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Abstract

We present here a novel genetic algorithm-based random forest (GARF) modeling tech-

nique that enables a reduction in the complexity of large gene disease signatures to highly

accurate, greatly simplified gene panels. When applied to 803 glioblastoma multiforme sam-

ples, this method allowed the 840-gene Verhaak et al. gene panel (the standard in the field)

to be reduced to a 48-gene classifier, while retaining 90.91% classification accuracy, and

outperforming the best available alternative methods. Additionally, using this approach we

produced a 32-gene panel which allows for better consistency between RNA-seq and micro-

array-based classifications, improving cross-platform classification retention from 69.67% to

86.07%. A webpage producing these classifications is available at http://simplegbm.semel.

ucla.edu.

Introduction

Glioblastoma (GBM) is the most common and most fatal form of primary malignant brain

tumor. The survival rate with treatment is frequently under two years, with the median sur-

vival rate being 12.2 months without treatment [1]. GBMs are highly heterogeneous and show

highly variable gene expression patterns. Several classification schemes have tried to capture

this variability by using gene expression data in an attempt to identify more homogeneous

sub-categories for prognosis and drug testing [1,2].

The most commonly used classification scheme was proposed by Verhaak et al. in 2010,

and divided GBMs into Proneural, Classical, Neural, and Mesenchymal types based on gene

expression measured with microarrays. These subcategories differed both in terms of median

survival rates, which were highest (13.1 months) in the Neural and lowest (11.3 months) in the

Proneural type [1], and in response to aggressive treatment (defined as requiring more than 3

courses of chemotherapy). In the original study aggressive treatment was significantly more

beneficial in the Classical and Mesenchymal subtypes, and least effective in the Proneural sub-

type [1].
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The Verhaak et al. classification algorithm was developed by applying a centroid-based clas-

sifier, ’ClaNC’ [3], on a microarray dataset of 200 GBM samples. Using 173 of the 200 samples

(described as ‘core’ samples by Verhaak et al.) and a linear discriminant analysis (LDA)

method of gene selection and variable reduction, ClaNC was used to build a 4 subcategory

classifier and assign a category to each of the 200 samples [1].

The Verhaak et al. classifier utilizes 210 genes per GBM category, resulting in the classifier

being based on 840 total genes. Since testing hundreds of genes in order to classify GBM sam-

ples is impractical outside of large-scale microarray and RNA-sequencing experiments, we set

out to identify a reduced gene set that would allow classifications to be made with a subset of

genes while retaining classification accuracy.

To accomplish our goal of producing a method of selecting a significantly smaller subset of

genes which recapitulates the Verhaak et al. GBM subclassifications, we have developed a

method of variable reduction in random forest models designed to reduce the complexity of

the classifier while maintaining accuracy. Our approach uses a novel method of random forest

(RF) variable reduction based loosely on a genetic algorithm (GA) designed by Waller et al.

[4]. This iterative GA framework rewards genes based on expression or other variables from

the best randomly-selected subsets by allowing them to continue to the next generation of sub-

sets. Using this approach, variables which do not perform as well in random pairings are elimi-

nated. The final result of our utilization of this algorithm is a set of 48 genes (GBM48 panel)

which is highly accurate in assigning Verhaak et al. categories in a test set of 803 GBM expres-

sion samples collected from publicly available datasets. Additionally, we have used the same

algorithm to maximize accuracy on RNA-seq based data creating a second GBM RNA-seq 32

gene panel. This 32 gene RNA-seq based panel greatly improves our ability to compare RNA-

seq based classification to microarray based classification using the original 840 gene Verhaak

et al. classifier. These findings provide a simpler subset of genes whose expression can be used

for classification, as well as a general method whereby similar strategies may be employed in

other systems to aid in reducing the complexity necessary to describe them.

Methods

The Verhaak et al. Classifier

The Cancer Genome Atlas (TCGA) training set used to build this model consists of 173 ‘core’

samples [1]. Each of these samples had genome-wide expression patterns collected from runs

on three platforms (Affymetrix HuEx array, Affymetrix U133A array and Agilent 244K array).

In order to improve reproducibility and to select genes behaving consistently across multiple

array platforms, the total number of probes used in the analysis was reduced to 1,740 through

a series of filters, described by Verhaak, et al. [1]. Briefly, the first filter was consistency across

at least two of the three array platforms, which was calculated by comparing the expression

pattern across all three platforms. If a gene had a 0.7 or higher correlation across two plat-

forms, it was kept in the analysis. This filter resulted in 9,255 genes remaining from the origi-

nal 11,861 unified gene expression patterns. The second filter was high variability across

samples, i.e. probes with mean absolute deviation (MAD) greater than 0.5 across all patients

were filtered out, which resulted in 1,903 genes remaining. The third filter removed genes

where the individual MAD was significantly different than the averaged MAD, in order to

remove genes with extremely variable standard deviation. These filters resulted in a final a set

of 1,740 probes combined across three microarray platforms. These 1,740 genes were then

used to estimate the correct number of clusters/classifications. This was done by attempting

multiple different cutoffs and selecting the number of clusters with the highest stability using
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consensus average linkage hierarchical clustering [5]. These experiments resulted in 4 sub-

classes being determined as the optimal cutoff.

