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ABSTRACT OF THE DISSERTATION

Physics-Based Animation Models Using Fractional
Calculus

by

Oktar Özgen
Doctor of Philosophy in Electrical Engineering & Computer Science

University of California, Merced, 2013
Professor Professor Marcelo Kallmann, UC Merced, Chair

Physics-based computer animation is an area of Computer Graphics with important

applications ranging from visual effects in movies and computer games to simulation-

based modeling and design. This dissertation introduces the use of fractional calcu-

lus for achieving new physics-based models in the areas of cloth and fluid simulation.

Three main contributions are proposed. First, an underwater cloth deformation ap-

proach is introduced based on a half-derivative damping model. The cloth is repre-

sented by a system of particles connected by elastic elements with fractional damping

terms that are able to well represent the history forces that happen underwater. As a

result, underwater behavior is achieved without simulating the volumetric fluid around

the cloth. Second, a new viscosity model employing fractional terms is proposed to bet-

ter represent the behavior of colliding flows in simulations of Newtonian fluids based

on Smoothed Particle Hydrodynamics (SPH). The fractional terms are integrated into

the SPH equations in order to better capture the history-based exchanges that happen

in regions of colliding flows. Finally, a model is introduced for simulating shear thick-

ening fluids, which are a special type of non-Newtonian fluids that have not been sim-

ulated before in computer animation. The proposed model combines SPH forces with

dynamic elastic forces that are modeled with history-based fractional stiffness terms.

The model can successfully simulate both the solid and liquid-like behavior of a shear

thickening fluid as well as the history-based phase transitions between the solid and

liquid phases. The achieved model is able to produce results that are very similar to

ii



real-life experiments. This dissertation illustrates the potential of fractional calculus

for modeling physics-based behavior and several numerical and visual experiments are

presented to demonstrate the advantages of the proposed models.
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The dissertation of Oktar Özgen is approved, and it is acceptable in quality and form

for publication on microfilm and electronically:

Professor Carlos F.M. Coimbra, UC San Diego

Professor Shawn Newsam, UC Merced

Professor Marcelo Kallmann, UC Merced, Committee Chair

University of California, Merced

2013

iv



To my mother . . .

v



TABLE OF CONTENTS

1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

2 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.1 Fractional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2 Cloth Simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Modeling the Cloth . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2.2 Integration Methods . . . . . . . . . . . . . . . . . . . . . . . 10

2.3 Fluid simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3.1 Navier-Stokes Equations . . . . . . . . . . . . . . . . . . . . . 12
2.3.2 Lagrangian Vs. Eulerian Approaches . . . . . . . . . . . . . . 14
2.3.3 Smoothed Particle Hydrodynamics (SPH) . . . . . . . . . . . . 15

2.4 Shear Thickening Fluids . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4.1 Physics and Rhelology . . . . . . . . . . . . . . . . . . . . . . 16
2.4.2 Fractional Calculus and Viscoelasticity . . . . . . . . . . . . . 17

3 Underwater Cloth Simulation with Fractional Derivatives . . . . . . . . 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.3 Fractional Cloths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21

3.3.1 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.3.2 Computing the Half Derivative Terms . . . . . . . . . . . . . . 24
3.3.3 Numerical Integration . . . . . . . . . . . . . . . . . . . . . . 25

3.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

4 Simulating Colliding Flows in SPH with Fractional Derivatives . . . . . 33
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2 Background and Related Work . . . . . . . . . . . . . . . . . . . . . . 35
4.3 Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36

4.3.1 Standard SPH . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
4.3.2 Fractional SPH . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.3.3 Computing the Half Derivative Terms . . . . . . . . . . . . . . 38

4.4 Validation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.4.1 Solid Sphere in a Viscous Fluid . . . . . . . . . . . . . . . . . 39
4.4.2 Shear Driven Cavity Test . . . . . . . . . . . . . . . . . . . . 40

4.5 Evaluation Experiments . . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.6 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 43

4.6.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
4.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

5 Simulating Shear Thickening Fluids . . . . . . . . . . . . . . . . . . . . 56

vi



5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
5.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 66

5.4.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

6 Directional Constraint Enforcement for Fast Cloth Simulation . . . . . 73
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.3 Cloth Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

6.3.1 Forces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
6.3.2 Verlet Integration . . . . . . . . . . . . . . . . . . . . . . . . . 76

6.4 Directional Constraint Enforcement . . . . . . . . . . . . . . . . . . . 77
6.4.1 Using multiple correction maps . . . . . . . . . . . . . . . . . 80

6.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
6.5.1 Limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

6.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83

7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1 Summary of Contributions . . . . . . . . . . . . . . . . . . . . . . . . 86

7.1.1 Underwater Cloth . . . . . . . . . . . . . . . . . . . . . . . . . 86
7.1.2 Colliding Flows . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.1.3 Shear Thickening Fluids . . . . . . . . . . . . . . . . . . . . . 87

7.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89

vii



LIST OF FIGURES

2.1 Cloth is modeled as a set of intersecting warps and wefts with particles
at their crossing points. . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.1 Our cloth model based on fractional derivatives is able to achieve real-
istic underwater behavior. . . . . . . . . . . . . . . . . . . . . . . . . . 18

3.2 Examples of internal effects produced by the viscoelastic spring ele-
ments in our fractional cloth formulation. . . . . . . . . . . . . . . . . 19

3.3 The cyclic motion applied to the top of this simulated piece of cloth
generates realistic bump propagations. . . . . . . . . . . . . . . . . . . 20

3.4 The left two figures show consistent propagation of waves caused by
a sphere interacting with the cloth model. The right two figures show
examples obtained with the cloth top edge being energetically moved
sideways. The obtained long lasting wave propagations demonstrate
consistent cloth-water inertial responses captured by the viscoelastic
half-derivative terms of our fractional cloth model. . . . . . . . . . . . 22

3.5 Cloth is represented as a quadrilateral mesh of particles. The particles
are at the intersection points of horizontal and vertical lines. The parti-
cles are connected to each other by elastic springs. The connectivity of
stretch, shear and bend springs are also shown. . . . . . . . . . . . . . 23

3.6 The plot shows the rapid decay of the weights as we move away from
the most recent timestep index n = 100. . . . . . . . . . . . . . . . . . 25

3.7 Comparisons between real cloths and simulated fractional cloths. In
each example, a cyclic motion is applied to the top edge of the cloth.
The simulations with the orange cloth model produce bumps which are
well formed and which propagate in a consistent way, similarly to the
ones observed in the real cloths. The red cloth simulation reproduces
similar fine details in the interior of the cloth. . . . . . . . . . . . . . . 26

3.8 The underwater behavior of real cloth is recorded through an underwa-
ter camera. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.9 The figure shows the side-by-side comparison of our cloth model against
the real cloth. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.10 The figure shows the response of cloth when contacted with a solid
sphere in various ways. . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.11 The figure shows snapshots from underwater dance animation. . . . . . 31
3.12 Comparisons between regular cloth deformation models using various

drag models (left three columns) and fractional cloths (right-most col-
umn). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

4.1 Example of a typical SPH simulation scenario. As demonstrated in
several evaluations, our Fractional SPH model will improve the realism
of the simulation in a chosen resolution. . . . . . . . . . . . . . . . . . 33

viii



4.2 The plot shows how weights rapidly decay as we move away from the
most recent timestep. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.3 The figure shows the path followed by the solid sphere located in a fluid
container subjected to a continuous sinusoidal shaking force. The blue,
red and green curves show the path of the sphere in a fluid simulated
with high resolution standard SPH, low resolution standard SPH and
low resolution Fractional SPH, respectively. . . . . . . . . . . . . . . . 41

4.4 Lid-driven cavity test comparing OpenFOAM’s grid-based Navier-Stokes
solution (black curve), standard SPH (blue curve) and Fractional SPH
(dashed red curve) with 40k particles. The velocities along the verti-
cal line x = 0.5 passing by the center of the box are demonstrated at
t = 5s when the simulations are in steady state. The horizontal axis
in the graph represents the vertical coordinates along the line x = 0.5.
The similarity of the curves validate the viscosity behavior of the Frac-
tional SPH simulation in a steady flow scenario. . . . . . . . . . . . . . 42

4.5 Simulation scheme (top image) and its corresponding fluid simulation
scenario (bottom image). The simulation scheme shows both the flow
generation configuration and the results of our experiments. The arrows
show the force sources creating the flows. The circles show the regions
where we computed the average velocity directions in order to quanti-
tatively compare the simulations. The colors are in the red-green range
and represent the difference of angular velocity error rates produced
by the low resolution standard SPH and low resolution Fractional SPH
when compared against the higher resolution standard SPH. Our Frac-
tional SPH method performs better than the standard SPH in the green
regions, the performance is similar in yellow regions, and our method
performs slightly worse in the orange regions. . . . . . . . . . . . . . . 46

4.6 The plot shows the error rates in velocity directions of the region marked
with the red disc, over 500 timesteps of simulation. The red and green
lines represent the simulations of low resolution standard SPH and low
resolution Fractional SPH compared against higher resolution standard
SPH. The region marked with the red disc is rich in flow collisions. . . . 47

4.7 The plot shows the error rates in velocity directions of the region marked
with the red disc, over a simulation of 500 timesteps, for 2D simula-
tions. The red and green lines represent the simulations of low resolu-
tion standard SPH and low resolution Fractional SPH compared against
higher resolution standard SPH, respectively. Here the region marked
with red disc is poor in flow collisions. . . . . . . . . . . . . . . . . . . 48

ix



4.8 The plot shows the velocity magnitudes of the region marked with the
red disc, over a simulation of 500 timesteps, for 2D simulations. The
blue, red and green lines represent the simulations of high resolution
standard SPH, low resolution standard SPH and low resolution Frac-
tional SPH, respectively. The region marked with red disc is rich in
flow collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

4.9 The plot shows the velocity magnitudes of the region marked with the
red disc, over a simulation of 500 timesteps, for 2D simulations. The
blue, red and green lines represent the simulations of high resolution
standard SPH, low resolution standard SPH and low resolution Frac-
tional SPH, respectively. The region marked with red disc is poor in
flow collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.10 The plot shows the error rates in velocity directions of the region marked
with the red disc, over a simulation of 1000 timesteps, in 3D simula-
tions. The red and green lines represent the simulations of low resolu-
tion standard SPH and low resolution Fractional SPH compared against
higher resolution standard SPH, respectively. The region marked with
the red disc is rich in flow collisions. . . . . . . . . . . . . . . . . . . . 51

4.11 The plot shows the velocity magnitudes of the region marked with the
red disc, over a simulation of 1000 timesteps, in 3D simulations. The
red and green lines represent the simulations of low resolution standard
SPH and low resolution Fractional SPH compared against higher reso-
lution standard SPH, respectively. The region marked with red disc is
rich in flow collisions. . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

4.12 Lid-driven cavity test for comparing the stability of standard SPH and
Fractional SPH simulations. . . . . . . . . . . . . . . . . . . . . . . . 52

4.13 Average velocities and velocity directions obtained in the Shear Driven
Cavity Test with different SPH simulations: 21K standard SPH (left),
6K Fractional SPH (center) and 6K standard SPH (right). Colors red,
green and blue represent high, medium and low velocities respectively.
The color distribution and regional velocity directions obtained with
the Fractional SPH simulation are very similar to the ones in the high
resolution reference simulation. This was not the case for the standard
SPH in the same low resolution. . . . . . . . . . . . . . . . . . . . . . 53

4.14 Dam break test using Fractional SPH, which shows the viscosity be-
havior of fluids with various Reynolds numbers. . . . . . . . . . . . . . 54

4.15 The rendered scene from another dam break experiment using Frac-
tional SPH. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

5.1 Our shear thickening fluid model based on fractional derivatives is able
to achieve realistic behavior. . . . . . . . . . . . . . . . . . . . . . . . 56

5.2 Weights produced by fractional derivatives of order 0.2, 0.5 and 0.8. . . 63
5.3 The snapshots from the vibration experiment show finger-like forma-

tions with various shapes. . . . . . . . . . . . . . . . . . . . . . . . . 67

x



5.4 Comparison between the real [You08] and the animated shear thicken-
ing fluid in the context of the vibration experiment. . . . . . . . . . . . 68

5.5 The upper left graph shows the velocity of a single particle subjected to
a temporary velocity increase due to an impact. The next three graphs
(in left-right, top-down order) show the evolution of the history-based
stiffness values of the spring connected to the same particle, when its
velocity changes according to the upper left graph. Curves for various
d values are given in each graph. The second, third and forth graphs
are based on the order of the fractional derivative q = 0.2, q = 0.5 and
q = 0.8 respectively. . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

5.6 The shown graphs present the same plots as in Figure 5.5, except for the
upper left graph which shows the velocity of a single particle moving
with constant velocity for a given period of time. . . . . . . . . . . . . 71

5.7 The first image (in top-down order) shows the first moment of impact
where the shear thickening fluid successfully carries the mass of the
bowling ball and makes it bounce. The second image shows the second
moment of impact after the bounce. The bowling ball still won’t sink
but slows down. The third image shows the moment where the bowling
ball comes to a stop. Since the fluid is still in its solid-like state, the
bowling ball will not immediately sink. The fourth image shows the end
of the simulation where the history-based stiffness starts to vanish and
the fluid transitions to fluid-like state, finally resulting in the sinking of
the bowling ball. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

6.1 Direction of correction for two particles connected by a spring. . . . . 75
6.2 Correction patterns and their respective deformation results obtained

from choosing different correction orders among the different types of
springs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

6.3 Left: step-by-step order of correction starting from an upper right fixed
vertex of the cloth. Right: correction map created for a cloth fixed from
the two top corners. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

6.4 Three alternating correction maps used for the long skirt simulation
during walking: map with right knee collision (left), map with no knee
collision (center), and map with left knee collision (right). . . . . . . . 81

6.5 The figure shows the correction maps generated by our algorithm and
their associated cloth simulation scenarios. . . . . . . . . . . . . . . . 82

6.6 Top row: Order of correction obtained with fixed vertices selected at
the shoulder and belt regions. Bottom row: A small number of vertices
(shown by the circle on the bottom-left image) is added to the set of
fixed vertices. Notice how the new correction order obtained is differ-
ent and how the correction map visually corresponds to the expected
buckling of the cloth. . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

xi



6.7 Example of a long skirt that would significantly overstretch if no con-
straint enforcement is made. Our method eliminates the overstreching
in an efficient manner. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

xii



ACKNOWLEDGMENTS

The path to the completion of this dissertation was a rough one. The journey was
a search. It was a search for solutions to the adaptation problems, cultural clashes,
language barriers, search for social recognition, search for self awareness, search for a
value set, search for a skill set, search for the meaning, search for the long lost past,
search for a promising future, search for becoming a better man—and at times, it was a
search for novel methods for the application of fractional calculus in computer graphics.

I would like to thank everyone who directly or indirectly helped me to get to the end of
this journey. My family, my friends, my professors, my colleagues. I could not have
done it without you.

I would like to start by thanking the most important person in my life. My mother, who
raised me by herself in difficult conditions, always loved me unconditionally, not even
complained once about me being so far away, gave me the freedom of establishing my
own life and always supported me in every step I took. Second, my grandfather, who
was the father figure I had growing up, who financially and morally supported me and
always believed in me. I am sure he would have been very proud if he were still with
us. Third, my sister, for being a loving and caring person and for taking care of my
mom when I am not around. Lastly, my father, who passed his engineer genes to me
and influenced me in choosing a scientific career.

Merced may not the best place to live, but without you, my friends, it would have
been a lot worse. I would like to thank all my friends who, along the way, helped
me, influenced me, changed me and laughed with me. I would like to thank Mentar
Mahmudi, who has been the best friend one can ask for, and a brother to me. Without
you, life would be extremely hard to deal with. I would like to also thank my close
friends Janelle Szary, Görkem Erinç, Siyu Wu, Benjamin Balaguer and Nicola Basilico.
It was a pleasure to know each and every one of you and share good memories with you.
I would also like to thank my best friends in Turkey, Fatih Ömür, Mert Tuncer, Mert
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to thank Selçuk Sümengen and Lynnette Ramirez for collaborating with me in various
papers.

I would like to thank the professors who thought and guided me during my PhD ed-
ucation. First, I would like to express my gratitude towards my committee members
Professor Shawn Newsam and Professor Carlos F.M. Coimbra, for their valuable com-
ments, questions and suggestions and dedication to their work as committee members.
I would like to thank Professor Selim Balcısoy from Sabancı University who referred
me to UC Merced and later collaborated with me in a paper. I would like to thank

xiii



Professor Eric Brown for collaborating with me. I would to especially thank Professor
Carlos F.M. Coimbra for advising me on fluid mechanics, collaborating with me and
providing me all the valuable methods from his own papers, which established the basis
of my dissertation.

Last but not least, I would like to thank and express my gratitude to my adviser Profes-
sor Marcelo Kallmann. I would like to thank him for all the education and guidance,
for valuable discussions on academia and life, for his contribution to my research, for
his friendship and for being the greatest adviser one can ask for.

xiv



VITA

2001–2006 B.S. in Computer Science and Engineering, Sabanci University, Is-
tanbul, Turkey.

2006–2007 Software Engineer, Garanti Technology, Istanbul, Turkey.

2007–2013 Teaching Assistant, Introduction to Java, Introduction to C++, Op-
erating Systems, Computer Graphics, Database Systems, Electrical
Engineering & Computer Science Department, UC Merced.

2007–2013 PhD Student - Research Assistant, Electrical Engineering & Com-
puter Science Department, UC Merced.

PUBLICATIONS

O. Ozgen, M. Kallmann. Effects of Different Constraint Enforcement Methods for
Verlet Integration in Cloth Simulation. In Cognitive Animation Workshop, 2008.

O. Ozgen, M. Kallmann, L.E.S Ramirez, C.F.M. Coimbra. Underwater Cloth Simula-
tion with Fractional Derivatives. In ACM Transactions on Graphics (TOG), v. 29-3, p.
1-9, presented at SIGGRAPH, 2010.

O. Ozgen, M. Kallmann. Directional Constraint Enforcement for Fast Cloth Simula-
tion. In Proceedings of the 4th international conference on Motion in Games(MIG), p.
424-435, 2011.

O. Ozgen, S. Sumengen, M. Kallmann, C.F.M. Coimbra, S. Balcisoy. Simulating Col-
liding Flows in SPH with Fractional Derivatives. In Computer Animation and Virtual
Worlds, to appear.

