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Abstract

Hierarchical Bayesian inference in the brain:

Psychological models and neural implementation

by

Lei Shi

Doctor of Philosophy in Neuroscience

University of California, Berkeley

Professor Thomas Griffiths, Chair

The human brain effortlessly solves problems that still pose a challenge for modern

computers, such as recognizing patterns in natural images. Many of these problems

can be formulated in terms of Bayesian inference, including planning motor move-

ments, combining cues from different modalities, and making predictions. Recent

work in psychology and neuroscience suggests that human behavior is often con-

sistent with Bayesian inference. However, most research using probabilistic models

has focused on formulating the abstract problems behind cognitive tasks and their

optimal solutions, rather than considering mechanisms that could implement these

solutions. Therefore, it is critical to understand the psychological models and neural

implementations that carry out these notoriously challenging computations.

Exemplar models are a successful class of psychological process models that use

an inventory of stored examples to solve problems such as identification, categoriza-

tion, and function learning. We show that exemplar models can be used to perform

a sophisticated form of Monte Carlo approximation known as importance sampling,

and thus provide a way to perform approximate Bayesian inference. Simulations

of Bayesian inference in speech perception, generalization along a single dimension,
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making predictions about everyday events, concept learning, and reconstruction from

memory show that exemplar models can often account for human performance with

only a few exemplars, for both simple and relatively complex prior distributions.

These results suggest that exemplar models provide a possible mechanism for imple-

menting at least some forms of Bayesian inference.

The goal of perception is to infer the hidden states in the hierarchical process

by which sensory data are generated, a problem that can be solved optimally using

Bayesian inference. Here we propose a simple mechanism for Bayesian inference

which involves averaging over a few feature detection neurons which fire at a rate

determined by their similarity to a sensory stimulus. This mechanism is again based

on importance sampling. Moreover, many cognitive and perceptual tasks involve

multiple levels of abstraction, which results in “hierarchical” models. We show that a

simple extension to recursive importance sampling can be used to perform hierarchical

Bayesian inference. We identify a scheme for implementing importance sampling

with spiking neurons, and show that this scheme can account for human behavior in

sensorimotor integration, cue combination, and orientation perception.

Another important function of nervous system is to process temporal informa-

tion in the dynamical environment, such as motion coordination where the system’s

state is estimated sequentially based on the constant perceptual feedback. Our study

suggests that a neural network structure similar to recursive importance sampling

can solve the sequential estimation problem by approximating the posterior updates.

This algorithm performs as well as the state-of-the-art sequential Monte Carlo meth-

ods know as particle filtering and fulfills many constraints of the biological system.

Studying the detailed neural implementation of this algorithm finds an interesting

resemblance to neural circuits in cerebellum.
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Chapter 1

Introduction

1.1 The brain as an inference machine

Much of cognition and perception involves inference under uncertainty, using limited

data from the world to evaluate under determined hypotheses. Probabilistic models

provide a way to characterize rational solutions to these problems, with probability

distributions encoding the beliefs of agents and Bayesian inference updating those

distributions as data become available. As a consequence, probabilistic models are

becoming increasingly widespread in both cognitive science and neuroscience, pro-

viding explanations of behavior in domains as diverse as motor control [Körding and

Wolpert, 2004], reasoning [Oaksford and Chater, 1994], memory [Anderson and Mil-

son, 1989], and perception [Yuille and Kersten, 2006]. However, these explanations

are typically presented at Marr’s [1982] computational level, focusing on the abstract

problem being solved and the logic of that solution. Unlike many other formal ap-

proaches to cognition, probabilistic models are usually not intended to provide an

account of the mechanisms underlying behavior – how people actually produce re-

sponses consistent with optimal statistical inference.
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Chapter 1. Introduction

Table 1.1: Marr’s three-level analysis in understanding Bayesian inference in the brain

Computational level Bayesian inference
Algorithmic level Psychological process models
Mechanistic level Neural implementations

Understanding the mechanisms that could support Bayesian inference is particu-

larly important since probabilistic computations can be extremely challenging. Rep-

resenting and updating distributions over large numbers of hypotheses is compu-

tationally expensive, a fact that is often viewed as a limitation of rational models

(e.g.,[Kahneman and Tversky, 1972; Gigerenzer and Todd, 1999]). The question of

how people could perform Bayesian inference can be answered at at least two levels

(as suggested by Marr, [1982], see Table 1.1). One kind of answer is at the level

of psychological processes – showing that the Bayesian inference can be performed

using mechanisms that are no more complex than those used in psychological process

models. The language of such answers is representations, similarity, activation, and

so forth, and some preliminary work has been done in this direction [Kruschke, 2006;

Sanborn et al., 2006]. A second kind of answer focuses on the neural level, exploring

ways in which systems of neurons could perform probabilistic computations. The lan-

guage of such answers is that of neurons, tuning curves, firing rates, and so forth, and

several recent papers have explored ways in which systems of neurons could perform

probabilistic computations (e.g., [Ma et al., 2006; Zemel et al., 1998]).

1.2 Psychological models for Bayesian inference

The focus of the first part of the thesis is on a familiar class of psychological process

models known as exemplar models. These models assume that people store many

instances (“exemplars”) of events in memory, and evaluate new events by activating
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Chapter 1. Introduction

stored exemplars that are similar to those events [Medin and Schaffer, 1978; Nosofsky,

1986]. It is well known that exemplar models of categorization can be analyzed in

terms of nonparametric density estimation, and implement a Bayesian solution to

this problem [Ashby and Alfonso-Reese, 1995]. Here we show that exemplar models

can be used to solve problems of Bayesian inference more generally, providing a way

to approximate expectations of functions over posterior distributions. Our key result

is that exemplar models can be interpreted as a sophisticated form of Monte Carlo

approximation known as importance sampling. This result illustrates how at least

some cases of Bayesian inference can be performed using a simple mechanism that is

a common part of psychological process models.

Our analysis of Bayesian inference using exemplar models is also an instance of

a more general strategy for exploring possible psychological mechanisms for imple-

menting rational models. Importance sampling is one of a variety of methods used for

approximating probabilistic computations in computer science and statistics. These

methods are used because they provide efficient approximate solutions to problems

that might be intractable to solve exactly. If we extend the principle of optimality

underlying rational models of cognition to incorporate constraints on processing, we

might expect to see similarities between the approximation schemes used by computer

scientists and statisticians and the mechanisms by which probabilistic computations

are implemented in the human mind. In some cases, as for importance sampling and

exemplar models, the resulting “rational process models” provide a way to connect

the abstract level of analysis used in many probabilistic models of cognition with

existing ideas about psychological processes.

Establishing a stronger connection between rational models of cognition and psy-

chological mechanisms has been a goal of cognitive scientists at least since Simon

[1957] introduced the notion of “bounded rationality.” Several different strategies

for taking into account the effects of information-processing constraints have been
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Chapter 1. Introduction

considered, including incorporating those constraints into the optimization process

involved in rational analysis (e.g.,[Anderson, 1990]), handicapping rational models to

produce behavior closer to that of human participants (e.g.,[Steyvers et al., 2003]),

and rejecting the principle of optimization altogether in favor of finding simple but

effective heuristics (e.g.,[Gigerenzer and Todd, 1999]). The idea of developing rational

process models shares characteristics with all of these strategies, with its focus being

on finding psychologically plausible processes that can be justified as approximations

to rational statistical inference. Such processes ideally generalize beyond the solutions

to specific optimization problems, or schemes for handicapping specific models, and

provide a new way to look at the mechanistic or heuristic accounts that psychologists

have developed in order to explain aspects of human behavior.

1.3 Neural implementation of Bayesian inference

Living creatures occupy an environment full of uncertainty due to noisy sensory in-

puts, incomplete information, and unobserved variables. One of the goals of the

nervous system is to infer the states of the world given these limited data and make

decisions accordingly. This task involves combining prior knowledge with current

data [Körding and Wolpert, 2004], and integrating cues from multiple sensory modal-

ities [Ernst and Banks, 2002]. Studies of human psychophysics and animal behav-

ior suggest that the brain is capable of solving these problems in a way that is

consistent with optimal Bayesian statistical inference [Körding and Wolpert, 2004;

Ernst and Banks, 2002; Stocker and Simoncelli, 2008; Blaisdell et al., 2006]. More-

over, complex brain functions such as visual information processing involve multiple

brain areas [Van Essen et al., 1992], and require making inferences at multiple levels

of abstraction. Hierarchical Bayesian inference has been proposed as a computational

framework for modeling such processes [Lee and Mumford, 2003]. Identifying neural
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Chapter 1. Introduction

mechanisms that could support hierarchical Bayesian inference is important, since

probabilistic computations can be extremely challenging. Just representing and up-

dating distributions over large numbers of hypotheses is computationally expensive.

The Bayesian perspective on cortical computation has received much attention in

the computational neuroscience community in recent years [Doya, 2007]. Much effort

has recently been devoted towards proposing possible mechanisms for implementing

Bayesian inference based on known neuronal properties. One prominent approach to

explaining how the brain uses the activation of a population of neurons for proba-

bilistic computations employs a “Bayesian decoding” framework [Zemel et al., 1998].

In this framework, it is assumed that the firing rate of a population of neurons, r, can

be converted to a probability distribution over stimuli, p(s|r), by applying Bayesian

inference, where the likelihood p(r|s) reflects the probability of that firing pattern

given the stimulus s. A firing pattern thus encodes a distribution over stimuli, which

can be recovered through Bayesian decoding. The problem of performing probabilis-

tic computations then reduces to identifying a set of operations on firing rates r that

result in probabilistically correct operations on the resulting distributions p(s|r). For

example, [Ma et al., 2006] showed that when the likelihood p(r|s) is an exponential

family distribution with linear sufficient statistics, adding two sets of firing rates is

equivalent to multiplying probability distributions.

In this work, we take a different approach, allowing a population of neurons to en-

code a probability distribution directly. Each neuron acts as a feature detector whose

expected firing rate is proportional to the probability that the feature is presented.

This approach simplifies coding-decoding operations and provides a straightforward

solution to the problem of hierarchical Bayesian inference. Since the composition of

a neural population and the pattern of spikes produced by neurons both introduce

elements of stochasticity, the result is a Monte Carlo approximation, capturing the

properties of a probability distribution through a set of samples from that distri-
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Chapter 1. Introduction

bution. This perspective also provides a natural way to understand the variability

observed in neural responses [Hoyer and Hyvärinen, 2002]. These topics are discussed

in detail in Chapter 4.

The brain is constantly making sequential estimates based on real-time sensory

inputs. For example, in reaching for a tennis ball, visual information about the posi-

tion and velocity of the hand and ball is fed back to coordinate the muscle movement.

This is a probabilistic computation due to the internal noise of the nervous system.

To achieve optimal solutions, the brain needs to maintain a posterior density and

keep updating upon receiving new sensory inputs. This problem can be formulated

as sequential Bayesian inferences. Particle filtering is a Monte Carlo method that

provides an approximated general solution to this problem. However, its neural im-

plementation is not straightforward because of biological constraints. In Chapter 5,

we study the neural implementation of sequential Bayesian inference based on im-

portance sampling and propose the cerebellum as the neural substrate to execute the

computation.

This thesis is organized in the following way. Chapter 2 lays out the theoretical

foundations of Bayesian inference, Monte Carlo methods and importance sampling.

Chapter 3 shows that exemplar models are equivalent to a special case of importance

sampling and, therefore, perform approximate Bayesian inference. Chapter 4 looks

at the neural implementation of importance sampling and extends the solution to

hierarchical Bayesian inference. Chapter 5 study how nervous system perform se-

quential Bayesian inference and the neural substrates for such computation. Chapter

6 concludes the thesis.
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Chapter 2

Theoretical Background

Bayes’ rule connects prior knowledge and observations in assessing the probability of

certain hypotheses given observations. Using Bayes’ rule, beliefs of hypotheses can

be updated upon new observations, a process known as Bayesian inference. Exact

inference is often hard to obtain because it often requires integration of irregular

functions or sums over high dimensional spaces. In this chapter, we first introduce

Bayesian inference and then discuss algorithms that approximate exact inference.

2.1 Bayesian inference

Many cognitive problems can be formulated as evaluating a set of hypotheses about

processes that could have produced observed data. For example, perceiving speech

sounds requires considering what sounds might be consistent with an auditory stimu-

lus [Feldman et al., 2009], generalizing a property from one object to another involves

considering the set of objects likely to possess that property [Shepard, 1987], predict-

ing the duration of an ongoing event necessitates reasoning from its current duration

to a hypothetical future endpoint [Griffiths and Tenenbaum, 2007], and learning a

concept from examples means evaluating a space of possible concepts [Tenenbaum
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Chapter 2. Theoretical Background

and Griffiths, 2001]. Even reconstructing information from memory can be analyzed

as an inference about the nature of that information from the data provided by a

noisy memory trace [Huttenlocher et al., 2000].

Bayesian inference provides a solution to problems of this kind. Letting h denote

a hypothesis and d the data, assume a learner encodes his or her degrees of belief

regarding the hypotheses before seeing d using a probability distribution, p(h), known

as the prior distribution. Then, the degrees of belief after seeing d are given by the

posterior distribution, p(h|d), obtained from Bayes’ rule

p(h|d) =
p(d|h)p(h)∫

H p(d|h)p(h) dh
, (2.1)

where H is the set of hypotheses under consideration (the hypothesis space), and

p(d|h) is a distribution indicating the probability of seeing d if h were true, known as

the likelihood.

While our analysis applies to Bayesian inference in the general case, we introduce

it using a specific example that is consistent with several of the psychological tasks we

consider later in Chapter 3. We return to the general case after working through this

specific example. Assume we observe a stimulus x, which we believe to be corrupted

by noise and potentially missing associated information, such as a category label. Let

x∗ denote the uncorrupted stimulus, and z denote the missing data. Often, our goal

is simply to reconstruct x, finding the x∗ to which it corresponds. In this case, z can

be empty. Otherwise, we seek to infer both x∗ and the value of z which corresponds

to x. We can perform both tasks using Bayesian inference.

The application of Bayes’ rule is easier to illustrate in the case where z is empty,

where we simply wish to infer the true stimulus x∗ from noisy x. We use the proba-

bility distribution p(x|x∗) to characterize the noise process, indicating the probability

with which the stimulus x∗ is corrupted to x, and the probability distribution p(x∗)

8



Chapter 2. Theoretical Background

to encode our a priori beliefs about the probability of seeing a given stimulus. We

can then use Bayes’ rule to compute the posterior distribution over the value of the

uncorrupted stimulus, x∗, which might have generated the observation x, obtaining

p(x∗|x) =
p(x|x∗)p(x∗)∫
p(x|x∗)p(x∗) dx∗

, (2.2)

where p(x|x∗) is the likelihood and p(x∗) is the prior.

This analysis is straightforward to generalize to the case where z contains missing

data, such as the label of the category from which x was generated. In this case, we

need to define our prior as a distribution over both x∗ and z, p(x∗, z). We can then

use Bayes’ rule to compute the posterior distribution over the uncorrupted stimulus,

x∗, and missing data, z, which might have generated the observation x, obtaining

p(x∗, z|x) =
p(x|x∗)p(x∗, z)∫ ∫
p(x|x∗)p(x∗, z) dx∗ dz

, (2.3)

where we also assume that the probability of observing x is independent of z given

x∗, so p(x|x∗, z) = p(x|x∗).

2.2 Evaluating expectations by Monte Carlo

Posterior distributions on hypotheses given data can be used to answer a variety of

questions. To return to the example above, a posterior distribution on x∗ and z can

be used to evaluate the properties of x∗ and z given x. A standard way to do this is

to use the expectation of a function over the posterior distribution. For any function

f(x∗, z), the posterior expectation of that function given x is

E [f(x∗, z)|x] =

∫ ∫
f(x∗, z)p(x∗, z|x) dx∗ dz, (2.4)

9



Chapter 2. Theoretical Background

being the average of f(x∗, z) over the posterior distribution. Since f(x∗, z) can pick

out any property of x∗ and z that might be of interest, many problems of reasoning

under uncertainty can be expressed in terms of expectations. For example, we could

compute the posterior mean of x∗ by taking f(x∗, z) = x∗, or calculate the posterior

probability that z takes a particular value by taking f(x∗, z) to be 1 when z has that

value, and 0 otherwise.

Evaluating expectations over the posterior distribution can be challenging: it

requires computing a posterior distribution, which is a hard problem in itself, because

the integrals in Eq. 2.4 can range over many values for x∗ and z. Consequently, Monte

Carlo methods are often used to approximate expectations. Monte Carlo methods

approximate the expectation of a function with respect to a probability distribution

with the average of that function at points drawn from the distribution. Assume

we want to evaluate the expectation of a function g(y) over the distribution p(y),

Ep [g(y)] (where we use y as a generic random variable, instead of x∗ and z). Let µ

denote the value of this expectation. The law of large numbers justifies

µ = Ep [g(y)] =

∫
g(y)p(y) dy ≈ 1

m

m∑
j=1

g(yj), (2.5)

where the yj are all drawn from the distribution p(y).

This simple Monte Carlo method requires that we are able to generate samples

from the distribution p(y). However, this is often not the case: it is quite common

to encounter problems where p(y) is known at all points y but hard to sample from.