Using ClaNC, the total gene set to describe these 4 clusters/classifications was then reduced

to 840 probes through linear discriminant analysis and cross-validation. The final set of 840

probes was then used to create the Verhaak et al. centroid-based classifier. These 840 genes

constituted the starting pool of variables used for the algorithm presented here, aimed at the

identification of an optimized smaller subset.

Datasets Used in this Study

The six datasets used for the process of building and validating our algorithm are listed in

Table 1 along with their relative sizes, platforms and final model accuracy. Additionally, we

used 122 RNA-seq samples from TCGA generated using the Illumina HiSeq2000 v2 platform.

These were used to produce a second reduced 32-gene RNA-seq panel for better RNA-seq/

microarray data agreement on Verhaak et al. classifications.

All 6 datasets used were obtained using Affymetrix microarrays, though different versions

of microarray chips were used depending on the dataset. TCGA data was downloaded from

the TCGA website [6], the Rembrandt data from the Rembrandt data download page [7] and

the other datasets were downloaded from the Gene Expression Omnibus repository [8,9],

including datasets from Sturm et al. [10] consisting of 46 samples, Schwartzentruber et al. [11]

consisting of 27 samples and Grzmil et al. [12] consisting of 35 samples (Table 1). When more

than one probe existed for a given gene in a given dataset, prior to normalization and batch

effect adjustment the brightest probe was selected to represent each individual gene.

All datasets were combined and normalized using the R package limma [13], and batch

effects were adjusted using ComBat [14]. ClaNC was used to create a centroid-based classifier

[1], and a Verhaak et al. category (Mesenchymal, Proneural, Neural, or Classical) was assigned

to each sample within the test sets.

A subset of the TCGA data consisting of 122 samples, for which both RNA-seq and micro-

array data were available, was used to develop our RNA-seq panel. This subset was used to find

a small group of genes with high information content and correlation with microarray data in

order to improve RNA-seq to microarray classifications.

Optimal Gene Cutoff Selection

The first step in our analysis was to estimate the optimal size with which to produce a classifier.

In order to do this, we produced 1000 random forest models from randomly selected genes at

Table 1. Datasets used in this experiment.

Dataset N. of Samples Usage Platform Accuracy

1. TCGA Training Data 171 Training Set Affymetrix HT Human Genome U133 Array Plate Set 91.81%

2. TCGA Test Data 296 Test Set Used to Direct Training Affymetrix HT Human Genome U133 Array Plate Set 91.55%

3. GDS4470 46 Test Set Used to Direct Training Affymetrix Human Genome U133 Plus 2.0 Array 89.13%

4. GDS4477 27 Test Set Used to Direct Training Affymetrix Human Genome U133 Plus 2.0 Array 81.48%

5. GDS4467 35 Test Set Used to Direct Training Affymetrix Human Genome U133 Plus 2.0 Array 91.43%

6. Rembrandt (GSE68848) 228 Hold Out Test Set Affymetrix Human Genome U133 Plus 2.0 Array 93.86%

Total 803 90.91%

Table 1 shows the datasets used for the development of our optimized model as well as the final classification accuracy of our final GBM48 panel classifier.

Random models were built using the 171 TCGA ’core’ training samples, and evaluated on the 575 samples from the TCGA, GDS4477, GDS4470 and

GDS4467. The best model/models from each run were then tested against the Rembrandt dataset (GSE68848) to test for over-training.

doi:10.1371/journal.pone.0164649.t001
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cutoffs of between 2 and 60 gene subsets for both the reduced GBM48 classification panel and

for the reduced RNA-seq panel. We then estimated the average random model accuracy on all

803 samples. The resulting curve was fitted using local polynomial regression fitting, and addi-

tional probes were included only if they improved the average model by at least 0.001% (Fig 1)

[15]. This produced an optimal cutoff of 48 genes for our reduced Verhaak et al. panel and 32

genes for our improved RNA-seq panel.

Fig 1. Random Model-Based Panel Size Determination. Figures show different average values of models made with random

gene subsets of between 2 and 60. Each data point in A and C represent the average comparative accuracy of the 1000 random

models on all 803 samples. The models themselves were built using the randomly selected genes trained with only the samples

used in the Verhaak et al. study. In B and D, these figures are smoothed curves produced from fitting of the random data using

local regression. By smoothing the curves, a more accurate guess can be made as to how much data is likely being added with

larger gene subsets. For the purposes of this study we determined an appropriate cutoff to be when an additional gene adds less

than 0.001 percent to average random model accuracy. The final values selected using this approach were 32 genes for RNA-seq

data (A and B) and 48 (C and D) for the reduced Verhaak et al. classification. Both these cutoffs are marked with a dotted line

connecting to the x axis.

doi:10.1371/journal.pone.0164649.g001
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Feature Selection

Our initial expression set comprised the Affymetrix expression levels for the 840 Verhaak et al.

probes in 171 of the 173 ‘core’ samples (2 samples from the original training set were not avail-

able for download from the TCGA website). We then included only genes existing with the

same gene symbol across all six training and test sets, which resulted in a total starting pool of

753 probes.

