi′ if Ci and Ci′

share a covering variable xj
3. The total number of nodes in the network is m. Note that

in this model the role of nodes and edges is reversed as compared to the model used in

Section 4.2. We assume the standard synchronous model with unbounded message size.

3The computation can easily be simulated on a network with nodes for covering variables or nodes
for covering variables and covering constraints.

64

4.3.2 Distributed algorithm

We extend the distributed δ-approximation algorithm for (fractional) covering

problems Alg. 7) to compute δ-approximation for packing. Similar to the δ = 2 case,

here we use the covering algorithm to get a poset of packing variables which we then

consider in a reverse order, raising them maximally. Here, the role of stars is substituted

by components and the role of roots by leaders. With each step done to satisfy the

covering constraints Ci, the algorithm records (tRi , t
S
i), where tRi is the round and tSi

is the within-the-component iteration in which the step was performed. This defines a

poset D of covering constraints for which it performs steps.

Distributed packing with general δ. The algorithm is very similar to the case δ = 2.

First it runs the distributed algorithm for covering, recording (tRi , t
S
i) for each covering

constraint Ci for which it performs a step. Meanwhile, as it discovers the partial order

D, it begins computing the packing solution, raising each packing variable as soon as it

can. Specifically it waits to set a given yi ∈ D until after it knows that (a) yi is in D, (b)

for each yi′ ∈ N(yi) whether yi ≺ yi′ , and (c) each such yi′ is set. In other words, (a) a

step has been done for the covering constraint Ci, (b) each adjacent covering constraint

Ci′ is satisfied and (c) for each adjacent Ci′ for which a step was done after Ci, the

variable yi′ has been set. Subject to these constraints it sets yi as soon as possible.

To do so, the algorithm considers all components that have been done by

leaders in previous rounds. For each component, the leader considers the component’s

packing variables yi in order of decreasing tSi . When considering yi it checks if each yi′

with yi ≺ yi′ is set, and if yes, then yi can be set and the algorithm continues with the

next component’s packing variable (in order of decreasing tSi). Otherwise the algorithm

cannot yet decide about the remaining component’s packing variables.

65

Distributed δ-approximation Fractional Packing with general δ alg. 11

input: Graph G = (V,E) representing a fractional packing problem instance.
output: Feasible y, δ-approximately minimizing w · y.

1. Initialize y ← 0.
2. For each i = 1 . . .m initialize donei ← false. . . . this indicates if yi has been set to

its final value

3. Until each yi has been set (donei == true) do:
4. Perform a phase of the δ-approximation algorithm for covering (Alg. 7),

recording (tRi , t
S
i).

5. For each node vK that was a leader at any previous phase, consider locally
at vK all components that chose vK as a leader at any previous phase. For
each such component Kr perform IncreaseComponent(Kr).

IncreaseComponent(component Kr):
6. For each i ∈ Kr in decreasing order of tSi :
7. If IncreasePackingVar(i) == UNDONE then BREAK (stop the for loop).

IncreasePackingVar(i):
8. If Ci or any Ci′ that shares covering variables with Ci is not yet satisfied

return UNDONE.
9. If tRi == 0 then:

10. Set yi = 0 and donei = true.
11. Return DONE.

12. If donei′ == false for any yi′ such that yi ≺ yi′ then return UNDONE.
13. Set yi = minj∈Cons(yi)

(
(cj −

∑
i′ Ai′jyi′)/Aij)

)
and donei = true.

14. Return DONE.

Figure 4.4: Distributed δ-approximation algorithm for Fractional Packing and Maximum
Weighted Matching on hypergraphs (Alg. 11).

Theorem 28 For Fractional Packing where each variable appears in at most δ con-

straints there is a distributed δ-approximation algorithm running in O(log2m) rounds

in expectation and with high probability, where m is the number of packing variables.

The proof is omitted because it is similar to the proof of Thm 26.

The following theorem is a direct result of Lemma 24 and Thm 28.

Theorem 29 For Maximum Weighted b-Matching on hypergraphs, there is a dis-

tributed δ-approximation algorithm running in O(log2 |E|) rounds in expectation and

with high probability, where δ is the maximum hyperedge degree and |E| is the number

of hyperedges.