If a surrogate distribution q(y) is close to p(y) but easy to sample from, a form

of Monte Carlo called importance sampling can be applied (see [Neal, 1993] for a

detailed introduction, and [Robert and Casella, 1999] for a mathematical treatment).
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Chapter 2. Theoretical Background

Manipulating the expression for the expectation of g gives

∫
g(y)p(y) dy =

∫
g(y)p(y) dy∫
p(y) dy

=

∫
g(y)p(y)q(y)q(y) dy∫ p(y)

q(y)q(y) dy
. (2.6)

The numerator and denominator of this expression are each expectations with respect

to q(y). Applying simple Monte Carlo (with the same set of samples from q(y)) to

both,

µ = Ep [g(y)] ≈

∑m
j=1 g(yj)

p(yj)
q(yj)∑m

j=1
p(yj)
q(yj)

, (2.7)

where each yj is drawn from q(y). The ratios
p(yj)

q(yj)
are “importance weights” on the

samples yj, correcting for having sampled from q(y) rather than p(y). Intuitively,

these weights capture how important each sampled value should be to calculating the

expectation, and give importance sampling its name. If the yj are sampled directly

from p(y), they are given equal weight, each having an importance weight of 1. How-

ever, when the yj are sampled from surrogate distribution q(y), they bear nonuniform

importance weights due to the difference between p(y) and q(y). Samples with higher

probability under p(y) than q(y) occur less often than they would if we were sampling

from p(y), but receive greater weight, counter-balancing the lower sampling frequency,

with the opposite applying to samples with higher probability under q(y) than p(y).

Importance sampling is a useful method for approximating expectations when

simple Monte Carlo cannot be applied because generating samples from the target

distribution is difficult. However, using an importance sampler can make sense even

in cases where simple Monte Carlo can also be applied. First, it allows a single set of

samples to be used to evaluate expectations with respect to a range of distributions,

through the use of different weights for each distribution. Second, the estimate of

µ produced by the importance sampler can have lower variance than the estimate

produced by simple Monte Carlo, if the surrogate distribution is chosen to place high
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Chapter 2. Theoretical Background

probability on values of y where both p(y) and g(y) are large. 1

Both simple Monte Carlo and importance sampling can be applied to the problem

of evaluating the expectation of a function f(x∗, z) over a posterior distribution on x∗

and z with which we began this section. Simple Monte Carlo would draw values of x∗

and z from the posterior distribution p(x∗, z|x) directly. Importance sampling would

generate from surrogate distribution, q(x∗, z), and then re-weight those samples. One

simple choice of q(x∗, z) is the prior, p(x∗, z). If we sample from the prior, the weight

assigned to each sample is the ratio of the posterior to the prior

p(x∗, z|x)

p(x∗, z)
=

p(x|x∗)∫ ∫
p(x|x∗)p(x∗, z) dx∗ dz

, (2.9)

where we use the assumption that p(x|x∗, z) = p(x|x∗). Substituting these weights

into Eq. 2.7 and canceling constants, we obtain

E [f(x∗, z)|x] ≈
∑m

j=1 f(x∗j , zj)p(x|x∗j)∑m
j=1 p(x|x∗j)

, (2.10)

where we assume that x∗j and zj are drawn from p(x∗, z). Because the weights on the

samples are based on the likelihood, this approach is sometimes known as likelihood

weighting.

Fig. 2.1 provides a visual illustration of the approximation of Bayesian inference

using importance sampling. Here, the goal is to recover the true value of a noisy obser-

vation x, which is done by computing the posterior expectation E[x∗|x]. This can be

1If the function g(y) takes on its largest values in regions where p(y) is small, the variance of the
simple Monte Carlo estimate can be large. An importance sampler can have lower variance than
simple Monte Carlo if q(y) is chosen to be complementary to g(y). In particular, the asymptotic
variance of the sampler is minimized by specifying q(y) as

q(y) ∝ |g(y)− Ep[g(y)]| p(y). (2.8)

This is not a practical procedure, since finding this distribution requires computing Ep[g(y)], but
the fact that the minimum variance sampler need not be p(y) means that importance sampling can
provide a better estimate of an expectation than simple Monte Carlo.

12
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prior p(x*)
noisy data  x likelihood

p(x|x*)prior p(x*)
noisy data  x

x*j

(a) (b)

prior p(x*)
noisy data  x likelihood

p(x|x*)

E[x*|x](c)

Figure 2.1: Approximating Bayesian inference by importance sampling using the prior
p(x∗) as the surrogate distribution. The true value of a stimulus x∗ is recovered from a
noisy observation x (represented by the gray dot). (a) Exemplars x∗j are sampled from the
prior p(x∗). (b) The x∗j are weighted by a Gaussian likelihood function p(x|x∗j). Weights
decrease quickly as exemplars move away from x. (c) The expectation is the weighted
average of the x∗j . Compared with x, the estimate E[x∗|x] is shifted towards a region
that has higher probability under the prior.

done applying Eq. 2.10 with f(x∗, z) = x∗. First, exemplars x∗j are drawn from prior

distribution p(x∗) (Fig. 2.1a). Then, these exemplars are given weights proportional

to the likelihood p(x|x∗) (Fig. 2.1b). Finally, E[x∗|x] is estimated by the weighted

sum
∑

j x
∗
jp(x|x∗j) normalized by

∑
j p(x|x∗j). The posterior expectation moves the

estimate of x∗ closer to the nearest mode of the prior distribution (Fig. 2.1c), appro-

priately combining prior knowledge with the noisy observation. This computation is

straightforward despite the complicated shape of the prior distribution.

The success of this importance sampling scheme for approximating posterior ex-

pectations depends on how much probability mass the prior and posterior distribution

share. This can be understood by considering how the variance of the importance

weights depends on the relationship between the surrogate and target distributions.

The variance of the importance weights determines the stability of the estimate pro-

duced by importance sampling: If only a few samples have high weights, then the

estimate of the expectation is based only on those samples. Fig. 2.2 provides some

intuitions for this phenomenon. If the prior largely overlaps with the posterior, as

in Fig. 2.2a, the importance weights have little variance and the estimate produced

by the sampler is fairly stable. If the prior does not overlap with the posterior, as in

13
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Figure 2.2: The variance of the importance weights in approximating posterior expec-
tations depends on how much probability mass is shared between prior and posterior.
Different patterns are observed if posterior and prior distributions are (a) strongly over-
lapping, (b) non-overlapping or (c) partially overlapping. In these figures, the importance
weights have been normalized to make it clear what proportion of the expectation depends
on each sample. Greater overlap between prior and posterior results in lower variance in
the importance weights, use of a larger set of samples, and consequently a better approx-
imation.

Fig. 2.2b, few samples from the prior fall in the region with higher posterior probabil-

ity, and these samples are given all the weight. The estimate is then solely dependent

on these samples and is highly unstable. In intermediate cases, such as that shown

in Fig. 2.2c where the prior is a multi-modal distribution and the posterior is one

of the modes, stable results are obtained if enough samples are drawn from each of

the modes. In cases where there is not a close match between prior and posterior,

a reasonably large number of samples needs to be drawn from the prior to ensure a

good approximation.
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Chapter 3

Exemplar models as a mechanism for

performing Bayesian inference

The previous chapter provides the mathematical formulation of Bayesian inference,

and how it can be approximated, focusing on Monte Carlo methods. In this chapter,

we first introduce a class of psychological process models known as exemplar models

and show its connection to importance sampling. Then we explore the capacity of

exemplar models to perform Bayesian inference in various tasks. These include a range

of cognitive tasks from perception, generalization, prediction and concept learning.

We also use simulations of performance on these tasks to investigate the effects of

different kinds of capacity limitations and ongoing storage of exemplars in memory.

3.1 Exemplar models

Human knowledge is formed by observing examples. When we learned the concept

“dog,” we were not taught to remember the physiological and anatomical characteris-

tics of dogs, but instead, saw examples of various dogs. Based on the large inventory

of examples of dogs we have seen, we are able to reason about the properties of dogs,
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Chapter 3. Exemplar models as a mechanism for performing Bayesian inference

and make decisions about whether new objects we encounter are likely to be dogs.

Exemplar models provide a simple explanation for how we do this, suggesting that

we do not form abstract generalizations from experience, but rather store examples in

memory and use those stored examples as the basis for future judgments (e.g.,[Medin

and Schaffer, 1978; Nosofsky, 1986]).

An exemplar model consists of stored exemplars X∗ = {x∗1, x∗2, · · · , x∗n}, and a

similarity function s(x, x∗), measuring how closely a new observation x is related to

x∗.1 On observing x, all exemplars are activated in proportion to s(x, x∗). The use of

the exemplars depends on the task [Nosofsky, 1986]. In an identification task, where

the goal is to identify the x∗ of which x is an instance, the probability of selecting x∗i

is

pr(x
∗
i |x) =

s(x, x∗i )∑n
j=1 s(x, x

∗
j)
, (3.1)

where pr(·) denotes the response distribution resulting from the exemplar model, and

we assume that participants use the Luce-Shepard rule [Luce, 1959; Shepard, 1962] in

selecting a response, with no biases towards particular exemplars. In a categorization

task, where each exemplar x∗j is associated with a category cj, the probability that

the new object x is assigned to category c is given by

pr(c|x) =

∑
j|cj=c s(x, x

∗
j)∑n

j=1 s(x, x
∗
j)
, (3.2)

where again we assume a Luce-Shepard rule without biases towards particular cate-

gories.

While exemplar models have been most prominent in the literature on categoriza-

tion, the same basic principles have been used to define models of function learning

1Our analysis requires that this similarity measure has a finite integral, with
∫
s(x, x∗)dx equal to

a fixed constant for all x∗. This assumption is satisfied by similarity functions such as the exponential
or Gaussian that are typically used in exemplar models.
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[DeLosh et al., 1997], probabilistic reasoning [Juslin and Persson, 2002], and social

judgment [Smith and Zarate, 1992]. These models pursue a similar approach to

models of categorization, but associate each exemplar with a quantity other than a

category label. For example, in function learning each exemplar is associated with

the value of a continuous variable rather than a discrete category index. The pro-

cedure for generating responses remains the same as that used in Eq. 3.1 and 3.2:

the associated information is averaged over exemplars, weighted by their similarity to

the stimulus. Thus, the predicted value of some associated information f for a new

stimulus x is

f̂ =

∑n
j=1 fjs(x, x

∗
j)∑n

j=1 s(x, x
∗
j)

, (3.3)

where fj denotes the information associated with the jth exemplar. The identification

and categorization models can be viewed as special cases, corresponding to different

ways of specifying fj. Taking fj = 1 for j = i and 0 otherwise yields Eq. 3.1, while

taking fj = 1 if cj = c and 0 otherwise yields Eq. 3.2. Eq. 3.3 thus provides the

general formulation of an exemplar model that we will analyze.

3.2 Exemplar models as importance samplers

Inspection of Eq. 3.3 and 2.10 yields our main result: Exemplar models can be viewed

as implementing a form of importance sampling. More formally, assume X∗ is a set of

m exemplars x∗ and associated information z drawn from the probability distribution

p(x∗, z), and fj = f(x∗j , zj) for some function f(x∗, z). Then the output of Eq. 3.3

for an exemplar model with exemplars X∗ and similarity function s(x, x∗) is an im-

portance sampling approximation to the expectation of f(x∗, z) over the posterior

distribution on x∗ and z, as given in Eq. 2.3, if two conditions are fulfilled: the x∗j

and zj making up X∗ are sampled from the prior p(x∗, z) and the similarity function
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Chapter 3. Exemplar models as a mechanism for performing Bayesian inference

s(x, x∗) is proportional to the likelihood p(x|x∗). Returning to Fig. 2.1, the x∗i are

now exemplars, and the importance weights reflect the amount of activation of those

exemplars based on similarity to the observed data x.

The two conditions identified in the previous paragraph are crucial in establishing

the connection between exemplar models and importance sampling. They are also

reasonably natural assumptions, if we assume that exemplars are stored in memory

as the result of experience, and that similarity functions are flexible and can vary

from task to task. For most perceptual tasks of the kind we have been considering

here, the prior p(x∗, z) represents the distribution over the states of the environment

that an agent lives in. Thus, sampling x∗j and zj from the prior is equivalent to

storing randomly generated events in memory. The second condition states that the

similarity between x and x∗ corresponds to the likelihood function, subject to a ratio

constant. This is straightforward when the stimulus x exists in the same space as x∗,

as when x is a noisy observation of x∗. In this case, similarity functions are typically

assumed to be monotonically decreasing functions in space, such as exponentials or

Gaussians, which map naturally to likelihood functions [Nosofsky, 1986; Ashby and

Alfonso-Reese, 1995].

This connection between exemplar models and importance sampling provides an

alternative rational justification for exemplar models of categorization, as well as a

more general motivation for these models. The justification for exemplar models in

terms of nonparametric density estimation [Ashby and Alfonso-Reese, 1995] provides

a clear account of their relevance to categorization, but does not explain why they are

appropriate in other contexts, such as identification (Eq. 3.1) or the general response

rule given in Eq. 3.3. In contrast, we can use importance sampling to provide a single

explanation for many uses of exemplar models, such as categorization, identification

and function learning, viewing each as the result of approximating an expectation of a

particular function f(x∗, z) over the posterior distribution p(x∗, z|x). For categoriza-
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tion, z is the category label and the quantity of interest is p(z = c|x), the posterior

probability that x belongs to category c. Hence, f(x∗, z) = 1 for all z = c and 0

otherwise. For identification, the question is whether the observed x corresponds to

a specific x∗, so f(x∗, z) = 1 for that x∗ and 0 otherwise, regardless of z. For func-

tion learning, z contains the value of the continuous variable associated with x∗, and

f(x∗, z) = z. Similar analyses apply in other cases, with exemplar models providing

a rational method for answering questions expressed as an expectation of a function

of x∗ and z.

3.3 A general scheme for approximating Bayes

The equivalence between exemplar models and importance sampling established in

the previous section focuses on the specific problem of interpreting a noisy stimulus.

However, the idea that importance sampling constitutes a psychologically plausi-

ble mechanism for approximating Bayesian inference generalizes beyond this specific

problem. In the general case an agent seeks to evaluate a hypothesis h in light of

data d, and does so by computing the posterior distribution p(h|d) as specified by

Eq. 2.1. An expectation of a function f(h) over the posterior distribution can be ap-

proximated by sampling hypotheses from the prior, p(h), and weighting the samples

by the likelihood, p(d|h). Formally, we have

E[f(h)|d] =

∫
f(h)p(h|d) dh ≈

∑m
j=1 f(hj)p(d|hj)∑m

j=1 p(d|hj)
, (3.4)

where hj is drawn from the prior p(h).

Approximating Bayesian inference by importance sampling in this general case

can also be interpreted as a kind of exemplar model, but here the stored “exemplars”

correspond to hypotheses rather than stimuli. As in a standard exemplar model, these
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hypotheses can be stored in memory as the consequence of previous learning events.

Each hypothesis needs to be weighted by its likelihood, which no longer has a natural

interpretation in terms of similarity, but represents the degree to which a hypothesis

is “activated” as a result of observing the data. Thus, all that is required for an agent

to be able to approximate Bayesian inference in this way is to store hypotheses in

memory as they are encountered, and to activate those hypotheses in such a way that

the hypotheses that best account for the data receive the most activation.

The theoretical properties of importance sampling suggest that exemplar mod-

els of the kind considered in this and the preceding section may provide a way to

approximate Bayesian inference in at least some cases. Specifically, we expect that

importance sampling with a relatively small number of samples drawn from the prior

should produce an accurate approximation to Bayesian inference in cases where prior

and posterior share a reasonable amount of probability mass. This can occur in cases

where the data are relatively uninformative, either as a result of small samples or

high levels of noise. Despite this constraint, we anticipate that there will be a variety

of applications in which exemplar models provide a good enough approximation to

Bayesian inference to account for existing behavioral data.

In the remainder of the chapter we present a series of simulations evaluating ex-

emplar models as a scheme for approximating Bayesian inference in five tasks. These

tasks are selected to illustrate the breadth of this approach, and to allow us to ex-

plore the effect of number of exemplars on performance, as well as the consequences

of other variants on the basic importance sampling scheme intended to reflect possible

psychological or biological constraints. In general, we use the notation from the orig-

inal papers in describing these simulations. However, in each case we formulate the

underlying problem to be solved by Bayesian inference, and relate it back to either

the specific or general problems of Bayesian inference we have considered in estab-

lishing the connection to exemplar models, identifying the correspondence between
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the relevant variables.

3.4 Simulation 1: The perceptual magnet effect

Categorical perception of speech sounds was first demonstrated by Liberman et al.[1957],

who showed that listeners’ discrimination of stop consonants was little better than

would be predicted on the basis of categorization performance, with sharp discrim-

ination peaks at category boundaries. Evidence has also been found in vowels for

a perceptual magnet effect, a language-specific shrinking of perceptual space specifi-

cally near category prototypes, presumably due to a perceptual bias toward category

centers [Kuhl et al., 1992]. However, perception of vowels differs from that of stop

consonants in that it is continuous rather than strictly categorical, with listeners

showing high levels of within-category discrimination [Fry et al., 1962]. Because of

the high level of within-category discriminability in vowels, the perceptual magnet ef-

fect has been difficult to capture through traditional labeling accounts of categorical

perception.

Feldman et al.[2009] argued that the perceptual magnet effect arises because lis-

teners are trying to recover the phonetic detail (e.g., formant values) of a speaker’s

target production from a noisy speech signal. Under this account, listeners perform

a Bayesian de-noising process, recovering the intended formant values of the noisy

speech sounds they hear. Speech sounds are assumed to belong to phonetic categories

in the native language, and listeners can use their knowledge of these categories to

guide their inferences of the speaker’s target production. Because this account as-

sumes that listeners are trying to recover phonetic detail, it predicts a baseline level

of within-category discrimination while still allowing categories to influence listeners’

perception.