O. Ozgen, E. Brown, M. Kallmann. Simulating Shear Thickening Fluids. Under re-
view.

xv



CHAPTER 1

Introduction

In the early 1990’s, when Steven Spielberg’s master piece movie Jurassic Park [Spi92]
hit the movie theaters, it was a marking point in the history of computer graphics. Al-
though computer graphics existed long before it was adopted by the movie industry, this
was the first time computer graphics revealed its magic to large audiences. The degree
of success achieved in the visual effects brought the dinosaurs to life in an amazingly
realistic way. Since then, the popularity of computer graphics immensely increased.
Today, it is widely used in movies, computer games as well as industrial applications.
Computer graphics is a highly interdisciplinary science. It can essentially be located
at the intersection of art and engineering. The artistic side of computer graphics dic-
tates that the results should be visually realistic before everything else. A computer
graphics scene is a success if it is believable in the eyes of an untrained observer, no
matter what techniques are used. Unlike most sciences, numerically proving the effi-
ciency of a method is not necessarily useful if it does not lead to visually convincing
effects. Nevertheless, most visually striking effects seem to arise from a solid scientific
background. A number of sciences contribute to the scientific foundations of computer
graphics, such as physics, mechanics, dynamics, rheology, etc. The models based on
these fields of science give rise to a subcategory named “physics-based animation”.

Physics-based animation deals with the simulations of physical systems such as, soft
body dynamics, fluid dynamics and rigid body dynamics. Physics-based models de-
scribe how various phenomena occur in reality. Hence, they make fantastic tools for
animation. Once properly implemented, they can be employed for numerous interesting
animations with little effort.

With a focus in describing the physical phenomena, many mathematical tools are used
in sciences such as mechanical engineering, rheology and physics. Among these,
fractional calculus is an important mathematical tool. Although it is widely used in
areas such as fluid and solid mechanics, rheology, electromagnetism, electrochem-
istry, and biology, fractional calculus has not been explored before for applications
in computer graphics. It is however a very powerful tool that can model memory-
intense and delay systems as well as unsteady viscous and viscoelastic phenomena
[OS74, MR93, Pod99, Hu05, Hil00, KST06]. These useful features have the potential
to be employed in various physics-based simulations in computer graphics. In this dis-
sertation, we introduce the first applications of fractional calculus in computer graphics.
The focus of this dissertation is mainly on the applications of fractional calculus on soft

1



body dynamics, namely cloth simulation, Newtonian and non-Newtonian fluid simula-
tions.

Cloth is an interesting material. It has a variety of complex behaviors. It stretches,
compresses, bends and wrinkles. This wide range of interesting behavior made cloth
a subject of interest in the history of art. The depiction of cloth was a major concern
for artists since the Renaissance. In the Baroque era, correctly depicting the drapery of
cloth in painting or sculpture was considered a major criteria for the success of an art
piece. Accurate depiction of cloth was a major element that brings the realism of an art
piece to the next level. The computer graphics community realized the need for animat-
ing the cloth right after the launch of early successful animation movies of 1990’s such
as Toy Story [Las95]. Toy Story produced by Pixar was a huge success. However, the
characters with unrealistic looking clothes immediately captured the industry’s atten-
tion. Since then, there has been ongoing research in the community on modeling more
realistic looking cloth.

Cloth is modeled and animated with physics-based methods. Modeling cloth as a par-
ticle system is a very popular approach. The particles are generally connected to each
other by springs that simulate the warp and weft based microstructure of actual clothes
as depicted in Figure 2.1. The inner and outer forces on the particles are calculated and
integrated in time with various integration methods. The challenge of cloth simulation
is two-fold. First, the cloth should behave realistically. It shouldn’t stretch, compress,
shear or bend too much. It should react to the applied forces in a meaningful way.
Second, the computation time of a cloth simulation should be minimized as much as
possible. The simulation should run fast enough to render the cloth scenes in movies
under some acceptable time limit. Moreover, the simulation should be real-time for
computer games. We took on both challenges up to some extent. We focused on creat-
ing visual realism for the cloth in a scenario which was not previously addressed. We
achieved very realistic results for a cloth moving underwater. In another paper, we also
focused on improving the running times of cloth simulation scenes in computer games.
Hence, we contributed in both aspects of the cloth simulation challenge.

Another interesting subject in physics-based animation is fluid simulation. Fluid is the
general name of all substances that deform under applied stress. It includes liquids,
gases and plasmas. It is possible to simulate water, smoke, fire and explosions using
fluid simulation techniques. These effects add high levels of realism to movies and com-
puter games. Therefore, fluid simulation emerges as a key topic in computer graphics.
One of the studies presented in this dissertation is on water simulation. Water simula-
tion is extremely rich in terms of visual results. It is possible to simulate rivers, oceans,
waves, flows, splashes, floods and other forms of interesting phenomena to add high
levels of realism. These effects are achieved using methods based on the well known
Navier-Stokes equations. One very popular alternative to these equations is called the
Smoothed Particle Hydrodynamics (SPH) method. SPH is a Lagrangian method that
simulates the body of water as a collection of particles. The number of particles used
in today’s movies are on the scale of millions. Therefore, the computational cost of
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these simulations is extremely high. The nature of the problem brings about the need of
creating interesting effects with more efficient ways. This objective can be achieved in
two ways. First, the running time of a simulation with a high number of particles can be
optimized. Second, the accuracy of a simulation with relatively fewer particles can be
improved. As a part of this dissertation, we focused on the latter and aimed to improve
the accuracy of fluid simulation. In particular, we managed to increase the accuracy of
a colliding flow animation that runs with relatively low number of particles, therefore
eliminating the need for a high number of particles to achieve the same effect.

The introduction of physics-based models for materials which have no known prior
simulation model is very important in the computer graphics community. After the
tremendous developments in the major areas such as cloth and fluid simulations, the
research community started to lean towards the challenge of simulating new materials.
As a part of this trend, the simulation of non-Newtonian fluids has attracted much atten-
tion. Fluids such as honey, toothpaste and jelly which exhibit both liquid and solid-like
behavior are targeted. These materials often require hybrid approaches that encompass
both fluid simulation techniques and spring-mass techniques. As a continuation of this
trend, we address the problem of simulating shear thickening fluids, a material which
was never simulated before in the computer graphics community. Shear thickening
fluids display very unconventional behavior that is not seen in any other Newtonian or
non-Newtonian fluids. The fluid hardens when impacted by strong forces and softens in
the absence of any forces. It changes its state from solid-like to liquid-like. The phase
transitions are not immediate. They often require some time to occur because of the
memory-intense nature of the material. This interesting type of non-Newtonian fluid
has very interesting behaviors that can potentially lead to interesting visual effects and
its memory-intense behavior can be simulated using fractional calculus. In Chapter 5,
we present a method that can successfully simulate shear thickening fluids.

In summary, this dissertation introduces three novel methods based on fractional cal-
culus for physics-based animations. First, an underwater cloth model with a fractional
derivative based damping mechanism is presented in Chapter 3. Second, a fractional
derivative based viscosity term is introduced to SPH equations to increase the accuracy
of colliding flow animations. The method is explained in Chapter 4. Third, a novel frac-
tional derivative based model is introduced in order to simulate shear thickening fluids.
This contribution is detailed in Chapter 5. Aside from the main contributions, a method
that increases the performance of cloth simulation in computer games is presented in
Chapter 6.
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CHAPTER 2

Literature Review

This chapter reviews the literature on fractional calculus, cloth simulation, Newtonian
and non-Newtonian fluid simulations. In Section 2.1, we review the related literature on
fractional calculus and discuss how fractional calculus relates to our studies. In Section
2.2, we present an overview of cloth simulation. In particular, we focus on the modeling
of the cloth and the integration methods used. In Section 2.3, we first review the basics
of fluid simulation. Then, we present the literature on the SPH method which forms the
basis of our method presented in Chapter 5. In Section 2.4, we review physics papers
related to shear thickening fluids. We aim to give the reader an introductory perspective
on the behavior of this kind of fluid. A more specific related work review is later given
in every chapter.

2.1 Fractional Calculus

The subject of Fractional Calculus (FC) [OS74] deals with the mathematical analysis of
differentiation and integration to an arbitrary non-integer order. The traditional name
of the discipline is a misnomer since any non-integer (rational or irrational) order of
differentiation and integration is easily accounted for within the context of generalized
differentiation.

In 1695, L’Hopital inquired of Leibniz what the meaning of half derivative could be.
Leibniz replied: “This is an apparent paradox from which, one day, useful conse-
quences will be drawn.” The first usage of variable order notion of a derivative Dnf(x)
= dnf(x)/dxn was by Leibniz. Following his footsteps, many mathematicians such as
Euler, Laplace, Fourier, Abel, Liouville, Riemann, and Laurent contributed on the field
of fractional calculus.

Historically, Abel was the first to apply FC to a real world problem [Abe23]. He used
FC in the solution of the tautochronous problem. The problem is concerned with the
determination of the shape of a frictionless plane curve for which the time taken by an
object sliding without friction in uniform gravity to its lowest point is independent of
its starting point. FC was first employed in the engineering community by Heaviside in
1892 [Hea92] [Hea93]. He proposed a fractional diffusion equation for the temperature
distribution problem for electric transmission lines. Since these introductory works, FC
definitions have been used in a variety of problems such as rheological models for the
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deformation of viscoelastic materials, modeling the memory of systems, studying the
effects of the history of systems in its current state, dynamical processes in fractals,
porous materials, chemical reactions, diffusion, electrical circuits, chaotic processes,
process control, fractional order physics, speech signals, cardiac tissue electrode inter-
face, sound wave propagations, theory of viscoelasticity and fluid mechanics.

Beyond the fact that FC models provide superior modeling capability of memory-
intense and delay systems, fractional modeling has been associated with the exact de-
scription of unsteady viscous and viscoelastic phenomena. Of particular importance
to our work is the ability of non-integer derivatives to capture non-local behavior, and
to interpolate between distinct dynamic regimes such as between the elastic and the
viscous behavior [OS74, MR93, Pod99, Hu05, Hil00, KST06].

For instance, Coimbra et al. [CLL04] and L’Espérance et al. [LCT05] provide defini-
tive experimental evidence of fractional history effects in the unsteady viscous motion
of small particles in suspension [CR98, CK02b]. In Chapter 3, it is this same behav-
ior [CLL04] that we propose to model by adding a fractional term to the equation of
motion of particles in a cloth mesh moving underwater. The goal is to simulate the
history-laden dynamics of the deformable cloth by introducing a non-local dynamic
operator that accounts for an intermediate response between position and velocity of
the medium. This viscoelastic term of order 1/2 is able to simulate the fluid response
to cloth accelerations without the complication of simulating the entire hydroelastic
process.

The motivation for our approach to simulate cloth-fluid interactions follows from the
study of individual particles moving in a viscous fluid [CR98]. Stokes [Sto45] pio-
neered the study of viscous particle motion by determining the force acting on a small
fixed particle that is subjected to a uniform fluid velocity. Stokes related the undisturbed
flow (or far-stream conditions) to the force acting on the sphere, thus creating a direct
relationship between the resulting force (or torque) acting on a spherical particle and
the kinematics of the free-stream flow.

Mathematically, Stokes determined the operator ΛS that relates the force F acting
on a particle to the background flow field U , such that an expression of the form
F = ΛS(U) is determined. This is a major accomplishment because it allows for
the calculation of the forces acting on the particle by considering only the undisturbed
flow conditions as opposed to relating the force to the spatially dependent, non-uniform
flow in the vicinity of the particle. The computation simplification of Stokes’ analysis
is such that, under special circumstances, one can predict accurately the rate of sedi-
mentation of small particles without ever resolving or understanding the flow generated
by the motion of the particles.

The resulting Stokes drag formula relates the force exerted on the sphere to the constant
free-stream velocity U , the dynamical viscosity of the fluid µ, and the radius a of the
sphere in a linear way, given that the particle Reynolds number is maintained much
smaller than unity.
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Boussinesq [Bou85] and Basset [Bas88] independently extended Stokes’ derivation to
a case where the particle accelerates through the fluid due to a constant gravitational
force but still neglecting the convective terms in the Navier-Stokes equation (valid only
for small Reynolds numbers). The particle equation of motion with a constant forcing
(the gravity term) is sometimes referred to as the BBO equation, due to the original
contributions of Boussinesq, Basset and Oseen.

The BBO equation is an integro-differential equation that has a removable singularity
in the integrand of the history term. The history or fractional term can be then derived
directly from the Stokes operator ΛS using Duhamel’s Superposition Theorem. The
history term is found to be simply aΛSν

−1/2D1/2V , where ν is the kinematic viscosity
of the fluid and D1/2V represents the half-derivative of the particle velocity [CR98],
which can be computed with the following Riemann-Liouville differential operator:

D1/2V =
1

Γ(1/2)

∫ t

−∞
(t− σ)−1/2

dV (σ)

d t
dσ, (2.1)

where Γ is the generalized factorial function and Γ(1/2) =
√
π.

The results above are important because they allow us to replace the complicated, evolv-
ing flow field around the particle with an integral force that can be calculated in an
iterative way. The implications of this formulation in terms of computational time are
clear. The fractional force plays the role of an intermediate dynamic variable between
velocity and acceleration, and is exact for a single particle in low Reynolds flows.

In the context of cloth simulation, we are interested in the overall effect of a piece of
cloth interacting with the flow. One key observation is that the immersed cloth will
have its internal structures mixed with molecules of water and therefore both its con-
stitutive material and its response with the surrounding volume of water will be better
described as a flowable microstructure similar to the ones studied in Rheology [Lar98].
Our immersed cloth will therefore be better described as a viscoelastic microstructure
exhibiting obvious fluid-like (viscous) and also solid-like (elastic) behaviors.

While an exact model for the immersed cloth microstructure cannot be devised, we
recall that the intermediate behavior between viscosity and elasticity is, in its simplest
form, a viscoelastic effect that can be approximated by a term on the half-derivative of
the displacement [Coi03]. We therefore translate the particle history effect described
by the half-derivative in Equation 2.1 into the immersed cloth by applying the half-
derivative operator to the mesh displacements (instead of applying to the relative veloc-
ity).

The result is a viscoelastic term which is added to both the internal forces and the
external drag of the cloth. The internal forces then become governed by viscoelastic
spring elements and the external drag becomes the history (or Basset) drag. As a result,
the achieved model simulates the different inertial responses between the fluid and the
cloth in an efficient way. The model is presented in Chapter 3.
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L’espérance at al. [LCT05] studied high frequency particle response in viscous fluid
to validate the analytical solutions presented in [CR98]. In [CR98], it was shown that
under certain conditions of particle size, fluid viscosity and oscillation frequency, the
Basset force becomes dominant in the equation of motion. Therefore, in [LCT05],
experiments are set up in a way to maximize the history force on the particle in suspen-
sion. The particle is tied to a thin tether to counter act the gravity. The cell filled with
a low Reynolds number fluid is oscillated sinusoidally. A marker particle is also fixed
on the cell’s wall. A holography camera is used to track two particles. In the end, the
particle response coefficient measured in the experiment and in the analytical solution
are compared. As expected, the particle oscillated at the same frequency as the cell, but
with different amplitude and phase. The experimental data and the theoretical results
were in excellent agreement. This study demonstrated the effect of the Basset history
force over a wide range of densities and frequencies.

The fundamental results from both [CR98] [LCT05] motivated us to use the fractional
derivative terms for the simulation of a fluid phenomena in which history forces are
dominant. This idea gave rise to the simulation of colliding flows. The particles in the
simulation of colliding flows depict similar behavior to the oscillating particle in the
experiment explained in [LCT05]. Thus, we aim to increase the physical accuracy of
simulating flow collisions in low resolution simulations by utilizing a fractional deriva-
tive model. In Chapter 4, we propose a new SPH model with half-derivative viscosity
terms to compensate the loss of information in low resolution simulations.

2.2 Cloth Simulation

The work on cloth simulation mostly focuses on the modeling of the cloth and on the
integration methods used. Therefore, in the next sections, we review major works on
cloth modeling and later, we present the main features of the integration methods used
in cloth simulation.

2.2.1 Modeling the Cloth

In the literature of cloth simulation, the earliest efforts focused on simulating the cloth
through the use of continuum mechanics. The cloth was considered as an elastic
sheet and finite elements techniques were employed for simulations. Terzopoulos et al.
[TPB87] [TF88] presented one of the earliest efforts to simulate elastically deformable
models such as cloth, rubber and paper in computer graphics. Prior to this work, most
of computer graphics modeling was kinematic. Kinematic models are considered pas-
sive. They neither interact with external forces nor change their shape over time. This
work advocated the use of active models for the first time. The simulation of physical
models that can react to applied forces and constraints was the main objective. The
problem of cloth simulation is treated as a general deformable body problem, thus the
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theory of elasticity is employed to form differential equations to model the behavior of
non-rigid curves and surfaces as a function of time. Lagrange’s equation of motion is
used to model the dynamics of the cloth. The net external forces are given by the sum of
inertial forces, damping forces and elastic forces. The elastic force term is discretized
using finite element or finite difference approximation methods.

Carignan et al. [CYM92] was the first to recognize the need of simulating more com-
plex cloth models. Prior to this work, only simple rectangular garments such as flags,
table cloths, carpets were simulated. The authors considered modeling the cloth as a
tailor would do in real life. Complex objects with many surface panels such as jackets
and trousers were designed as an assembly of multiple individual two-dimensional gar-
ments. This kind of modeling posed the need of seaming different cloth pieces together
and correctly calculating their interactions. Therefore, calculation of cloth-to-cloth and
the cloth-to-body collisions had to be addressed. As the general framework, the elastic
deformation model presented in [TPB87] was adapted. The only difference was the
way the damping was handled. Instead of using a scalar damping term as in [TPB87], a
dissipative damping term is used so that no matter where the energy comes from, it will
be dissipated. Furthermore, a new collision response algorithm is proposed. In order
to deal with the ill-effects of potential field method suggested by [TPB87], the law of
conversation of momentum is proposed for the calculation of collision responses. This
method eliminated the bouncy effects of collisions and resulted in perfectly inelastic
bodies.

Baraff et al. [BW98] departed from the rectangular modeling and triangulated the cloth
mesh. The continuum formulations are applied on per-triangle basis. The stretch and
shear forces are formulated to resist in-plane stretching and compression and are cal-
culated separately for each triangle. On the other hand, the bend forces are calculated
based on the angle between triangles and they are responsible for out-of-plane deforma-
tions. One important feature of the method is that unlike previous metric-tensor-based
formulations [TPB87] [CYM92], in this work, the deformation energies are formulated
as quadratic functions of positions instead of quartic functions. Therefore, better per-
formance is acquired.