66

Chapter 5

Conclusions

5.1 Summary of Results

In this thesis we present sequential and distributed approximation algorithms

for covering problems.

First, we give a sequential δ-approximation algorithm for Monotone Cover-

ing. The algorithm unifies, generalizes, and improves many previous algorithms for

fundamental covering problems such as Vertex Cover, Set Cover, Facility Lo-

cation, and Covering Mixed-Integer Linear Programs with upper bound on

the variables. The algorithm is also a δ-competitive algorithm for online Monotone

Covering, which generalizes online versions of the above-mentioned covering problems

as well as many fundamental online paging and caching problems. As such it also

generalizes many classical online algorithms, including LRU, FIFO, FWF, Balance,

Greedy-Dual, Greedy-Dual Size (a.k.a. Landlord), and algorithms for connec-

tion caching, where δ is the cache size. It also gives new δ-competitive algorithms for

upgradable variants of these problems, which model choosing the caching strategy and

an appropriate hardware configuration (cache size, CPU, bus, network, etc.).

67

Then we show distributed versions of the sequential algorithm. For Weighted

Vertex Cover, we give the first distributed 2-approximation algorithm running in

O(log n) rounds. The algorithm generalize to CMIP with two variables per constraint

(δ = 2). For any Monotone Covering problem, we show the first distributed δ-approx-

imation algorithm running O(log2 |C|) rounds, where |C| is the number of constraints.

Finally, we show distributed δ-approximate algorithms for Fractional Pack-

ing and Maximum Weighted b-Matching, where δ is the maximum number of con-

straints in which a variable appears (for Maximum Weighted b-Matching δ is the max-

imum edge degree — for graphs δ = 2). For δ = 2 the algorithm runs in O(logm)

rounds, where m is the number of packing variables. For general δ the algorithm runs

in O(log2m) rounds.

5.2 Future Work

There are several open problems related to the problems presented in this

thesis.

5.2.0.1 Sequential Setting

Our greedy δ-approximation for Monotone Covering has a very simple anal-

ysis. However, we do not know of any primal-dual interpretation of the analysis. We

already know how to analyze the algorithm using primal-dual for some special cases, and

it seems that traditional primal-dual techniques do not work. Even simple special cases

require a “tail-recursive” primal-dual approach to compute a δ-approximate primal-dual

pair.

68

5.2.0.2 Distributed Setting

A long lasting question is how powerful randomization is in the distributed

setting. There are cases where randomized algorithms are faster or give a better ap-

proximation ratio compared to the corresponding deterministic algorithms. For example,

for Maximal Matching (and thus for a 2-approximation algorithm for Vertex Cover)

the fastest known deterministic algorithm takes O(log4 n) rounds [58], while the fastest

randomized algorithm runs in O(log n) rounds (Alg. 5). Figuring out when randomiza-

tion is necessary to provide better algorithms, or finding out deterministic algorithms

that match the performance of the corresponding randomized ones is a very interesting

research problem.

There are several more important open problems in the area of distributed algo-

rithms. Among others, for Maximum Weighted Matching find an (1+ε)-approximation

algorithm that runs in O(log n) number of rounds. For Weighted Vertex Cover find

a deterministic 2-approximation algorithm that runs in a number of rounds that is in-

dependent of the total number of nodes in the network (i.e. a running time that is only

a function of the maximum node degree).

69

Bibliography

[1] S. Albers. Generalized connection caching. In the twelfth ACM Symposium on
Parallel Algorithms and Architectures, pages 70–78, 2000.

[2] S. Albers. On generalized connection caching. Theory of Computing Systems,
35(3):251–267, 2002.

[3] Susanne Albers and Pascal Weil, editors. STACS 2008, 25th Symposium on
Theoretical Aspects of Computer Science, Bordeaux, France, February 21-23,
2008, Proceedings, volume 08001 of Dagstuhl Seminar Proceedings. Internationales
Begegnungs- und Forschungszentrum fuer Informatik (IBFI), Schloss Dagstuhl,
Germany, 2008.

[4] N. Alon, B. Awerbuch, and Y. Azar. The online set cover problem. In the thirty-
fifth ACM Symposium on Theory Of Computing, pages 100–105, 2003.

[5] E. Balas. A sharp bound on the ratio between optimal integer and fractional
covers. Mathematics of Operations Research, 9(1):1–5, 1984.