We used five datasets to build the classifier (datasets #1–5, Table 1) and then used the Rem-

brandt [7] test set (dataset #6) for final verification. Each subset of 48 genes was trained on the

TCGA training dataset (dataset #1) and evaluated for fitness on datasets #2–5 but not on the

Rembrandt dataset (dataset #6), in order to avoid overfitting. This process helped to select

gene subsets that worked on more than one Affymetrix chip type and on all datasets used in

the subset fitness evaluation process. The final model was validated on the independent Rem-

brandt dataset (#6) that was not used to build the classifier in the training process. The Rem-

brandt dataset was selected for this purpose because it was the largest test dataset from a

source other than the original classifier.

Random Forest

The "Random Forest" algorithm was named as such because it consists of hundreds or thou-

sands of decision trees. The consensus of the classifications predicted by these decision trees

represent the classification predicted by the overall model. For our random forest models, we

used the "randomForest" library [16], an R implementation based on the original design by

Leo Breiman [17]. All random forest models were built identically with genes selected from

varSelRF, RFE and GARF. We used 5000 trees per model with a default number of variables

randomly sampled at each node/split of the decision trees.

Genetic Algorithm/Random Forest (GARF) Approach

Genetic algorithms (GA) are algorithms that behave similarly to natural selection. The basis of

the genetic algorithm used here is inspired by a small molecule variable optimization algo-

rithm based on linear regression found in Waller et al. [4]. Our genetic algorithm starts with a

pool of fixed or variable randomly-selected variables from which ‘offspring’ models can be cre-

ated. An iterative algorithm, our GARF approach slowly eliminates less fit variables by keeping

only the variables that make up the best models. This leads to fitter generations of offspring

models with each subsequent generation (Fig 2).

Our algorithm starts off by selecting offspring subsets that are selected by the subset selector

"sample" from the base R package [18]; random forest models are then built on these subsets

and are evaluated on datasets #1–5 for fitness (described in the ‘GARF Offspring Fitness Evalu-

ation’ section). The genes in the best subsets are allowed to move on to the subsequent genera-

tion. The variables themselves are treated as a pool, where each subsequent generation of 48

gene subsets is randomly selected from the current pool.

The first key difference when compared to the Waller et al. approach is that instead of

removing the least fit variables, we keep the variables in subsets that produce the best models.

This difference in methodologies only removes variables which do not appear in the best mod-

els, rather than punishing variables that are potentially grouped with other poorly performing

variables. This eliminates the need for the ‘taboo’ search found in the original algorithm,

which confirms at every elimination step that genes in the least fit models are not present in

any highly fit models.

Furthermore, in the case of our algorithm, the cutoff is dynamically selected based on the

number of variables in the pool. This cutoff is set to keep the number of models needed to

Gene Expression Panel for Glioblastoma Classification
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allow all genes to remain in the pool; thus, theoretically, if all genes perform the same, they

should all be kept in the next iteration. This ensures that only genes which appear in more

than a single top model will move on to the next generation. The Waller et al. algorithm allows

a static kill factor to be used, with a suggested value of 5% of the worst models excluding vari-

ables found in top models. In contrast, our approach favors keeping variables which have com-

bined predictive value together in the pool, allowing greater opportunities in subsequent

generations for them to be placed together again with other groups with higher predictive

value. This permits optimization to occur as the result of genes which together describe the

system well, rather than removing individual genes which did not describe the system well or

which may simply not have a strong effect on the total value of the subset of variables in a

given model.

Fig 2. Genetic Algorithm/Random Forest Flow Chart. General description of our Genetic Algorithm/

Random Forest approach used to select the best 48-gene classifier. A starting gene pool is refined by

removing the least "fit" genes until a subset remains representing a local maximum based on the starting

subsets of genes selected.

doi:10.1371/journal.pone.0164649.g002
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The third difference is that Waller et al. utilize leave–one-out cross-validation to establish

fitness. Grouping together multiple cohorts and building the model on samples from multiple

cohorts, and then utilizing cross-validation to validate the model increases the possibility of

over-training. Given that reproducibility is a challenge both between platforms and labs, our

algorithm is designed to train on a single cohort, but then only select genes with reproducible

effects in alternative cohorts. Building a model on a single cohort and being able to replicate it

independently on additional cohorts improves the likelihood that it will be reproducible on

additional datasets using a similar platform.

GARF Offspring Fitness Evaluation

To test the fitness of each subset, a random forest model is built using the genes that make up

that subset. The fitness of each subset is then evaluated by how many identical classifications

the random forest model built on it produces when compared to the Verhaak et al. ClaNC clas-

sifications obtained using all genes. The overall fitness is the average accuracy produced by all

subset-derived random forest models built in a generation of subsets. The fitness evaluation

process excludes dataset #6 which is used for final model validation after the completion of the

algorithm in order to evaluate if the model has predictive capabilities outside of the datasets it

was trained on.

GARF Runs

The first generation of our genetic algorithm starts by constructing the number of subsets

equal to the total number of genes in the starting gene pool. In the case of this system, we start

with 753 genes, and 753 subsets of 48 genes are created in the first generation of models. The

number of created subsets and random forest models built on those subsets in each subsequent

generation is equal to the number of genes remaining in the pool. This ensures the number of

models constructed reduces as the number of possible subsets shrinks due to the shrinking size

of the pool of variables.

At each iteration, average model accuracy is evaluated by comparing the Verhaak et al.

model built with ClaNC and the subset-based random forest model predictions against the 575

samples in datasets #2–5 (Table 1). If the classification of the random forest model is identical

to the classification predicted by the Verhaak et al. model, the prediction is considered to be

correct.