Another popular method in cloth modeling is the mass-spring model. In this model,
the cloth is treated as a particle system. The cloth is represented as a set of particles
with given masses and particles are connected to each other through damped springs.
Breen et al.[BHW92] were the first to depart from continuum mechanics and embrace
a particle-based approach for cloth simulation. The microstructure of woven cloth is
considered. Thus, the cloth was modeled as a set of intersecting warps and wefts with
particles at their crossing points as shown in Figure 2.1. They employed potentially the
most scientific approach in cloth modeling, by making use of the Kawabata machine.
The Kawabata machine is a fabric testing device that measures the mechanical prop-
erties of fabrics. It is possible to measure the correct stretch, shear and bend energies
of different types of garments such as cotton, wool and polyester. The measurements
acquired from the Kawabata machine are used to describe the basic mechanical inter-
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actions of the cloth such as stretching, trellising, bending and collision. As a result, the
static draping of specific kinds of woven cloth was successfully computed.

Figure 2.1: Cloth is modeled as a set of intersecting warps and wefts with particles at
their crossing points.

Provot [Pro95] correctly pointed out an important drawback of particle-based cloth
simulations. Cloth in real life is not a super-elastic material. It will not stretch forever
if pulled with a great force. As a matter of fact, cloth is a very stiff material that
requires the use of stiff springs when simulating. However, simulation of stiff springs
has a technical speed barrier. One cannot use large timesteps in the simulation when
the system is stiff. This would lead to numerical instability. Hence, springs should have
moderate stiffness constants. This brings about the possibility of having highly elastic
springs that can eventually lead to super-elastic clothes. In order to tackle the problem
of super-elasticity, Provot [Pro95] proposed the addition of a post-processing step that
iteratively restores the length of all over-stretched and over-compressed springs to a
given acceptable value. This post-processing step that couples the time integration
of the simulation is referred as constraint enforcement. It is especially used in cloth
simulations in computer games because of its simplicity and high performance. Besides
the main focus of this thesis, we also contributed to the improvement of constraint
enforcement process in cloth simulations in [OK11], which will be further detailed in
Chapter 6.

Eberhardt [EWS96] transitioned to the Lagrangian dynamics formulations. The cloth-
specific inner forces are calculated based on the gradient of energy functions that origi-
nate from Kawabata measurements [BHW92]. The potential energy is calculated based
on the external forces such as gravitation, air resistance, collision responses and air
flows.
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2.2.2 Integration Methods

In physical simulation, the objective is to accurately and efficiently compute the evo-
lution of the physical system in time, given initial conditions. This class of problems
is called initial value problems. In initial value problems, the behavior of the system
is defined by an ordinary differential equation (ODE). Various numerical solutions can
be used to solve the ODE’s. Numerical methods used in cloth simulation are discussed
below.

2.2.2.1 Euler’s Method

Euler’s method is the simplest numerical method widely used in the physically-based
simulation community. Given the initial state of the particles, the method takes a for-
ward step in time by a given step size h.

x(t0 + h) = x(t0) + hf(x0), (2.2)

where x is the position and f(x) = ẋ = v is the derivative of the position. The new
velocity at timestep t + 1 is calculated based on the current acceleration at timestep
t. The new position at timestep t + 1 is calculated based on the current velocity at
timestep t. Although it is a very simple and fast method, it has low accuracy. If the
solution was always a line, then Euler’s method would always be exactly correct all the
time. However, the solution is a curve; which makes the method’s accuracy highly de-
pendent on the timestep size used . Large timestep size often leads to less accurate and
possibly numerically unstable simulations. In case of stiff systems, in which the inner
forces produced are relatively large, it is almost guaranteed that using large timesteps
will make the simulation diverge, causing it to produce more and more errors. These
kinds of simulations are called unstable simulations and visually they result in unreal-
istically moving particles. Therefore, for stiff systems, it becomes a necessity to use
very small timesteps to make Euler’s method stable. However, this leads to very poor
performance since the simulation has to compute a large number of timesteps to move
the simulation in time. One can easily see that the problem with Euler’s method is that
the slope calculated at the current position lacks accuracy and is the primary cause of
error generation. The slope can be better approximated in other numerical methods
such as Midpoint and Runge-Kutta methods.

2.2.2.2 Midpoint Method

The midpoint method attempts to correct the problematic slope in Euler’s method by a
two-step process. It first calculates the slope at the current position, moves forward in
time for half of a timestep and re-calculates the slope for the second time. The average
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of the first and second slopes are calculated and it is applied from the initial position
for a full timestep and the next position is calculated.

x(t0 + h) = x(t0) + hf(x0 +
h

2
f(x0)), (2.3)

When evaluating the performance of a numerical solution, one should focus on the
performance of the most expensive step of the method. The most expensive step of
the method is the calculation of the derivative. Since the derivative is calculated twice
for the Midpoint method, the cost of calculating one timestep is more expensive than
Euler’s method. The Midpoint method is said to be second order method because the
derivative is calculated twice. Although its performance is worse than Euler’s method,
it is more accurate and more stable because the calculation of the slope is improved.
This method is also referred as Heun’s method, Improved Euler method or Runge-Kutta
(Order 2).

2.2.2.3 Runge-Kutta (Order 4)

The Runge-Kutta method goes even further and calculates an even better slope than
the Midpoint method. It takes four virtual steps in time and calculates four slopes.
A weighted average of these four slopes are later calculated and multiplied with the
timestep and used to move a step forward in time. The equations of Runge-Kutta (Order
4) are given by:

k1 = hf(x0, t),

k2 = hf(x0 +
k1
2
, t0 +

h

2
),

k3 = hf(x0 +
k2
2
, t0 +

h

2
),

k4 = hf(x0 + k3, t0 + h),

x(t0 + h) = x0 +
1

6
k1 +

1

3
k2 +

1

3
k3 +

1

6
k4

(2.4)

This method is very accurate and stable. However, the cost of calculating one timestep
is very expensive; therefore it is considered to be a very slow method. Eberhardt
[EWS96] was the first the use this method in the scope of cloth simulation.
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2.2.2.4 Backward Euler Method

In the forward Euler’s method, the simulation takes a step into the future in a blind man-
ner, without caring where the next position will be. On the other hand, the backward
Euler’s method forces the simulation to find a final state whose derivative points back
to the initial state. In other words, the derivatives are calculated at the end of the time
step, rather than the beginning. Therefore, the step in the backward Euler’s method is
based on the conditions at the end of the timestep as shown below:

x(t0 + h) = x(t0) + hf(x(t0 + h)), (2.5)

This method requires a solution for a linear system, the performance of the solution
of a single step is worst than the explicit methods. However, the method is extremely
stable and it lets the simulation take very large timesteps, thus resulting in very good
overall simulation performance. In cloth simulation literature, methods like Choleski
factorization and Gauss-Seidel relaxation are used to solve the linear system. The most
widely used method is introduced by Baraff et al. [BW98] in the milestone paper, where
a modified version of conjugate gradient method is used.

2.3 Fluid simulation

2.3.1 Navier-Stokes Equations

In physics, the set of equations governing the motion of fluids are called Navier-Stokes
equations. The first equation is acquired by applying Newton’s second law to motion
of fluids and it is called the momentum equation.

∂u

∂t
+ u · ∇u+

1

ρ
∇p = g + ν∇ · ∇u, (2.6)

where u is the velocity vector, ρ is the density, p is pressure, g is gravitational acceler-
ation and ν is kinematic viscosity. The equation is a form of Newton’s second law of
motion, f = ma. It describes the acceleration of a fluid body due to the forces acting
on it.

The forces acting on the fluid can be categorized in three. The first category of forces
is called the body forces. The body forces are the forces that act on all the particles in
the fluid. The gravity mg is the main body force used. In computer graphics, different
kinds of artificial forces are occasionally used to create various visual fluid effects.
These forces can also be categorized under the body forces.

The second fluid force is pressure. The pressure is symbolized by letter p and it is
defined as the force per unit area over which that force is distributed. Particles move
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from high pressure regions to low pressure regions. If the total forces acting on the
particle is zero, the particle won’t move. The imbalance of pressure around the particle
is what makes it move. The force vector created by the pressure will point away from
the high pressure towards the low pressure. Therefore, the pressure force will be the
negative gradient of pressure (−∇p).

The third fluid force is the viscosity. The viscosity of a fluid is a measure of its resis-
tance to the deformation. The viscosity term can be informally defined as the thickness
of a fluid. For example, the alcohol has very low viscosity, whereas honey has high
viscosity. The viscosity tries to make a particle move at the velocity of neighbor par-
ticles around it. It minimizes the difference of velocity between nearby particles. The
differential operator that measures how far a quantity deviates from the average around
it, is the Laplacian. Therefore, the viscosity force is defined as the Laplacian of velocity
multiplied by the viscosity constant. (ν∇ · ∇u)

The sum of all these forces should describe how the fluid accelerates. Using F = ma,
the forces should sum to ma. The acceleration in the equation should be described as

a =
Du

Dt
(2.7)

Du/Dt is the material derivative. In continuum mechanics, the material derivative
describes the time rate of change of some physical quantity for a material element
subjected to a space-and-time-dependent velocity field. It can be defined as:

d

dt
q(t,x) =

∂q

∂t
+∇q · x

dt
=
∂q

∂t
+∇q · u =

Dq

Dt
(2.8)

There are two terms constituting the material derivative. The first one is ∂q/∂t. It
measures how fast the quantity q changes at a fixed point in the fluid. The second one
is ∇qu. It measures how much of the total change is due to the fluid flows passing
through that region. Putting all three forces together, dividing all terms by volume V
and defining the fluid density as ρ = m/V , we can get to the Equation 2.6.

The second Navier-Stokes equation is the incompressibility condition and it reads:

∇ · u = 0 (2.9)

It states that the divergence of the velocity field should be zero. Divergence is a vector
operator that measures the magnitude of a vector field’s source or sink at a given point,
in terms of a signed scalar. More technically, the divergence represents the volume
density of the outward flux of a vector field from an infinitesimal volume around a given
point. Therefore, by using this equation, it is guaranteed that fluid entering and exiting
a specific region of the fluid will be in balance. Thus, the fluid will be incompressible.
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2.3.2 Lagrangian Vs. Eulerian Approaches

There are two major approaches to model fluid. The first approach is the Eulerian ap-
proach and it is commonly described by finite difference method [And95][Hir88][Wil99].
The methods based on the Eulerian perspective are called fixed grid methods. In these
methods, the field quantities such as velocity, temperature, density are measured at
fixed regions in space. The fluid flows through these fixed regions and might poten-
tially change the field quantities, like changing the temperature or velocity of a given
region. Eulerian methods are extensively used in computational fluid dynamics. Almost
all hydrodynamics problems can be solved using these methods. Even simulations with
large deformations such as explosions are numerically solved with fixed grid methods
[Ben92] [CA87]. However, these methods have some known disadvantages.

First, it is very hard to simulate complex fluid geometries using this method. The sim-
ulations of breaking waves and water splashes are some examples of these complex
geometries. It should often be coupled with a mesh generation process to map the
complex geometry of the fluid to the problem domain. Second, the motion of the fluid
cannot be tracked with a fixed mesh. It is only possible to have the time history of the
field attributes. Third, the movement and the deformation of free surfaces are difficult to
determine because of the fact that Eulerian methods track the mass and momentum on
the cell boundaries. Finally, the size of the grid cells can cause computational complex-
ity. Eulerian methods have to use a grid to completely cover the fluid body. Considering
the fact that the grid should also cover regions where the fluid might potentially flow,
the use of a coarser grid can be the only way to eliminate the computational complexity.
As a result, increasing the resolution of the grid brings about a decrease in the accuracy
of the simulation.

The second approach is the Lagrangian approach and it is generally represented by
the finite element method [ZT00] [LQ03]. The Lagrangian approach is considered as
material description due to the fact that the field quantities such as velocity, temperature,
density are carried on the particles that constitute the fluid. The Lagrangian methods
have numerous advantages. First, convective terms don’t exist in the formulations;
thus leading to a simpler and faster simulation. Second, since the field variables are
measured on the particles, it is possible to track the history and the evolution of a given
field variable on the desired part of the fluid. Third, simulating the complex geometries
like water splashes and breaking waves do not pose any problems. These situations
can be easily taken care of using an irregular mesh. Last but not least, since the grid
is only defined on the problem domain, there is no need for extra grid regions outside
the problem domain. Consequently, the Lagrangian methods are faster in terms of
performance.
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2.3.3 Smoothed Particle Hydrodynamics (SPH)

Smoothed Particle Hydrodynamics (SPH) is a mesh-free, particle-based Lagrangian
method. SPH was first used to model astrophysical phenomena [GM77] [Luc77]. Since
then, it has been used in fields such as astrophysics, ballistics, volcanology, oceanogra-
phy, and fluid mechanics.

SPH has several advantages when compared against grid-based methods. First, SPH
has an adaptive nature. The field attribute values are calculated on each timestep based
on an arbitrary distribution of particles. Thanks to the smoothing kernel functions used
in the formulations, even though the particles are unevenly distributed, field attributes
can be calculated in a smooth manner throughout the fluid. This feature gives SPH
the ability to successfully handling situations with large deformations. The second
advantage is mesh-free structure. The adaptive nature allows SPH to have a mesh-
free structure, in which there is no connectivity among particles. This structure comes
in handy when dealing with problems where finite element methods have difficulties.
Another important advantage of the method is that Lagrangian approach matches well
with the particle-based structure. Particles carrying field attributes move due to external
forces and inner interactions. By acting as both approximation points and material sub-
structures, particles gain neat dual functionality.

SPH has a vast literature and there has been numerous review papers and books pub-
lished on SPH [Ben90, Mon92, LL03]. In some resources the method is mentioned as
Smoothed Particle Mechanics, as it is occasionally applied to solid mechanics prob-
lems. Only a selected set of papers will be mentioned here. SPH was first discovered
by Gingold and Monaghan [GM77] and Lucy [Luc77] and it was used to model as-
trophysical phenomena. Following its initiation, SPH was used for the simulations of
stellar collisions [Ben88] [Ben90] [Mon92] [FJ99], supernovas [HP99], formation of
galaxies [ML91] and detonation of white dwarves [SBW99].

The first applications of SPH to the area of fluid dynamics include the simulations of
elastic flow [Swe92], multi-phase flows [MK95], quasi-incompressible flows [Mon94]
[MM97], flow through porous media [MYF99] [YFM99], heat conduction [Mon95]
[CBC99] and shock simulations [MG83] [Mon89] [MM97].

In this section, we focused on a global review of SPH. We will narrow down our lit-
erature review of SPH to fluid simulation in computer graphics in Chapter 4. The first
method to introduce SPH into Computer Graphics [MCG03] and its implementation
details will be presented in Section 4.3 along with other SPH applications on the fluid
simulation.
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2.4 Shear Thickening Fluids

The simulation of shear thickening fluids involves concepts from different disciplines.
We first review the previous work in physics that attempt to explain the behavior of
shear thickening fluids. Then we shortly review a group of rheology and physics pa-
pers that use fractional calculus based approaches to describe the behavior of non-
Newtonian fluids and viscoelasticity. The work in computer graphics that tackles the
problem of simulating non-Newtonian or viscoelastic fluids is very limited yet most
relevant to this dissertation. This group of work will be detailed in Chapter 5.

2.4.1 Physics and Rhelology

While several models exist for shear thickening, none have been able to quantitatively
predict the dramatic impact resistance observed in dense suspensions such as cornstarch
and water. One long-standard model for shear thickening attributes the increased dissi-
pation rate of shear thickening to lubrication forces in the small gaps between densely
packed particles [BB85] [WB09]. As the particles are sheared together the lubrication
forces increase and the particles form ‘hydroclusters’ that separate slowly because of
the large lubrication forces. Shear thickening is expected when the shear rate exceeds
the relaxation rate of these hydroclusters. While this model has successfully described
weaker shear thickening at intermediate packing densities, the calculated increase in
effective viscosity has been no more than about a factor of 2. When this model is ap-
plied to a situation such as an object impacting a dense suspension, the object would be
predicted to sink through the suspension with very little reduction in speed.

Another popular model connects shear thickening to dilatancy of a densely packed gran-
ular material. When a densely packed suspension is sheared, the particles form force
chains between particles in contact and the packing dilates (expands), which causes it
to push against the boundaries of the system. The boundaries can then apply a force
that propagates back along the force chains. In this model, the energy dissipation in the
dilated state comes from solid friction between particles, with forces determined by the
stiffness of the boundary. This model has quantitatively explained orders-of-magnitude
increase in viscosity observed in shear thickening suspensions in shear rheometry mea-
surements, where the relevant boundary is usually the suspension-air interface and the
stress is due to surface tension [BJ12]. However, the dramatic impact resistance ob-
served in suspensions requires a larger effective viscosity that is still larger than found
in these shear measurements by orders of magnitude.

A model that is specific to impact response was developed by Waitukaitis and Jaeger
[WJ12], where they suggested that colliding particles collect to form a transient solid
front that develops underneath the impact site and propagates downward. They found
that for fast impacts in a deep pool of dense suspension, the deceleration of an impacting
object could be accounted for by conservation of momentum as this solid region acts as
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an effective mass accumulating on the end of the impacter. However, this deceleration
is still not strong enough to account for the observations that a person can run on top
of the surface of the fluid, for example. They also found that if the solid front reaches
a hard wall at the bottom of the suspension before the impacter sinks in too far, the
impacter may bounce off the surface of the fluid, demonstrating a storage of elastic
energy either in the fluid or propagated through the fluid.

All of the aforementioned models predict forces that are at least an order-of-magnitude
too small to explain the observation of a person running on top of a dense suspension,
and a physical mechanism that can account for the most dramatic impact resistance is
still unknown. No physics-based simulations have yet been able to show such dramatic
impact resistance.

The importance of hysteresis (history effects) is recently emphasized for the correct
description of the fluid. Deegan [Dee10] showed that indentations in the surface of a
vibrated shear thickening fluid only become stable if there is hysteresis in the viscosity
function. In a different study, Kann et al. [KSL11] suggested that oscillations in the
velocity an object sinking in shear thickening fluid may also be due to hysteresis in the
viscosity function.