The Bayesian model introduced by Feldman et al.[2009] assumes that speakers,
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in producing a speech sound, sample a phonetic value for their target production T

from a Gaussian phonetic category c with category mean µc and category variance σ2
c .

Listeners hear a speech sound S, which has been perturbed by articulatory, acoustic,

and perceptual noise. This noisy speech sound S is normally distributed around

the target production T with noise variance σ2
S. The prior on target productions is

therefore a mixture of Gaussians representing the phonetic categories of the language,

p(T ) =
∑
c

p(T |c)p(c) =
∑
c

N(T |µc, σ2
c )p(c), (3.5)

where N(T |µc, σ2
c ) is the probability density at T given a Gaussian distribution with

mean µc and variance σ2
c . The likelihood function represents the noise process that

corrupts a target production T into a speech sound S, and is given by the Gaussian

function representing speech signal noise,

p(S|T ) = N(S|T, σ2
S). (3.6)

Listeners hear the speech sound S and use Bayes’ rule to compute the posterior mean

(ie. the expectation E[T |S]) and optimally recover the phonetic detail of a speaker’s

target production, marginalizing over all possible category labels.

The problem of inferring T from S is directly analogous to the problem of inferring

a true stimulus x∗ from a noisy stimulus x that we considered when introducing

importance sampling. To complete the analogy, the category c corresponds to the

missing information z, and the expectation E[T |S] corresponds to E[x∗|x]. This

expectation can thus be approximated by an importance sampler of the form given in

Eq. 2.10, with f(x∗, z) = x∗. By the equivalence between importance sampling and

exemplar models, this means that we can approximate the Bayesian solution to the

problem of inferring T from S using an exemplar model.
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An exemplar model derived through importance sampling provides a psychologi-

cally plausible implementation of the model introduced by Feldman et al. [2009], al-

lowing listeners to optimally recover speakers’ target productions using unlabeled ex-

emplars. This implementation has two specific advantages over the original Bayesian

formulation. First, there is evidence that infants as young as six months show a

language-specific perceptual magnet effect even though they are still forming pho-

netic categories [Kuhl et al., 1992], and importance sampling allows them to perform

this computation without any explicit category knowledge. Category labels are not re-

quired, and the distribution of exemplars need not follow any parametric distribution.

Second, importance sampling directly parallels the neural network model of the per-

ceptual magnet effect proposed by Guenther and Gjaja[1996], allowing the Bayesian

model and the neural network model to be interpreted as convergent descriptions of

the same perceptual process.

To calculate the expected target production T using importance sampling, listen-

ers need to store their percepts of previously encountered speech sounds, giving them

a sample from p(T ), the prior on target productions (Eq. 3.5).2 Upon hearing a new

speech sound, they weight each stored exemplar by its likelihood p(S|T ) (Eq. 3.6)

and take the weighted average of these exemplars to approximate the posterior mean

as

E[T |S] ≈
∑m

j=1 Tjp(S|Tj)∑m
j=1 p(S|Tj)

, (3.7)

where Tj denotes the formant value of a stored target production.

We compared the performance of this exemplar model to multidimensional scal-

ing data from Iverson and Kuhl[1995] on adult English speakers’ discrimination of 13

2Because listeners only hear noisy speech sounds S, they may not have direct access to a sample
from T . Storing samples from S instead of T produces the same qualitative effect, though the
computation is no longer optimal. Alternatively, listeners may be able to bootstrap a sample from
T by using multiple cues to reduce the amount of noise and by using subsequent percepts to update
stored values. We return to the problem of recruiting exemplars during inference in Simulation 5.
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equally-spaced stimuli in the /i/ and /e/ categories. The discrimination data were

obtained through an AX task in which subjects heard pairs of stimuli and pressed a

button to indicate whether the stimuli were identical. Responses and reaction times

were used in a multidimensional scaling analysis to create a one-dimensional map of

perceptual space, shown in Fig. 3.1. The data show a non-linear mapping between

acoustic space and perceptual space, with portions that are more nearly horizon-

tal corresponding to areas in which perceptual space is shrunk relative to acoustic

space. Sounds near phonetic category centers are closer together in perceptual space

than sounds near category boundaries, despite being separated by equal psychophys-

ical distances. We simulated the performance of exemplar models with ten and fifty

exemplars drawn from the prior, examining both the performance of individual sim-

ulated participants and the results of aggregating across participants. The results of

this simulation, shown together with the multidimensional scaling data in Fig. 3.1,

suggest that a relatively small number of exemplars suffices to capture human per-

formance in this perceptual task. Model performance using ten exemplars already

demonstrates the desired effect, and with fifty exemplars, the model gives a precise

approximation that closely mirrors the combined performance of the 18 subjects in

Iverson and Kuhl’s multidimensional scaling experiment.

In addition to giving a simple psychological mechanism for approximating Bayesian

inference in this task, importance sampling provides a link between the Bayesian

model and a previous account of the perceptual magnet effect. The exemplar model

considered in this section is isomorphic to a neural mechanism proposed by Guenther

and Gjaja[1996] to create a bias toward category centers. In Guenther and Gjaja’s

neural map, the firing preferences of a population of neurons come to mirror the

distribution of speech sounds in the input. Upon hearing a speech sound, listeners

recover a percept of that speech sound by taking a weighted average of firing pref-

erences in the neural map. The weights, or neural activations, are determined by
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Figure 3.1: Locations of stimuli in perceptual space from Iverson and Kuhl’s [1995] mul-
tidimensional scaling data and from a single hypothetical subject (open circles) and the
middle 50% of hypothetical subjects (solid lines) using an exemplar model in which per-
ception is based on (a) ten and (b) fifty exemplars. The labels µ/i/ and µ/e/ show the
locations of category means in the model. Parameter values were those used by Feldman,
Griffiths, and Morgan [2009].
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the similarity between a neuron’s firing preference and the speech sound heard. This

perceptual mechanism implements an importance sampler: Firing preferences of in-

dividual neurons constitute samples from the prior, and the activation function plays

the role of the likelihood. The activation function in the neural map differs from

the Gaussian function assumed in the Bayesian model, but both implement the idea

that exemplars with similar acoustic values should be weighted most highly. The

correspondence between these two models suggests that Monte Carlo methods such

as importance sampling may provide connections not just to psychological processes,

but to the neural mechanisms that might support probabilistic computations. We

return to this possibility in the General Discussion.

3.5 Simulation 2: The universal law of generalization

In a celebrated paper, Shepard [1987] showed that generalization gradients decrease

exponentially with psychological distance across many experimental situations. He

then gave a probabilistic explanation for this phenomenon that was later formulated

in a Bayesian framework [Myung and Shepard, 1996; Tenenbaum and Griffiths, 2001].

Here, we use the notation originally introduced by Shepard. Assume that we observe

a stimulus 0 that has a certain property (or “consequence”). What is the probability

that a test stimulus x has the same property? Shepard analyzed this problem by

assuming that 0 and x were points in a psychological space, and the set of stimuli

sharing a property defined a consequential region in the space. We know that the

original stimulus 0 belongs to this region, and we want to evaluate whether the test

stimulus x does. We thus want to compute the probability that the x falls into an

unknown consequential region containing 0.

The first question we can answer is which consequential regions 0 could have

come from. This is a problem of Bayesian inference, where consequential regions are
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hypotheses and observing that 0 belongs to the region constitutes data. In the case

of one-dimensional generalization, we might take consequential regions to be intervals

along that dimension, parameterized by their center c and size s. We then want to

compute the posterior distribution on intervals (c, s) given the information that 0 ∈

(c, s). This can be done by defining a prior p(c, s) and likelihood p(0|c, s). Shepard

[1987] assumed that all locations of consequential regions are equally probable, so

the distribution of c is uniform and the prior distribution p(c, s) is specified purely

in terms of a distribution on sizes, p(s). The likelihood is obtained by assuming

that 0 is sampled uniformly at random from the interval given by (c, s), resulting in

p(0|c, s) = 1/m(s) for all intervals (c, s) containing 0, where m(s) is a measure of

the volume of a region of size s (in one dimension, the length of the interval), and

p(0|c, s) = 0 for all other intervals. Prior and likelihood can then be combined as in

Eq. 2.1 to yield a posterior distribution over consequential regions.

With a posterior distribution over consequential regions in hand, the probability

that x belongs to one of the consequential regions containing 0 is obtained by summing

the posterior probabilities of the regions containing x. This can be expressed as the

integral

p(x|0) =

∫
s,c

1(x ∈ (c, s))p(c, s|0) ds dc, (3.8)

where 1(x ∈ (c, s)) is an indicator function that equals 1 if x is in the region param-

eterized by (c, s) and 0 otherwise. This integral can also be viewed as an expectation

of the indicator function 1(x ∈ (c, s)) over the posterior distribution p(c, s|0).

By viewing Eq. 3.8 as an expectation, it becomes clear that it can be approximated

by importance sampling, and thus by an exemplar model. Identifying a consequen-

tial region does not match the form of the simple stimulus de-noising problem that

we used in demonstrating equivalence between importance sampling and exemplar

models, requiring us to use the more general idea that Bayesian inference can be ap-
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proximated by storing hypotheses sampled from the prior and activating them based

on consistency with data. In this case, the hypotheses h are consequential regions, the

data d consist of the observation that 0 is contained in some consequential region, and

the function f(h) that we want the expectation of is the indicator function that takes

the value 1 if x is in the consequential region and 0 otherwise. The approximation to

this expectation is then given by Eq. 3.4.

The importance sampling approximation to Eq. 3.8 is thus obtained by assuming

that a set of hypotheses parameterized by centers and sizes (cj, sj) are sampled from

the prior and activated by the likelihood 1(0 ∈ (cj, sj)) 1/m(sj), to give

p(x|0) ≈
∑m

j=1 1(x,0 ∈ (cj, sj))
1

m(sj)∑m
j=1 1(0 ∈ (cj, sj))

1
m(sj)

, (3.9)

where the numerator combines the indicator function that we want the expectation

of, 1(x ∈ (cj, sj)), with that in the likelihood. Since c and s are independent under

the prior, we can also draw m samples of each and then take the sum over all m2

pairs of c and s values, reducing the number of samples that need to be taken from

the prior. The results of using this approximation are shown in Fig. 3.2. Relatively

small numbers of sampled hypotheses (20 and 100) are sufficient to produce reason-

able approximations to the generalization gradients associated with all of the prior

distributions considered by Shepard [1987].

3.6 Simulation 3: Predicting the future

Remembering past events, like the local temperature in March in previous years,

or the duration of red traffic lights, can help us make good predictions in everyday

life. Griffiths and Tenenbaum[2006] studied people’s predictions about a variety of

everyday events, including the grosses of movies and the time to bake a cake, and
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Figure 3.2: Exemplar models approximate six generalizations functions for different prior
distributions on the size of consequential regions. The prior distributions are shown as inset
shaded curves, reproducing Figure 3 of Shepard [1987]. Analytical results for the form of
the generalization function are provided on the top of each inset prior, and are plotted
in the dotted curve. An approximating exponential generalization function is plotted as
a smooth curve. Exemplar models using 20 and 100 hypotheses sampled from the prior
(corresponding to circles and asterisks respectively) provide a good approximation to these
theoretical predictions.
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found that these predictions corresponded strikingly well with the actual distributions

of these quantities. Predicting the future in this way can be analyzed as Bayesian

inference, and approximated using an exemplar model.

As formulated in Griffiths and Tenenbaum[2006], the statistical problem that peo-

ple solved is inferring the total duration or extent of a quantity, ttotal, from its current

duration or extent, t. The goal is to compute the posterior median of ttotal given

t. Unlike the mean, the median gives a robust estimate of ttotal when the posterior

distribution is skewed, which is the case for many of these everyday quantities. The

posterior median t∗ is defined to be the value such that p(ttotal > t∗|t) = 0.5, where

the posterior distribution is obtained by applying Bayes’ rule with an appropriate

prior and likelihood. The prior p(ttotal) depends on the distribution of the everyday

quantity in question, with temperatures and traffic lights being associated with differ-

ent distributions. As in the previous example, the likelihood is obtained by assuming

that the phenomenon is encountered at a random point drawn uniformly from the

interval between 0 and ttotal, with p(t|ttotal) = 1/ttotal for all ttotal > t.

Making correct predictions about everyday events requires knowing the prior dis-

tributions of the relevant quantities – the grosses of movies, the time taken to bake

a cake, and so forth. While it is unlikely that we store these distributions explicitly

in memory, the posterior median can be approximated using stored exemplars that

are sampled from the prior p(ttotal) using Eq. 2.10. The posterior probability that a

value of ttotal is greater than t∗ can be formulated as an expectation,

p(ttotal > t∗|t) = E[1(ttotal > t∗)|t], (3.10)

where 1(ttotal > t∗) is an indicator function taking the value 1 when its argument is

true, and 0 otherwise, as in the previous example. This problem fits the schema for

the general approximation to Bayesian inference given by Eq. 3.4, with the hypotheses
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h being values of ttotal, the data d being the observation t, and the function of interest

f(h) being the indicator function 1(ttotal > t∗). Consequently, the expectation given

in Eq. 3.10 can be approximated using an exemplar model in which exemplars ttotal,j

are sampled from the prior p(ttotal) and activated by the likelihood 1/ttotal if they are

greater than t. This gives the approximation

p(ttotal > t∗) ≈
∑

j 1(ttotal,j > t∗, ttotal,j > t) 1
ttotal,j∑

j 1(ttotal,j > t) 1
ttotal,j

. (3.11)

The approximate median of the posterior distribution is the exemplar ttotal,j that has

p(ttotal > ttotal,j|t) closest to 0.5.

Considering limitations in memory capacity and computational power, we con-

ducted two sets of simulations. In predicting the future, only values of ttotal that

are greater than the observed value of t are plausible, with all other values having a

likelihood of 0. Consequently, sampling directly from the prior can be inefficient, with

many samples being discarded. We can thus break the approximation process into

two steps, with the first being generating a set of values of ttotal from memory, and

the second being assigning those values of ttotal greater than t a likelihood of 1/ttotal

and normalizing. Our simulations considered limitations that could apply to either

of these steps. In the memory-limited case, the number of exemplars generated from

memory is fixed. In the computation-limited case, the bottleneck is the number of

exemplars that can be processed simultaneously, placing a constraint on the number

of exemplars such that ttotal > t. In this case, we assume that exemplars are generated

from memory until they reach this upper limit.

Fig. 3.3 shows the results of applying these different approximation schemes to

the predicting the future task, varying the number of exemplars. We examined per-

formance across seven prior distributions, corresponding to the baking time of cakes,

human life spans, the grosses of movies, the duration of the reigns of pharaohs, the
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length of poems, the number of terms in the United States House of Representa-

tives, and the runtime of movies, and for 5, 10, and 15 exemplars. In each case,

we simulated the performance of 50 participants using the appropriate number of

exemplars sampled directly from the prior (for the memory-limited case) or sampled

from the prior but constrained to be consistent with the observed value of t (for the

computation-limited case). In the memory-limited case, if none of the exemplars is

larger than the observation, the observed value t is taken as the only exemplar which

results in t∗ = t. The figure also shows the quality of the approximation produced by

directly sampling exemplars from the posterior distribution, rather than generating

from the prior. For each approximation scheme, 50 simulated participants’ responses

were generated. The plot markers indicate the median and the 68% confidence inter-

val on the median (ie. the 16th and 84th percentiles of the sampling distribution),

computed using a bootstrap with 1000 samples drawn from the responses of these

participants.

For a quantitative measure of the success of the approximation, we computed

the sum of the absolute value of the deviations for each of the median results shown

in Fig. 3.3 (t∗ML, t
∗
CL, t

∗
SA for memory-limited, computation-limited, and sampling re-

spectively) to both the true function (t∗Bayes) and to the median human responses

(t∗human). These error scores were then normalized by the difference in t∗Bayes for the

lowest and highest values of t for each prior, in order to compensate for the different

scales of these quantities, and then summed across priors to produce the scores shown

in Table 3.1. This quantitative analysis confirmed the trends evident from the figure.

Approximation performance improved with more exemplars, but was already fairly

good with only five exemplars. The memory-limited case tended to perform worse

than the other approximations for a given number of exemplars, since some of the

exemplars generated from the prior would not enter into the approximation for the

reasons detailed above.
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Figure 3.3: Simulations of prediction on everyday cognition, data from Griffiths and Tenen-
baum [2006]. The first row is the prior distribution of each dataset. The second to fourth
rows are simulations with 5, 10 and 50 exemplars for memory-limited and computation-
limited exemplar models, as well as sampling from the posterior. The solid line shows
the optimal responses given the prior distribution, and the black dots are the responses
of human participants. For both simulations and human data, the plot markers indicate
the median response across a population of 50 simulated participants. Error bars show a
68% confidence interval computed by 1000 sample bootstrap.
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Table 3.1: Comparison of Approximation Schemes with Exact Bayes and Human Data

5 exemplars 10 exemplars 50 exemplars∑
|t∗ML − t∗Bayes| 4.2003 2.3333 1.2366∑
|t∗ML − t∗human| 8.3023 7.0858 6.6757∑
|t∗CL − t∗Bayes| 3.5601 1.8620 1.0798∑
|t∗CL − t∗human| 7.8566 6.8283 6.1023∑
|t∗SA − t∗Bayes| 1.4706 1.7449 2.3050∑
|t∗SA − t∗human| 6.8043 6.0633 6.5741∑
|t∗human − t∗Bayes| 6.2626

Note: Subscripts correspond to memory limited (ML), computation limited (CL),
sampling from the posterior (SA), and true Bayesian and human estimates of t∗.
Error scores were summed across values of t for each prior, normalized as described
in the text, and then summed across priors.