[6] N. Bansal, N. Buchbinder, and J. Naor. A primal-dual randomized algorithm for
weighted paging. In the forty-third IEEE symposium on Foundations Of Computer
Science, pages 507–517, 2007.

[7] N. Bansal, N. Buchbinder, and S. Naor. Randomized competitive algorithms for
generalized caching. In the fortieth ACM Symposium on Theory Of Computing,
pages 235–244, 2008.

[8] J. Bar-Ilan, G. Kortsarz, and D. Peleg. Generalized submodular cover problems
and applications. Theoretical Computer Science, 250(1-2):179–200, 2001.

[9] R. Bar-Yehuda. One for the price of two: A unified approach for approximating
covering problems. Approximation Algorithms for Combinatorial Optimization:
International Workshop, APPROX’98, 1998.

[10] R. Bar-Yehuda. One for the price of two: A unified approach for approximating
covering problems. Algorithmica, 27(2):131–144, 2000.

[11] R. Bar-Yehuda. Using homogeneous weights for approximating the partial cover
problem. Journal of Algorithms, 25:137–144, 2001.

70

[12] R. Bar-Yehuda, K. Bendel, A. Freund, and D. Rawitz. Local ratio: a unified
framework for approximation algorithms. ACM Computing Surveys, 36(4):422–
463, 2004.

[13] R. Bar-Yehuda and S. Even. A linear-time approximation algorithm for the
weighted vertex cover problem. Journal of Algorithms, 2(2):198–203, 1981.

[14] R. Bar-Yehuda and S. Even. A local-ratio theorem for approximating the weighted
vertex cover problem. Annals of Discrete Mathematics, 25(27-46):50, 1985.

[15] R. Bar-Yehuda and D. Rawitz. Efficient algorithms for integer programs with two
variables per constraint. Algorithmica, 29(4):595–609, 2001.

[16] R. Bar-Yehuda and D. Rawitz. On the equivalence between the primal-dual schema
and the local-ratio technique. SIAM Journal on Discrete Mathematics, 19(3):762–
797, 2005.

[17] B. Berger, J. Rompel, and P. Shor. Efficient nc algorithms for set cover with
applications to learning and geometry. In the thirty-fifth IEEE symposium on
Foundations Of Computer Science, pages 454–477, 1994.

[18] P. Berman and B. DasGupta. Approximating the online set multicover problems
via randomized winnowing. Theoretical Computer Science, 393(1-3):54–71, 2008.

[19] D. Bertsimas and R. Vohra. Rounding algorithms for covering problems. Mathe-
matical Programming: Series A and B, 80(1):63–89, 1998.

[20] A. Borodin, D. Cashman, and A. Magen. How well can primal-dual and local-ratio
algorithms perform? In the thirty-second International Colloquium on Automata,
Languages and Programming, pages 943–955. Springer, 2005.

[21] A. Borodin and R. El-Yaniv. Online computation and competitive analysis. Cam-
bridge University Press New York, NY, USA, 1998.

[22] N. Buchbinder and J. Naor. Online primal-dual algorithms for covering and pack-
ing problems. Lecture Notes in Computer Science, 3669:689–701, 2005.

[23] P. Cao and S. Irani. Cost-aware www proxy caching algorithms. In the USENIX
Symposium on Internet Technologies and Systems on USENIX Symposium on
Internet Technologies and Systems, pages 193–206, 1997.

[24] R. D. Carr, L. K. Fleischer, V. J. Leung, and C. A. Phillips. Strengthening inte-
grality gaps for capacitated network design and covering problems. In the eleventh
ACM-SIAM Symposium On Discrete Algorithms, pages 106–115, Philadelphia,
PA, USA, 2000. Society for Industrial and Applied Mathematics.

[25] Z.-Z. Chen. A fast and efficient nc algorithm for maximal matching. Information
Processing Letters, 55:303–307, 1995.

[26] M. Chrobak, H. Karloff, T. Payne, and S. Vishwanathan. New results on server
problems. SIAM J. Discrete Math., 4(2):172–181, 1991.