2.4.2 Fractional Calculus and Viscoelasticity

Even though our model is the first to use fractional calculus for the simulation of non-
Newtonian fluids in the realm of computer graphics, the approach comes from existing
models developed in the physics and rheology fields. Fractional calculus is popular for
describing the complex dynamics of relaxation, oscillation and viscoelastic behavior
seen in non-Newtonian fluids. In general, fractional calculus is employed by replac-
ing the time-derivatives of strain and stress in well-established ordinary models, by
derivatives of fractional order. This results in a more appropriate model for fluids that
exhibit both viscous and elastic behaviors. A detailed literature review on the attempts
of using fractional derivative models to non-Newtonian fluids in order to obtain ana-
lytic solutions is presented in [QJ09]. The first work to adopt fractional derivatives to
the problem of viscoelasticity was presented by [Ger38]. Following its introduction,
fractional derivative based methods quickly gained momentum in the field and a num-
ber of studies has been conducted. Bagley and Torvik [BT83] demonstrated predictive
constitutive relations based on fractional derivatives for the viscoelasticity of coiling
polymers. Makris et al. [MDC93] was able to successfully fit a fractional deriva-
tive based Maxwell model to the experimental data, hence showing that a fractional
Maxwell model can replace the Maxwell model for silicon fluids. Later, other applica-
tions of fractional Maxwell model are presented. In [HP08], a one-dimensional frac-
tional derivative Maxwell model is used for modeling the linear viscoelastic response of
some polymers in the glass transition. Palade et al. [PAH99], reduced the constitutive
equation for the incompressible fluid to the linear fractional derivative Maxwell model
in the context of small deformations hypothesis.
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CHAPTER 3

Underwater Cloth Simulation with Fractional
Derivatives

Figure 3.1: Our cloth model based on fractional derivatives is able to achieve realistic
underwater behavior.

This chapter introduces the use of fractional differentiation for simulating cloth de-
formations underwater. The proposed approach is able to achieve realistic underwater
deformations without simulating the Eulerian body of water in which the cloth is im-
mersed. Instead, we propose a particle-based cloth model where half-derivative vis-
coelastic elements are included for describing both the internal and external dynamics
of the cloth. These elements model the cloth responses to fluid stresses and are also
able to emulate the memory-laden behavior of particles in a viscous fluid. As a re-
sult, we obtain fractional cloths, which are able to correctly depict the dynamics of the
immersed cloth interacting with the fluid even though the fluid is not simulated. The
proposed approach produces realistic underwater cloth deformations and has obvious
advantages in simplicity and speed of computation in comparison to volumetric fluid
simulation approaches.

3.1 Introduction

Cloth simulation has been a central topic in physically-based computer animation.
Since the introduction of the first models of deformable surfaces [TPB87, TF88] sev-
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Figure 3.2: Examples of internal effects produced by the viscoelastic spring elements
in our fractional cloth formulation.

eral research groups have achieved impressive cloth simulation results and their effects
are now commonly seen in computer-generated movies and even in interactive applica-
tions such as in 3D computer games. Although several extensions have been proposed
in the cloth simulation domain, no specific attention has been given for extending the
regular spring mesh cloth model for producing deformations that simulate underwater
behavior.

One logical approach for simulating cloth underwater is to embed the cloth model in a
fluid simulation system. Such a coupled system can then be solved in different ways, for
instance by coupling the Eulerian fluid to a Lagrangian (particle-based) cloth [RSG08],
or also by a fully Lagrangian model [MST04]. Although required for accurately model-
ing the problem, such approaches are expensive to compute as they perform volumetric
simulations of the Eulerian fluid surrounding the cloth surface. In particular for the
cases when only the deformations of the immersed cloth are needed, a simplified sim-
ulation model would be much more practical.

This chapter builds on the key observation that the total force acting on an oscillating
particle immersed in a Newtonian fluid is composed of force contributions which are
proportional to: 1) the acceleration of the displaced fluid (the virtual mass force), 2)
the velocity of the particle (the Stokes drag), and 3) the so-called history (or Basset)
force, which accounts for history effects of the moving flow around the particle. These
contributions can be derived exactly from the Navier-Stokes equations for the limit of
small particles in viscous fluids at low Reynolds numbers. Most importantly, Coimbra
and Rangel [CR98] have showed that the Basset force is mathematically equivalent to
the half-derivative of the differential velocity between the particle and the far-stream
flow.

Motivated by these observations we propose a cloth deformation model which employs
the concept of non-integer derivatives for achieving underwater deformation effects.
By doing so we obtain fractional cloths, which are able to simulate the dynamics of a
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Figure 3.3: The cyclic motion applied to the top of this simulated piece of cloth gener-
ates realistic bump propagations.

network of immersed particles without performing expensive volumetric fluid simula-
tions. The complex inertial-viscous balance between the cloth and the fluid is computed
in our model by half-derivative terms, which dynamically modulate the cloth damping
according to the previous states of the cloth, i. e., the cloth history.

An overview of fractional calculus for modeling the motion of particles is previously
given in Section 2.1. After discussing related work in the following section we present
our cloth model in Section 3.3. Finally, Section 3.4 presents and discusses the several
obtained results and Section 3.5 concludes the chapter.

3.2 Related Work

Cloth simulation is a main topic in computer animation and a rich literature is available
[CYM92, BHW92, Pro95, EWS96, VCT95, BW98, HB00, CK02a, TPB87, TF88]. We
focus our review on how damping has been used in previous works.

Damping has always been an important aspect of cloth simulation systems. It has been
mainly addressed as a viscous drag force with the goal of resisting motion, making
particles gradually come to rest in the absence of other influences [BW97]. The viscous
drag force is generally perceived as an external force proportional to the velocity: F =
−kdẋ [TPB87, TF88, Pro95], and is sometimes mentioned to be applied opposing the
normal direction of the cloth surface [BW98, SSI09].

Damping has also been used as an internal force applied to particles from interaction
with other particles. This type of damping is usually coupled with stretch, shear and
bend forces, and is justified by the several benefits to the simulation: numerical stability,
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oscillation prevention [BW98] and intrinsic damping property of fabrics [CK02a]. The
damping force in this case is proportional to the relative velocity between a pair of
connected particles, and is usually computed as F ij = −kd(ẋi − ẋj), where ẋi and ẋj

are the velocities of the interacting particles i and j [DSB99, CK02a, HES03].

One particular way of including internal damping forces is proposed by Baraff and
Witking [BW98] , where the damping forces only depend on the components of the
velocities in the directions of each maintained condition (stretch, shear and bend). In
contrast, other works are less detailed in the description of the used damping mecha-
nism [EWS96, VCT95].

Models have also been proposed for achieving realistic cloth deformations under air
flows. In particular, Ling et al. [LDG96] and Ling [Lin00] consider incompressible,
irrotational and inviscid airflows, and employ two aerodynamic models to compute
forces in response to the airflows. They used a quasi-steady force model to deduce the
airflow effects from constant or slowly changing free stream velocities. An unsteady
force model is used for the cases where the free stream velocity of the air flow changes
rapidly and the flow relative to the cloth becomes unsteady.

Tu and Terzopoulos [TT94] describe one of the few works attempting to achieve un-
derwater behaviors with a spring-mass system. They incorporate external forces which
depend on the relative velocity between the surface of a deformable fish and the fluid.
These forces are normal to the fish surface (similar to a damping force) and are used to
achieve realistic locomotion underwater. The new half-derivative terms introduced by
our work include additional fluid responses and could also be used to achieve locomo-
tion patterns.

To sum up, we propose in this chapter the concept of employing damping forces which
are modulated by half-derivative viscoelastic elements that simulate the Basset drag in
Stokes flows. As explained in Section 2.1, our viscoelastic elements are made propor-
tional to the half-derivative of the displacements in order to capture the macroscopic
behavior of the whole cloth underwater. Our approach elegantly models the most im-
portant contributions of the history drag on the motion of the cloth and is able to pro-
duce realistic underwater deformations simulating the viscoelastic cloth-fluid interac-
tion. We also address for the first time the topic of simulating underwater cloth behavior
without recurring to a volumetric fluid simulation system.

3.3 Fractional Cloths

The mesh structure of our cloth model is based on the scheme presented by [CK02a].
The cloth is represented as a quadrilateral mesh of particles. Instead of regular damped
springs, our particles are connected to each other by massless viscoelastic spring ele-
ments. There are three types of spring elements, which are responsible for the stretch,
shear and bend forces as shown in Figure 3.5. The connectivity of the springs is
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Figure 3.4: The left two figures show consistent propagation of waves caused by a
sphere interacting with the cloth model. The right two figures show examples obtained
with the cloth top edge being energetically moved sideways. The obtained long lasting
wave propagations demonstrate consistent cloth-water inertial responses captured by
the viscoelastic half-derivative terms of our fractional cloth model.

described in the following way: a particle indexed by p(i, j) is connected by stretch
springs to its neighbor particles indexed by p(i ± 1, j), p(i, j ± 1). The shear springs
connect the particle to p(i ± 1, j ± 1), and the bend springs connect the particle to
p(i± 2, j), p(i, j ± 2) and p(i± 2, j ± 2).

3.3.1 Forces

The dynamics of the system is governed by Newton’s second law of motion F =
ma, where m is the mass and a is the acceleration of a particle. The acceleration
is computed at every time step based on the total force F applied to the particle, and
which accounts for all external and internal forces.

The included external forces are: the gravitational force, the buoyancy of water, a reg-
ular viscous drag, and the history drag. The gravitational force and the buoyancy are
computed together with:

F g = (ρc − ρw)Vc g, (3.1)

where ρc is the density of a cloth particle, ρw is the water density (approximately 1000
kg/m3), Vc is an estimation of the volume of one cloth particle and g is the gravitational
acceleration. The specification of different material densities will lead to different be-
haviors, ranging from a material which floats to one which quickly sinks. Correctly
specifying the density of a wet material is not trivial; however, for the scope of com-
puter animation applications the density can be seen as a parameter which can be fine-
tuned in order to achieve different material properties.

External forces for modeling underwater currents can also be added to the global F g
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Figure 3.5: Cloth is represented as a quadrilateral mesh of particles. The particles are
at the intersection points of horizontal and vertical lines. The particles are connected
to each other by elastic springs. The connectivity of stretch, shear and bend springs are
also shown.

force term. In our simulations, we tuned ρc and Vc such that the particles slightly sink in
direction of the gravity force, similar to the behavior observed in real submerged cloths
(see Figure 3.7). F g is considered to be constant in the scope of this paper.

The regular viscous drag is responsible for dissipating kinetic energy and is modeled
with:

F vd = −kvdẋ, (3.2)

where kvd is the viscous drag coefficient and ẋ = v, is the velocity of the particle.
Here we employ the viscous drag force opposing the velocity vector since this choice
has showed to produce better results than other options, as for instance using a force
opposing the surface normal. The history drag is then added to account for the inertial
responses with the fluid and is computed as:

F hd = −khd (D1/2x · v̂) v̂, (3.3)

where khd is the history drag coefficient and v̂ = v/|v| is the unit velocity vector.

As discussed in Section 2.1, the history drag is a half-derivative of the displacements,
however note that the drag force should oppose the direction of movement and therefore
Equation 3.3 projects the computed half-derivative in the velocity direction. By includ-
ing the viscous drag and the history drag with different coefficients a greater flexibility
can be obtained in fine-tuning the overall drag effect.

The internal forces acting on a particle are the forces which originate from the stretch,
bend and shear viscoelastic spring elements connected to each particle. The spring
forces are responsible for all the internal deformation responses of the cloth and their
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formulation also includes a half-derivative term. The spring force F s exerted on par-
ticle i by the fractional viscoelastic spring element that links particle i to particle j, is
formulated as:

F s = −ks(|l| − r)
l

|l|
− kd

[
(D1/2xi −D1/2xj) · l

|l|

]
l

|l|
, (3.4)

where l = xi − xj is the difference between the positions of the two particles, r is
the rest length of the spring, kd is the viscoelastic damping constant and ks is the linear
spring constant. Note that while a regular damped spring would have the damping pro-
portional to the first time derivative of the position, our spring element has the damping
proportional to the half-derivatives D1/2xi and D1/2xj , achieving the memory-laden
viscoelastic damping term.

3.3.2 Computing the Half Derivative Terms

Although the history integral of Equation 2.1 is singular, it can be numerically in-
tegrated with a consistent, first-order accurate, approximation suggested by Coimbra
[Coi03], which is an adaptation of the algorithm for general convolution of integrals.
The 1/2 order derivative of x can thus be expressed as:
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ẋn

(0.1h)1/2

]
, (3.5)

where h is the timestep, i is the timestep index and n is the index of the most recent
computed timestep.

As can be seen in this formulation, the system is storing and reusing the information
of the past in order to calculate the current state. Note that the integral in the equation
takes all the previous states of the simulation into consideration. At this point, an
obvious problem quickly presents itself. Taking into account all the previous states for
computing the current state clearly imposes a serious computational barrier. However,
a careful analysis of Equation 3.5 will show that actually only the most recent terms are
important to be considered.

Note that the right hand side of Equation 3.5 is a summation of weighted velocities.
The weights in the summation cannot be computed in advance as they are different at
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each timestep of the simulation. However by analyzing the evolution of these weights
(see Figure 3.6), it is possible to observe that their values decay rapidly as we move
away from the current state to the past. Therefore, the most recent states have much
more influence on the final result of the equation than the states which are far away
in the past and we can safely account only for a few of the most recent states when
computing the summation of Equation 3.5.
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Figure 3.6: The plot shows the rapid decay of the weights as we move away from the
most recent timestep index n = 100.

To illustrate the evolution of the weights we have computed their values for different
simulation settings. The plot in Figure 3.6 shows the decay of the weights as a function
of the timestep index i, and for three different values for the timestep h. It is possible to
observe that the states closer to the most current timestep (i = n, n− 1, n− 2) clearly
have much greater influence than the states further in the past.

We have also tested experimentally the effect on simulations with different numbers of
previous states taken into account. Let u be the number of previous states considered
in Equation 3.5, such that for a given u the summation index i will vary from n+ 1−u
to n − 1. We indeed noticed that the change on the cloth behavior gets very small for
u > 3. We therefore found u = 3 to be a good value for the performance/realism
tradeoff. While greater values of u will increase the realism of the fluid response effect,
the computational cost is also increased.

In Section 3.4 we present comparative results with real submerged cloths showing that
the chosen u = 3 achieves sufficiently realistic results.

3.3.3 Numerical Integration

The addition of the fractional derivative terms into the equation of motion of the cloth
requires the solution of a Fractional Differential Equation (FDE). Both the explicit and
implicit numerical solution techniques available for Ordinary Differential Equations
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Figure 3.7: Comparisons between real cloths and simulated fractional cloths. In each
example, a cyclic motion is applied to the top edge of the cloth. The simulations with
the orange cloth model produce bumps which are well formed and which propagate
in a consistent way, similarly to the ones observed in the real cloths. The red cloth
simulation reproduces similar fine details in the interior of the cloth.

(ODEs) can be extended to FDE’s.

Our present work does not focus on developing and comparing different integration
methods, and in this thesis we have implemented an explicit Euler integration step in
order to test and investigate the results achieved by our model. At each timestep the
accelerations are computed from the overall force contributions to each particle, and
then the system takes one step with:

x(t+ h) = x(t) + hv(t),

v(t+ h) = v(t) + ha(t).
(3.6)

The explicit step has been sufficient for the examples simulated in this work and the
inclusion of the half-derivative terms does not affect the stability of the integration.
Coimbra [Coi03] suggests an improved explicit method for solving a 2nd order differ-
ential equation with a general order damping term by using an adaptation of the Euler
method. The approach approximates the first and second derivatives of x using a for-
ward finite-differences method and uses an explicit marching method for the solution
of the initial value problem.

Numerical solution techniques for FDEs consisting of an explicit predictor step fol-
lowed by an implicit corrector step have also been developed [DFF05, Coi03]. For stiff
equations these methods can be improved by repeatedly iterating the corrector step until
a desired convergence is reached.

In addition to these methods, fully implicit integration schemes such as the approach
suggested by Baraff and Witkin [BW98] can also be adapted to solve our FDEs. The
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required partial derivatives of the half-derivative terms can be obtained by computing
the partial derivatives of the Riemann-Liouville differential operator (shown in Equa-
tion 2.1).

3.4 Results and Discussion

Figures 3.1-3.4 present several results obtained with the proposed fractional cloth model.
In order to demonstrate the capabilities of our model we have also compared our results
against real pieces of cloth deforming underwater. The underwater behavior of real
cloth is recorded through an underwater camera as shown in Figure 3.8

Figure 3.8: The underwater behavior of real cloth is recorded through an underwater
camera.

Figure 3.7 shows several comparisons with real cloths immersed in a swimming pool.
We tested the behavior of different kinds of fabrics underwater and rectangular shaped
fabrics were the most suitable for performing the presented comparisons. Several of the
fabrics just floated because they were not dense enough and cotton towels worked best
for the experiment. Basic patterned movements such as swinging the cloth back and
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forth, pulling it left and right, etc, were then applied to the immersed pieces of cloth for
comparison with our simulated results. These simple motions were selected with the
purpose to facilitate the evaluation of the comparisons.

It is possible to notice that when swinging the cloth back and forth, the cloth forms deep
bumps which slowly and consistently propagate from the source of the applied motion
(the top edge) towards the other end of the fabric (the bottom edge). The created bumps
consistently last until the bottom edge of the cloth is reached and this behavior is a
good justification of how fractional derivatives with their history-laden properties are
suitable for simulating an underwater cloth. Fractional cloths are able to realistically
simulate these observed effects as shown in Figure 3.9.

Figure 3.12 compares our fractional model with three regular cloth simulation models
based on damped springs subjected to different drag forces. Note that all the cloths
are under water buoyancy and the first three models do not include fractional terms.
The first cloth model is affected by both viscous drag and normal drag forces. The
second model is only affected by viscous drag forces. In the third model we only
used normal drag forces. The employed normal drag force worked best in its linear
form: −kd(ẋ.n̂)n̂. In all cases we fine-tuned the drag coefficients in order to get as
close as possible to the observed underwater behavior. These three regular models
represent our best attempts to achieve underwater effects by tuning as much as possible
the parameters of regular cloth deformation systems. As can be observed in Figure 3.12,
although regular models are able to form some of the observed bumps, they are not
always well shaped and several times they are overly long, covering the whole extent
of the fabric and giving the cloth a bent look. The long-lasting shape and the consistent
propagations cannot be correctly simulated with regular models.