At each successful iteration at which average model accuracy improves, the unique genes

from the top 2.08% of models from that iteration move on to form the starting pool for the

next generation. The 2.08% cutoff is determined as the minimum number of models needed in

order to ensure that 100% of the genes have the possibility to survive to the next generation of

offspring models. The percentage kept can be described with the following formula: (100% / #

of genes in model). For example, if there were 400 genes in the pool, 400 subsets for building

models would be made, 9 (400/48 = 8.32) of which would move on to the next generation.

These 9 models would contain 432 genes if there was no overlap, making this the minimum

number kept to allow all 400 genes to potentially move on to the next generation.

This iterative process ends when the next generation of models fails to be superior to the

previous generation in average model accuracy or when the target number of genes is reached

in the pool of variables. If the next gene pool fails to improve upon the last, the genetic algo-

rithm stops and the best-scoring models from the best-performing variable pool are selected

for follow-up with the holdout test set (dataset #6).

Gene Expression Panel for Glioblastoma Classification
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The entire process, starting from the initial pool of 753 genes, was run 10 times, and what is

reported in the results section was the best model from all 10 runs as ranked by comparison

across all samples included in the test set.

VarSelRF

Variable selection using random forests (varSelRF) is a variable reduction package which uti-

lizes random forest models [19]. We use it here as the first of two comparisons to our own

novel variable reduction method. One thousand runs of varSelRF were run using 5000 for the

number of initial trees, 2000 trees in each iteration, and 0.2 was used for the number of vari-

ables to drop at each iteration. The average number of genes per run was 105.88; the maximum

number of genes in a varSelRF output was 527, and the minimum was 15 with a standard devi-

ation of 87.06 variables. Accuracy across the different datasets is reported in S1 Table.

RFE

Recursive feature selection (RFE) is a variable reduction package which is part of the R ‘caret’

package [20]. We use it here as the second of two comparisons to our own novel variable

reduction method. As a comparison, one thousand runs of RFE were carried out at a cutoff of

48 variables. The output, though comparable to varSelRF, had a much lower standard devia-

tion, and was significantly more consistent across all 1000 runs. Accuracy across the different

datasets is reported in S2 Table.

Results

The number of possible groups of 48 genes from the 753 genes that made up our starting pool

is greater than 2.13 x 10^76 [21]. As a result, testing every possible combination would take

more than 5 x 10^68 years using a single thread on a core i5 processor. Therefore, a variable

reduction technique was needed to reduce search space while improving the accuracy of the

gene selection for these models.

We first used varSelRF, a commonly used algorithm for gene selection in random forest

models [19]. Unlike the method reported here, varSelRF cannot be set to run at certain gene

subset cutoffs, and the ability to select an optimal number of variables has been reported as

being a benefit of varSelRF [22]. We ran varSelRF 1000 times and tested the genes it selected in

RF models on all 803 samples, then tested the accuracy on dataset #6 consisting of 228 samples

and on datasets #1–5 consisting of 575 samples used as training sets. The closest comparison

to our method were models which showed up using an optimum cutoff of 43 and 62, which

represented 111 of 1000 of our varSelRF runs. The average of such models was 83.27% and the

best varSelRF model in that range was 85.68% (62 genes), the worst being 81.82% (43 genes).

By comparison, our best random model at 48 genes had 87.65% accuracy, about 2% better

than the best varSelRF runs in the same range. Average models with 43 randomly selected

genes were competitive with varSelRF at 82.13% (compared to 81.82% for models selected by

varSelRF with 43 genes). The best model from the 1000 varSelRF runs was 88.54% accurate,

and required 258 genes.

Our second comparative analysis was carried out using RFE from the caret package. We

ran RFE 1000 times using 10-fold cross-validation. Using the top 48 genes from each run, we

then built a random forest model on our training set using the selected genes, and evaluated

them against all test sets. On average, the RFE output across all test and training sets (803 sam-

ples) resulted in an accuracy of 84.38%. The best suggested output from RFE resulted in an

accuracy of 87.55%, making it outperform varSelRF in the general range of our optimized

model. The worst model was 81.57% (S2 Table).

Gene Expression Panel for Glioblastoma Classification
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We also produced 1000 random forest models built on 48 randomly selected genes. These

‘random’ models produced an overall accuracy of 82.04%, and the best random model had

86.55% accuracy. RFE outperformed the random models by more than two percent on aver-

age, and one percent for the best model output by RFE (87.55% vs 86.55%). The best randomly

generated models outperformed the best varSelRF model in our range of interest: 85.68% with

62 genes for VarSelRF vs 86.55% for the best random model. On average, varSelRF was slightly

better on average than the random models in our range of interest, 83.27% on average for sug-

gested gene subsets between 43 and 62 genes (compared to 82.04% at random). Our GARF

approach significantly outperformed all three.

After our cutoff of 48 genes was selected to be the optimum number for our purposes (see

Optimal Gene Cutoff Selection), we then created random offspring subsets of 48 genes from

the variable pool. These subsets were used to create random forest models to predict the Ver-

haak et al. classifications. These classifications were then compared with the original classifica-

tion. Models that performed poorly had their genes eliminated from the overall pool of

variables used to make the next generation. With every generation, variables were iteratively

removed from our pool of variables based on fitness, eventually resulting in a vastly improved

subset over random variable selection (Fig 2). The final GBM48 panel achieved 90.91% accu-

racy for all 803 samples when considering the original Verhaak et al. ClaNC classification [1].