71

[27] Fabián A. Chudak and Kiyohito Nagano. Efficient solutions to relaxations of
combinatorial problems with submodular penalties via the lovász extension and
non-smooth convex optimization. In the eighteenth ACM-SIAM Symposium On
Discrete Algorithms, pages 79–88, Philadelphia, PA, USA, 2007. Society for In-
dustrial and Applied Mathematics.

[28] V. Chvátal. A greedy heuristic for the set-covering problem. Mathematics of
Operations Research, 4:233–235, 1979.

[29] E. Cohen, H. Kaplan, and U. Zwick. Connection caching. In the thirty-first ACM
Symposium on Theory Of Computing, pages 612–621, 1999.

[30] E. Cohen, H. Kaplan, and U. Zwick. Connection caching under various models
of communication. In the twelfth ACM Symposium on Parallel Algorithms and
Architectures, pages 54 –63, 2000.

[31] E. Cohen, H. Kaplan, and U. Zwick. Connection caching: Model and algorithms.
Journal of Computer and System Sciences, 67(1):92–126, 2003.

[32] A. Czygrinow and M. Hańćkowiak. Distributed algorithm for better approximation
of the maximum matching. In the ninth international Computing and Combina-
torics Conference, pages 242–251, 2003.

[33] A. Czygrinow, M. Hańćkowiak, and E. Szymańska. A fast distributed algorithm
for approximating the maximum matching. In the twelfth European Symosium on
Algorithms, pages 252–263, 2004.

[34] A. Czygrinow, M. Hańćkowiak, and W. Wawrzyniak. Distributed packing in planar
graphs. In the twentieth ACM Symposium on Parallel Algorithms and Architec-
tures, pages 55–61, 2008.

[35] M. Demange and V.T. Paschos. Algorithms and models for the on-line vertex-
covering. Lecture Notes In Computer Science, 2573:102–113, 2002.

[36] M. Demange and V.T. Paschos. On-line vertex-covering. Theoretical Computer
Science, 332(1-3):83–108, 2005.

[37] I. Dinur and S. Safra. On the hardness of approximating minimum vertex cover.
Annals of Mathematics, 162:439–486, 2005.

[38] G. Dobson. Worst-case analysis of greedy heuristics for integer programming with
nonnegative data. Mathematics of Operations Research, 7(4):515–531, 1982.

[39] D. Dubhashi, F. Grandoni, and A. Panconesi. Distributed Approximation Algo-
rithms via LP-duality and Randomization, chapter 13. Taylor and Francis, 2007.

[40] J. Edmonds. Paths, trees, and flowers. Canadian Journal of Mathematics, 17:449–
467, 1965.

[41] J. Edmonds and E. L. Johnson. Matching: A well-solved class of integer linear
programs. Combinatorial Structures and Their Applications, pages 89–92, 1970.

[42] A. Fiat, R.M. Karp, M. Luby, L.A. McGeoch, D.D. Sleator, and N.E. Young.
Competitive paging algorithms. J. Algorithms, 12:685–699, 1991.

72

[43] M.L. Fisher and L.A. Wolsey. On the Greedy Heuristic for Continuous Covering
and Packing Problems. SIAM Journal on Algebraic and Discrete Methods, 3:584–
591, 1982.

[44] T. Fujito. On approximation of the submodular set cover problem. Operations
Research Letters, 25(4):169–174, 1999.

[45] R. Gandhi, S. Khuller, and A. Srinivasan. Approximation algorithms for partial
covering problems. Journal of Algorithms, 53:55–84, 2004.

[46] Teo Gonzales, editor. Approximation Algorithms and Metaheuristics, chapter 4
(Greedy Methods). Taylor and Francis Books (CRC Press), 2007.

[47] P. Gopalan, H. Karloff, A. Mehta, M. Mihail, and N. Vishnoi. Caching with expi-
ration times. In the thirteenth ACM-SIAM Symposium On Discrete Algorithms,
pages 540–547, 2002.

[48] F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. Primal-dual based dis-
tributed algorithms for vertex cover with semi-hard capacities. In the twenty-fourth
ACM symposium on Principles Of Distributed Computing, pages 118–125, 2005.

[49] F. Grandoni, J. Könemann, A. Panconesi, and M. Sozio. A primal-dual bicriteria
distributed algorithm for capacitated vertex cover. SIAM Journal on Computing,
38(3):825–840, 2008.