The question of whether approximations based on a small number of exemplars

might account for the results of Griffiths and Tenenbaum[2006] was independently

raised by Mozer et al.[2008], who argued that a close correspondence to the posterior

median could be produced by aggregating responses across a large number of par-

ticipants who each had only limited knowledge of the appropriate prior, such as a

handful of samples from that distribution. The original model considered by Mozer

et al. [2008], which estimates t∗ as the minimum of the set of exemplars greater than

t, does not have an interpretation as importance sampling, and degenerates as an ap-

proximation as the number of exemplars increases, rather than improving. However,

one of the variants on this model, called GTkGuess in their paper, is equivalent to

our memory-limited importance sampling approximation provided at least one sam-

pled exemplar is greater than t. Consistent with the results presented here, Mozer

et al. [2008] demonstrated that this model produced a good correspondence with the

results of Griffiths and Tenenbaum[2006] with only a small number of exemplars,

considering both aggregate performance and the amount of variability produced by

different approximation schemes.
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One important difference between the analysis we present here and that of Mozer

et al. [2008] is that we do not necessarily view using an exemplar model to approx-

imate Bayesian inference as being related to having limited prior knowledge. For

Mozer et al. [2008], the exemplars used in approximating Bayesian inference were

taken to represent all that a given individual knew about a phenomenon. Since each

participant in Griffiths and Tenenbaum[2006] made only a single judgment about

each phenomenon, it was possible to accurately model the aggregate judgments by

making this assumption. However, another possibility that is equally consistent with

the data is that each individual has a large pool of exemplars available, and only

samples a small number in making a given prediction. In this case, a small number of

exemplars are used in order to make the Bayesian computation efficient, not because

they represent the complete knowledge of the learner. These two possibilities can

be differentiated by conducting an experiment in which individuals make multiple

judgments about a given phenomenon. If participants only have access to a small

number of exemplars, they produce very similar responses for a range of values of

t, while if they are sampling different sets of exemplars on different trials, their re-

sponses should increase as a function of t in a way that is consistent with applying

Bayesian inference. Lewandowsky et al.[in press] conducted such an experiment, and

found support for the latter hypothesis.

3.7 Simulation 4: Concept learning

The simulations we have presented so far correspond to cases where Bayesian inference

is performed with a hypothesis space that contains only hypotheses that correspond

to continuous quantities (formant values, the size of consequential regions, the extent

or duration of everyday phenomena). However, Bayesian inference is also carried out

with hypothesis spaces in which each hypothesis is discrete, and qualitatively different
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from other hypotheses. The “number game” of Tenenbaum [1999]; [Tenenbaum and

Griffiths, 2001] is a good example. This game is formulated as follows: Given natural

numbers from 1 to 100, if a number or set of numbers x belongs to an unknown set

C, what is the probability that another number y also belongs to the same set? For

example, if the numbers {59, 60, 61, 62} all belong to an unknown set, what is the

probability that 64 belongs to that set? What about 16?

The problem of determining whether y belongs to the same set as x is another in-

stance of the problem of generalization, and can be answered using a similar Bayesian

inference. Our data are the knowledge that x belongs to the set C, and our hypothe-

ses concern the nature of C. Since C is unknown, we should sum over all possible

hypotheses h in the hypothesis space H when evaluating whether y belongs to C,

p(y ∈ C|x) =
∑
h∈H

p(y ∈ C|h)p(h|x) =
∑
h∈H

1(y ∈ h)p(h|x), (3.12)

where 1(y ∈ h) is the indicator function of the statement y ∈ h, taking value 1 if this

is true and 0 otherwise. In the analysis presented by Tenenbaum [1999]; [Tenenbaum

and Griffiths, 2001], the likelihood p(x|h) is proportional to the inverse of the size of

h (the “size principle”) being 1/|h| if x ∈ h and 0 otherwise. This corresponds to the

uniform sampling assumption made in the previous two examples. A hypothesis space

H containing a total of 6,412 hypotheses was used, including intervals of numbers

spanning a certain range, even numbers, odd numbers, primes, and cubes.

The number game is challenging because any given number (say x = 8) is consis-

tent with many hypotheses (not only intervals containing 8, but also hypotheses such

as even numbers, cubic numbers, number with final digit 8, etc.). Interestingly, the

responses of human participants can be captured quite accurately with this Bayesian

model (Fig. 3.4a). However, this involves instantiating all 6,412 hypotheses, calcu-

lating the likelihood for each rule and integrating over the product of the prior and
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likelihood. Such computations are challenging, so a mechanism that approximates

the exact solution is desirable. Fortunately, the probability computed in Eq. 3.12 is

an expectation, and can be approximated by importance sampling and thus by an

exemplar model.

The number game is another instance of a problem that requires the more general

approximation scheme summarized in Eq. 3.4. The hypotheses h are candidates for

the identity of the concept C, the data d are the observation that x belongs to C, and

the function f(h) that we want to evaluate the expectation of is the indicator function

1(y ∈ h)p(h|x). We can approximate this expectation by sampling hypotheses hj from

the prior p(h), and re-weighting those hypotheses by the likelihood p(x|h), with

p(y ∈ C|x) ≈
∑

j 1(y ∈ hj, x ∈ hj)1/|hj|∑
j 1(x ∈ hj)1/|hj|

, (3.13)

meaning that p(y ∈ C|x) is just the ratio of the summed likelihoods of the hypotheses

stored in memory that generate y to the summed likelihoods of all hypotheses stored

in memory.

Fig. 3.4b and c show generalization responses for different sets of numbers, x, for

a single simulated participant. As in Simulation 3, we conducted simulations for both

memory- and computation-limited approximations, with the latter case correspond-

ing to generating sample hypotheses h from the prior until a fixed number consistent

with x had been generated. The simulations used the same parameters as those in the

full Bayesian model of Tenenbaum and Griffiths [2001], except the likelihood function

assigns a small non-zero probability to all natural numbers from 1 to 100 for every

hypothesis to ensure numerical stability. The results suggest that a small number of

exemplars (20 and 50 for computation-limited and memory-limited respectively) is

sufficient to account for human performance. The memory-limited case needs more

exemplars because not all exemplars are qualified hypotheses. Therefore, the effective
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Figure 3.4: Simulations (dashed line) and behavioral data from Tenenbaum [1999] (gray
bars) for the number game. The full Bayesian model uses 6,412 hypotheses. Results of
computation-limited (20 exemplars) and memory-limited (50 exemplars) exemplar models
are based on a single simulated participant with a set of hypotheses (exemplars) sampled
from the prior. Models are tested under conditions suggesting single point generalization
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number of exemplars, which determines the computational load, is small. The con-

sistency of these results with the human judgments indicates that exemplar models

provide a plausible mechanism that relies on reasonable memory and computational

resources and can be used with highly structured hypothesis spaces.

To further evaluate the model, we compared the variance of the predictions pro-

duced by importance sampling with the variability among individuals on this task.

Since the model predictions rely on a sample from the prior, there can be variability

between simulated participants which we can compare with the variability among hu-

man participants. Moreover, we should expect to see specific simulated participants

who produced behavior similar to that of specific human participants. Fig. 3.5a

shows the variability among the eight participants analyzed by Tenenbaum [1999],

together with the variability among 100 simulated participants (using the memory-

limited case). Both human and simulated participants exhibit significant variability

in their responses, particularly for the stimulus x = {60}. The patterns of responses

also share some key features. For x = {60, 52, 57, 55}, since there is no specific nu-

meric rule describing the set, most plausible hypotheses are intervals containing x.

Therefore, we expect higher variability near the boundary of the set (ie. below 52 or

greater than 60) and lower variability within the set. For x = {60, 80, 10, 30}, high

variability in generalization to multiples of five and ten is observed in both human

and simulated participants.

The variability seen in the human and simulated participants disagree in two re-

spects. First, there is significant baseline variability in the human responses that is

not captured by the model, especially for x = {60, 52, 57, 55} and x = {60, 80, 10, 30}.

After looking in detail at individual trials, we found that high baseline variability is

partly due to inconsistent use of the rating scale (which ranged from 1-7) to express

“low probability.” For example, for x = {60, 52, 57, 55}, two out of eight partici-

pants gave minimum responses of 2 out of 7, while the other six used the full range
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and had minimum responses of 1. A second point of difference between the hu-

man and simulated responses is in the use of the “square numbers” hypotheses with

x = {81, 25, 4, 36}. The model displays greater variability than seen among human

participants when generalizing to other squares from this set. This is due to the fact

that the memory-limited exemplar model is not guaranteed to sample the “square

numbers” rule in every trial, while the educated participants used by Tenenbaum

[1999] consistently recognized this mathematical rule.

For a closer look at the way that variability manifests in the model, we examined

whether it was possible to find patterns of predictions that matched the behavior of

individual participants. Fig. 3.5b shows some close correspondences between human

and simulated participants. Each row shows the responses of a different human par-

ticipant, together with the closest-matching responses chosen from the 100 simulated

participants used in our analysis of variability. In each case the correlation between

human and simulated participants was greater than r = 0.95, and many of the details

of the responses are in correspondence. For example, in the case of x = {60}, this in-

dividual evaluated multiple hypotheses such as intervals, multiple of 10 and multiples

of 6, and a similar pattern appears in the model predictions.

3.8 Simulation 5: Category effects on reconstruction

from memory

Retrieving or reconstructing items from memory can also be formulated as a problem

of statistical inference, with Bayes’ rule being used to evaluate which item in mem-

ory might correspond to a particular cue [Anderson and Milson, 1989; Shiffrin and

Steyvers, 1997; Hemmer and Steyvers, 2009; Huttenlocher et al., 2000]. Examining

how this kind of probabilistic inference can be approximated using an exemplar model
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Figure 3.5: Variability across human and simulated participants in the number game.
(a) The standard deviation of the ratings produced by eight human participants in the
number game (denoted with asterisks) is compared with the standard deviation of the
posterior probabilities produced by 100 simulated subjects. (b) Responses from four human
participants, compared with the closest matching simulated participants from the pool of
100 used in evaluating variability.

has the potential to be particularly informative, since exemplar models themselves

are based on memory. This creates an opportunity to consider how exemplars come

to be stored in memory, and what role statistical inference plays in this process.

We will focus on the problem of reconstructing items from memory, and in par-

ticular on a study by Huttenlocher et al. [2000, Experiment 1] examining how the

relative frequencies of items within a category can be used to improve accuracy in

reproducing stimuli. In this study participants learned the distribution associated

with a novel one-dimensional stimulus (the width of a schematic fish). The form of

this distribution varied across participants. Some participants learned a single cate-

gory, which was associated with either a uniform or a Gaussian distribution on fish

width. Other participants learned two categories, each of which was associated with

one half of the uniform distribution used in the one category case (the categories thus

corresponded to “slender” and “fat” fish). During training, participants were briefly
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shown a stimulus, and then asked to reproduce that stimulus from memory (having

been provided with its category label). Reconstructions were produced by adjusting

the size of a schematic fish until participants felt that they had matched the size of

the original stimulus.

Reconstructing a stimulus from memory can be analyzed as a Bayesian inference.

Returning to the very first example of Bayesian inference we considered in this chap-

ter, we might assume that the observed stimulus x is taken as a noisily perceived

instance of some true stimulus x∗, with the noise process described by the distribu-

tion p(x|x∗). The prior distribution on x∗ is provided by the category c, which is

associated with a distribution p(x∗|c). The best reconstruction of x∗, in the sense of

minimizing the squared error between the reconstruction and the true value, is the

posterior expectation of x∗ given x and c,

E[x∗|x, c] =

∫
x∗p(x∗|x, c)dx∗, (3.14)

where the posterior distribution p(x∗|x, c) is calculated using Bayes’ rule. Hutten-

locher et al. [2000] explicitly tested this model of reconstruction from memory, arguing

that using category information to guide reconstruction should increase accuracy.

The problem of reconstruction from memory is of exactly the same form as the

stimulus de-noising problem we used to demonstrate the equivalence between impor-

tance sampling and exemplar models. The expectation in Eq. 3.14 can be approxi-

mated by storing a set of exemplars x∗j in memory, sampled from the prior p(x∗|c),

and then activating those exemplars in proportion to the likelihood p(x|x∗). Hutten-

locher et al. [2000] assumed that the likelihood was a Gaussian distribution with a

mean at x∗, and explored several different prior distributions p(x∗|c). In each case,

the Bayesian inference required to reconstruct a stimulus from memory can be ap-

proximated using an exemplar model of the form specified in Eq. 2.10.
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Although this analysis of reconstruction from memory is similar to that for the

perceptual magnet effect, there are two important differences. First, category labels

are given explicitly in the case of reconstruction, but are unknown in the perceptual

magnet effect. Second, and perhaps more importantly, the experiments conducted

to explore these phenomena differ in how the relevant priors were acquired. The

prior distribution on speech sounds was established before the experiment exploring

the perceptual magnet effect, as a result of learning the distributions associated with

these sounds in English. In contrast, the prior being used to reconstruct the stimuli in

the experiment conducted by Huttenlocher et al. [2000] is learned on the fly, through

the process of forming the reconstructions. The reconstruction produced on one trial

might thus play the role of a stored exemplar on a later trial.

To explore the effects of incrementally building a set of exemplars over time,

we conducted a series of simulations of this study in which we used a variant on

the standard exemplar model. The reconstruction of the first stimulus seen by each

simulated participant was taken to be exactly equal to that stimulus. Each subsequent

stimulus was reconstructed using an exemplar model with the previous n stimuli as

exemplars (or all stimuli, if fewer than n have been observed), including the observed

value of the current stimulus. Following Huttenlocher et al. [2000], the likelihood

p(x|x∗) was taken to be a normal distribution with mean x∗ and variance σ2. The

resulting model has two parameters: the noise level σ2, and the memory capacity

n. Our simulations varied these two parameters, with n = {1, 2, 5, 10,∞} and σ =

{1, . . . , 10} pixels.3

Fig. 3.6 shows the results of these simulations. In each case, we plot the bias in

reconstruction for stimuli of different widths, defined to be the difference between the

width of the reconstruction and the width of the stimulus. In general, stimuli that are

3We also conducted simulations in cases where perceptual noise was considered and reconstructed
stimuli, instead of original stimuli, were taken as exemplars. All of these variations produced similar
results.
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smaller than the mean of a category show a positive bias and stimuli that are larger

show a negative bias, consistent with reconstructions moving towards the mean of

each category. This effect comes out in all of our models, being the basic prediction

resulting from a Bayesian analysis of this problem. However, the results also show how

the exemplar models capture some subtle characteristics of the data. For example,

in the normal prior condition (the middle row of the figure), a full Bayesian model

would predict that bias is a linear function of fish width. This prediction is quite

clearly reflected in the results for n = ∞, which most closely approximates exact

Bayesian inference. In contrast, both the human data and the models with smaller

values of n show a non-linear function, with bias reduced for more extreme stimuli.

To understand this effect, we should note that the current observation x is always

included as an exemplar in producing the reconstruction of x∗. Thus, when x takes

an extreme value lying at the tails of the prior, it is often over-weighted since recent

observations are unlikely to lie in proximity to this extreme value. In this case, the

reconstruction of x∗ relies more on x itself, resulting in smaller bias.

3.9 Discussion

The formal correspondence that we have shown to exist between exemplar models

and importance sampling suggests a way to solve the computationally challenging

problem of probabilistic inference using a common computational model of psycho-

logical processes. Our five simulations illustrate how this approach can be applied in

a range of settings where probabilistic models have previously been proposed. Sim-

ulation 1 showed that exemplar models can be used to perform Bayesian inference

for a simple speech perception problem, providing an account of the perceptual mag-

net effect that does not require parametric assumptions about the distribution of

speech sounds associated with phonetic categories, or any form of learning of these
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Figure 3.6: Reconstruction from memory with online recruitment of exemplars. (a) The
left column shows the average bias in the reconstructed stimuli produced by participants
(measured as the difference between the actual and reconstructed width of fish, in pixels)
as a function of actual width. The rows show reconstructions produced for three prior
distributions: a single category following a uniform and a normal distribution, and two
categories following uniform distributions. Data are from Huttenlocher et al. [2000, Exper-
iment 1]. The remaining columns show simulations using exemplar models with a memory
capacity of 1, 2, 5, 10 and ∞ exemplars. Data were generated in a way that was con-
sistent with the original experiment, and the results show an average across 10 simulated
participants with 192 trials per participant. The only free parameter, the assumed noise
level σ2, is specified by minimizing mean squared error (MSE) in each case. (b) Sensitivity
of the results to memory capacity and recall noise. In the upper panel, memory capacity
(in number of exemplars) is fixed and σ2 is chosen to minimize MSE. Interestingly, MSE
grows with increasing memory capacity, suggesting that a limited memory model (< 10
exemplars) is consistent with human behavior. In the lower panel, the effect of different
noise levels σ2 is examined, optimizing memory capacity. For all three priors, the error
curves have concave bell shape and share a region of minimum error, suggesting that a
single assumed noise level can account for results in all three conditions.
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distributions. Simulation 2 demonstrated that a similar approach could approximate

the predictions of Shepard’s [1987] classic analysis of generalization. Simulation 3

examined how exemplar models could be used in predicting the future. Simulation

4 extended our analysis to a case where hypotheses represent discrete, qualitatively

different accounts of observed data. Finally, Simulation 5 considered how exemplars

might be recruited in the course of an experiment, and showed that this approach

could account for the results of a study of reconstruction from memory.