For the classifications based on ClaNC, Mesenchymal was the largest subtype with 243

(30.26%), Classical was the second largest with 210 (26.15%), 204 (25.40%) of the samples were

Proneural, and Neural was the smallest classification with 146 (18.18%) samples. For classifica-

tions based on the random forest model using our GBM48 panel, Mesenchymal was the largest

subtype in the 803 samples with 268 (33.37%) samples, followed by Proneural, Classical and

Neural with 206 (25.65%), 200 (24.91%), and 129 (16.06%) samples, respectively.

Our own models based on our GARF algorithm significantly outperformed VarSelRF on

average by over seven percent in our range of interest, and on average by over six percent

when VarSelRF was able to select its own optimal cutoff. Our GARF approach out-performed

the best model produced by RFE by more than three percent.

Survival Analysis

In order to explore survival by subtype in GBM and to examine the similarity in survival of the

two alternative models (the panel based on the GBM48 method and the original classifier),

Kaplan-Meier survival curves were generated for all 537 samples with available survival data

from the 803 samples used in this study (Fig 3). Our new reduced classification scheme based

on the GBM48 panel and the classifications based on the original 840 gene classifier both sup-

port the idea that the Proneural subtype is associated with a better outcome. Both our classifier

and the original classifier had similar p-values associated with the differences in the signifi-

cance of survival outcome between subgroups. Our classifier showed a similar degree of vari-

ance from outcomes when compared to the original classifier with a p-value of 1.76 x 10^-5 in

comparison to a p-value of 1.34 x 10^-5 for the original classification technique. This suggests

that our simpler classifier has a similar clinical significance as the original classification tech-

nique with regard to survival.

Genes Selected by Our Model

Our best model consisted of the genes listed in Table 2, which also shows average normalized

and batch effect-adjusted expression of each gene in each classification along with their stan-

dard deviations (SD). Their final accuracy across all 803 samples was 90.91%. The individual

set-by-set accuracy breakdown is listed in Table 1. Overall the GBM48 panel was 92.65%,
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81.51%, 89.05% and 96.71% accurate in predicting the Proneural, Neural, Classical and Mesen-

chymal subtypes, respectively.

In order to compare the similarity of our GBM48 panel to the 840 Verhaak et al. genes, we

created a heatmap and clustering of our simplified panel and compared it to a corresponding

heatmap including all Verhaak et al. genes (Fig 4). The sample separation into the four Ver-

haak et al. subtypes was very similar, supporting the use of GBM48 to achieve Verhaak et al.

classification.

Similarly, multidimensional scaling (MDS) was used to cluster samples based on either the

840 Verhaak et al. genes used for the original classifications or the GBM48 panel (Fig 5).

Though there appears to be a clear separation into Proneural, Mesenchymal, and Classical sub-

classes, it is worth noting that the Neural subclass tended to be similar to all three other sub-

classes in the Verhaak et al. classifications. In addition, healthy control samples in the Verhaak

et al. study were classified as Neural, suggesting that this subtype is representative of the lack of

extreme variation characterizing the other subtypes.

We annotated the GBM48 panel using string-db.org [23], GOrilla [24] (S1 Fig), g:profiler

[25,26] and Gene Set Enrichment Annotation (GSEA) [27,28] packages.

The GSEA analysis resulted in a statistically significant association with Alzheimer’s disease

associated genes. A total of 14 of the GBM48 panel’s genes associated with upregulation (FDR-

adjusted p-value of 3.92 x 10^-6) and 11 of the GBM48 panel’s genes associated with downre-

gulation (FDR-adjusted p-value of 7.76 x 10^-5) in Alzheimer’s disease. Additionally, two pro-

moter motifs corresponding to SP1 and POU2F1 were found to be enriched in the GBM48 set.

The first promoter region was linked with 15 of the GBM48 panel’s genes which contained the

Fig 3. Kaplan-Meier Survival Curves for our Combined Cohort. Kaplan-Meier survival curves for 537 patients from the Rembrandt and TCGA datasets,

classified using the original Verhaak et al. ClaNC-based classification (left) and our reduced random forest classification based GBM48 panel described in

this paper (right). The y-axis represents the proportion of surviving patients. Both classifications show a statistically significant difference between Proneural

and the other subtypes according to the log-rank (p-values at the bottom of the figures). Our GBM48 panel shows more significant differences in expected

clinical outcome.

doi:10.1371/journal.pone.0164649.g003
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Table 2. GBM48 Average Expression by Classification.