[50] F. Grandoni, J. Könemann, J., and A. Panconesi. Distributed weighted vertex
cover via maximal matchings. Lecture Notes in Computer Science, 3595:839–848,
2005.

[51] F. Grandoni, J. Könemann, J., and A. Panconesi. Distributed weighted vertex
cover via maximal matchings. ACM Transactions on Algorithms, 1, 2008.

[52] S. Guha, R. Hassin, S. Khuller, and E. Or. Capacitated vertex covering. Journal
of Algorithms, 48(1):257 – 270, 2003.

[53] A. Gupta, M. Pal, R. Ravi, and A. Sinha. Boosted sampling: approximation
algorithms for stochastic optimization. In the thirty-sixth ACM Symposium on
Theory Of Computing, pages 417–426, 2004.

[54] N.G. Hall and D.S. Hochbaum. A fast approximation algorithm for the multicov-
ering problem. Discrete Applied Mathematics, 15(1):35–40, 1986.

[55] M. M. Halldórsson and J. Radhakrishnan. Greed is good: Approximating in-
dependent sets in sparse and bounded-degree graphs. In the twenty-sixth ACM
Symposium on Theory Of Computing, pages 439–448, 1994.

[56] E. Halperin. Improved approximation algorithm for the vertex cover problem in
graphs and hypergraphs. SIAM Journal on Computing, 31(5):1608–1623, 2002.

[57] Eran Halperin. Improved approximation algorithms for the vertex cover problem
in graphs and hypergraphs. In the eleventh ACM-SIAM Symposium On Discrete
Algorithms, pages 329–337, Philadelphia, PA, USA, 2000. Society for Industrial
and Applied Mathematics.

73

[58] M. Hańćkowiak, M. Karonski, and A. Panconesi. On the distributed complexity of
computing maximal matchings. SIAM Journal of Discrete Mathematics, 15(1):41–
57, 2001.

[59] J. Hȧstad. Some optimal inapproximability results. Journal of the ACM,
48(4):798–859, 2001.

[60] A. Hayrapetyan, C. Swamy, and É. Tardos. Network design for information net-
works. In the sixteenth ACM-SIAM Symposium On Discrete Algorithms, pages
933–942. Society for Industrial and Applied Mathematics Philadelphia, PA, USA,
2005.

[61] D. S. Hochbaum. Efficient bounds for the stable set, vertex cover, and set packing
problems. Discrete Applied Mathematics, 6:243–254, 1983.

[62] D.S. Hochbaum. Approximation algorithms for the set covering and vertex cover
problems. SIAM Journal on Computing, 11:555–556, 1982.

[63] D.S. Hochbaum. Approximation algorithms for NP-hard problems. PWS Publish-
ing Co. Boston, MA, USA, 1996.

[64] J.H. Hoepman. Simple distributed weighted matchings. Arxiv preprint
cs.DC/0410047, 2004.

[65] S. Hougardy and D.E. Vinkemeier. Approximating weighted matchings in parallel.
Information Processing Letters, 99(3):119–123, 2006.

[66] S. Irani. Page replacement with multi-size pages and applications to web caching.
Algorithmica, 33(3):384–409, 2002.

[67] A. Israeli and A. Itai. A fast and simple randomized parallel algorithm for maximal
matching. Information Processing Letters, 22:77–80, 1986.

[68] L. Jia, R. Rajaraman, and T. Suel. An efficient distributed algorithm for construct-
ing small dominating sets. In the twentieth ACM symposium on the Principles Of
Distributed Computing, pages 33–42, 2001.

[69] D. S. Johnson. Approximation algorithms for combinatorial problems. In the fifth
ACM Symposium On Theory Of Computing, 25:38–49, 1973.

[70] A. R. Karlin, M. S. Manasse, L. Rudolph, and D. D. Sleator. Competitive snoopy
caching. Algorithmica, 3:77–119, 1988.

[71] A.R. Karlin, C. Kenyon, and D. Randall. Dynamic tcp acknowledgment and other
stories about e/(e-1). Algorithmica, 36(3):209–224, 2003.

[72] H. J. Karloff. A las vegas rnc algorithm for maximum matching. Combinatorica,
6(4):387–391, 1986.