In the remainder of the chapter, we discuss three issues raised by these results.

First, while our simulations show that exemplar models can be used to approximate

Bayesian inference in a range of settings, this approach will not provide good approx-

imations in all cases. The relationship with importance sampling makes it possible to

clearly state in which cases we expect this to be an effective approximation scheme.

Second, none of the cases we consider involve any kind of dynamics, with the hypoth-

esis space remaining static over time. Since some cognitive problems require dealing

with hypothesis spaces that change in size and content over time, we outline how

our approach can be extended to accommodate this situation. Finally, we consider

some of the broader implications of the correspondence between exemplar models and

importance sampling that we have identified in this chapter, viewing this result as

just one instance of a more general approach towards connecting rational models of

cognition with psychological processes.

3.9.1 The limits of importance sampling

While importance sampling is widely used to approximate probabilistic inference, it is

not appropriate for all problems. As discussed above, the quality of the approximation

provided by importance sampling depends on the relationship between the target

distribution p(y), the function g(y) for which we want to find an expected value, and

46



Chapter 3. Exemplar models as a mechanism for performing Bayesian inference

the proposal distribution q(y). In particular, we want the proposal distribution to

assign high probability to values of y for which p(y) and g(y) are both large, and low

probability to other values of y. Otherwise, samples from the proposal distribution

may not correspond to values of y that make a large contribution to the expectation

of g(y).

The relationship between importance sampling and exemplar models that we have

identified relies on the assumption that the exemplars are drawn from the prior (ie.

that the prior is used as a proposal distribution). This makes it easy to identify the

limitations of this approach: Bayesian inference can only be approximated effectively

using the kind of exemplar models we have considered in this chapter when there

is a reasonably close match between the posterior and the prior. This will be the

case when the data are relatively uninformative, meaning that the posterior does

not deviate significantly from the prior. Data can be uninformative because of small

sample size, or because of a high level of uncertainty (as reflected in the likelihood).

All of the settings we explored in our simulations met this criterion, requiring an

inference to be made on the basis of only one or at most a handful of stimuli.

One way to extend the range of problems for which exemplar models yield approx-

imations to Bayesian inference might be to remove the assumption that the exemplars

are drawn from the prior. While we have focused on the equivalence between Eq. 3.3

and 2.10, the exemplar-based computations represented by Eq. 3.3 are also equivalent

to those used in the more general formulation of the importance sampler in Eq. 2.7.

Thus, exemplar models can be used to approximate expectations over a distribution

p(x∗|x) when the exemplars are generated from any distribution q(x∗), provided the

similarity function used to activate each exemplar is proportional to p(x∗|x)/q(x∗).

When q(x∗) = p(x∗), we obtain the class of models analyzed in this chapter. How-

ever, relaxing this assumption broadens the range of proposal distributions that can

be used, and may make it possible for exemplar models to produce efficient approxi-
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mations to Bayesian inference across a wider range of problems.

3.9.2 Approximating dynamic inferences

A second limitation of the approach that we have presented in this chapter is that

it is only appropriate in cases where the hypothesis space is static, with the same

hypotheses being used in multiple inferences. The simple strategy of using a stored

set of hypotheses does not work in cases where the hypothesis space itself changes over

time, and results in a particularly poor approximation when that hypothesis space

grows with the number of observations. One example where such a problem arises

is dividing a set of observations into clusters, as in Anderson’s [1990; 1991] rational

model of categorization. In this model, the hypothesis space consists of all possible

clusterings of a set of observations. This hypothesis space has to be revised with each

new observation, reflecting all of the ways in which that observation could be added

to the existing clusters. Not only does the hypothesis space change over time, but it

grows super-exponentially in the number of observations.

While exemplar models are not appropriate for this situation, they are closely

related to another Monte Carlo method that can be extremely effective for approx-

imating dynamic inferences. This method, known as particle filtering, translates

importance sampling into a dynamic setting. The basic idea is that the posterior

distribution over hypotheses after n observations should be closely related to the

posterior distribution after n + 1 observations, in the same way that the prior and

posterior were closely related in the examples we considered above. The posterior

after n + 1 observations can thus be approximated by importance sampling, using a

proposal distribution based on the posterior after n observations. This idea can be

applied recursively: while we may not know the posterior after n observations, we can

approximate this by importance sampling too, using a proposal distribution based on
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the posterior after n−1 observations, and so on. A particle filter thus consists of a set

of samples that evolves through time, with samples from the posterior distribution

after n observations being used to generate samples from the posterior distribution

after n+ 1 observations.

Particle filters share with the models that we have discussed in this chapter the

idea of approximating a probability distribution with a small number of samples.

However, the models we have considered all assume that these samples are fixed

exemplars stored in memory, while a particle filter dynamically constructs a set of

samples in response to the information provided by a sequence of observations. De-

spite this difference, the basic components of a particle filter are very similar to the

components of an exemplar model, requiring activation of hypotheses in proportion

to their likelihood, normalization, and random selection. As a consequence, particle

filters may provide a psychologically plausible scheme for approximating Bayesian

inference in dynamic settings. This idea has been explored in the context of the ra-

tional model of categorization by Sanborn et al.[2006], and similar models have been

proposed as explanations of change point detection [Brown and Steyvers, 2009], as-

sociative learning [Daw and Courville, 2008], sentence processing [Levy et al., 2009],

and reinforcement learning [Yi et al., in press]. In Chapter 5, we study sequential

estimation problems in detail and find that importance sampling plays an important

role in the neural implementation of dynamic inferences.

3.9.3 Rational process models

Probabilistic models of cognition are typically expressed at Marr’s [1982] computa-

tional level, analyzing learning, reasoning, and perception in terms of ideal solutions

to abstract problems posed by the environment. This is at odds with much of the his-

tory of cognitive psychology, in which theories are typically expressed at the level of
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representation and algorithm. As Marr noted, these two levels should not be consid-

ered independent of one another: findings at one level provide constraints on theories

at the other. However, despite a few notable exceptions e.g., [Kruschke, 2006], there

has been little exploration of the relationship between probabilistic models of cogni-

tion and psychological process models.

The connection between importance sampling and exemplar models that we have

established in this chapter hints at a strategy that might help to establish a more

general link between probabilistic models formulated at the computational level and

psychological process models expressed at the algorithmic level. The computational

challenges posed by probabilistic inference do not arise just as an obstacle for rational

models of cognition: they also appear whenever a computer scientist or statistician

wants to work with a probabilistic model. As a consequence, researchers in computer

science and statistics have developed a variety of schemes for efficiently approximating

probabilistic inference. Importance sampling is just one of these schemes, and the

fact that it can be implemented in a psychologically plausible way suggests that there

may be other approximate algorithms for probabilistic inference that are candidate

explanations for how people might address the computational challenges posed by

rational models of cognition.

In embodying an effective solution to the problem of approximating probabilistic

inference, and making use of psychological notions common in mechanistic process

models, exemplar models are an instance of a “rational” process model. Such rational

process models push the principle of rationality embodied in existing rational models

of cognition a level deeper. Rational models of cognition apply the principle of ratio-

nality – the assumption that optimal solutions are informative about human behavior

– at the computational level. Rational process models apply a similar principle at the

level of representation and algorithm, assuming that the psychological processes that

are used to approximate probabilistic inference represent efficient solutions to this
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problem. As noted above, particle filters are another instance of a rational process

model, but the great diversity of efficient approximation algorithms for probabilistic

inference suggests that there may be many other psychologically plausible mechanisms

for solving this problem that are still to be discovered.

In providing a connection between abstract probabilistic models of cognition and

psychological processes, rational process models also have the potential to help us un-

derstand the neural mechanisms that underlie probabilistic computation. For exam-

ple, our analysis of the perceptual magnet effect revealed that approximating Bayesian

inference by importance sampling resulted in a model that was extremely similar to

a neural network model proposed by Guenther and Gjaja. This connection is valu-

able in two ways: It shows how such a neural network could be used to approximate

Bayesian inference, and it provides a high-level explanation of why this neural mech-

anism produces the perceptual magnet effect. We anticipate that similar connections

will exist in other domains, particularly given the close correspondence between exem-

plar models and neural network architectures such as radial basis function networks

[Kruschke, 1992; Shi and Griffiths, in press].
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Chapter 4

Neural implementation of hierarchical

Bayes by importance sampling

In this chapter, we show that importance sampling [Hastings, 1970] can be imple-

mented in a simple neural circuit. The properties of the population of neurons com-

prising this circuit capture prior knowledge about the structure of the environment,

and their firing rates encode information about an observed stimulus. Integrating

across this population acts like averaging over the possible states of the environment

that could have produced the observed stimulus, providing a way to deal with noisy

inputs, incomplete information, and unobserved variables. We show how this basic

idea can be extended to make it possible to combine sources of information and to

propagate uncertainty through multiple layers of random variables, using a recursive

form of importance sampling to approximate hierarchical Bayesian inference.

4.1 Neural implementation of importance sampling

The central idea behind the results presented in the remainder of the chapter is that

importance sampling provides a way to approximate Bayesian inference that is easy
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to implement in a neural circuit. Specifically, we show that the key components of

an importance sampler can be realized in the brain if: 1) there are feature detection

neurons with preferred stimulus tuning curves proportional to the likelihood p(s|xi);

2) the frequency of these feature detection neurons is determined by the prior p(x);

and 3) divisive normalization can be realized by some biological mechanism. s repre-

sents the input stimuli and xi represents exemplars. In this section, we first describe

a radial basis function network implementing importance sampling, then discuss the

feasibility of these three assumptions. The model is then extended to hierarchical

Bayesian inference and networks of spiking neurons. Following the introduction of

each new technical idea, we provide an example applying the model to a behavioral

experiment.

Radial basis function (RBF) networks are a kind of multi-layer neural network

[Poggio and Girosi, 1990]. A network consists of a set of input units, a set of output

units, and a set of “hidden” units that connect inputs to outputs. The hidden units

are parameterized by locations in a latent space xi. On presentation of a stimulus

s, these hidden units are activated according to a function that depends only on

the distance ||s − xi||. Implementing importance sampling with RBF networks is

straightforward. Each hidden unit represents a stimulus value xi drawn from the

prior, playing the role of a neuron sensitive to particular stimulus values s (Fig. 4.1).

They also receive input from an inhibitory unit that sums the activities of all the

hidden units. The activation function of this hidden unit is taken to be proportional

to the likelihood p(s|xi). The ith hidden unit makes a synaptic connection to output

unit j with strength fj(xi), where fj is a function of interest. Such a RBF network

produces output exactly in the form of Eq. 2.10.
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s

p(s|xi) p(s|xn)p(s|x1)∑

∑ ∑
E[f1(x)|s]≈

f1(x1)

f2(x1)

f1(xi)

f1(xn)

f2(xi) f2(xn)

lateral
normalization

∑ f1(xi)p(s|xi)
∑ p(s|xi)

∑ f2(xi)p(s|xi)
∑ p(s|xi)
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RBF
neurons

output
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inhibitory
neuron

xi ~ p(x)

E[f2(x)|s]≈

Figure 4.1: Importance sampler realized by a RBF network. Stimuli s are fed into hid-
den units whose tuning curves are proportional to the likelihood function p(s|x). Their
responses are normalized by lateral inhibition and then fed into output neurons. Multiple
output neurons allow the same set of xi to be used to calculate the posterior expectations
of multiple functions.
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4.1.1 Tuning curves, priors and divisive normalization

We now examine the neural correlates of the three components that went into the

RBF model outlined above. First, we have a set of hidden units that have activation

functions proportional to the likelihood p(s|xi). These hidden units are intended to

be abstract versions of neurons, with the activation function corresponding to the

tuning curve of the neuron. The responses of cortical neurons to stimuli are often

characterized by receptive fields and tuning curves, where receptive fields specify

the domain within a stimulus feature space that modify the neuron’s response and

tuning curves detail how the neuron’s responses change with different feature values.

A typical tuning curve (like orientation tuning in V1 simple cells) has a bell shape that

peaks at the neuron’s preferred stimulus parameter and diminishes as that parameter

diverges [Swindale, 1998]. The neural plausibility of this component of the model

thus rests on whether there is a population of neurons with tuning curves that can

be interpreted as reflecting the likelihood p(s|xi) for a particular problem of Bayesian

inference.

Second, importance sampling requires neurons with preferred stimuli xi to appear

with frequency proportional to the prior distribution p(x). This can be realized if the

number of neurons representing x is roughly proportional to p(x). While systematic

study of the distribution of neurons over their preferred stimuli is technically chal-

lenging, there are cases where this assumption seems to hold. For example, research

on the “oblique effect” – the finding that the human visual system is more sensitive

to changes in orientation near cardinal orientations (ie. horizontal and vertical) –

supports the idea that the distribution of orientation tuning curves in V1 is propor-

tional to the distribution of orientations in the visual environment. Electrophysiology

[De Valois et al., 1982], optical imaging [Coppola et al., 1998] and fMRI studies [Fur-

manski and Engel, 2000] have found that there are more V1 neurons tuned to cardinal
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orientations than to oblique orientations, consistent with the prevalence of horizontal

and vertical lines in the visual environment. Other evidence comes from motor areas.

Repetitive stimulation of a finger expands its corresponding cortical representation

in somatosensory area [Hodzic et al., 2004], suggesting more neurons are recruited to

represent this stimulus after its prior density is increased.

Third, divisive normalization is a critical component in many neural models, no-

tably in the study of attention modulation [Lee and Mumford, 2003; Reynolds and

Heeger, 2009]. It has been suggested that biophysical mechanisms such as shunting

inhibition and synaptic depression might account for normalization and gain control

[Kouh and Poggio, 2008; Mitchell and Silver, 2003; Rothman et al., 2009]. Moreover,

local interneurons [Markram et al., 2004] act as modulators for pooled inhibitory in-

puts and are good candidates for performing normalization. Our approach makes no

specific claims about the underlying biophysical processes, but gains support from

the literature suggesting that there are plausible neural mechanisms for performing

divisive normalization.

4.1.2 Example 1: Sensorimotor integration

Our first example uses the basic importance sampling scheme (Eq. 2.10) to solve a

problem of Bayesian inference that the brain solves every day: sensorimotor integra-

tion. In [Körding and Wolpert, 2004], subjects were trained to reach a visual target

with a cursor in an environment that allows the cursor to be displaced from their

finger position and provides noisy feedback on the extent of displacement. During

the experiment, displacements were randomly chosen from a fixed prior distribution

and visual feedback on the cursor position was provided briefly midway through the

movement. This feedback was either presented clearly (σ0 condition, in which the

uncertainty comes solely from intrinsic noise), blurred by medium (σM condition) or
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large (σL condition) amounts of noise, or simply blocked (equivalent to infinite noise,

σ∞ condition). The finger’s position at the end of movement was revealed on clear

feedback trials (σ0). The Bayesian analysis predicts that the prior should play a more

important role in estimation as sensory noise increases.

This experiment fits the schema for Bayesian inference outlined above, with s

being the observed displacement and x the true displacement. In the first experiment

described in [Körding and Wolpert, 2004], the prior distribution was Gaussian. Sub-

jects were first trained on the distribution of displacements and then performed the

task for 1000 trials under different uncertainty conditions. Letting µx and σx denote

the mean and standard deviation of the prior distribution p(x), and assuming that

the likelihood function p(s|x) given true lateral shift x is also a Gaussian with mean

x and variance σ2
s , the posterior distribution p(x|s) is again Gaussian, with mean µ′x

and variance σ′x, where

E[x|s] = µ′x =
σ2
xs+ σ2

sµx
σ2
x + σ2

s

, σ′x =
σxσs√
σ2
x + σ2

s

. (4.1)

Therefore, the mean deviation from target, which is the difference between µ′x and s,

is a linear function of s with a slope determined by the ratio σ2
x/σ

2
s .

The results of [Körding and Wolpert, 2004] showed exactly this pattern (Fig. 4.2a).

However, it is not necessary to assume that subjects were integrating over a continuous

space as in exact Bayesian inference in order to achieve this result. Fig. 4.2b show

corresponding simulation results produced using an RBF network. Assuming there

are 50 feature detection neurons whose preferred stimuli are positioned at typical

displacements xi learned from the training session (i.e. the prior distribution p(x)).

Tuning curves of these neurons, parameterized by xi and noise levels σ0, σM , and σL,

have Gaussian shape N(xi, σ
2) and measure the likelihood (or similarity) for s and

xi. An output neuron, receiving inputs from feature detection neurons weighted by
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Figure 4.2: Sensorimotor integration using a Gaussian prior with µx = 1cm and σx =
0.5cm (data from [Körding and Wolpert, 2004]). (a) Lateral deviation from the target
at the end of the trial as a function of the imposed lateral shift, for a typical subject.
Curve is the result of averaging over 1000 trials and error bars denote standard error. (b)
Simulation using a RBF network with 50 hidden units drawn from the prior. Dash-dot
line denotes the theoretical values predicted by Eq. 4.1. (c) The slope for the linear fits
are shown for 10 human subjects and 10 simulated subjects whose intrinsic noise levels
were drawn from distributions identified in [Körding and Wolpert, 2004].
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f(xi) = xi, approximates the exact Bayesian inference (Eq. 4.1). σ0, σM , and σL for

each subject were sampled from the distribution over values estimated by [Körding

and Wolpert, 2004]. Fig. 4.2b suggests that 50 hidden units are sufficient to account

for human performance. Fig. 4.2c shows that the human data and the simulation

share the same characteristics that mean slope increases with increasing visual noise.