Gene Proneural SD Neural SD Classical SD Mesenchymal SD

ACSL3 4.14 1.06 4.97 1.25 5.99 1.03 4.62 1.16

ACYP2 4.78 1.17 6.12 0.83 5.12 0.91 4.34 1.02

ADCY9 3.54 0.71 2.99 0.76 3.64 0.64 3.52 0.65

ARPC1B 3.88 1.25 4.55 0.94 4.33 0.87 6.07 1.06

BCAN 4.84 1.31 4.07 1.08 4.41 1.16 2.32 1.30

BCL7A 4.48 1.05 3.33 0.78 3.37 0.78 2.58 0.74

CASP5 2.60 0.70 2.87 0.84 2.86 0.66 3.23 0.83

CDC25A 3.62 0.88 2.87 0.72 3.15 0.66 2.85 0.76

CHD7 5.62 1.38 3.39 1.07 4.11 0.96 3.06 1.17

CLASP2 5.57 0.98 5.23 0.87 4.38 0.93 3.63 1.04

COL5A1 3.18 1.40 2.86 1.12 3.63 1.18 5.03 1.46

CREB5 4.02 1.42 3.05 1.22 4.58 1.12 3.10 1.07

CSPG5 5.18 1.23 5.21 1.04 5.59 1.11 3.25 1.45

DCX 6.76 1.65 3.95 1.94 3.19 2.19 2.42 2.11

DDX42 4.55 0.85 3.70 0.87 4.45 0.75 4.12 0.83

EPHB4 2.63 0.77 3.01 0.68 3.66 0.58 3.49 0.71

FEZF2 3.03 1.32 3.57 1.54 2.67 0.88 2.70 0.99

FGFR3 2.76 1.07 4.31 1.28 4.74 1.23 3.21 1.31

FNDC3B 4.15 1.05 3.61 1.02 4.93 0.89 5.50 0.91

FZR1 2.96 0.54 2.76 0.48 3.28 0.45 2.86 0.48

GSK3B 5.01 0.85 3.82 0.71 4.35 0.77 4.11 0.88

GTF2F1 3.94 0.77 3.52 0.79 4.37 0.60 3.72 0.75

IL1R1 2.79 1.08 2.83 1.11 2.89 0.99 4.45 1.06

LAPTM5 4.83 1.58 5.49 1.23 4.81 1.17 6.32 1.15

NDRG2 4.07 1.45 5.18 0.99 4.44 1.22 2.98 1.32

NR2F6 2.92 0.58 2.89 0.52 3.33 0.44 3.11 0.53

PAK3 5.17 1.45 4.17 1.65 2.82 1.40 2.71 1.42

PIPOX 2.68 1.25 4.66 1.22 5.43 1.00 4.18 1.18

PMP22 4.84 1.41 6.00 1.18 6.57 1.13 6.13 1.00

PPM1D 4.68 0.92 4.25 0.89 4.19 0.83 3.74 1.05

PRPSAP2 5.09 1.00 5.22 0.81 4.47 0.75 3.96 0.93

PTPRC 3.23 1.37 4.36 1.08 3.37 1.05 4.98 1.06

PURG 2.26 1.08 2.52 0.99 2.61 0.90 2.32 0.97

RGS12 3.01 0.66 2.98 0.60 3.48 0.58 2.73 0.57

SH3GL3 3.50 1.10 3.65 1.22 2.27 0.87 2.68 1.06

SHC1 3.47 0.91 3.63 0.75 4.14 0.83 5.06 0.98

SSH3 2.66 0.78 3.45 0.57 3.53 0.58 3.42 0.64

TIMP1 4.85 1.99 5.80 1.60 6.65 1.30 7.45 1.20

TMBIM1 2.95 1.15 4.67 0.79 4.18 1.00 4.73 0.75

TMEM43 4.31 0.88 4.16 0.85 4.65 0.89 4.90 0.81

TRIB2 4.79 1.69 4.45 1.52 6.06 1.10 4.11 1.30

TRRAP 3.91 0.88 3.07 0.99 4.21 0.70 3.67 0.88

UROS 4.15 1.03 4.77 1.05 3.58 0.81 3.98 0.98

VAX2 4.04 0.92 2.98 1.27 2.99 0.81 2.55 0.77

WASF1 5.86 1.23 4.90 1.33 3.98 1.10 3.71 1.08

ZDHHC18 3.15 0.63 2.99 0.70 3.44 0.58 3.46 0.60

ZEB2 4.65 0.99 3.81 0.95 3.56 0.78 3.66 0.87

(Continued )
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GGGCGGR motif. This motif has a statistically significant relationship with SP1 (FDR-

adjusted p-value of 2.55 x 10^-4), a zinc finger transcription factor associated with cellular pro-

cesses including cell growth, differentiation and apoptosis [29], which has been shown to be

upregulated in gliomas with poor clinical outcome[30]. The second promoter region was

linked with 6 of the GBM48 panel’s genes which contained the CWNAWTKWSATRYN motif

for the POU2F1 transcription factor (also known as Oct-1, FDR-adjusted p-value of 4.73 x

10^-4), which has been shown to be differentially expressed in human glioblastoma cells

[31,32].