In the right-most column of Figure 3.12 we show results obtained by our fractional cloth
model. The parameter settings are the same as the ones used in the regular models, but
now the internal damped springs are replaced by the viscoelastic spring elements and
the history drag force F hd is added. We can therefore evaluate the new effects produced
by the half-derivative terms. The comparisons in Figure 3.12 show that fractional cloths
were able to best reproduce the observed behavior of the real immersed cloths. The
simulations formed well-shaped and deep bumps which were locally formed near the
motion source (the top edge) and did not cover the whole extent of the cloth, similarly
to the behavior observed in the real cloths.

While the performed comparisons (Figures 3.7 and 3.12) provide objective evaluations
of our method in respect to global behaviors, the additional animations presented in
Figures 3.1, 3.2, 3.4 and 3.11 show several realistic local deformation effects obtained.

We have also compared the behavior of our fractional cloth model against a regular
model in a situation with more energetic motions. The simulated scene consists of a
cloth model colliding and interacting with a moving solid sphere, as shown in Fig-
ure 3.10. The same simulation was performed with both our fractional model and our
best regular cloth model, which is the one using only normal drag forces. The ob-
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tained animations show that our fractional model can clearly generate waves on the
cloth which propagate more consistently and which last longer, in comparison with the
regular model. These animations are available in the videos accompanying this work.

Our simulations were conducted on a 2.4 GHz Intel Core 2 Duo desktop computer.
Cloth meshes of both 2501 particles in a 61 × 41 mesh grid and 651 particles in a
31× 21 mesh grid were used in the swinging simulations in order to observe the result-
ing effects of fractional terms in models with different resolutions. These simulations
were performed with u = 3, i.e., using 3 states in the past for the computation of
Equation 3.5. In order to handle collisions, these simulations also include a standard
collision avoidance repulsive force opposing the direction of potential collisions. The
implementation of the cloth with 31 × 21 mesh grid achieved the average computa-
tion time of about 9 frames per second for each cloth piece. The same simulations,
when performed with the regular cloth models (without the fractional terms), could be
computed in the order of 2 to 3 times faster, however without achieving the underwa-
ter behaviors. In contrast, reported times taken by complete fluid simulation systems
commonly run in the order of a few minutes to several hours per frame of simulation in
high performance machines [RSG08].

One of the caveats of our approach is that the large scale interactions of the flow with
the cloth are not modeled. The same is true for the flow disturbances caused by the
cloth from other regions in the flow. The model does however include the implicit
effect of the presence of the cloth in the flow in the vicinity of each node of the calcu-
lation, and with this effect it is able to produce realistic results at a small fraction of the
computational resources needed to model the two-way coupling between the flow and
the cloth.

3.5 Conclusions

We have introduced a new methodology for modeling immersed deformable models
which is based on the use of Fractional Calculus and we have demonstrated that our
fractional cloth model is able to achieve realistic underwater behavior. We have also
presented several results which clearly demonstrate the benefits of our method. The
introduction of the history terms computed by the half-derivatives proves to be very
effective in achieving the expected viscoelastic behaviors of the immersed cloth.

The fact that realistic behaviors can be achieved without modeling or simulating the
body of water is remarkable and the proposed approach will prove itself useful to a
number of applications employing deformable objects. For instance, the presented
methodology can be integrated into the deformation equations of any spring-based
structures such as the ones used in hair simulation or in several volumetric models
common in surgical simulations. We believe that fractional derivatives coupled with
physically based models have the potential to impact several applications in computer
graphics.
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Figure 3.9: The figure shows the side-by-side comparison of our cloth model against
the real cloth.
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Figure 3.10: The figure shows the response of cloth when contacted with a solid sphere
in various ways.

Figure 3.11: The figure shows snapshots from underwater dance animation.
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Figure 3.12: Comparisons between regular cloth deformation models using various
drag models (left three columns) and fractional cloths (right-most column).
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CHAPTER 4

Simulating Colliding Flows in SPH with Fractional
Derivatives

Figure 4.1: Example of a typical SPH simulation scenario. As demonstrated in several
evaluations, our Fractional SPH model will improve the realism of the simulation in a
chosen resolution.

This chapter describes a method based on fractional differentiation for improving the ef-
ficiency and realism of simulations based on Smoothed Particle Hydrodynamics (SPH).
SPH represents a popular particle-based approach for fluid simulation and a high num-
ber of particles is typically needed for achieving high quality results. However, as the
number of simulated particles increases, the speed of computation degrades accord-
ingly. The proposed method employs fractional differentiation to improve the results
obtained with SPH in a given resolution. The approach is based on the observation
that effects requiring a high number of particles are most often produced from colliding
flows, and therefore, when the modeling of this behavior is improved, higher-quality
results can be achieved without changing the number of particles being simulated. Our
method can be employed to reduce the resolution without significant loss of quality, or
to improve the quality of the simulation in the current chosen resolution. The advan-
tages of our method are demonstrated with several quantitative evaluations.
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4.1 Introduction

The method of Smoothed Particle Hydrodynamics (SPH) has become a popular particle-
based approach for fluid simulation because results incorporating complex interactions
(e.g., splashes, coupling, etc.) can be obtained with relatively modest computational
complexity [DC96, MCG03, ODA07, BT07, SP09]. Key to the quality of the results is
the determination of an appropriate number of particles achieving sufficient volumetric
density. While better results are, in principle, obtained with high concentrations of par-
ticles, the computational penalty is significant. Even if specific data structures are used
to improve the computation performance, it is always a main concern in practical appli-
cations to reduce the computational time while still obtaining high quality simulation
results. This topic is central to the effective implementation of SPH applications, due
its suitability to high frame rate interactive applications such as for interactive virtual
worlds.

This chapter presents a novel approach to address this problem with the introduction of
fractional derivatives [OS74] [Pod99] to the SPH equations. The proposed method is
able to achieve high quality simulation results with a relatively lower number of par-
ticles, achieving results similar to the ones obtained with higher resolution simulation
(see Figure 4.1).

Our work is based on the observation that in regions of the fluid where the flows do not
collide, a low resolution representation can still correctly represent the fluid because
the flows evolve steadily in those regions. However, in regions where the flows collide,
the responses to be simulated are higher in number and complexity and a low number
of particles will not adequately capture all the occurring phenomena. In these situa-
tions, we show that the introduction of a history-laden viscous effect based on fractional
forces will restore some of the lost behavior and improve the collision representation,
leading to a lower concentration model that yields realistic behavior comparable to the
ones obtained with higher concentrations of particles.

It is reasonable to expect that fractional terms can compensate for the loss of informa-
tion in a particle-based flow and restore the expected behavior of the small volume of
water represented by each particle. Fractional derivatives have been demonstrated to ef-
ficiently model memory-laden effects that are observed in immersed particles [CR98].
The force contributions acting on an oscillating particle immersed in a Newtonian fluid
are proportional to: 1) the acceleration of the displaced fluid (the virtual mass force),
2) the velocity of the particle (the Stokes drag), and 3) the so-called history (or Basset)
force, which accounts for history effects of the moving flow around the particle. In
the limit of infinitesimal particle Reynolds numbers, the formulation including steady
Stokes drag, virtual mass and the Basset fractional term is exact. These contributions
can be derived directly from the Navier-Stokes equations for the limit of vanishingly
small convective effects. Coimbra and Rangel [CR98] have shown that the Basset force
is mathematically equivalent to the half-derivative of the differential velocity between
the particle and the far-stream flow. These results indicate that the behavior of im-
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mersed particles can be well represented with models based on fractional derivatives.
The concept has been well demonstrated by Ozgen et al. [OKR10] on the problem of
simulating cloth deformations with underwater behavior.

Our model compensates for the loss of information in a lower resolution simulation by
adding a half-derivative viscosity in the regions of the flow detected to have significant
variations in velocity, a situation that happens in colliding flows. When the simulation is
implemented with low concentration of particles, local particle-particle interactions are
not enough to correctly depict the flow interactions and memory-laden half-derivatives
are used to compensate for the resolution decrease.

4.2 Background and Related Work

Smoothed Particle Hydrodynamics (SPH) has a long history in physics, developed in
1977 by Gingold and Monaghan [GM77] to model astrophysical phenomena, and ex-
tended to solve many problems in continuum mechanics. There are many uses of par-
ticle systems in Computer Graphics, however discrete formulation of continuous fields
by particles was first introduced by Desburn et al. [DC96] for simulating highly de-
formable bodies. Muller et al. [MCG03] reached very promising results in particle-
based fluid simulation for interactive applications using the SPH method. A very de-
tailed study of SPH since its first emergence is presented by Monaghan [Mon05].

In recent years, new variations to the standard SPH models have also emerged. Solen-
thaler [SP09] proposed the PCISPH method for reducing the computation time of stan-
dard SPH and increasing the incompressibility of the fluid by employing a prediction-
correction scheme based on particle pressures. Raveendran [RWT11] introduced a hy-
brid approach that uses a Poisson solver along with a local density correction step to
increase the stability of SPH method in higher time steps. Solenthaler [SG11] pro-
posed a two-scale simulation by merging the results from low and high resolution sim-
ulations running simultaneously. Adaptive time steps are employed by Ihmsen and
Adams [IAG10, APK07] in SPH methods to increase the stability of the simulations.
SPH applications based on parallel computing are also proposed by various groups
[IAG10, IAB11, HKK07].

Several researchers have addressed the behavior of fluid flows in Computer Graphics.
Elcott et al. [ETK07] modeled the fluid flows by satisfying the conservation of circu-
lation along arbitrary loops. The nature of flows flowing through porous materials is
described by Lenaerts et al. [LAD08] with the combination of SPH and the Law of
Darcy. The behavior of turbulent fluids is defined using a large-scale numerical solver
and physical energy models in [NSC08]. Pfaff et al. [PTS09] handles turbulence around
objects immersed in flows by modeling turbulence formation with averaged flow fields.
Another interesting work is the study of viscoelastic incompressible fluids in which
additional elastic terms are integrated in the Navier-Stokes equations [GBO04a]. In
Treuille [TLP06], a real-time method for acquiring detailed flows with a small number
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of basis functions is presented. Our present work contributes to the field by introducing
fractional derivatives as a new tool for improving fluid simulations.

In Section 2.1, we discuss the fundamental results on the motion of the particles in
unsteady viscous fluids by [CR98] [LCT05]. Motivated by these results, in this chapter,
we aim to increase the physical accuracy of simulating flow collisions in low resolution
simulations by utilizing a fractional derivative model. We thus propose a new SPH
model with half-derivative viscosity terms to compensate for the loss of information in
low resolution simulations.

Our proposed model uses history-laden viscous terms that are made proportional to
the half-derivative of the relative particle displacements in order to better capture the
macroscopic behavior of colliding flows. We consider the history effects of interest
by applying the half-derivative operator to the relative particle displacements. The
achieved model is able to simulate the different inertial responses among the particles
in an efficient way, while capturing the intermediate mechanical behavior between pure
elasticity and pure viscosity.

The proposed model is presented in the next section. We then present two experiments
that validate the proposed approach by showing that our model generates realistic re-
sults in a well-understood fluid simulation scenario and in comparison with an accurate
Navier-Stokes solver (Section 4.4). The following section (Section 4.5) presents sev-
eral evaluation results quantifying the improvements obtained in comparison with the
standard SPH model. The final sections discuss the results obtained and then conclude
the chapter.

4.3 Model

In this section we describe our proposed Fractional SPH model.

4.3.1 Standard SPH

The Smoothed Particle Hydrodynamics (SPH) model we employ is based on the scheme
presented by Muller [MCG03]. SPH is a Lagrangian model where the fluid is repre-
sented by a set of particles that carry field attributes. An arbitrary attribute on a given
particle’s position is computed via smoothing kernels that only consider nearby parti-
cles within the core radius h. The smoothing of attributes is modeled with:

AS(r) =
∑
j

mj
Aj

ρj
W (r− rj, h), (4.1)

where mj is the mass, rj is the position and ρj is the density of a particle j within the
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core radius h of the smoothing kernel W (r − rj, h). Aj is the field attribute quantity at
rj .

At each timestep of the simulation, the density values of individual particles are evalu-
ated first:

ρi =
∑
j

mjW (|ri − rj|, h), (4.2)

then, the pressure is computed by the ideal gas state equation

p = k(ρ− ρ0), (4.3)

where k is a gas constant and ρ0 is the rest density. Once the density and the pres-
sure fields are computed, the pressure and viscosity forces acting on particle pairs are
computed in a symmetric manner as proposed by Muller [MCG03]:

fpressurei = −
∑
j

mj
pi + pj

2ρj
∇W (ri − rj, h), (4.4)

fviscosityi = µ
∑
j

mj
ẋj − ẋi

ρj
∇2W (ri − rj, h), (4.5)

where ∇W (ri − rj, h) is the gradient, ∇2W (ri − rj, h) is the Laplacian of the kernel,
µ is the viscosity constant, and finally ẋi = vi and ẋj = vj are the velocity vectors of
particles i and j respectively.

4.3.2 Fractional SPH

In order to represent the memory-laden characteristics of the fluid body, we introduce
the fractional viscosity term of order 1/2 to the motion of the particles. We achieve
this by replacing the first time derivatives of the positions by the half-derivatives of the
positions. As a result, the history-based viscosity is defined as:

fviscosityi = µ
∑
j

mj
D1/2xj −D1/2xi

ρj
∇2W (ri − rj, h) (4.6)

where D1/2xi and D1/2xj are the half-derivatives of the positions of particles i and
j respectively. Note that the viscosity force is now proportional to the difference of
the half-derivatives, achieving the memory-laden viscosity needed to define the motion
resulting from flow collisions.
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The memory-laden viscosity is especially well suited for fluid phenomena occurring in
intense flow collision regions. It is important to observe that in most situations a fluid
simulation scenario will contain both regions with flow collisions and regions without
any collisions. Our model will improve the quality of the simulation in the regions with
flow collisions, which are often the regions producing the most interesting behaviors.
Our model will not affect the results obtained in regions with steady flows.

4.3.3 Computing the Half Derivative Terms

In Coimbra [SCK05], a second-order accurate quadrature formula derived using the
product trapezoidal method is suggested for derivative orders q in the 0 < q < 1 range.
This fractional-order differential operator reads:

Dqxn =
h1−q

Γ(3− q)

n∑
i=0

ai,nD
1xi, (4.7)

ai,n =


(n− 1)2−q − n1−q(n+ q − 2) if i = 0,

(n− i− 1)2−q − 2(n− i)2−q + (n− i+ 1)2−q if 0 < i < n,

1 if i = n,

where q is the derivative order (0 < q < 1), n is the index of the most recently com-
puted timestep, ai,n is the weight of timestep index i at timestep n, andD1xi = vi is the
velocity of a particle at timestep i. In comparison to the method employed by Ozgen et
al. [OKR10], this formulation is simpler and more accurate. In the presented simula-
tions we have used this latter formulation with q = 0.5 to acquire the half derivatives.

The fact that computing the half derivative of the position of a particle makes use of all
the past velocities of that particle seems to be a computational barrier at first. However,
as stated in Ozgen [OKR10], an analysis on the evolution of the weights used for the
fractional derivative computation shows that the most recent states have much more
influence on the final result of the equation. The plot in Figure 4.2 shows the evolution
of the weights as a function of the timestep index i for three different timestep values
h. Thus, we only consider the last ten timesteps when computing the half-derivative
terms.

4.4 Validation Experiments

In order to validate the approach taken by our model, we have performed two experi-
ments designed to verify if the results produced by our simulations are in accordance
with expected known results. The first experiment simulates a solid sphere in a viscous
fluid, and the second experiment simulates the Shear Driven Cavity Test [LL03].
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Figure 4.2: The plot shows how weights rapidly decay as we move away from the most
recent timestep.

4.4.1 Solid Sphere in a Viscous Fluid

L’Esperance et al. [LCT05] describe the experiment where a single small rigid sphere
is placed inside a container full of fluid, and the container is then continuously shaken
by a sinusoidal force. The reason for shaking the container is to create a medium rich
in oscillatory flows. The authors state that under certain conditions of particle size,
fluid viscosity and oscillation frequency, the Basset history term in the equation of the
particle motion becomes dominant. Because the Basset history term can be written
in terms of the half-derivative of the particle’s velocity [CR98], the authors show that
the recorded path of the sphere in the experiment perfectly matches the solution to the
sphere’s equation including history effects through the use of fractional derivatives.
In the described experiment the trajectory of the sphere will closely match a perfect
sinusoidal curve. This provides a ground truth target to achieve with SPH simulations
of the experiment, and provides us with an experiment to validate the results produced
by our Fractional SPH model.

We have implemented an experimental simulation version of the scenario explained in
L’Esperance et al. [LCT05]. We have prepared a 3D fluid simulation of 12K particles,
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with the fluid located inside a closed rectangular container, and with a solid sphere
immersed in the center of the container. The density of the solid sphere was set to be
slightly greater than the density of the fluid by increasing the particle’s mass by 50%
and keeping the particle’s volume the same. In the original experiment, the tracked
particle was tethered by very thin copper wires to counteract the weight and buoyancy.
We achieved the same effect by adjusting the gravity force so that the particle neither
sank nor floated. We applied a sinusoidal shaking force to the fluid container, and the
fluid was simulated with both standard SPH and our Fractional SPH.

We conducted three different experiments. In the first experiment, we simulated the
water flow with the standard SPH model. In the second experiment, we simulated the
water with 40% fewer particles but using our Fractional SPH with history forces in-
cluded through fractional derivatives. In the last experiment, we simulated the water
with the standard SPH in the same resolution of 40% less particles than the high resolu-
tion model. The recorded paths of the solid spheres in the three experiments are shown
in Figure 4.3. It can be clearly seen that the inclusion of the history forces improved
the results of the low resolution SPH by making the path of the solid sphere closer to
the path of the solid sphere in the high resolution SPH. In addition, it can be observed
that both the low resolution Fractional SPH and the high resolution SPH generated
trajectories that are closer to a perfect sinusoidal curve.

We also obtain an indication that SPH simulations can reproduce fluid behaviors as
they occur in real life and that by increasing the resolution we can improve the obtained
results. This can be noticed by observing that the high resolution SPH experiment pro-
duces a curve (blue curve) that looks closer in shape to a well-defined sinusoidal shape
than the low resolution SPH experiment (red curve). Therefore, it is reasonable to eval-
uate our proposed method by applying it at a given resolution and then comparing the
results obtained against a higher resolution standard SPH simulation. We will adopt
this comparison strategy in the evaluation experiments of Section 4.5. These prelim-
inary experiments also indicate that the addition of fractional terms is beneficial and
that higher resolutions in SPH will lead to improved behaviors. These results provide
reasonable validation of our proposed approach.