4.2 Hierarchical Bayes and importance sampling

Inference problems solved by the brain often involve more than one random variable,

with complex dependency structures between those variables. For example, visual

information processing in primates involves dozens of subcortical areas that inter-

connect in a hierarchical structure containing two major pathways [Van Essen et al.,

1992]. Hierarchical Bayesian inference has been proposed as a solution to this prob-

lem [Lee and Mumford, 2003]. However, few studies have proposed neural models

that are capable of performing hierarchical Bayesian inference (although see [Friston,

2008]). We show how a multi-layer neural network can perform such computations

using importance samplers (Fig. 4.1) as building blocks.

Generative models are widely used in statistics and computer science to describe

the causal process by which observed data are generated, assigning a probability dis-

tribution to each step in that process [Hinton and Ghahramani, 1997]. To understand

brain function, it is often helpful to identify the generative model that determines how

stimuli to the brain s are generated (see Fig. 4.3a). The shaded node s represents

an observable variable and the open circles (X, Y and Z) represent latent variables.

The brain then has to reverse the generative model to recover the latent variables

expressed in the data. The direction of inference is thus the opposite of the direction

in which the data are generated.

Hierarchical Bayesian inference can be solved by decomposing the hierarchy into
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Figure 4.3: A hierarchical Bayesian model. (a) The generative model specifies how each
variable is generated (in circles), while inference reverses this process (in boxes). s is
the stimulus presented to the nervous system, while X, Y , and Z are latent variables
at increasing levels of abstraction. (b) Possible implementation in dorsal-ventral visual
inference pathways, with multiple higher levels receiving input from one lower level. Note
that arrows direct the flow of inference, opposite to that of its generative model.
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a sequence of steps that can each be approximated by importance sampling (see

Appendix after the chapter). This gives rise to a multi-layer neural network imple-

mentation of hierarchial Bayesian inference (Fig. 4.4). The input layer X is similar

to that in Fig. 4.1, composed of feature detection neurons with output proportional

to the likelihood p(s|xi). Their output, after presynaptic normalization, is fed into

a layer corresponding to the Y variables, with synaptic weights
p(xi|yj)∑
j p(xi|yj)

. The re-

sponse of neuron yj, summing over synaptic inputs, approximates p(yj|s). Similarly,

the response of neuron zk approximates p(zk|s), and the activities of these neurons

are pooled to compute E[f(z)|s]. Note that, at each level, xi,yj and zk are sampled

from prior distributions. Posterior expectations involving any random variable can be

computed because the neuron activities at each level approximate the posterior den-

sity. A single pool of neurons can also feed activation to multiple higher levels. Using

the visual system as an example (Fig. 4.3b), such a multi-layer importance sampling

scheme could be used to account for hierarchical inference in divergent pathways by

projecting a set of V2 cells to both MT and V4 areas with corresponding synaptic

weights. We evaluate this scheme in two generative models in the following examples.

4.2.1 Example 2: The oblique effect

The oblique effect is a well-established perceptual phenomenon in which people show

greater sensitivity to bars with horizontal or vertical (0o/90o) orientations than “oblique”

orientations [Orban et al., 1984]. In this example, we illustrate how to translate an

orientation detection task (Fig. 4.5a) into a hierarchical generative model and ap-

proximate probabilistic inference in this model by multi-layer importance sampling.

We show that the oblique effect can be produced as the direct result of a preferential

distribution of orientation selective neurons. In this task [Orban et al., 1984], sub-

jects exhibited higher sensitivity in detecting the direction of rotation of a bar when
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Figure 4.4: Hierarchical Bayesian inference by importance sampling. Multi-layer impor-
tance sampler for hierarchical Bayesian inference.
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the reference bar to which it was compared was in one of these cardinal orientations

(Fig. 4.5a). Fig. 4.5b shows the generative model for this detection problem. The

top-level binary variable D randomly chooses a direction of rotation. Conditioning

on D, the amplitude of rotation ∆θ is generated from a truncated normal distribu-

tion (NT (D), being restricted to ∆θ > 0 if D = 1 and ∆θ < 0 otherwise). When

combined with the angle of the reference bar ρ (shaded nodes in the graphical model

for observed variables), ∆θ generates the orientation of a test bar θ, and θ further

generates the observation s, that are both normal distributions with variance σθ and

σs respectively.

The oblique effect has been shown to be closely related to the number of V1 neu-

rons that tuned to different orientations [Orban et al., 1984]. Many studies have found

more V1 neurons tuned to cardinal orientations than other orientations [De Valois et

al., 1982; Coppola et al., 1998; Furmanski and Engel, 2000]. Moreover, the uneven

distribution of feature detection neurons is consistent with the idea that these neurons

might be sampled proportional to the prior: more horizontal and vertical segments

exist in the natural visual environment of humans.

Importance sampling provides a direct test of the hypothesis that preferential

distribution of V1 neurons around 0o/90o can cause the oblique effect, which becomes

a question of whether the oblique effect depends on the use of a prior p(θ) with this

distribution. The quantity of interest for inference is:

p(D = 1|s, ρ) ≈
∑
j′

∑
i

p(θi|∆θj′ , ρ)∑
j p(θi|∆θj, ρ)

p(s|θi)∑
i p(s|θi)

, (4.2)

where j′ indexes all ∆θ > 0. If p(D = 1|s, ρ) > 0.5, then we should assign D = 1.

Fig. 4.5c shows that detection sensitivity is uncorrelated with orientations if we take

a uniform prior p(θ), but exhibits the oblique effect under a prior that prefers cardinal

directions. In both cases, 40 neurons are used to represent each of ∆θi and θi, and
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Figure 4.5: The oblique effect. (a) Orientation detection experiment. The oblique effect
is shown in lower panel, being greater sensitivity to orientation near the cardinal directions.
(b) Generative model. (c) The oblique effect emerges from our model (upper panel), but
depends on having the correct prior p(θ) (inset). A flat prior results in uniform sensitivity
(lower panel).
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results are averaged over 400 trials. Sensitivity is measured by percentage correct in

inference. Due to the qualitative nature of this simulation, model parameters were

not tuned to fit experiment data.

4.3 Importance sampling by Poisson spiking neurons

In the neural network models described above, each neuron’s output is a continuous

signal. However, biological neurons communicate mostly by discrete spikes rather

than continuous signals. Although instantaneous firing rate is often used to approx-

imate this continuous signal, this could introduce biases in estimation, or greater

variance due to noise in firing rate. Notably, Poisson spiking neurons play an impor-

tant role in probabilistic models of neural population coding [Ma et al., 2006]. We

show that Poisson spiking neurons can perform importance sampling in an unbiased

fashion if an ensemble of neurons xi, drawn from the prior p(x), fire at rates ri pro-

portional to p(s|xi) (see Appendix for details). The variance of the estimate is well

controlled with a reasonable population firing rate, as we will see in our third example

below.

4.3.1 Example 3: Haptic-visual cue combination

Combining information from multiple sensory modalities can be formulated as a prob-

lem of Bayesian inference, and approximated by importance sampling. When sensory

cues come from multiple modalities, the nervous system is able to combine those cues

optimally in the way dictated by Bayesian statistics [Ernst and Banks, 2002]. We use

this example to explore the properties of our neural circuit for recursive importance

sampling with Poisson spiking neurons. In the experiment, a subject measured the

height of a bar through haptic and visual inputs. The object’s visual input was ma-
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Figure 4.6: Modeling combination of information from multisensory cues. (a) Generative
model. sV and sH are the sensory stimuli, XV and XH the values along the visual and
haptic dimensions, and XC the combined estimate of object height. (b) Illustration of
importance sampling using two sensory arrays {xV,i}, {xH,j}. The transparent ellipses
indicate the tuning curves of high level neurons centered on values xC,k over xV and
xH . The big ellipse represents the manipulated input with inconsistent sensory input
and different variance structure. Bars at the center of opaque ellipses indicate the relative
firing rates of xC neurons, proportional to p(xC,k|sV , sH). (c) Human data and simulation
results.

nipulated so that the visual cues can be inconsistent with haptic cues and visual noise

can be adjusted to different levels, i.e. the visual cue follows xV ∼ N (sV , σ
2
V ) and the

haptic cue follows xH ∼ N (sH , σ
2
H), where sV , sH , σ

2
V are controlled parameters. The

upper panel of Fig. 4.6c shows the percentage of trials that participants report the

comparison stimulus (consistent visual/haptic cues from 45-65mm) is larger than the

standard stimulus (inconsistent visual/haptic cues, sV = 60mm and sH = 50mm).

With the increase in visual noise, haptic input has greater weight in decision making

and therefore responses are shifted towards sH , consistent with Bayesian statistics.
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The importance sampling solution approximates the posterior expectation of the

bar’s height xC given sV and sH . Sensory inputs are channeled in through xV and xH

(Fig. 4.6a). Because sensory input varies in a small range (45-65mm in [Ernst and

Banks, 2002]), we assume priors p(xC), p(xV ) and p(xH) are uniform over this range.

To compute the posterior p(xV |sV ), we use the fact p(xV = xV,j|sV ) = E[1(xV =

xV,j)|sV ], where 1(.) is an indicator function taking the value 1 when its argument is

true (see Appendix for details). A similar method is used to compute p(xC |sV , sH)

at the next level of the hierarchy (Fig. 4.6b). Simulation results (for an average of

500 trials) are shown in the lower panel of Fig. 4.6c, compared with human data in

the upper panel. There are two free parameters – noise levels σV and σH – which

are optimized to fit within-modality discrimination data (see [Ernst and Banks, 2002]

Fig. 3a). The sets of xV,i,xH,j and xC,k consist of 20 independently drawn samples

each, and the total firing rate of each set of neurons is limited to 30 spikes. The

simulations produce a close match to human behavior.

4.4 Discussion

Human perception is often in accord with the optimal solutions produced by Bayesian

inference, but the computations required to implement these solutions are challenging.

We have shown how Bayesian inference can be approximated using a simple neural

circuit that implements a Monte Carlo method known as importance sampling. These

circuits can be combined in a modular fashion to permit inferences to be made at

multiple levels of abstraction, implementing hierarchical Bayesian inference. They

can also be assembled from spiking neurons, and produce predictions that are in

accordance with human behavior on several perceptual tasks. In the remainder of

the chapter we explore the relationships that this approach holds to other methods

for approximating Bayesian inference and proposed neural mechanisms supporting
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probabilistic computations.

4.4.1 Alternative importance sampling schemes

The importance sampling scheme that we have focused on in this chapter uses the

prior as a surrogate for the posterior. The neural circuit implementing this scheme

requires the population of neurons to reflect the statistics of the environment in

their distribution of preferred stimuli. There are cases where this seems to hold for

populations of cortical neurons, providing support for this kind of account, but it is

not a necessary requirement in order for some form of importance sampling to be

used by the brain. Other distributions of preferred stimuli will correspond to using

other surrogate distributions, and can still implement Bayesian inference provided

the tuning curves are modified appropriately.

One alternative to requiring strict correspondence to the prior distribution is to

use the prior probability of the preferred stimulus to modulate the firing rate of the

neuron. The simplest case would use the uniform distribution as a surrogate, with

a population of neurons that have preferred stimuli uniformly spanning the space of

possible stimuli. In this case, the activation function (or rate function for Poisson

spiking neurons) should be proportional to the product of the prior and likelihood,

p(s|xi)p(xi). The prior probability of a stimulus thus directly influences the firing

rate of neurons sensitive to that stimulus. This strategy also seems to be used by the

brain: Studies in parietal cortex [Platt and Glimcher, 1999] and superior colliculus

[Basso and Wurtz, 1997] show that increased prior probability at a particular location

results in stronger firing for neurons with receptive fields at that location.
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4.4.2 Connections to particle filtering

The brain’s hierarchical structure is instrumental to its ability to carry out complex

functions, such as visual perception. This structural attribute has inspired many the-

oretical proposals about the nature of neural computation [Lee and Mumford, 2003;

Friston, 2008]. Notably, [Lee and Mumford, 2003] suggested that the computations

performed by the different areas of visual cortex could be modeled as hierarchical

Bayesian inference. While they did not propose a detailed neural model, they sug-

gested that this kind of inference could be performed by repeated instances of a

module that combined two schemes for probabilistic inference: particle filtering and

belief propagation. Particle filtering is a sequential Monte Carlo method based on

repeatedly performing importance sampling to update a set of samples (“particles”)

to correspond to a sequence of distributions [Doucet et al., 2001], and belief propaga-

tion is an inference algorithm based on passing messages between units representing

the values of random variables [Pearl, 1988].

The framework introduced by Lee and Mumford shares many key elements with

our multilayer importance sampler. In our model, feature detection neurons at each

level play a similar role to particles in a particle filter, and their outputs are similar to

the messages passed from one variable to another in Lee and Mumford’s formulation.

However, there are three significant differences between our approaches. First, we

have identified a specific neural circuit that carries out hierarchical Bayesian infer-

ence, while Lee and Mumford focused on the abstract idea that this is the kind of

computation that the brain must perform. The results we present in this chpater

can thus be viewed as an implementation of Lee and Mumford’s proposal. Second,

while our approach and particle filters are both based on repeatedly using impor-

tance sampling, there is are technical differences in the way that we recursively apply

this method. The recursive form of importance sampling that we use was explicitly
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intended to lend itself to our form of neural implementation, being based on concate-

nating neural circuits. Finally, in Lee and Mumford’s approach, particles generate

beliefs using a winner-take-all procedure rather than a weighted averaging strategy.

Thus, the distribution of particles does not necessarily approximate the posterior

distribution, especially when the density function is multimodal.

Appendix 4.A Recursive importance sampling

In the case of a hierarchical Bayesian model, as shown in Fig. 4.3, the quantity of

interest is the posterior expectation of some function f(z) of a high-level latent vari-

able Z given stimulus s, E[f(z)|s] =
∫
f(z)p(z|s) dz. By repeatedly using importance

sampling (see Eq. 4.3), this hierarchical Bayesian inference problem can decomposed

into three importance samplers with values xi,yj and zk drawn from the prior.

E [ f(z )|S  ]x = f (z ) p(z |y)[ p(y|x )p(x |s) dx ] dy dz

≈ f (z ) p(z |y) i p(y|x i )p(s|x i )

i p(s|x i )
dy dz

= f (z ) i p(z |y)p(y|x i ) dy p(s|x i )

i p(s|x i )
dz

≈ f (z )
i

j p(z |yj )p(x i |yj )

j p(x i |yj )
p(s|x i )

i p(s|x i )
dz

=
j

[ f (z )p(z |yj ) dz ]
i

p(x i |yj )

j p(x i |yj )
p(s|x i )

i p(s|x i )

≈
j

k f (zk )p(yj |zk )

k p(yj |zk )
i

p(x i |yj )

j p(x i |yj )
p(s|x i )

i p(s|x i )

=
k

f (zk )
j

p(yj |zk )

k p(yj |zk )
i

p(x i |yj )

j p(x i |yj )
p(s|x i )

i p(s|x i )

importance
sampling

importance
sampling

importance
sampling

 zk                    yj               xi

x i ~ p(x)

y j ~ p(y)

z k ~ p(z)

(4.3)
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This result relies on recursively applying importance sampling to the integral,

with each recursion resulting in an approximation to the posterior distribution of

another random variable. This recursive importance sampling scheme can be used

in a variety of generative models where there is a dependency between a sequence of

random variables. For example, tracking a stimulus over time is a natural extension

where an additional observation is added at each level of the generative model.

Appendix 4.B Poisson spiking neurons

To show how Poisson spiking neurons can perform importance sampling, we use a

property of Poisson distributions: If ni ∼ Poisson(ri) is the number of spikes produced

by neuron xi in a given time period and N =
∑

i ni, then N ∼ Poisson(
∑

i ri) and

(n1, n2, . . . , nm|N) ∼ Multinomial(N, ri/(
∑

i ri)). This implies that E(ni/N |N) =

ri/(
∑

i ri). Assuming a Poisson neuron in the hidden layer that is tuned to stimulus

xi emits ni spikes with an underlying rate proportional to p(s|xi), the output neuron

in the network shown in Fig. 4.1 of the main text computes
∑

i f(xi)ni/
∑

i ni, which

is the weighted average of a function f(xi) using weights ni. Taking the expectation

of this quantity we get

E

[∑
i

f(xi)
ri∑
j rj

]
=

∑
i

f(xi)E

[
ri∑
j rj

]
=

∑
i

f(xi)
c ri∑
j c rj

=

∑
i f(xi)p(s|xi)∑

i p(s|xi)
≈ E[f(x)|s]. (4.4)

Therefore, the response of the output neuron is an unbiased estimate of the impor-

tance sampling approximation to the posterior expectation. The variance of this esti-

mator decreases as population activityN =
∑

i ni increases because var[ni/N ] ∼ 1/N .

Thus, Poisson spiking neurons, if plugged into an RBF network, can perform impor-
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tance sampling and give similar results to “neurons” with continuous output.

Appendix 4.C Cue combination

The importance sampling solution approximates the posterior expectation of the bar’s

height xC given sV and sH through visual and haptic pathways xV and xH , respec-

tively. Thus the posterior density become a posterior expectation, using importance

sampling:

p(xV = xV,j|sV ) = E[1(xV = xV,j)|sV ] ≈ p(sV |xV,j)∑
i p(sV |xV,i)

xV,i ∼ p(xV ). (4.5)

Assuming that xV,i are Poisson neurons and emit nV,i spikes (nV,i ∼ Poisson[c ·

p(sV |xV,i)]), then p(xV = xV,j|sV ) ≈ nV,j∑
i nV,i

. A similar strategy applies to p(xH |sH).