[73] R. M. Karp. Reducibility among combinatorial problems. Complexity of Com-
puter Computations, R. E. Miller and J. W. Thatcher, Eds., The IBM Research
Symposia Series, New York, NY: Plenum Press:85–103, 1972.

[74] P. Kelsen. An optimal parallel algorithm for maximal matching. Information
Processing Letters, 52:223–228, 1994.

74

[75] S. Khot and O. Regev. Vertex cover might be hard to approximate to within 2-ε.
Journal of Computer and System Sciences, 74:335–349, 2008.

[76] S. Khuller, U. Vishkin, and N.E. Young. A primal-dual parallel approxima-
tion technique applied to weighted set and vertex covers. Journal of Algorithms,
17:280–289, 1994.

[77] T. Kimbrel. Online paging and file caching with expiration times. Theoretical
Computer Science, 268:119–131, 2001.

[78] S.G. Kolliopoulos and N.E. Young. Approximation algorithms for cover-
ing/packing integer programs. Journal of Computer and System Sciences,
71(4):495–505, 2005.

[79] C. Koufogiannakis and N.E. Young. Beating simplex for fractional packing and
covering linear programs. In the forty-eighth IEEE symposium on Foundations of
Computer Science, pages 494–504, 2007.

[80] C. Koufogiannakis and N.E. Young. Distributed and parallel algorithms for
weighted vertex cover and other covering problems. the twenty-eighth ACM sym-
posium Principles of Distributed Computing, pages 171–179, 2009.

[81] C. Koufogiannakis and N.E. Young. Distributed fractional packing and maxi-
mum weighted b-matching via tail-recursive duality. the twenty-third International
Symposium on Distributed Computing. Lecture Notes in Computer Science, LNCS
5805:221–238, 2009.

[82] C. Koufogiannakis and N.E. Young. Greedy ∆-approximation algorithm for cov-
ering with arbitrary constraints and submodular cost. In the thirty-sixth Interna-
tional Colloquium on Automata, Languages and Programming, LNCS 5555:634–
652, 2009. See also http://arxiv.org/abs/0807.0644.

[83] F. Kuhn and T. Moscibroda. Distributed approximation of capacitated dominat-
ing sets. In the nineteenth ACM Symposium on Parallelism in Algorithms and
Architectures, pages 161–170, 2007.

[84] F. Kuhn, T. Moscibroda, and R. Wattenhofer. What cannot be computed lo-
cally! In the twenty-third ACM symposium on Principles Of Distributed Comput-
ing, pages 300–309, 2004.

[85] F. Kuhn, T. Moscibroda, and R. Wattenhofer. The price of being near-sighted. In
the seventeenth ACM-SIAM Symposium On Discrete Algorithm, pages 980–989,
2006.

[86] F. Kuhn and R. Wattenhofer. Constant-time distributed dominating set approx-
imation. In the twenty-second ACM symposium on the Principles Of Distributed
Computing, pages 25–32, 2003.

[87] C. Lenzen, Y.A. Oswald, and R. Wattenhofer. What can be approximated locally?:
case study: dominating sets in planar graphs. In the twentieth ACM Symposium
on Parallel Algorithms and Architectures, pages 46–54, 2008.

[88] N. Linial and M. Saks. Decomposing graphs into regions of small diameter. In the
second ACM-SIAM Symposium On Discrete Algorithms, pages 320–330, 1991.

75

[89] N. Linial and M. Saks. Low diameter graph decompositions. Combinatorica,
13(4):441–454, 1993.

[90] N. Linian. Locality in distributed graph algorithms. SIAM Journal on Computing,
21:193–201, 1992.

[91] Z. Lotker, B. Patt-Shamir, and S. Pettie. Improved distributed approximate
matching. In the twelfth ACM Symposium on Parallelism in Algorithms and Ar-
chitectures, pages 129 –136, 2008.

[92] Z. Lotker, B. Patt-Shamir, and A. Rosén. Distributed approximate matching. In
the twenty-sixth ACM symposium on Principles Of Distributed Computing, pages
167–174, 2007.

[93] Zvi Lotker, Boaz Patt-Shamir, and Dror Rawitz. Rent, lease or buy: Randomized
algorithms for multislope ski rental. In Albers and Weil [3], pages 503–514.

[94] L. Lovász. On the ratio of optimal integral and fractional covers. Discrete Math,
13:383–390, 1975.