4.4.2 Shear Driven Cavity Test

Our second validation experiment employed a standard test known as the Shear Driven
Cavity Test (or Lid Driven Cavity Test) in Fluid Dynamics [LL03]. In this test, flow
is generated by moving the top wall of a square box full of fluid while the other three
walls are stationary. The top wall of the box moves in the horizontal direction with a
constant speed, and the flow reaches a steady state after running the simulation for a
while.

We implemented this test with our standard and Fractional SPH implementations, with
various number of particles and Reynolds number values. All tests demonstrated that
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Figure 4.3: The figure shows the path followed by the solid sphere located in a fluid
container subjected to a continuous sinusoidal shaking force. The blue, red and green
curves show the path of the sphere in a fluid simulated with high resolution standard
SPH, low resolution standard SPH and low resolution Fractional SPH, respectively.

our Fractional SPH model produced results closely matching the results computed by
a high-precision fluid solver. We compared our results against the results generated by
OpenFOAM, a grid-based solver widely employed by the CFD community [WG10].
One example of the obtained results are demonstrated in Figure 4.4. As it can be seen in
the figure, standard SPH and Fractional SPH simulations with 40K particles follow the
grid-based solution tightly, showing that the viscosity behavior of both fluids are valid
and that the use of fractional derivatives in the viscosity formulation does not introduce
any additional viscosity to the standard formulation. These results were computed with
the simulations on the steady state phase. These results are important to demonstrate
that the Fractional SPH model also performs well in steady flow cases. Our model will
thus not degrade the results obtained in regions without colliding flows.

4.5 Evaluation Experiments

In order to quantify the improvements obtained with our Fractional SPH model we
have designed a simulation scenario based on a rectangular grid that is rich in flow col-

41



Figure 4.4: Lid-driven cavity test comparing OpenFOAM’s grid-based Navier-Stokes
solution (black curve), standard SPH (blue curve) and Fractional SPH (dashed red
curve) with 40k particles. The velocities along the vertical line x = 0.5 passing by
the center of the box are demonstrated at t = 5s when the simulations are in steady
state. The horizontal axis in the graph represents the vertical coordinates along the line
x = 0.5. The similarity of the curves validate the viscosity behavior of the Fractional
SPH simulation in a steady flow scenario.

lisions. We placed several force sources that continuously run and create flows moving
towards opposite directions and colliding at several regions. Several evaluations were
then performed by comparing low-resolution Fractional and standard SPH simulations
against the corresponding higher resolution standard SPH simulation. As validated in
the previous section, we consider the high-resolution standard SPH simulation to be
the reference simulation for our comparisons. The low-resolution simulation that gen-
erated less error against the high-resolution simulation was considered to be physically
more accurate. In these experiments we used explicit Euler numerical integration.

We discretized a 2D fluid grid by placing 48 equally distributed grid points. Our 2D
grid scenario was borderless and cyclic, meaning that the particles penetrating a par-
ticular wall will come back to the scene from the opposite wall. Keeping all the initial
conditions the same, we conducted three different simulations with this scenario. The
first simulation was a high resolution standard SPH with 1500 particles. This one was
considered to be the reference simulation. The second simulation was a low resolution
standard SPH with 1250 particles and the third simulation was a low resolution Frac-
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tional SPH with 1250 particles. As expected, our Fractional SPH model has showed to
generate much less error rates than standard SPH at the regions with intense flow col-
lisions. We measured the average velocity vectors of 48 different circular regions cen-
tered at the grid points. The average velocity of a circular region for a given timestep
is calculated by averaging the angular difference of the velocities of all particles within
that region at that timestep. The placement of source forces, measurement regions, and
the shape of the grid is presented in Figure 4.5.

The angular difference of the average velocity vectors of each region was first computed
for every timestep, then, for all the regions, we took the average of the angular errors
by dividing the error sum to the total number of timesteps. The average error that each
region produces with respect to the high resolution simulation was obtained with:

εj =
n∑

i=1

1

n
arccos

(
vjiSE

· vjiSHR

|vjiSE
||vjiSHR

|

)
, (4.8)

where εj is the average error generated at region j, i is the timestep index, n is the
total number of timesteps, and vjiSE

and vjiSHR
are the average velocities of region j at

timestep i, for the evaluated simulation SE and the high resolution simulation SHR,
respectively.

With this scheme, we are able to compare the number of grid regions that performed
better with each SPH formulation. The method that resulted with more successful grid
regions is considered to perform better overall. The next section presents and discusses
in detail the results obtained. Additional results with 3D simulations are also presented.

4.6 Results and Discussion

We first analyze the results presented in Figure 4.5. The arrows show the placement
and the direction of force sources and the circles indicate the 48 comparison regions.
The color range is between red and green. The color red shows that standard SPH is
producing less error and the green shows that Fractional SPH is producing less error.
The yellow regions are the ones where both simulations create almost the same error
rates. As demonstrated in this figure, the regions where flows collide tend to be green
most of the time. This indicates that the fluid behavior that emerges from intense flow
collisions is better modeled by Fractional SPH. The yellow regions are where few flow
collisions occur and flows mostly tend to move to a fixed direction. As expected, no
significant differences exist between the two simulations on these regions. The few
orange regions where Fractional SPH is performing slightly worse than the standard
SPH are always located near the force sources. These regions produce slightly worse
error rates because they have always relatively less particles in them, due the fact that
the continuous flows are generated from these regions. The lack of enough particles in
these regions leads to a less accurate error measurement.
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Figure 4.6 presents the comparison of angular error rates (in radians) of regional ve-
locities, generated by both standard SPH and Fractional SPH, at a region rich in flow
collisions, over the course of 500 timesteps. As can be observed, the error rate tends to
be small at the beginning because of the same initial positions of the particles. However,
the Fractional SPH produces less error than standard SPH as the simulation progresses.

Figure 4.7 shows the same results on a different region of the grid. This region is on the
middle right of the grid and it is poor in flow collisions. As can be seen on the graph,
the difference between the error rates generated between standard and Fractional SPH
tend to decrease on this kind of regions. This result is expected in the sense that the
difference of velocities of two particles moving towards the same direction with similar
speed causes the viscosity to vanish.

Aside from comparing the direction of regional velocities, we also compared the evo-
lution of velocity magnitudes on each region over the course of 500 timesteps. As it
was the case for velocity directions, velocity magnitudes tend to be more similar to the
high resolution simulation in Fractional SPH than standard SPH. Figure 4.8 shows the
velocity magnitudes of a region rich in flow collisions, which is placed in the middle
of the grid, for 3 simulations. The blue line is the high resolution reference simula-
tion, the red line is the standard SPH and the green line is the Fractional SPH. As can
be observed, Fractional SPH is better at approximating the high resolution simulation.
Figure 4.9 shows that the difference between the effects of standard and Fractional SPH
is minimized on regions poor in flow collisions.

We have also experimented with 3D SPH simulations following the same flow scenario
but with the border of the fluid grid acting like walls. We used 12K particles for the high
resolution reference simulation. We increased the gap between high and low resolution
fluids by only using 3K particles for low resolution simulations. The same comparison
scheme is employed to compare the simulations and calculate the error rates. The time
of evaluation was extended to 1000 timesteps in order to have a wider comparison
window.

Figure 4.10 and Figure 4.11 show the error produced by regional velocity directions
and magnitudes, respectively. The comparisons were conducted at a region rich in flow
collisions, over the course of 1000 timesteps. As can be observed in the figures, our
method produces less error than the standard SPH in 90% of the timesteps.

In terms of performance, our method runs real-time for simulations with up to 5k par-
ticles and runs with 4 FPS for simulations with 20k particles on an AMD Athlon II
X4 3.2 GHz computer. The use of half derivatives in the SPH implementation does
not affect the complexity or the running time of the algorithm. In Equation 4.7, the
weights are always calculated based on the terms q and n − i. The value of q must
always be equal to 0.5 to acquire the half derivatives. Given that we only use the ten
most recent terms of the history terms, n− i terms always stay the same for all the ten
weights, except for the first ten timesteps. Because Equation 4.7 makes use of the past
particle velocities, we require some extra memory space to store the previous velocities.
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Therefore, the weights can be precomputed and used in combination with pre-recorded
velocities.

Fractional SPH also proved itself useful by allowing larger timesteps in the integration.
It was observed that our Fractional SPH simulations were more stable than standard
SPH when using large timesteps especially for viscous fluids. In Figure 4.12, standard
SPH and Fractional SPH simulations are compared for different sizes of timesteps.
Fractional SPH allowed 2 times larger timesteps, while standard SPH becomes unstable
after a small increase. We also noticed that our method performed better in the early
stages of the Shear Driven Cavity test, when the flows were not stabilized yet. This was
observed in the 3D version of Shear Driven Cavity test and some results are presented
in Figure 4.13. Additional examples demonstrating 3D simulations with our Fractional
model are presented in Figure 4.14 and Figure 4.15.

In summary, we demonstrate that Fractional SPH always produces better results than
the standard SPH in regions where flow collisions are detected. Both in 2D and 3D
simulations, our Fractional SPH model produced less error on 73% of our grid regions,
in comparison with the standard SPH. Note that this percentage depends directly on
the density of colliding flows on the scene. A scenario with more colliding flows will
definitely increase the success rate of Fractional SPH. The videos accompanying this
submission provide additional examples and results.

4.6.1 Limitations

Although our model is able to accurately model colliding flows, it does not change the
accuracy of the simulation on regions where the flows are stable and one-directional.
When particles move towards similar directions with similar velocity magnitudes, the
differential velocity gets close to zero and this lowers down the effect of viscosity terms.
Since our contribution is on the viscosity term, the history effects have only limited
effect on the overall behavior of particles. In these cases, there is no clear need for frac-
tional viscosity terms. Therefore, one can take an hybrid approach to employ history
terms only in regions where colliding flows are detected to occur. These terms can be
omitted in regions of stable flows to further increase the performance of the simulation.

4.7 Conclusions

We have introduced a new methodology for fluid simulation based on the use of Frac-
tional Calculus with Smoothed Particle Hydrodynamics. We have demonstrated in sev-
eral experiments that our method can better simulate observed fluid behavior emerging
from flow collisions. The fact that the memory-laden viscosity terms modeled by frac-
tional derivatives are able to increase the accuracy of low resolution SPH simulations is
promising as a technique to improve the quality and computational efficiency of SPH.
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Figure 4.5: Simulation scheme (top image) and its corresponding fluid simulation sce-
nario (bottom image). The simulation scheme shows both the flow generation configu-
ration and the results of our experiments. The arrows show the force sources creating
the flows. The circles show the regions where we computed the average velocity direc-
tions in order to quantitatively compare the simulations. The colors are in the red-green
range and represent the difference of angular velocity error rates produced by the low
resolution standard SPH and low resolution Fractional SPH when compared against the
higher resolution standard SPH. Our Fractional SPH method performs better than the
standard SPH in the green regions, the performance is similar in yellow regions, and
our method performs slightly worse in the orange regions.
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Figure 4.6: The plot shows the error rates in velocity directions of the region marked
with the red disc, over 500 timesteps of simulation. The red and green lines repre-
sent the simulations of low resolution standard SPH and low resolution Fractional SPH
compared against higher resolution standard SPH. The region marked with the red disc
is rich in flow collisions.
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Figure 4.7: The plot shows the error rates in velocity directions of the region marked
with the red disc, over a simulation of 500 timesteps, for 2D simulations. The red and
green lines represent the simulations of low resolution standard SPH and low resolution
Fractional SPH compared against higher resolution standard SPH, respectively. Here
the region marked with red disc is poor in flow collisions.
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Figure 4.8: The plot shows the velocity magnitudes of the region marked with the red
disc, over a simulation of 500 timesteps, for 2D simulations. The blue, red and green
lines represent the simulations of high resolution standard SPH, low resolution standard
SPH and low resolution Fractional SPH, respectively. The region marked with red disc
is rich in flow collisions.
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Figure 4.9: The plot shows the velocity magnitudes of the region marked with the red
disc, over a simulation of 500 timesteps, for 2D simulations. The blue, red and green
lines represent the simulations of high resolution standard SPH, low resolution standard
SPH and low resolution Fractional SPH, respectively. The region marked with red disc
is poor in flow collisions.
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Figure 4.10: The plot shows the error rates in velocity directions of the region marked
with the red disc, over a simulation of 1000 timesteps, in 3D simulations. The red and
green lines represent the simulations of low resolution standard SPH and low resolution
Fractional SPH compared against higher resolution standard SPH, respectively. The
region marked with the red disc is rich in flow collisions.
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Figure 4.11: The plot shows the velocity magnitudes of the region marked with the
red disc, over a simulation of 1000 timesteps, in 3D simulations. The red and green
lines represent the simulations of low resolution standard SPH and low resolution Frac-
tional SPH compared against higher resolution standard SPH, respectively. The region
marked with red disc is rich in flow collisions.

Figure 4.12: Lid-driven cavity test for comparing the stability of standard SPH and
Fractional SPH simulations.
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Figure 4.13: Average velocities and velocity directions obtained in the Shear Driven
Cavity Test with different SPH simulations: 21K standard SPH (left), 6K Fractional
SPH (center) and 6K standard SPH (right). Colors red, green and blue represent high,
medium and low velocities respectively. The color distribution and regional velocity
directions obtained with the Fractional SPH simulation are very similar to the ones in
the high resolution reference simulation. This was not the case for the standard SPH in
the same low resolution.
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Figure 4.14: Dam break test using Fractional SPH, which shows the viscosity behavior
of fluids with various Reynolds numbers.
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Figure 4.15: The rendered scene from another dam break experiment using Fractional
SPH.
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CHAPTER 5

Simulating Shear Thickening Fluids

Figure 5.1: Our shear thickening fluid model based on fractional derivatives is able to
achieve realistic behavior.

This chapter presents a computational model for simulating non-Newtonian shear thick-
ening fluids. Shear thickening fluids have a unique and unconventional behavior that
has not been simulated before and yet they often appear in real world scenarios such as
when sinking in quicksand or when experimenting with popular corn starch and water
mixtures. The fluid exhibits unique phase changes between solid and liquid states, great
impact resistance in its solid state and strong hysteresis effects. Our proposed approach
builds on existing non-Newtonian fluid models in computer graphics and introduces an
efficient history-based stiffness term that is essential to enable shear thickening behav-
ior. The history-based stiffness is formulated through the use of fractional derivatives,
leveraging the fractional calculus ability to depict both the viscoelastic behavior and the
history effects of memory-intensive systems. Simulations produced by our method are
compared against real experiments and the results demonstrate that the proposed model
successfully captures a wide range of behaviors observed in shear thickening fluids.

5.1 Introduction

In the field of rheology, the mechanics of fluids is typically characterized by a viscosity
function, where the viscosity is defined as the ratio of shear stress to shear rate in a
steady state flow. For a Newtonian fluid like water, this viscosity is a single-valued
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constant, but in non-Newtonian fluids this viscosity may be a function of shear rate and
other parameters. Dense suspensions of hard particles are known to be shear thickening,
meaning that the viscosity function increases with shear rate over some range.

Shear thickening fluids (STFs) form a sub-category of non-Newtonian fluids exhibiting
unconventional behavior that is not seen in other Newtonian or non-Newtonian fluids.
These fluids harden when agitated by strong forces and soften in the absence of any
forces. Moreover, they are memory-intensive fluids in the sense that they keep their
solid-like state for a given amount of time even after the forces are applied, i.e., their
memory only fades away after some time.

The most known example of shear thickening fluids is probably the corn starch and wa-
ter mixture. The odd behavior of this fluid has recently attracted much public attention
and videos showing experiments involving mixtures of corn starch and water are widely
spread over the Internet. In these experiments, it is possible to witness the dramatic im-
pact resistance of the fluid to the point that a person can run on top of the surface of
the fluid [Tim09]. Another STF that has received some attention in several movies is
quicksand. Applications of STFs have also been developed, for example, the United
States Army Research Laboratory has invented a “Liquid Body Armor”, an armor suit
that has layers of shear thickening fluid and Kevlar mixture. The fabric made of STF
is highly resistant to penetration when impacted by a spike, knife or bullet, without
compromising its weight, comfort or flexibility [Han06] [Wil07].

Despite the fact that there is a number of mathematical models aiming to explain the
behavior of shear thickening fluids, no animations of such fluids have been achieved
before. We introduce in this chapter a first model that is able to produce visually suc-
cessful simulations of such materials.

5.2 Related Work

To the best of our knowledge, there is no prior study on the simulation of shear thicken-
ing fluids in the Computer Graphics community. A number of works on the simulation
of other types of non-Newtonian fluids have however been developed, such as for melt-
ing and the flow of deformable objects along with the animation of viscoelastic fluids.
We review these works on the following paragraphs.

The most relevant papers to our work are the ones addressing melting and flow of
materials. Terzopoulos and Fleischer [TPF89] developed a method that can simulate
non-rigid objects that are capable of heat conduction, thermoelasticity and melting.
The particles that constitute the material are connected by elastic springs and, in order
to model the melting effect, the stiffness of the springs decreases as the temperature
rises, and the particles break free when the springs disappear. Our proposed model
is also based on the approach of using adaptive springs, which will in our case be
augmented with fractional terms in order to achieve shear thickening fluids.
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Desbrun and Gascuel [DG95] also focused on the flow of soft substances. They em-
ployed a hybrid model by combining an implicit surface model with a particle system.
Successful results were presented on the animation of soft materials that can undergo
fusion. Desbrun and Cani [DC96] demonstrated the first application of SPH in Com-
puter Graphics for the animation of inelastic deformable bodies with a wide range of
stiffness and viscosity. The first results included a 2D animation of a deformable solid
and the flow of a viscoelastic material.

Carlson and Turk [CMI02] took on the challenge of animating materials that exhibit
both fluid and solid-like behavior. The focus was on materials that can melt, flow and
solidify. The fluid is modeled with variant viscosity. A modification of Marker-and-
Cell method is used to deal with the computational barrier of simulating highly viscous
fluids. Therefore, the solidity of the materials was in fact achieved by simulating a
highly viscous fluid. No elastic elements were added to the fluid equations.

Goktekin et al. [GBO04b] presented a method that animates viscoelastic fluids such as
mucus, liquid soap, toothpaste or clay. The method introduced elements of elasticity
into an Eulerian implementation of Navier-Stokes equations. The total strain is defined
as the sum of elastic and plastic strain. Additionally, Von Mises’ yield condition is used
to determine when the plastic flow should occur. When the magnitude of the strain
deviation crosses some threshold, the plastic flow occurs. This condition guarantees
a smooth transition from elasticity to viscosity. The authors presented a variety of
successful results on the behavior of viscoelastic fluids.