The posterior p(xC |sV , sH), however, is not trivial since multiplication of spike trains

is needed:

p(xC = xC,k|sV , sH) =

∫
1(xC = xC,k)p(xC |xV , xH)p(xV |sV )p(xH |sH) dxV dxH

≈
∑
i

∑
j

p(xC,k|xV,i, xH,j)
nV,i∑
i nV,i

nH,j∑
j nH,j

. (4.6)

Fortunately, the experiment gives an important constraint, namely subjects were

not aware of the manipulation of visual input. Thus, the values xC,k employed in the

computation are sampled from normal perceptual conditions, namely consistent visual

and haptic inputs (xV = xH) and normal variance structure (transparent ellipses in

Fig. 4.6c of the main text, on the diagonal). Therefore, the random variables {xV , xH}

effectively become one variable xV,H and values of xV,H,i are composed of samples
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drawn from xV and xH independently. Applying importance sampling,

p(xC = xC,k|sV , sH) ≈
∑

i p(xV,i|xC,k)nV,i +
∑

j p(xH,j|xC,k)nH,j∑
i nV,i +

∑
j nH,j

. (4.7)

Neuron xC,k combines cues from {xV,i} and {xH,j} neurons, with synaptic strengths

p(xV,i|xC,k) and p(xH,j|xC,k) respectively, and is normalized by the activities of {xV,i}

and {xH,j}. Thus, the statistically optimal estimate based on visual and haptic cues

is the posterior expectation

E[xC |sV , sH ] ≈
∑

k xC,k · nC,k∑
k nC,k

, (4.8)

where nC,k ∼ Poisson(c · p(xC,k|sV , sH)) (c is a positive constant) and xC,k ∼ p(xC).
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Chapter 5

Neural implementation of sequential

Bayesian inference

The nervous system excels in dynamical tasks such as visual tracking and motor con-

trol. In these tasks, sensory input is constantly fed in at each time step, requiring

repeated updating of beliefs. Understanding how the brain processes dynamical data

of this kind is a challenge for both experimental and theoretical neuroscientists [Fris-

ton, 2008; Barbieri et al., 2004]. Particle filtering has been proposed as a way of

modeling neural dynamics [Friston, 2008; Lee and Mumford, 2003], and has been suc-

cessfully applied to high dimensional problems such as computer vision [Isard, 2003].

Most applications of particle filtering focus on modeling probability distributions that

change through time, rather than the neural implementation of these algorithms given

the constraints and features of the biological system.

In this chapter, we first formulate the problem of sequential estimation. Particle

filtering is then introduced as a general algorithm to solve this problem. The con-

nection between particle filters and recursive importance sampling 4 is established

and we compare the performance of these algorithms. This connection suggests that
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Figure 5.1: A diagram of sequential estimation, y0:t are observable and x0:t are hidden.

the recursive importance sampling approach is likely to be applicable to problems

that require updating distributions over time, such as planning and executing motor

movements. We then introduce the neural network model and detailed neural im-

plementation of recursive importance sampling. Its similarity to cerebellar circuits

indicates that cerebellum may be on neural substrate appropriate for implementing

these kinds of circuits.

5.1 The sequential estimation problem

Sequential estimation, which requires estimating the state of the world while incor-

porating feedback signals over time, plays a significant role in human behavior. For

example, in reaching a target, an agent constantly estimates the ‘best movement’

based on the current position of the hand, feedback signals provided by visual input.

The sequential estimation can be described by a probabilistic model as following.

Formally, the problem is estimating the value of a hidden variable xt at each

time step t based on the noisy sensory information yt available (see Fig. 5.1). The

transition probability from xt−1 to xt is p(xt|xt−1), and the likelihood function of

observing sensory input yt given hidden state xt is p(yt|xt). The collection of xt and

yt over time are denoted as x0:t = [x1, x2, · · · xt] and y0:t = [y1, y2, · · · yt]. The joint
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distribution of hidden variables and sensory inputs is

p(x0:t,y0:t) = p(x0)p(y0|x0)Π
t
i=1p(xi|xi−1)p(yi|xi) (5.1)

and the posterior distribution of xt given sensory inputs y0:t has the iterative form

p(xt|x0:t−1,y0:t) ∝ p(xt−1|x0:t−2,y0:t−1) · p(xt|xt−1)p(yt|xt) (5.2)

In a simple special case, this estimation problem has an analytical solution min-

imizing the squared error, known as Kalman Filter [Welch and Bishop, 1995]. This

requires that the transition of hidden states xt−1 → xt as well as the generation of yt

follows a linear transformation with Gaussian noise, i.e.

xt = Fkxt−1 + wk (5.3)

yt = Gkxt + vk (5.4)

where wk and vk are random variables following a Gaussian distribution, Fk and Gk

are matrices.

5.2 Particle filtering as a general solution to sequential

estimation

Kalman filtering has only limited success when applied to systems with highly non-

linear dynamics and non-Gaussian noise [Arulampalam et al., 2001]. In general,

computing p(xt|x0:t−1, y0:t) given arbitrary transition and noise functions is analyti-

cally intractable. Particle filtering, a sequential Monte Carlo method, approximates

p(xt|x0:t−1,y0:t) by updating a set of samples (or particles) to correspond to a se-

76



Chapter 5. Neural implementation of sequential Bayesian inference

quence of distributions [Doucet et al., 2001]. Particle filtering uses a group of particles

x
(i)
1:t and associated weights w

(i)
t to approximate the posterior distribution, i.e.

p(xt−1|x0:t−2,y0:t−1) ≈
∑
i

w
(i)
t−1δ(xt−1 − x(i)

t−1). (5.5)

Using sequential-importance-sampling (SIS), new particles are generated by a pro-

posal distribution x
(i)
t ∼ q(xt|x(i)

t−1). According to the updating rule (Eq. 5.2), the

new posterior p(xt|x0:t−1,y0:t) can be approximated by the new set of particles x
(i)
t

with weights w
(i)
t :

p(xt|x0:t−1,y0:t) ≈
∑
i

w
(i)
t δ(xt − x

(i)
t )

w
(i)
t ∝

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t |x

(i)
t−1)

w
(i)
t−1 (5.6)

5.3 Connecting recursive importance sampling and par-

ticle filtering

The results in the previous chapter suggest that a recursive structure using importance

sampling as building blocks provides an efficient algorithm for hierarchical Bayesian

inference (Fig. 5.2). This recursive importance sampling (RIS) circuit uses Poisson

spiking neurons to form flexible information flow mimicking the brain. And the model

predicts human behavior in many perception tasks. Applying the chain rule,

p(x2|x1, x0, s) ∝ p(x1|x0, s)p(x2|x1) (5.7)

Let {x(i)
0 }, {x

(j)
1 }, {x

(k)
2 } be sets of particles sampled from proposal distribution

q(x0|s),q(x1|x0) and q(x2|x1) respectively, where particles {x(i)
t } = [x

(1)
t , x

(2)
t , · · · x(i)

t , · · · , x
(N)
t ].
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Figure 5.2: A Hierarchical Bayesian inference structure by recursive importance sampling.
S are sensory inputs that are known. The inference process is comparable to the temporal
dynamics of hidden variables shown in Fig.5.1.

The posterior distribution of x0 given sensory input s, p(x0|s) can be approximated

by a group of {x(i)
0 } with importance weights v

(i)
0 :

p(x0|s) =

∫
δ(x0 − x′)p(x′|s)dx′ ≈

∑
i

v
(i)
0 δ(x0 − x(i)

0 ) x
(i)
0 ∼ p(x0|s)

v
(i)
0 ∝ p(x

(i)
0 |s)

q(x
(i)
0 |s)

, (5.8)

where δ(·) is a delta function. Similarly, p(x1|s) and p(x2|s) can be approximated by

a group of {x(j)
1 }, {x

(k)
2 } with importance weights v

(j)
1 , v

(k)
2 :

p(x1|s) ≈
∑
j

v
(j)
1 δ(x1 − x(j)

1 ),

v
(j)
1 ∝

∑
i

p(x
(j)
1 |x

(i)
0 )

q(x
(j)
1 |x

(i)
0 )

v
(i)
0 ;

p(x2|s) ≈
∑
k

v
(k)
2 δ(x2 − x(k)

2 ),

v
(k)
2 ∝

∑
j

p(x
(k)
2 |x

(j)
1 )

q(x
(k)
2 |x

(j)
1 )

v
(j)
1 . (5.9)

In fact, recursive importance sampling provides an alternative connection pattern

for sequential Monte Carlo and constitute a neurally plausible mechanism for imple-

menting sequential estimation. This opens up the question of relative performance of
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RIS and existing particle filtering algorithms, which is tested in later section. Com-

paring Eq. 5.7 and Eq. 5.2, we find that, for sequential estimation as in Fig.5.1, the

effect of sensory inputs y0:t should be added to the weight updating rule:

v
(j)
t ∝

∑
i

p(yt|x(j)
t )p(x

(j)
t |x

(i)
t−1)

q(x
(j)
t |x

(i)
t−1)

v
(i)
t−1. (5.10)

The Appendix shows the detailed derivation of the updating rule.

The connection between Eq. 5.6 and Eq. 5.10 suggests that recursive importance

sampling and particle filtering both represent posterior density by particles and follow

similar updating rules except the cross-connections in recursive importance sampling

model. In particle filters, one particle x
(j)
t only receives contributions from one pre-

vious particle x
(j)
t−1; while in recursive importance sampling, one particle x

(j)
t receives

contributions from multiple particles x
(i)
t−1, {i = 1, 2, · · · } in the previous time step.

Therefore, we call recursive importance sampling for the cross-connected sequen-

tial importance sampling (or CC-SIS).

5.4 Performance comparison

We compared the performance of various versions of particle filtering and cross-

connected algorithms. The sequential estimation problem and particle filtering al-

gorithms used here are widely applied in many studies [Arulampalam et al., 2001;

Gordon et al., 1993; Kitagawa, 1996].

Problem setup. We consider the following generative model:

xt = f(xt−1, t) + εt (5.11)

yt = g(xt) + λt (5.12)
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where

f(xt−1, t) =
xt−1

2
+

25xt−1

1 + x2
t−1

+ 8cos(1.2t) (5.13)

g(xt) =
x3
t

1000
(5.14)

p(εt) =
2

µ
exp(−|εt|

µ
) (5.15)

p(λt) = 0.995Unif [−1, 1] + 0.005Unif [−20, 20] (5.16)

This is a nonlinear, time-dependent estimation problem with non-Gaussian noise.

The problem cannot be solved exactly using a Kalman filter but can be approxi-

mated. The particle filtering algorithms [Arulampalam et al., 2001] are applied in

four versions. They differ in 1) the resampling procedure; 2) the proposal distribu-

tion q(xt|xt−1, yt) and the corresponding weight-updating rules. A practical issue in

implementing particle filters is degeneration of the particle population. That is, if

we simply update particles according to Eq. 5.6, diversity among the population is

lost and weights are highly concentrated in one or few particles over time. Resam-

pling is a remedy to rejuvenate the particle population by sampling the current pool

of particles and assigning them equal weights (for details, see [Arulampalam et al.,

2001]). The efficiency of the particle filter also depends on the choice of proposal

distributions. A good proposal distribution generates new particles in regions of high

posterior density as well as keep a balance on particle diversity. Proposal distributions

range from some fixed density function (e.g., the prior) to some statistically optimal

proposal (e.g., [Khan et al., 2004]). The optimal proposal distribution is difficult to

compute since itself involves some posterior distribution that is often intractable. In

the following simulations, we consider two common choices of proposals: the prior

distribution and transition probability p(xt) ∼ p(x
(i)
t |x

(i)
t−1).

• Sequential importance sampling (SIS)

80



Chapter 5. Neural implementation of sequential Bayesian inference

Proposal distribution: p(xt) ∼ q(x), where q(x) is the Gaussian approximation

of prior p(x). p(x) is the marginal distribution of x0:t over time.

Weight updating:

w
(i)
t ∝

p(yt|x(i)
t )p(x

(i)
t |x

(i)
t−1)

q(x
(i)
t )

w
(i)
t−1 (5.17)

Theoretically, normalization is not necessary at each step until the end. How-

ever, to avoid numerical instability, weights should be normalized to a constant

at each step, i.e. w
(i)
t =

w
(i)
t∑

i w
(i)
t

. This principle is also applied in other algorithms.

No resampling.

• Sampling importance resampling (SIR)

Proposal distribution: p(xt) ∼ q(x), where q(x) is the Gaussian approximation

of prior p(x).

Weights are updated as in Eq. 5.17.

Resampling: once effective number of particles Neff < Nthres = N
10

, resampling

according to algorithm 2 in [Arulampalam et al., 2001], where N is the total

number of particles and

Neff =
1∑

i=1(w
(i)
t )2

. (5.18)

• Sampling importance resampling from transition probability (SIR-

TP)

Proposal distribution: p(xt) ∼ p(x
(i)
t |x

(i)
t−1), i.e. the transition probability.

Weight updating:

w
(i)
t ∝ p(yt|x(i)

t )w
(i)
t−1 (5.19)

Resampling: once effective number of particles Neff <
N
10

, resampling according

to algorithm 2 in [Arulampalam et al., 2001].
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• Cross-connected sequential importance sampling (CC)

Proposal distribution: p(xt) ∼ q(x), where q(x) is the Gaussian approximation

of prior p(x).

Weight updating:

w
(j)
t ∝

∑
i

p(yt|x(j)
t )p(x

(j)
t |x

(i)
t−1)

q(x
(j)
t )

w
(i)
t−1. (5.20)

No resampling.

• Cross-connected sequential importance sampling using fixed set of

particles (CC-fixed)

Proposal: a fixed set of {x(i)} sampled from q(x) are used repeatedly at every

time t. This is motivated by the fact that the biological properties of neural

circuits is stable in short term and therefore might requires a set of pre-fixed

samples used throughout the computation.

Weight updating: as in Eq. 5.20.

No resampling.

• Sampling importance cross-connected resampling (SIR-CC)

Proposal distribution: p(xt) ∼ q(x), where q(x) is the Gaussian approximation

of prior p(x).

Weights are updated as in Eq. 5.17.

Resampling: once effective number of particles Neff <
N
10

, resample x
(j)
t ∼ q(x)

and assign weights according to updating rule Eq. 5.20.

The performance of each algorithm is measured by:
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• Mean square error measures deviation of estimation from true value, defined

as

errw =
1

T

T∑
t=1

(xt −
∑
i

w
(i)
t x

(i)
t )2 (5.21)

• Relative effective number of particles indicates the effectiveness of using

large number of particles, defined as Ñeff = 1
T

∑T
t=1

1
N
Neff (t). Note that com-

paring Ñeff of algorithms with resampling and without resampling might not

be meaningful since resampling generates many identical particles.

• Survival rate measures the robustness of the algorithm. In case of rare events

with extreme value of yt, the probability p(yt|x(i)
t ) becomes diminishingly small

for all particles and the algorithm aborted because of numerical instability. If

estimation is repeated independently for multiple trials, survival rate Rsurv(t)

is the percentage of trials survived at time t.

The marginal distribution of the hidden variable x0:t, fits closely to a Gaussian

distribution (Fig. 5.3 (a)). The Gaussian fit q(x) is used as a proposal distribution

for SIS, SIR, SIR-CC, CC and CC-fixed algorithms. This choice is due to some

considerations of neural plausibility discussed in detail in next section. All algorithms,

except SIS, can track x0:t well (Fig. 5.3 (c)). Resampling is frequently performed in

SIR, SIR-CC and SIR-TP (Fig. 5.3 (c)). Neff jumps to its maximum after resampling

in SIR and SIR-TP, but it is worthwhile to note that the resampled set contains many

identical particles. Meanwhile, cross-connected algorithms (CC and CC-fixed) see

constant rejuvenation of particle sets without resampling. Although their Neff does

not recover to 100% level, there is little probability of having two identical particles in

the set. Therefore, the cross-connected algorithm outperforms SIR algorithms (Fig.

5.4 (a)) for small number of particles (N < 100) despite inferior Neff (Fig. 5.4 (c)).

The same trends exist in survival rate (Fig. 5.4 (d)). For N=10, SIR algorithms are
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Figure 5.3: Sequential estimation by particle filtering and cross-connected algorithms. (a)
Distribution of hidden variables x0:t and noisy sensory inputs y0:t over time. (b) Temporal
dynamics of effective number of particles Neff defined as in Eq. 5.18. Neff in SIS depletes
quickly. For SIR, SIR-IC and SIR-TP, every jump in Neff suggests a resampling operation.
For CC and CC-fixed, Neff rejuvenate without the help of resampling. (c) xt and the
estimation by various algorithms. In legend, numbers in parentheses are mean square
error.
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Figure 5.4: Statistics of algorithms for N = {10, 20, 50, 100, 200, 500} of 200 trials. In
general, performance improves with more particles. (a) Mean estimation error as defined
in Eq. 5.21. (b) Variability of mean error over trials. (c) Mean Neff as percentage of N .
(c) Survival rate Rsurv(t) for N = {10, 50, 500}.

much more vulnerable than CC algorithms. For N > 50, survival rate are comparable

and improve significantly with the increase of N .

5.5 Neural implementation of sequential estimation

The biological properties of the brain put constraints on the implementation of se-

quential estimation. These constraints favor cross-connected structures over tradi-

tional particle filters.