[95] N. Luby. A simple parallel algorithm for the maximal independent set problem.
In the seventh ACM Symposium on Theory Of Computing, pages 1–10, 1985.

[96] L.A. McGeoch and D.D. Sleator. A strongly competitive randomized paging al-
gorithm. Algorithmica, 6(1):816–825, 1991.

[97] J. Mestre. Adaptive local ratio. In the nineteenth ACM-SIAM Symposium On Dis-
crete Algorithms, pages 152–160. Society for Industrial and Applied Mathematics
Philadelphia, PA, USA, 2008.

[98] B. Monien and E. Speckenmeyer. Ramsey numbers and an approximation algo-
rithm for the vertex cover problem. Acta Informatica, 22:115–123, 1985.

[99] M. Müller-Hannemann and A. Schwartz. Implementing weighted b-matching al-
gorithms: Towards a flexible software design. In the Workshop on Algorithm
Engineering and Experimentation (ALENEX), pages 18–36, 1999.

[100] M. Naor and L. Stockmeyer. What can be computed locally? SIAM Journal on
Computing, 24:1259–1277, 1995. STOC’ 93.

[101] T. Nieberg. Local, distributed weighted matching on general and wireless topolo-
gies. In the fifth ACM Joint Workshop on the Foundations of Mobile Computing,
DIALM-POMC, pages 87–92, 2008.

[102] J. B. Orlin. A faster strongly polynomial time algorithm for submodular function
minimization. In the twelfth conference on Integer Programming and Combinato-
rial Optimization, pages 240–251, 2007.

[103] A. Panconesi and R. Rizzi. Some simple distributed algorithms for sparse networks.
Distributed Computing, 14:97–100, 2001.

[104] D. Peleg. Distributed computing: a locality-sensitive approach. Society for Indus-
trial and Applied Mathematics, 2000.

76

[105] David Pritchard. Approximability of sparse integer programs. In the seventeenth
European Symposium on Algorithms, Lecture Notes in Computer Science 5757:83–
94, 2009.

[106] P. Raghavan and M. Snir. Memory versus randomization in on-line algorithms.
IBM Journal of Research and Development, 38(6):683–707, 1994.

[107] S. Rajagopalan and V. V. Vazirani. Primal-dual rnc approximation algorithms for
set cover and covering integer programs. SIAM Journal on Computing, 28:525–
540, 1999.

[108] R. Ravi and A. Sinha. Hedging uncertainty: Approximation algorithms for
stochastic optimization problems. Mathematical Programming, 108(1):97–114,
2006.

[109] D. Shmoys and C. Swamy. Stochastic optimization is (almost) as easy as determin-
istic optimization. In Forty-fifth IEEE symposium on Foundations Of Computer
Science, volume 45, pages 228–237. IEEE Computer Society Press, 2004.

[110] D.D. Sleator and R.E. Tarjan. Amortized efficiency of list update and paging
rules. Communications of the ACM, 28(2):202–208, 1985.

[111] A. Srinivasan. Improved approximation guarantees for packing and covering inte-
ger programs. SIAM Journal on Computing, 29:648–670, 1999.

[112] A. Srinivasan. New approaches to covering and packing problems. In the twelveth
ACM-SIAM Symposium On Discrete Algorithms, pages 567–576, 2001.

[113] R. Uehara and Z. Chen. Parallel approximation algorithms for maximum weighted
matching in general graphs. Information Processing Letters, 76(1-2):13–17, 2000.

[114] V.V. Vazirani. Approximation algorithms. Springer, 2001.

[115] M. Wattenhofer and R. Wattenhofer. Distributed weighted matching. Lecture
Notes in Computer Science, 3274:335–348, 2004.

[116] M. Wattenhofer and R. Wattenhofer. Distributed weighted matching. In the eigh-
teenth international symposium on Distributed Computing, pages 335–348, 2004.

[117] N. E. Young. The k-server dual and loose competitiveness for paging. Algorithmica,
11:525–541, 1994.

[118] N. E. Young. On-line file caching. Algorithmica, 33(3):371–383, 2002.

[119] Neal E. Young. Greedy set-cover algorithms (part 7 of encyclopedia of algorithms).
Springer Encyclopedia of Algorithms, 2008.