G:profiler reported a number of statistically significant gene ontology associations with this

dataset largely related to anatomical structural differentiation of various nervous tissues, che-

motaxis, axonal guidance and protein kinase binding (S1 Fig). For protein kinase binding

Table 2. (Continued)

Gene Proneural SD Neural SD Classical SD Mesenchymal SD

ZNF446 3.22 0.67 3.38 0.65 3.73 0.64 3.17 0.63

Table 2 shows gene symbols from the 48 genes from our top model. Average normalized and batch effect-adjusted expression levels for each gene are

shown for each classification along with the standard deviation for each directly in the column to the right.

doi:10.1371/journal.pone.0164649.t002

Fig 4. Heatmap Comparing GBM48 and Verhaak et al. Classifier. Heatmap and hierarchical bi-clustering of all 840 Verhaak et al. genes (left) and the

GBM48 panel genes (right). GBM48 gene names are listed on the right.

doi:10.1371/journal.pone.0164649.g004
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across the entire GBM48 panel, 9 of the genes were associated with an FDR-adjusted p-value

of 1.82 x 10^-2. Additionally, two regulatory motifs were identified; one for transcription fac-

tor AP-2α (GSCCSCRGGCNRNRNN) was found in 20 of the GBM48 panel’s genes. The tran-

scription factor AP-2α has been shown to be downregulated in gliomas and is believed to be

negatively associated with the grade of human glioma [33,34]. The second was identified for

EGR-1 (GCGGGGGCGG), which was found in 26 of the GBM48 panel’s genes. The transcrip-

tion factor EGR-1 is a zinc finger protein that has been shown to be suppressed in human glio-

mas and human glioblastoma cell lines [35,36]

Twelve of the GBM48 panel’s genes were found to be associated with each other by way of

experimental evidence according to String-db (Fig 6). Amongst these 12 genes, 7 were associ-

ated with protein kinase binding in G:profiler (p-value 1.77 x 10^-5) and 4 of the 12 were

found to be associated with kinase binding and transferase activity in GSEA (p-value 2.34 x

10^-4). Also according to GSEA, 5 of the 12 genes were associated with the Classical tumor

subtype, and 4 of the 12 were associated with the Proneural subtype. The genes involved in this

network are shown in Fig 6 and are color-coded to represent which of the subtypes (Classical

or Proneural) they were associated with, as well as which database described them as being sta-

tistically significantly related to protein kinase binding (either G:profiler or GSEA).

RNA-seq Comparison and Panel Optimization

In order to test the consistency between microarray- and RNA-seq-based expression data, we

tested our method on 122 samples for which both were available. Importantly, the traditional

Verhaak et al. classification scheme using 793 genes which were present in both RNA-seq and

microarray data produced the same classification in 69.67% (85/122) of the samples.

Following this analysis, our GARF method was run using the core TCGA samples as the

training set and the RNA-seq data as the test set. After normalization and correction of batch

effects, we attempted to find the ideal gene signatures for classifying these RNA-seq samples in

the same way as these samples had been classified using microarray data. Our results produced

a 32-gene RNA-seq classifier which was 86.07% accurate and the most consistent with

Fig 5. Multidimensional Scaling Plot Comparing GBM48 and Verhaak et al. Classifier. Multidimensional scaling of 173 core

TCGA samples based on 840 Verhaak et al. genes (left) and the GBM48 panel genes (right).

doi:10.1371/journal.pone.0164649.g005

Gene Expression Panel for Glioblastoma Classification

PLOS ONE | DOI:10.1371/journal.pone.0164649 November 17, 2016 13 / 19



Gene Expression Panel for Glioblastoma Classification

PLOS ONE | DOI:10.1371/journal.pone.0164649 November 17, 2016 14 / 19



microarray-based classifications. This was an improvement of 16.4% on the model based on

793 shared genes.

The RNA-seq classifier and the GBM48 panel did not share any genes. This is likely because

the genes that are the most informative and consistent across both microarray and RNA-seq

platforms are not necessarily the most consistent and most informative genes when looking at

microarray exclusively.

Web Server for Classification

In order to facilitate the use of this algorithm, we built a web server at http://simplegbm.semel.

ucla.edu/. This server supports microarray-based sample classification (one expression value

per gene, submitted as a comma-separated file) and can produce outputs using the original

Verhaak et al. classification scheme, as well as the GBM48 and RNA-seq panels. The server

automatically handles normalization and batch effect adjustment utilizing ComBat [14]. In the

case of RNA-seq data, rank normalization is utilized, which is better suited for cross-platform

comparison with microarray data [37].

Discussion

The goal of this project was to create a method as close in accuracy to the original classifier as

possible, while using a significantly smaller number of variables. Centroid-based classifiers like

ClaNC [3] and Prediction Analysis for Microarrays (PAM) [38] are excellent and intuitive

ways of classifying groups; however, they rely upon gene-by-gene evaluations, i.e. each gene’s

fitness is evaluated on how well an individual gene separates out the different classifications.

Gene-by-gene evaluation techniques tend to keep genes that have redundant information as

they do not take into account multi-gene relationships or high levels of correlations between

genes. By contrast, random forest models rely on decision trees, which allow multi-gene rela-

tionships to be accounted for in predictions. The multi-gene relationships permit fewer genes

to better classify samples, and are a major benefit of utilizing random forest models in classifi-

cation problems. Developing models on multi-gene relationships also has the benefit of poten-

tially uncovering complex relationships between variables that would not be discoverable by

evaluating each variable’s fitness independently.

Several popular methods for selecting a smaller subset of genes exist, including iterati-

veBMA [39], varSelRF [19], RFE [20] and R-SVM [40]. Of these, only varSelRF and RFE are

designed to work with random forest models. The most common application of RFE is with

support vector machines as in the R-SVM package [40]. VarSelRF has been reported to require

fewer genes, and perform as well as other methods such as support vector machines (SVM),

Diagonal Linear Discriminant Analysis (DLDA) and k-nearest neighbors models (KNN)

[19,22]. Our method outperforms varSelRF and RFE for this application.