Cortical neurons are activated by certain stimulus patterns and their firing rates
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p(xt|x1:t-1 ),y1:t

p(xt+1 |x1:t ),y1:t+1 xx

Particle filters      Cross-connected SIS
(with fixed set of particles)

Figure 5.5: Diagram of particle filter (SIS, SIR) and cross-connected sequential importance

sampling (CC). Circles are positioned at x
(i)
t−1 or x

(i)
t and the sizes represent the weights

w
(i)
t−1 or w

(i)
t .

are highly correlated to the strength of these stimuli. Therefore, it is natural to

assume that particles are represented by a group of neurons, whose preferred stimulus

patterns are located at {x(i)
t }, and the particles’ weights {w(i)

t } are proportional to

the neurons’ firing rate.

Cortical neurons are highly interconnected with each other. However, in tradi-

tional particle filtering algorithms such as SIS and SIR, every particle is connected

only to its own (often sole) offspring, does not exhibits such a cross-connected struc-

ture. In contrast, in cross-connected sequential importance sampling, neurons at the

previous stage {x(i)
t−1} are fully connected to neurons in the later stage {x(i)

t } (see

Fig.5.5).

The biological properties of cortical neurons and their connections are relatively

stable in the period of seconds to minutes. Since {x(i)
t } are related to the internal

properties of neurons, traditional particle filtering algorithms is impractical due to

its requirement of realtime conditional sampling and resampling {x(i)
t }. Rather, it

should be assumed that particles are time-invariant in the period of an estimation

task. Again, this constraint fits the diagram of cross-connected sequential importance
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sampling. Moreover, it is desirable to use the same group of particles over time

(corresponding to CC-fixed case) since this lifts the burden of recruiting ever more

neurons as T increases. Note that in the previous recursive importance sampling

scheme for hierarchical Bayesian inference, feature detection neurons are also a fixed

population, sampled from prior distribution.

In the following sections, we will first build a neural network model of cross-

connected sequential importance sampling. Then, we will discuss issues in its neural

implementation including normalization, multiplication and particle recycling (i.e.

using a same set of particles repeatedly). This leads us to a hypothesis that the

cerebellum provides an ideal circuit layout for CC-SIS.

5.5.1 Neural network model

Fig. 5.6 shows a neural network structure implementing the CC-SIS algorithm. As-

sume a group of feature detection neurons with preferred stimuli at {x(i)
t } (sampled

from q(x)). At time t, their activities are proportional to {w(i)
t } up to a constant (due

to lateral normalization). At time t+ 1, yt+1 and {x(i)
t } neurons make multiplicative

synapses with synaptic weights p(yt+1|x(j)
t+1) and

p(x
(j)
t+1|x

(i)
t )

q(x
(j)
t+1)

, respectively. The outputs

of multipliers are pooled to next layer feature detection neurons indexed by j. These

neurons have preferred stimuli at {x(j)
t+1} and are activated proportional to {w(j)

t+1}

according to weight updating rule Eq. 5.30.

5.5.2 Detailed considerations in neural implementation

Fig. 5.6 provides a schema for neural implementation of sequential estimation. How-

ever, this requires more consideration to identify plausible neural mechanisms for each

operation of the model.

First, sensory input by a single neuron is oversimplified. Sensory input, often
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(i)w
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:

(i)

x t+1 ~ q(x)(j)

∑

Figure 5.6: Neural network model for cross-connected sequential importance sampling.

composed of signals from multiple sensory modalities, is embodied in the activity of a

population of neurons {y(k)
t } [Georgopoulos et al., 1986; Liu et al., 2003]. Moreover,

{y(k)
t } are just a noisy representation of true observation Syt that the sequential

inference is based on. Therefore, the real estimation problem is to compute the

posterior p(xt|Sy1:t). And {y(k)
t } is the intermediate step between Syt and {x(i)

t }:

They are a group of feature detection neurons with preferred stimuli at {y(k)
t } and

activities proportional to p(Syt|y(k)
t ). Thus,

p(Syt|xt) =

∫
p(Syt|yt)p(yt|xt)dyt = Ep(yt|xt)[p(Syt|yt)] (5.22)

Applying importance sampling to approximate the posterior expectation,

Ep(yt|xt)[p(Syt|yt)] ≈
∑
k

p(Syt|y(k)
t )

p(yt|xt)
qy(y

(k)
t )

y
(k)
t ∼ qy(y) (5.23)
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Replacing p(yt+1|x(j)
t+1) by Eq. 5.23 in weight updating rule Eq. 5.30, we get:

w
(j)
t+1 ∝ [

∑
k

p(Syt+1|y(k)
t+1)

p(y
(k)
t+1|x

(j)
t+1)

qy(y
(k)
t+1)

] · [
∑
i

p(x
(j)
t+1|x

(i)
t )

q(x
(j)
t+1)

w
(i)
t ]. (5.24)

Thus, a single input yt+1 becomes a bundle of input fibers {y(k)
t+1} with activities

p(Syt+1|y(k)
t+1) (blue neurons in Fig. 5.7).

Multiplication is an important operation in neural computation [Gabbiani et al.,

2002; Barlow and Levick, 1965; Sun and Frost, 1998]. It can be realized by means of

nonlinear dendritic integration [London and Hausser, 2005] which requires spatial co-

localization of two synaptic inputs on a single dendritic branch. If the synaptic inputs

are distributed over the dendritic tree, linear synaptic integration becomes dominant

[London and Hausser, 2005]. Moreover, the super-linear interaction on a dendritic

branch saturates quickly for large synaptic inputs [London and Hausser, 2005]. The

limited dynamical range suggests that, rather than multiplying two summation terms∑
k(·) and

∑
i(·) in Eq. 5.24, they can be broken into smaller terms for multiplication

first (on a single branch) and then sum these terms over the dendritic tree, i.e.

w
(j)
t+1 ∝

∑
k

∑
i

p(y
(k)
t+1|x

(j)
t+1)

qy(y
(k)
t+1)

)p(Syt+1|y(k)
t+1) ·

p(x
(j)
t+1|x

(i)
t )

q(x
(j)
t+1)

)w
(i)
t . (5.25)

Note that p(Syt+1|y(k)
t+1) and w

(i)
t are activities of neurons y

(k)
t+1 and x

(i)
t respectively.

The ‘local-multiplication’ of neuron pair happens on a single branch of the extensive

dendritic tree of neuron x
(j)
t+1 (Fig. 5.7, right panel).

A sequential estimation problem may last for a long and indefinite period of

time. If it requires recruiting a different group of particles at every time step, a

task could demand a daunting number of particles and makes the logistics difficult,

such as feeding common sensory inputs to all particles. An alternative is to recycle
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particles repeatedly through a delayed line, e.g. a delay neuron (see Fig.5.7). A

possible realization of the time delay function is to use the biophysical property of

the passive dendritic membrane: A brief and sharp excitatory postsynaptic potential

(EPSP) from distal passive dendrites will be transformed into a smaller but broader

signal, which results in the delay of output spikes. Through time delay neurons,

current particles (green neuron in Fig.5.7) become the particles from previous time

step (purple neuron in Fig.5.7) and participate in the inference process with new

sensory inputs.

Divisive normalization is a common function in nervous systems [Reynolds and

Heeger, 2009; Wainwright et al., 2001], often realized by ubiquitous inhibitory in-

terneurons [Markram et al., 2004]. In the CC-SIS algorithm, normalization of certain

terms, although not mandatory, does help to achieve numerical stability. For ex-

ample, every sensory input neuron’s activity p(Syt+1|y(k)
t+1) can be normalized by the

summation of themselves, i.e.
p(Syt+1|y(k)

t+1)∑
k p(Syt+1|y(k)

t+1)
. Similarly, the activities of particles w

(j)
t+1

can be normalized by the summation of themselves, i.e.
w

(j)
t+1∑

j w
(j)
t+1

.

Theoretically, x
(i)
t and x

(j)
t+1 should be fully cross-connected. However, the tran-

sition probabilities p(x
(j)
t+1|x

(i)
t ) can be diminishingly small compared to the others.

Connections between these neurons can be dropped without effect the performance

of the algorithm.

5.5.3 The cerebellum as a neural substrate of cross-connected

sequential importance sampling

The cerebellum is a brain region that plays an important role in planing sequential

motor control [Paulin, 1993]. This requires the integration of sensory inputs and

estimation of internal states sequentially [Liu et al., 2003; Fine et al., 2002]. The

essential operation of cerebellum is to produce predictive signals to control muscle
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Figure 5.7: Neural implementation of cross-connected sequential importance sampling. A
bundle of input fibers y

(k)
t+1 (blue) is multiplied with the previous hidden state x

(i)
t (purple)

in the branch-specific way in the dendritic tree of neuron x
(j)
t+1. The activity of new hidden

state, through a time delay neuron, is served as the previous state for the next time step.
Zoom-in of the multiplication on a dendritic branch is shown in the right panel. Only
one example neuron x

(i)
t and x

(j)
t+1 are included. Neural implementation should include

multiple x
(i)
t and x

(j)
t+1 with cross-connections between them.

91



Chapter 5. Neural implementation of sequential Bayesian inference

movement based on sensory inputs. This sequential computation is probabilistic in

nature, because of the internal noise in nervous system and uncertainty in perception

inputs. Therefore, cross-connected sequential importance sampling may serve as the

underlying algorithm implemented by the cerebellum, with x0:t denoting information

associated with predictive motor commands and y0:t sensory inputs.

Cerebellar neural circuits exhibit highly regulated structure [Bell et al., 2008]

(Fig. 5.8). This structure has two afferent pathways. One pathway is called the

mossy fiber-parallel fiber system, channeling in sensory inputs from brain stem nuclei

and the spinal cord. The second pathway is the climbing fiber system from the

contralateral inferior oliver. Parallel fibers and climbing fibers interact with Purkinje

cells at their extensive dendritic tree. Purkinje cells modulate deep cerebellar nuclei

cells, which also receive inputs from inferior oliver and mossy fibers. Then deep

cerebellar nuclei cells send efferent pathways that leave the cerebellum to regulate

cerebral motor areas.

Comparing Fig.5.8 and Fig.5.7, we see that the neural implementation of cross-

connected sequential importance sampling is similar to cerebellar circuits: Gran-

ule cells function as sensory input neurons {y(k)
t+1}; Purkinje cells function as hidden

variable neurons {x(j)
t+1} and climbing fibers function as {x(i)

t }. Most notably, the

synaptic interaction at the dendritic branches of Purkinje cells agree with the neu-

ronal multiplication-sum structure in CC-SIS (Fig.5.7). Due to the functional and

structural resemblance, we would like to hypothesize that the cerebellum implements

cross-connected sequential importance sampling.

The activities of the same set of Purkinje cells and deep cerebellar nuclei cells are

highly correlated to the onset of repeated movement during alternating movement.

This fact suggests that one estimation task can use the same group of hidden variable

neurons (or particles) repeatedly over time, an important assumption in the model.

Since a coherent body motion involves a large amount of muscle, the hidden state
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{x(j)
t+1} is of very high dimension and should be divided into multiple compartments

(e.g. limbs). Thus, it raises the challenge of sensory inputs needing to reach many

groups of particles. This challenge is met by the layout of the cerebellum, with groups

of Purkinje cells’ dendritic branches lying in a plane at right angles to the trajectory

of the parallel fibers.

Various types of interneurons in cerebellar cortex modulate major pathways in

these circuits[Apps and Garwicz, 2005]. Many of them are ideal candidates to perform

divisive normalization and provide stability in computation. For example, basket

cells form one of the most powerful inhibitory complex of synapses made around

the Purkinje cell bodies, which can normalize the activity of {x(j)
t+1} neurons, i.e.

normalizing the weights
w

(j)
t+1∑

j w
(j)
t+1

. Golgi cells, which receive input from parallel fibers

and project its inhibitory outputs to the origin of these fibers (Granule cells), can

provide normalization among sensory inputs, i.e.
p(Syt+1|y(k)

t+1)∑
k p(Syt+1|y(k)

t+1)
.

5.6 Discussion

Here, we provide a computational framework on neural implementation of dynamical

inferences. Cross-connected sequential importance sampling is capable of sequential

estimation and performs as good as sophisticated particle filtering algorithms. We

suggest that cerebellar cortex provides an ideal structure to perform sequential es-

timation by CC-SIS. However, the cerebellum, although having a regular anatomic

structure, is still incredibly complex for a model to capture all aspects. Especially,

the model’s time delay loop ({x(j)
t+1} neurons → time delay neuron → {x(i)

t }) might

be an oversimplified description to the cerebellar loop (Purkinje → Deep cerebellar

nuclei cell → Inferior olive → climbing fiber). Moreover, it is worthwhile to keep

in mind that the hidden variable {x(j)
t+1} is an abstract formulation of motor control

problem and may take various forms. For example, Masao Ito [Ito, 1984] suggests that
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Figure 5.8: A cerebellar neural circuit diagram.

{x(j)
t+1} can take a form of error signal in climbing fibers. Nevertheless, our work pro-

vides a framework to understand cerebellum in the context of sequential estimation

and, hopefully, give rise to more interests in cross-connected sequential importance

sampling as a general neural mechanism for sequential and hierarchical probabilistic

inference.
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Appendix 5.A Derivation of cross-connected sequen-

tial importance sampling

Assume the posterior probability p(xt|y1:T ) can be approximated by a set of particles

{x(i)
t } and associated weights {w(i)

t }, i.e.

p(xt|y1:T ) ≈
∑
i

w
(i)
t δ(xt − x

(i)
t ) (5.26)

Then,

p(xt+1|y1:t+1) =

∫
p(xt+1|xt)p(yt+1|xt+1)p(xt|y1:t) dxt

≈
∑
i

p(xt+1|x(i)
t )p(yt+1|xt+1)w

(i)
t (5.27)

Meanwhile, applying importance sampling,

p(xt+1|y1:t+1) =

∫
δ(x− xt+1)p(x|y1:t+1) dxt

≈
∑
j

p(x
(j)
t+1|y1:t+1)

q(x
(j)
t+1)

δ(x
(j)
t+1 − xt+1) x

(j)
t+1 ∼ q(x). (5.28)

Using Eq. 5.27, we find

p(xt+1|y1:t+1) ≈
∑
j

∑
i p(x

(j)
t+1|x

(i)
t )p(yt+1|x(j)

t+1w
(i)
t )

q(x
(j)
t+1)

δ(x
(j)
t+1 − xt+1). (5.29)
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Therefore, the weight updating rule is

w
(j)
t+1 ∝

∑
i p(x

(j)
t+1|x

(i)
t )p(yt+1|x(j)

t+1)

q(x
(j)
t+1)

w
(i)
t

= p(yt+1|x(j)
t+1)

∑
i

p(x
(j)
t+1|x

(i)
t )

q(x
(j)
t+1)

w
(i)
t , (5.30)

subject to a normalization constant.
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Chapter 6

Conclusion

In this thesis, we studied psychological and neural implementations of Bayesian infer-

ence. Previous work typically addresses Marr’s [1982] computational level. Here, we

focus on the algorithmic level and the implementation level. Specifically, we built our

models around a Monte Carlo method known as importance sampling and showed

how importance sampling can explain human behavior in cognitive and perceptual

tasks. The basic idea behind importance sampling – storing examples and activating

them based on similarity – is at the heart of a variety of psychological models, neural

network models and machine learning algorithms. Moreover, importance sampling

can be extended to model neural functions in hierarchical Bayesian inference and

sequential Bayesian inference.

We have presented both theoretical results and simulations showing that exem-

plar models provide a simple, psychologically plausible mechanism for performing at

least some kinds of Bayesian inference. Our theoretical results indicate that exemplar

models can be interpreted as a form of importance sampling, and can thus implement

an approximation to Bayesian inference. Our simulations demonstrate that this ap-

proach produces predictions that correspond reasonably well with human behavior,
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and that relatively few exemplars are needed to provide a good approximation to the

true Bayesian solution in at least five settings.

Understanding how the brain solves the problem of hierarchical Bayesian infer-

ence is a significant challenge for computational neuroscience. In this thesis, we have

shown how a potential solution is provided by a multilayer neural network imple-

menting a recursive scheme of importance sampling. This model has a simple neural

implementation, either with deterministic or spiking neurons, and can perform tasks

such as sensorimotor learning and cue-combination with a small number of feature

detection neurons. It can also explain some characteristic behaviors in perception,

such as the oblique effect. Another challenge in modeling Bayesian inference in the

brain is understanding the neural mechanisms for sequential inference. We showed

that cross-connected sequential importance sampling, an algorithm based on recur-

sive importance sampling can perform sequential inference as well as the state-of-art

machine learning algorithms know as particle filters. Further study suggests that

neural implementation of CC-SIS is closely related to cerebellar circuits. This led us

to propose CC-SIS as the underlying mechanism for cerebellum’s motor coordination

function.

The approach that we have taken in this thesis represents one way of addressing

questions about the algorithms and mechanisms that could support probabilistic in-

ference. Our results suggest that 1) exemplar models are not simply process models,

but rational process models – an effective and psychologically plausible scheme for ap-

proximating statistical inference; and 2) recursive importance sampling is a potential

mechanism to implement the rational process models by the brain to perform hier-

archical Bayesian inference and sequential Bayesian inference. This approach pushes

the principle of optimality that underlies probabilistic models down to the level of

algorithm and mechanism, and suggests a general strategy for explaining how people

perform Bayesian inference: Look for connections between neural circuits, psycho-
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logical process models and approximate inference algorithms developed in computer

science and statistics.
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