77

Appendix A

Proofs

Lemma 30 The sequence of conservative basic steps needed to satisfy Si can be imple-

mented in time O(|Vars(Si)| log(Vars(Si)).

Proof. In the following, the universe of indexes j is restricted without further comment

to Vars(Si). The algorithm maintains the following data structures:

• A vector x0 recording x at the start of the sequence and the elapsed time s since

the start, from which xj = x0
j + s/cj can be calculated.

• The slack of the relaxed constraint, b′ = b′i(x) = bi −
∑

i∈J Aijbmin(xj , uj)c −∑
i∈J Aij min(xj , uj).

• A min-heap q(J − U) holding indices j ∈ J − U , keyed by cj/Aij . Then βJ is the

minimum key in q(J −U), times the slack b′, so βJ can be found in O(log δ) time.

• The current rate of change θ =
∑

j∈J−U Aij/cj of the fractional part with respect

to s. When s increases by β, this allows the reduction in the slack b′ to be computed

in constant time, as the reduction in the slack is θβ.

78

• A max-heap q(I − J) holding indices j ∈ I − J , keyed by Aij . This allows indices

to be added to J in order of decreasing Aij .

• A min-heap q(J −U) holding indices j ∈ J −U , keyed by the value of s when bxjc

next increases, that is, by s+ cj(1 + bxjc − xj) = cj(1 + bx0
j + s/cjc − x0

j). Then

βJ is the minimum key in q(J −U) minus s, so βJ can be found in O(log δ) time.

Also, when s increases, all variables xj with j ∈ J − U whose terms bxjc increase

can also be found in O(log δ) time per variable.

• A min-heap q(U) holding indexes j ∈ Vars(Si) − U , keyed by the value of s that

will cause xj to reach its upper bound uj , that is, by cj(uj − x0
j). Then, when s

increases, each variable reaching its upper bound can be found in O(log δ) time.

At the start of the sequence of steps for Si, the algorithm initializes the above data

structures for J = ∅, U = {j : xj ≥ uj}. This can be done in O(|Vars(Si)| log δ) time.

The algorithm then repeats the conservative basic step, by repeating the fol-

lowing two steps in order until Si is satisfied:

Augment J. While x satisfies the constraint for J (i.e., while b′ ≤ 0), add the next

index to J as follows. If I = J (that is, q(I − J) is empty), halt, as the original

constraint Si is satisfied. Otherwise, find the element j in q(I−J) with maximum

key. Add j to J ; update the queues, b′, and θ accordingly. (Delete j from q(I−J).

If j 6∈ U (i.e., j ∈ q(U)) add j to q(J − U), delete j from q(J − U), increase the

slack b′ by Aij(xj − bxjc) and decrease the rate of change θ by Aij/cj . Otherwise

(j ∈ U), increase b′ by Aij(uj − bujc).)

Increase s. Compute β = min(βJ , βJ) using q(J − U), q(J − U), and b′ as in their

descriptions. Increase s by β. Decrease b′ by θβ. For each j in q(J − U) with

79

key s (if any; these are the variables whose floors increase) decrease b′ by Aij and

increase the key of j to s+ 1/cj .

For each variable xj that reaches its upper bound (that is, has key s or less in

q(U)), correct the updates in the previous two paragraphs as follows. If j ∈ J

(i.e., in q(J − U)), then reduce b′ by Aij(bxjc − bujc). Otherwise (j ∈ J), reduce

b′ by Aij(xj − uj). Remove j from q(U), and q(J − U) or q(J − U).

For a given Si, each loop within the augmentation step takes O(log δ) time and

adds a variable to J . The total time for all augmentation steps until Si is satisfied is

thus O(|Vars(Si)| log δ).

The first paragraph of the step increasing s takes O(log δ) time plus O(log δ)

time per variable whose floor increases. For each variable j whose floor increases, the

slack decreases by at least Aij , causing at least one variable to be added to J . This can

happen O(|Vars(Si)|) times (Lemma 5). Thus, the total time spent for a given Si in the

first paragraph of the step increasing s is O(|Vars(Si)| log δ).

Since each variable reaches its upper bound only once, the total time spent in

the second paragraph of the step throughout the course of the algorithm is O(N log δ).

80