Earlier attempts to reduce classifiers of disease states using random forest models have

largely relied on the varSelRF package in R [19]. One study of particular relevance which

Fig 6. Experimentally Validated Gene Network in the GBM48 Panel. Experimentally associated gene

network from string-db with statistically significant gene set enrichment sets from G:profiler and GSEA. Two of

the four Verhaak et al. subclassifications (Classical and Proneural) were over-represented in our experimentally

associated gene set from our GBM48 panel. Five of the 12 genes in the network were biomarkers for the

Classical Verhaak et al. subset and represented in green, four genes were biomarkers for Proneural and are

represented in this figure in gold. Genes which were linked with the statistically significant over-enriched kinase

binding and activity pathways are represented in this figure in grey for the genes described in the G:profiler

database and black for the genes described in the GSEA database, representing seven and five genes from the

total gene network respectively.

doi:10.1371/journal.pone.0164649.g006
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utilized varSelRF for variable selection with GBMs also attempted to re-evaluate the original

classification technique using gene-isoform-based descriptors and random forest techniques

[41]. However, the study produced an alternative classifier with low similarity to the original

classifier, predicting the original classifications with only 81% accuracy. By comparison, our

average random model using 121 randomly selected gene signatures was 85.60% accurate

(1000 random models on our cohort of 803 samples). These random gene selections signifi-

cantly outperformed the genes selected by this study. This is similar to our findings that the

VarSelRF technique selects genes with similar accuracy to random models within our selected

GBM datasets (84.51% on average for our 1000 test runs on our cohort of 803 samples). RFE

fares only slightly better, presenting the need for an alternative strategy for gene subset

selection.

A significant benefit of our hybrid method is that it allows the evaluation of subsets of

probes at a time, allowing probes without complex relationships to be slowly and selectively

removed. While many other algorithms include weighting by LDA and individual perfor-

mance of genes, individual performance in our algorithm is completely ignored in favor of

genes that work best in groups of a specified size. The advantage of specifying a set number of

genes is that this allows for optimal groupings of genes to be selected in order to function

within the confines of different diagnostic technologies that may require a limited number of

genes in order to be practical.

Our GBM48 panel approximates the accuracy of the Verhaak et al. classifier while requiring

expression values for 6% of the genes required by the original classifier. The Verhaak et al. clas-

sification itself was not perfect, as there was a distinction between ’core’ samples and other

samples that did not fit their classification as conferred by k-means clustering [1]. The core

samples were selected through the use of silhouettes [42]. Negative silhouettes were given to 27

of the 200 samples, indicating that they did not fit their assigned classification. This can be

interpreted as an accuracy rate of 86.5% for the original classification scheme and that approxi-

mately 13.5% of samples do not fit this classification scheme. Assuming the rest of the samples

were randomly assigned classifications (3.38% of samples), it is possible to infer that the high-

est accuracy that can be achieved is 89.88% if the TCGA tumor training set used to build the

Verhaak et al. model is representative of all GBMs. In our case, we considered our final result

of 90.91% of samples being accurately assigned to be in the range of what would be expected

from an excellent model. Additionally, the method design and use of data from multiple plat-

forms, multiple batches and multiple laboratories ensures that only genes with the highest level

of consistency are used in our final models.

In addition to the similarities in accuracy between our two models, we have also presented

here in Fig 3 that our classifier has very similar survival curves to the original classification

technique. This is presented as a benchmark for comparing clinical significance of our GBM48

panel with that of the Verhaak et al. classifier. We would like to also point out that the Verhaak

et al. classification technique is not the best indicator of survival in GBM patients, despite

favorable outcomes for patients diagnosed with the Proneural subtype. In fact, one of the best

indicators of a favorable outcome for survival in patients undergoing treatment with temozolo-

mide chemotherapy has been shown be the methylation of the MGMT promoter [43]. Addi-

tionally, at least one alternative strategy to classification has been proposed involving

epigenetics. This integrative approach utilizes all available epigenetic, copy number variation,

microarray expression and genetic variation instead of microarray data exclusively as a classifi-

cation technique for GBMs, which shows the potential for improvement upon existing classifi-

cation techniques [10].

The GARF framework presented here can be used for any project that requires the optimi-

zation of a model using a specific number of genes to work with a particular infrastructure,
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and likely would work with any other dataset with quantitative descriptors where variable

reduction would be advantageous at the cost of a small amount of accuracy.

Supporting Information

S1 Fig. Statistically Significant Over-Enriched GO Terms from GOrilla. All statistically sig-

nificant (FDR-corrected p-value <0.05) over-enriched GO terms are shown in this pathway in

a hierarchical fashion as output from the GOrilla web server.

(TIF)

S1 Table. VarselRF accuracy (1000 runs) on different datasets. Training represents 575 sam-

ples consisting of all TCGA samples and the three Gene Expression Omnibus (GEO) datasets

used to direct the training process. Test represents the Rembrandt dataset (228 GBM samples).

(XLSX)

S2 Table. Recursive feature selection (RFE) accuracy (1000 runs) on different datasets.

Training represents 575 samples consisting of all TCGA samples and the three Gene Expres-

sion Omnibus (GEO) datasets used to direct the training process. Test represents the Rem-

brandt dataset (228 GBM samples).

(XLSX)
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