Clavet et al. [CBP05] developed a powerful and simple method that can efficiently and
realistically simulate viscoelastic fluids. The method combines a simplified SPH with a
mass-spring system. The SPH is responsible for the fluid behavior while the springs are
responsible for the elasticity and plasticity effects that make the material more solid-
like. The method computes an additional pressure term named near-pressure, along
with the conventional pressure term calculated through SPH. This term is used to solve
the clustering problem which is a common problem in SPH implementations. Further-
more, the nearby particles are also connected to each other by springs. These springs
have varying rest lengths and are removed when the distance between a pair of particles
is greater than a threshold. The use of adaptive springs along with the double density
relaxation method results in a very strong animation tool for viscoelastic models. This
method constitutes the starting point for our shear thickening fluid animation model.

5.3 The Model

The starting point of our shear thickening simulation model is based on the model
presented in [CBP05]. This is a Lagrangian model that combines SPH forces with a
dynamic mass-spring system. The fluid is modeled as a particle system. Particles have
attributes such as position, velocity, force, density and pressure. In each simulation
step, first the forces are calculated; then, a new position and velocity is calculated for
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each particle using a prediction-relaxation approach.

The forces are calculated among pairs of particles. Since considering all pair-wise
connections would result in O(n2) running time for the algorithm, only the interactions
of close-by particles are taken into account. Therefore, the fluid container is discretized
into cubic regions of dimension h. Forces are only calculated among pairs of particles
that are in the same or adjacent grid regions.

The simulated material shows both liquid-like and solid-like behavior depending on
the forces applied. The density and viscosity forces are responsible for making the
material act like a fluid. The material should flow from high density regions to low
density regions and should be incompressible. All these features are acquired though
the density and viscosity calculations that arise from classical SPH formulations. One
clear difference that this SPH implementation has from the previous SPH implemen-
tation presented in Chapter 4, is that this SPH implementation should generate higher
viscosity forces to create a non-Newtonian fluid. The fluid is supposed to act similar
to materials like honey, shampoo or starch. This directly implies that the kinematic
viscosity constant should be greater than the previous SPH model presented. However,
even increasing the viscosity constant will not be enough to make the fluid behave like
a non-Newtonian fluid. Therefore, to account for the elasticity and plasticity features
of non-Newtonian fluids, elastic springs are added into the formulations. While these
springs generate elasticity forces like a regular Hooke’s spring, they might be removed,
added or their rest length might be updated depending on given conditions during the
simulation. This adaptive spring model will in fact create the plasticity of the material.

The existence of viscosity, elasticity and plasticity terms will lead to the simulation
of so-called viscoelastic material or a non-Newtonian fluid. However, these compo-
nents won’t suffice for creating a shear thickening fluid, which is a subcategory of non-
Newtonian fluids. In order to upgrade the non-Newtonian fluid to the shear thickening
fluid, history-based spring elements will be added to the system to acquire a system that
solidifies when subjected to impact forces. The system should keep its solid state for a
given amount of time even when there are no more forces acting on it. At the end of
this period of time, the material should resume its viscous liquid state. As a conclusion,
the model should be able to transition between solid and liquid states.

The density forces are calculated in accordance with classical SPH formulations. The
density of a particle is computed based on the distance to other particles in its vicinity.
The pair-wise distances are smoothed through a smoothing kernel function. The func-
tion generates weights for all the surrounding particles and the distances are multiplied
by these weights to compute final densities. The density for a particle i is given in terms
of the particle’s distance to its neighbor particles j:

ρi =
∑
j

(1− rij/h)2, (5.1)

where rij is the distance between two particles i, j and h is the SPH kernel radius. The
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densities are then used to calculate the pressures p at particle locations:

pi = k(ρi − ρ0), (5.2)

where ρi is the density of the particle i, ρ0 is the rest density of the fluid and k is the
gas constant. The pressure is computed based on the difference of the current density
and the rest density of the fluid. The pressure will then be used to calculate the pressure
force acting on each particle. The displacement created by the pressure force is given
as:

Dij = ∆t2pi(1− rij/h)r̂ij, (5.3)

where ∆t is the timestep, pi is particle’s pressure, rij is the distance between two par-
ticles, h is the radius of the kernel and r̂ij is the normalized difference vector between
two particles. In addition to the classical density and pressure calculation, [CBP05]
adds a secondary density term for a particle solely for the close vicinity of that particle.
Unlike the first kernel function which is quadratic, the near-pressure kernel function is
cubic. The density term is called the near-density and it is computed as:

ρneari =
∑
j

(1− rij/h)3. (5.4)

The pressure that is computed based on the near-density is called the near-pressure and
reads:

pneari = knearρneari , (5.5)

where knear is a constant and ρneari is the near-density. The near-pressure is calculated
independent of the rest density. The displacement caused by the near-pressure is defined
as:

Dij = ∆t2pneari (1− rij/h)2r̂ij. (5.6)

The near pressure term solves an important problem. In SPH simulations, sometimes
the particles can come to a rest by pulling a great number of other particles. This
problem is known as the particle clustering problem. It is shown that the near-pressure
term solves the particle clustering problem to a great extent. Additionally, near-pressure
adds more non-Newtonian fluid features to the material by generating a suited surface
tension.

The viscosity force between two particles is calculated based on the difference between
their velocities, in accordance with the Navier-Stokes equations and the SPH method
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presented in Chapter 4. The difference in velocity has both linear and quadratic effects.
The algorithm for the viscosity calculations are given in Algorithm 1.

Algorithm 1 ApplyViscosity
1. q ← rij/h
2. //If particle j is in the kernel radius
3. if q <1 then
4. u← (vi − vj) · r̂ij
5. if u >0 then
6. //Linear and quadratic impulses
7. I ← ∆t(1− q)(σu+ βu2)r̂ij
8. vi ← vi − I/2
9. vj ← vj + I/2

10. end if
11. end if

The elasticity component originates from the spring-mass system. Particle pairs that
are close up to a given distance are connected to each other by elastic springs and the
spring force is given by:

F = −kmin x, (5.7)

where kmin is the spring constant. The springs only exist between pairs of particles
that are closer to each other than a given distance. If the particles move further away
from each other, then the spring is removed. The rest lengths of the springs are also
updated in every simulation step. The addition and removal of springs along with the
rest length updates create the effect of plasticity. The material can be stretched without
causing great forces that want to recover its shape. If the material is elongated more
than a given amount, it never tries to go back to its previous shape because the springs
are now removed. The plasticity model obeys the von Mise’s condition which states
that the plastic flow should occur only if the deformation is large enough [Fun65]. In
the context of the spring system, this means that the rest length of a spring should only
change if its elongation is greater than some threshold. Therefore, the rest length update
is calculated as:

∆L = ∆t α sign(r − L)max(0, |r − L| − γL), (5.8)

where α is the plasticity constant, L is the spring rest length and γ is the yield ratio.

Shear thickening fluids have two very important additional characteristics when com-
pared to viscoelastic fluids. First, they change their state from liquid-like to solid-like
when subjected to great forces. As long as forces are present, the solid-like state is
preserved. In the absence of forces, the material will soften and return to its liquid-like
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structure. Second, shear thickening fluids are memory-intensive materials. The present
state of memory materials is defined in terms of past states, and the materials remember
the past forces that affected them up to some extent. When a shear thickening fluid is
in its solid-like state and all forces are ceased, it will take some time to go back to its
liquid-like state. Likewise, when the fluid is in its liquid state and is agitated by mild
forces, it will slowly move from liquid to solid state over time.

The most critical factor that will transform a viscoelastic fluid into a shear thickening
fluid is the inclusion of history-based spring elements. These elements have a history-
based stiffness constant that injects the information of the past into the system. The
history-based stiffness terms are achieved by multiplying the stiffness constant of the
dynamic springs by the magnitude of the fractional derivative of the position of the
connected particle. The history-based spring element is given by:

F = −khist ‖Dqx‖ x, (5.9)

where khist ‖Dqx‖ is the history-based stiffness, Dqx is the qth order derivative of the
position and q is a non-integer between 0 and 1. The approach used to achieve the
history effects relies on the properties of fractional calculus. As mentioned in Section
2.1, fractional calculus is widely used for the description of viscoelastic phenomena and
it provides a neat tool to simulate history effects. A second order numerical solution
of the fractional derivative of order q for values 0 < q < 1 is given in [SCK05] and it
reads:

Dqxn =
∆t1−q

Γ(3− q)

n∑
p=0

ap,nD
1xp, (5.10)

ap,n =


(n− 1)2−q − n1−q(n+ q − 2) if p = 0,

(n− p− 1)2−q − 2(n− p)2−q + (n− p+ 1)2−q if 0 < p < n,

1 if p = n,

where q is the derivative order such that 0 < q < 1, n is the index of the most recently
computed timestep, ap,n is the weight of the past timestep p computed at the current
timestep n, Γ is the Gamma function, and D1xp = vp is the velocity of the particle at
past timestep p.

The fractional derivative of the position at the current time step is thus computed based
on the velocities of the past, and the past velocities are prioritized by given weights.
The near past has more influence on the current state than the far past. The evolution of
the weights generated by the fractional derivative operator is shown in Figure 5.2 for q
values of 0.2, 0.5 and 0.8.

We compute the total spring force as the sum of forces generated by the history-based
spring element and the regular elastic spring:
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Figure 5.2: Weights produced by fractional derivatives of order 0.2, 0.5 and 0.8.

F = −kmin x− khist ‖Dqx‖ x. (5.11)

Substituting Equation 5.10 into Equation 5.11 and rearranging, we obtain:

F = −1 (khist
∆t1−q

Γ(3− q)
n∑

p=0

ap,n|vp|+ kmin) x, (5.12)

where khist is the control parameter for the history-based spring, ap,n is the weight of the
past timestep p computed at the current timestep n, vp is the velocity of the particle at
the past timestep p, kmin is the stiffness constant of the elastic spring, and x is the vector
of elongation or compression. Note that this formulation successfully models both of
the desired features of shear thickening fluids. First, the spring immediately becomes
very stiff when the velocity vp dramatically increases in the near past, what results in
the mass-spring system exhibiting solid-like behavior in regions where great impact
forces are applied. Second, the spring will gain memory thanks to the weights ap,n
that apply to the velocities of the past. This results in the overall stiffness of the springs
gradually rising under continuous application of forces, and gradually decreasing under
the absence of forces. The overall behavior achieved by the spring-mass system will
lead to the shear thickening fluid slowly changing its phase both from liquid to solid
and from solid to liquid.

Although khist and kmin are both denoted with the letter k in accordance with the
Hooke’s law, they serve different purposes. Constant kmin is the stiffness of the elastic
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spring and it specifies the minimum stiffness that the spring can have. The history-
based stiffness originating from the fractional derivative is an additional term on top
of the default stiffness. In the absence of great velocities, notice that the first term in
the parenthesis of Equation 5.12 vanishes and the system behaves exactly like a regular
viscoelastic fluid as described in [CBP05]. However, when the particle gains instanta-
neous or cumulative high velocity over time, the first term adds extra stiffness to the
spring. Constant khist is the parameter that controls the amount of extra stiffness that
will be created due to the velocity increase. Constant khist can be used to give to the
animator the ability to implicitly control the maximum stiffness that the system can
gain. In cases where the integration method cannot keep the system numerically sta-
ble because of excess of stiffness, khist can be fine-tuned to keep the simulation stable.
In our experiments, we have set khist so that the added stiffness can increase up to
approximately ten times kmin.

One important numerical drawback of the fractional derivative formulation is that it is
a global derivative over the whole history of the particle. Clearly, this would pose per-
formance problems as the simulation moves forward since the cost of calculating each
simulation step would be always greater than the cost of the previous step. Therefore
we limit the amount of history to be considered by changing the start index of the sum
in Equation 5.12 from p = 0 to p = n − d, where d is the number of time steps in the
past that we would like to take into account. Parameter d is also a useful parameter to
model the characteristics of the material. If the material being modeled has long-term
memory, it makes sense to use a large number of past states. On the other hand, if the
material has short-term memory, a small value for d should be chosen.

We have investigated the behavior of a single particle under the influence of our history-
based spring element in order to analyze the evolution of the history-based stiffness
with respect to the particle’s velocity magnitude. Figures 5.5 and 5.6 present several
history-based stiffness values generated by various memory settings (various d values)
and for history-based spring terms with various q values. Figure 5.5 demonstrates how
the history-based stiffness changes when the particle gains a temporarily high velocity
due to an impact. Figure 5.6 shows the evolution of the history-based stiffness when the
particle moves with a steady velocity for a longer period time. It is possible to observe
that the history-based stiffness increases more and lasts for a longer period when more
states in the past are considered. Furthermore, it can be seen in the graph that limit-
ing the number of past timesteps naturally creates a maximum limit for history-based
stiffness, leading to obvious advantages in terms of controlling the numerical stability.
In real experiments with shear thickening fluids composed of corn starch and water we
have observed that the material has the approximate memory of one second. Therefore
we have chosen d = 1/∆t in our simulations.

Another important modeling decision is the choice of the fractional derivative order.
Equation 5.10 is defined for values of q such that 0 < q < 1. The evolution of the
weights generated by the fractional derivative for different values of q is presented in
Figure 5.2. It can be observed that as q gets closer to 1, the history effects tend to
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disappear. As the value of q gets close to 0, the effect of the past time steps tend
to become similar. Both extreme cases do not seem to be useful for our problem.
From previous work on fractional derivatives on memory systems we know that the
half-derivative (q = 0.5) is the best choice for describing a number of phenomena in
rheology [CR98, Coi03, CLL04, LCT05, SCK05]. We have therefore used q = 0.5 as
the fractional derivative order in our experiments.

Different values of q can be always specified by animators in order to experiment with
different history effects. For the sake of examining the different behaviors that can be
achieved, an analysis of the history effects generated with q = 0.2, q = 0.5, and q = 0.8
is also presented in Figures 5.5 and 5.6.

Considering all discussed parameters and adapting Equation 5.12 to the case of two
particles connected by a spring, the total force between two given connected particles
is:

F =− 1 (khist
∆t0.5

Γ(2.5)

n∑
p=n−d

ap,n |vpi − vpj|+ kmin)

xi − xj

|xi − xj|
(|xi − xj| − L),

(5.13)

where vpi and vpi are the velocities of the particles i and j at the past timestep p and L is
the rest length of the spring. As part of the employed prediction-relaxation integration
scheme [CBP05], the displacement generated by the spring force is computed by mul-
tiplying the spring force by ∆t2, and then the displacement is applied to the positions
of the particles.

Experiments with real shear thickening fluids show that shear thickening can support
objects with extreme masses. A bowling ball can jump and roll, and a person can
literally walk on a shear thickening fluid while the fluid is in its solid-like state. Ex-
periments in physics and rheology stress the importance of solid container walls in this
particular behavior [BJ12]. The force applied to the surface is eventually dissipated to
the boundaries of the container and solid walls help the fluid to support even greater
masses.

Our network of history-based springs can simulate this behavior up to some extent. To
improve the overall results an additional technique is employed for making sure that
the particles at the boundary of the fluid are highly sticky to the boundary walls. For
a particle at the boundary, its velocity is separated into its normal and tangential com-
ponents. We completely cancel the normal velocity component that is perpendicular to
the wall. We also lower the tangential velocity component in a proportional way to the
average of the history-based stiffness of the springs that the particle is connected to.
In this way when the fluid exhibits solid-like behavior, the particles at the boundaries
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are almost fixed. As the stiffness of the whole system decreases, the particles at the
boundaries become less sticky.

The algorithm for the calculation of a simulation step is shown in Algorithm 2. In this
algorithm, time integration is done through the prediction-relaxation approach. In the
prediction-relaxation approach, first the forces originating from gravity and viscosity
are calculated and the velocity is updated based on these forces. The particle is then
virtually moved to its predicted position based on the current velocity. At this predicted
position, the density forces of SPH and the spring forces that account for the elasticity
are calculated and the displacement due to these forces is immediately applied to the
particle. Lastly, the collisions between the particles and the walls of the container are
resolved and the positions of particles are corrected. The velocity of the particle is
implicitly calculated at the end of the timestep.

Algorithm 2 Simulation Step
1. //Apply gravity
2. for all particle i do
3. vi ← vi + ∆tg
4. end for
5. //Update velocities with viscosity forces
6. ApplyViscosity();
7. for all particle i do
8. //Save previous position
9. xprev

i ← xi

10. //Advance to predicted position
11. xi ← xi + ∆tvi
12. end for
13. //Add, remove springs or change their rest lengths if necessary
14. AdjustSprings();
15. //Apply dispacements due to history-based spring elements
16. ApplySpringDisplacements();
17. //Apply dispacements due to pressure forces
18. DoubleDensityRelaxation();
19. //Use previous position to compute next velocity
20. for all particle i do
21. vi ← (xi − xprev

i )/∆t
22. end for

5.4 Results and Discussion

There is an abundance of real experiments involving shear thickening fluids, namely
with corn starch and water mixtures, that show us how the material behaves in different
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Figure 5.3: The snapshots from the vibration experiment show finger-like formations
with various shapes.

conditions. We evaluate our model by visually comparing our simulations with these
real experiments.

In our first experiment we have simulated a scene where a bowling ball is rolled on the
surface of the shear thickening fluid. The real version of this experiment is important
in many aspects. First, it shows that the fluid can support a high mass object such as
a bowling ball and that the solid-like phase of the material can make the bowling ball
slightly bounce on the surface. Second, the bowling ball can even roll on the fluid
surface as if rolling on a solid surface. Third, even when the motion of the bowling ball
ends, it still stays on the surface of the fluid for a given time, before it slowly starts to
sink. This scene clearly shows the history effects in action in the mechanics of the fluid,
and our model was able to successfully replicate the observed behavior in simulation.
The fluid immediately solidified under the high impact of the ball and acted somewhat
like a spring mattress. It kept its solid-state for a while, letting the bowling ball to roll
on the surface, and when the ball stopped the fluid gradually softened and entered into
its liquid state allowing the ball to sink. These phases are illustrated by the snapshots
presented in Figure 5.7.

In our second experiment we have simulated the shear thickening fluid subjected to
vibration forces. In the real experiments the fluid is placed on a speaker creating vibra-
tions that are transmitted to the fluid. After some time the fluid slowly starts changing
its phase from liquid-like to solid-like. First the fluid forms holes and starts clustering
at some random regions. Then the clustered regions slowly grow and form finger-like
formations. The finger-like formations gradually get higher until they either merge with
other parts of the fluid or break off from the main fluid body. We have performed a sim-
ilar experiment in simulation with a fluid with 10K particles. We have placed equally
distributed vibration sources at the bottom of the container and we have added random
changes in the vibration frequency throughout the simulation. We have simulated both
a fluid with history-based springs and a fluid with no history terms. The results show
that our fluid model with history effects is able to successfully simulate the finger-like
formations as shown in Figure 5.3. The vibration forces cause an accumulated history-
based stiffness on the springs and the particles naturally start to climb on each other. On
the other hand, the fluid without history terms could not achieve any of the finger-like
formations. The results of this experiment are compared against the real experiment in
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Figure 5.4: Comparison between the real [You08] and the animated shear thickening
fluid in the context of the vibration experiment.

Figure 5.4.

Our vibration experiment shows that finger-like formations require history terms, in
agreement with the model of [Dee10]. The obtained results are the first to confirm
that prediction in a dynamic simulation. The fact that several of the phenomena asso-
ciated with shear thickening have been simulated for the first time with a model with
strong history effects suggests that hysteresis may be more generally important to shear
thickening than previously indicated. These effects have been ignored in the standard
models for shear thickening such as hydroclustering [BB85] or dilatancy [BJ12] and
this insight may lead to improvements of those models so that they can finally predict
some of the interesting phenomena associated with shear thickening.

In terms of performance, the running time obtained with our system is approximately
1.5 seconds per frame for a simulation of 20K particles in an Intel Core(TM) i7-2600K
3.4 GHz computer. The added computation time by the inclusion of history-based
spring forces is minimal and these terms do not affect the complexity of the algorithm.
The weights of the fractional derivative term can be precomputed and used in combi-
nation with the stored past velocities. Equation 5.13 requires the algorithm to store the
past velocities of the particles only up to a given number of timesteps, leading to some
extra memory space required.

5.4.1 Limitations

As for limitations, although our model is able to imitate shear thickening fluids to a
great extent, we have observed that in the vibration experiment the finger-like forma-
tions did not grow as tall as in the real experiment. This prevented the replication of
finger-like formations falling and merging with each other. Additional experimentation
with parameters and particle resolutions is required in order to determine the limits of
the model more accurately.
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5.5 Conclusions

We have introduced a new model for simulating shear thickening fluids. Our model has
successfully reproduced in simulation a wide range of behaviors that can be observed
in real experiments, and has demonstrated the importance of fractional calculus in cap-
turing the memory effects exhibited by shear-thickening materials. Our results show
that complex relationships between hysteresis, viscoelasticity and flows can be suc-
cessfully reproduced, and the proposed techniques show great potential to be extended
for addressing other types of mixtures.
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Figure 5.5: The upper left graph shows the velocity of a single particle subjected to
a temporary velocity increase due to an impact. The next three graphs (in left-right,
top-down order) show the evolution of the history-based stiffness values of the spring
connected to the same particle, when its velocity changes according to the upper left
graph. Curves for various d values are given in each graph. The second, third and forth
graphs are based on the order of the fractional derivative q = 0.2, q = 0.5 and q = 0.8
respectively.
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Figure 5.6: The shown graphs present the same plots as in Figure 5.5, except for the
upper left graph which shows the velocity of a single particle moving with constant
velocity for a given period of time.
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Figure 5.7: The first image (in top-down order) shows the first moment of impact where
the shear thickening fluid successfully carries the mass of the bowling ball and makes
it bounce. The second image shows the second moment of impact after the bounce.
The bowling ball still won’t sink but slows down. The third image shows the moment
where the bowling ball comes to a stop. Since the fluid is still in its solid-like state,
the bowling ball will not immediately sink. The fourth image shows the end of the
simulation where the history-based stiffness starts to vanish and the fluid transitions to
fluid-like state, finally resulting in the sinking of the bowling ball.
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CHAPTER 6

Directional Constraint Enforcement for Fast Cloth
Simulation

We introduce a new method that greatly improves the iterative edge length constraint
enforcement frequently used in real-time cloth simulation systems for preventing over-
stretching. Our method is based in the directional enforcement of constraints and on
the simultaneous progressive scanning of the cloth edges, starting from fixed vertices
and propagating on the direction of gravity. The proposed method successfully detects
the meaningful springs to be corrected and ignores the ones that do not have any signif-
icance on the overall visual result. The proposed approach is simple and robust and is
able to achieve realistic cloth simulations without overstretching, without causing any
visual artifacts, and by dramatically decreasing the computational cost of the constraint
enforcement process.

6.1 Introduction

Cloth simulation is widely used in computer graphics and many systems are able to
simulate in real time moderately complex cloth models. Among the several possible
approaches for achieving deformable surfaces, particle-based systems remain the most
popular model for achieving interactive, real-time results. One common undesired be-
havior in particle-based cloth models is the effect of overstretching, and specific geo-
metric edge length enforcement procedures are commonly employed.

Iterative enforcement of constraints coupled with explicit integration methods is well
suited for cloth simulation systems with modest particle numbers. This combina-
tion successfully avoids the requirement of solving systems of equations and therefore
leads to computationally fast and visually satisfying simulations, suitable for computer
games. Although research has been developed on the problem of constraint enforce-
ment in general, the useful iterative geometric edge length enforcement method has not
been improved since its introduction by Provot [Pro95]. We present in this chapter a
new approach that greatly improves this method. Our method is simple to be imple-
mented, robust, and is able to achieve realistic stiff cloth behavior without any visual
artifacts and improves the computation time of the regular iterative constraint enforce-
ment by up to 80%.

The proposed method is based on computing a meaningful one-pass ordering of edge
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corrections by considering the direction in which stretching occurs most. First, we ex-
perimentally determine the correction priorities over the different types of considered
springs in order to minimize the stretch effect of the gravitational pull. Then, we employ
corrections starting from all the fixed vertices in a given simulation and synchronously
expanding towards the bottom of the cloth. We also limit the correction number of each
vertex. By prioritizing the correction order of different types of springs and limiting the
correction number of all vertices to a small number, our method successfully detects
the important springs to be corrected and ignores the ones that do not have any signifi-
cance on the overall visual result. Our final method is able to dramatically decrease the
cost of the iterative constraint enforcement process and at the same time successfully
eliminates undesired overstretching effects.

6.2 Related Work

Cloth simulation is a central topic in computer graphics and there is a rich literature
available [CYM92, BHW92, Pro95, EWS96, VCT95, BW98, HB00, CK02a, TPB87,
TF88]. We focus our review on how constraint enforcement has been used in previous
works.

A common approach for the iterative constraint enforcement procedure is proposed
by Provot [Pro95]. In this method, the cloth is scanned in an iterative way and all
springs that are disturbed more than a given threshold in respect to their rest lengths
are identified. These springs are then restored to their rest length by moving the two
particles connected to a spring along the spring axis, bringing them closer if the spring
is over stretched; or further away from each other if the spring is over compressed (see
Fig. 6.1).

The result of the described procedure is that a stiffer cloth behavior is produced. Note
however that not all springs can be perfectly corrected since one spring correction can
alter a previously corrected spring. There are a number of additional limitations in-
herent to this kind of brute-force correction approach. One corrective iteration over
the cloth does not always guarantee a visually satisfying result, and in addition, the
cloth might exhibit an oscillatory behavior in several areas. To overcome these lim-
itations, a common approach is to apply the corrective procedure several times until
a visually satisfying result can be obtained. Obviously, increasing the number of con-
straint enforcement iterations will decrease the performance of the simulation and there
is no reliable way to determine how many iterations would be necessary to achieve the
desired results. In [Pro95] it is mentioned that the order of correction of springs de-
pends entirely on their used data structure and in cases where constraints are globally
extending to the whole cloth object, the order of springs would probably have more
importance and should be studied. This observation is the primary motivation for our
proposed directional constraint enforcement method.

Aside from iterative approaches, it is also possible to address the problem by solving a
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Figure 6.1: Direction of correction for two particles connected by a spring.

system of non-linear constraint equations. Terzopoulos et al [TPB87] used the Gauss-
Seidel method to approximate the solution with a linear system of equations [TPB87].
Another popular method is called the Reduced Coordinate Formulation. In this formu-
lation, an unconstrained system with a given number of degrees of freedom is subject
to a set of constraints that remove some of the degrees of freedom and parameterizes
the rest; thus leading to generalized coordinates [IC87]. Lagrange multiplier formu-
lations are also widely used and have the advantage of defining the velocity and other
types of constraints which cannot be formulated using the Reduced Coordinates method
[Bar96, BW97].

Among these several approaches, our proposed method is most suitable for applications
where speed of computation and simplicity of implementation are most important, such
as in computer games and real-time simulations.

6.3 Cloth Model

The mesh structure of our cloth model is based on the scheme presented by [CK02a].
The cloth is represented as a quadrilateral mesh of particles. Particles are connected
to each other by massless springs. There are three types of spring elements, which are
responsible for the stretch, shear and bend forces. The connectivity of the springs is
described in the following way: a particle indexed by p(i, j) is connected by stretch
springs to its neighbor particles indexed by p(i ± 1, j), p(i, j ± 1). The shear springs
connect the particle to p(i ± 1, j ± 1), and the bend springs connect the particle to
p(i± 2, j), p(i, j ± 2) and p(i± 2, j ± 2).

6.3.1 Forces

The dynamics of the system is governed by Newton’s second law of motion ~F = m~a,
wherem is the mass and~a is the acceleration of a particle. The acceleration is computed
at every time step based on the total force ~F applied to the particle, and which accounts
for all external and internal forces.

The gravitational force is given by ~Fg = m~g and it is the only external force in our
system. The internal forces acting on a particle are the forces which originate from the
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stretch, bend and shear springs connected to each particle. The spring force ~Fs between
two particles is given by Hooke’s law:

~Fs = −ks(|~l| − r)
~l

|~l|
(6.1)

where ~l = ~xi − ~xj is the difference between the positions of the two particles, r is the
rest length of the spring and ks is the linear spring constant.

6.3.2 Verlet Integration

Although it is possible to couple the constraint enforcement process with various in-
tegration methods, we use the Verlet integration method in this work. The Verlet in-
tegration is a numerical method that originated from the field of molecular dynamics.
Thanks to its simplicity, performance and stability, it has become popular for real-time
cloth simulation, in particular in computer games.

The Verlet method stores the current and previous positions of each particle as the state
of the system. The velocity is thus implicitly represented by positions. The position
update step for each particle is computed with:

~xt+1 = 2~xt − ~xt−1 + ~ah2, (6.2)

where ~xt+1, ~xt and ~xt−1 are the positions of a particle at the next, current and previous
timesteps, ~a is the current acceleration influencing the particle and h is the integration
timestep. The acceleration influencing the particle is calculated based on the total force
acting on it. The damping of the system might be fine-tuned by changing the constant
multiplier (of value 2) in the equation. Decreasing the value to less than 2 will increase
the damping; whereas increasing to more than 2 will decrease the damping.

Because the velocity is implicitly calculated, the method tends to stay stable even when
relatively large timesteps are used. However, although the simulation remains fast and
stable, the use of large timesteps will lead to overshooting of positions and result in
a super-elastic cloth. Therefore, simulations relying on Verlet integration are often
coupled with an iterative constraint enforcement process that attempts to restore the
original distances between each pair of particles connected by a spring in the cloth
model.
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6.4 Directional Constraint Enforcement

Our directional constraint enforcement method achieves improved results with a mean-
ingful traversal order of spring corrections. Our method minimizes the number of total
corrections needed by preventing redundant repetition of corrections and avoiding the
oscillation behavior that often results from a simple iterative constraint enforcement
traversal.

Our method is based on the observation that the most stretched springs tend to be the
ones in the regions most influenced by the contact forces in a given simulation scenario.
Therefore, the most stretched regions on the surface of the cloth are expected to be the
regions close to fixed vertices of the cloth, which are vertices that tend not to move rel-
ative to their respective colliding object. By defining a traversal order that first corrects
the springs around the fixed vertices of the cloth, and expanding the corrections on the
direction of the gravity, it is possible to ensure that corrections will be effective and
without redundancy.

Our algorithm assumes that the cloth stretches under gravity and has a set of fixed ver-
tices. These fixed vertices correspond to vertices that attach the cloth to a character’s
body, a flag to a flag pole or a table cloth to the table, etc. Since there may possibly be
more than one fixed vertex to start the correction expansion, it is important to synchro-
nize the corrections originating from different fixed vertices. Our experiments showed
that failing to synchronize the expansions are causing serious visual artifacts; and the
simultaneous expansion remains an important aspect of the algorithm.

It is also crucial to analyze the overall visual look of the cloth according to the order
chosen on the different types of springs. If we categorize the different types of springs
along with their elongation directions, we can come up with three major categories: 1)
stretch springs elongating towards left or right (horizontal stretch springs), 2) stretch
springs elongating towards the bottom of the cloth (vertical stretch springs) and 3)
shear springs elongating towards the bottom of the cloth. Note that we do not take into
account springs elongating upwards, to make sure that the correction will be expanded
towards the gravity direction.

It is not straightforward to determine which type of spring should be given correction
priority over other types. We have experimented with different orderings for the three
different types of springs, leading to six different combinations. Two of these combina-
tions produced similar correction orders as others; so, we ended up having four different
correction orders possible. The correction maps of these four different orderings and
their associated deformation results are shown in Fig. 6.2. The experiment of switching
among the different orderings to observe the resulting cloth postures can be found on
the accompanying video of this work. This experiment showed that the best-looking
deformations are obtained with the following order of correction: 1) Horizontal stretch
springs, 2) Vertical stretch springs, 3) Shear springs.

With the ordering for processing the different types of springs determined, an edge
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Figure 6.2: Correction patterns and their respective deformation results obtained from
choosing different correction orders among the different types of springs.

traversal process respecing this ordering can then be devised. Algorithm 3 summarizes
our final edge correction ordering generation process. Details of the algorithm are given
in the next paragraphs.

Algorithm 1 receives as input the set of fixed vertices Vf . At the beginning of the
algorithm, we use an empty queue Q to maintain the synchronous order of correction
expansions. When the algorithm terminates, list L will be filled with the right order of
edges to be corrected during run time.

The overall algorithm proceeds as follows: first, all the fixed vertices are pushed into
the expansion queue Q. Then, until there is no vertex left in the queue, the vertices
are popped and expanded one by one. Procedure GetHorizontalStretchSprings (vs)
returns the horizontal stretch springs connected to the vertex vs. Similarly, GetVerti-
calStretchSprings (vs) returns the vertical stretch springs connected to the vertex vs,
and GetShearSprings (vs) returns the shear springs connected to the vertex vs. Finally,
procedure GetGoalVertex (vs, s) returns the vertex that is connected to the vertex vs by
the spring s.

For each vertex expanded we first find all the horizontal stretch springs connected to
it. Then, we find the goal vertices that the vertex is connected to through these springs.
Finally, we try to expand the correction map towards those vertices. When the Expand
procedure is called, the expansion to the goal vertex is not guaranteed. The algorithm
first checks how many times the goal vertex has been visited. If it already reached
the visit limit number then we do not expand. If the visit limit is not reached yet, the
algorithm expands to the goal vertex and adds the edge from the current vertex to the
goal vertex to the ordered correction list L. The visit count of the goal vertex will
be incremented and the goal vertex will be added to the expansion queue Q. These
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Algorithm 3 Ordered Edge Correction
Compute Correction List ( Vf )

1. L← null
2. for all v such that v ∈ Vf do
3. Q.push(v)
4. end for
5. while Q is not empty do
6. vS ← Q.pop()
7. Sh ← GetHorizontalStretchSprings (vs)
8. for all s such that s ∈ Sh do
9. vg ← GetGoalVertex (vs, s)

10. Expand (L, vs, vg)
11. end for
12. Sv ← GetVerticalStretchSprings (vs)
13. for all s such that s ∈ Vs do
14. vg ← GetGoalVertex (vs, s)
15. Expand (L, vs, vg)
16. end for
17. Ss ← GetShearSprings (vs)
18. for all s such that s ∈ Ss do
19. vg ← GetGoalVertex (vs, s)
20. Expand (L, vs, vg)
21. end for
22. end while
23. return L
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Figure 6.3: Left: step-by-step order of correction starting from an upper right fixed
vertex of the cloth. Right: correction map created for a cloth fixed from the two top
corners.

procedures will be repeated for vertical stretch springs and shear springs as well. The
algorithm will stop when there is no vertex left in the queue. At the end of the algorithm,
we will have the ordered correction list L completed.

List L is precomputed in advance for each set of fixed vertices to be considered during
the real-time simulation. Then, after each integration step in the simulation, the iterative
constraint enforcement step will traverse the edges in L, correcting only the position of
the second vertices in each edge, satisfying the desired length of each edge. Example
results obtained with the algorithm are shown in Figure 6.3.

6.4.1 Using multiple correction maps

Our method relies on precomputed fixed orderings (encoded in list L) in order to maxi-
mize computation performance in real time. Since the set of fixed vertices may change
during a simulation, the validity of the precomputed list L may be reduced depending
on how irregular and unpredictable the deformation events are. We tested our method
on various scenes such as a planar cloth interacting with a solid ball and a complex
cloth model interacting with a women model performing a “catwalk”. At both sim-
ple and complex scenarios, the obtained varied cloth-object collisions and cloth-cloth
collisions did not seem to cause any significant degradation in the obtained quality of
results.

It is also possible to precompute several correction maps to further increase the perfor-
mance and the accuracy of the animation. Precomputed maps corresponding to different
collision states that repeatedly occur in the animation can be used by switching between
them according to events in the simulation. For example, in the animation of the walk-
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Figure 6.4: Three alternating correction maps used for the long skirt simulation during
walking: map with right knee collision (left), map with no knee collision (center), and
map with left knee collision (right).

ing character wearing a long skirt, the character’s knees are interchangeably colliding
with the skirt generating a visible event with impact on the edge correction list. Every-
time a knee collides with the skirt, the colliding vertices are going to be corrected by
the collision detection module; we can as well treat them as fixed vertices in additional
correction lists. We have obtained improved results with three correction maps for the
cases where 1) the knees do not touch the skirt, 2) only the right knee touches the skirt
and 3) only the left knee touches the skirt. As shown in Figure 6.4, everytime we de-
tect a knee collision (or obsence of collision) we switch to its corresponding correction
map. If the deformation is specific for one given walking animation, such events can
be encoded in the time-parameterization of the animation, eliminating decisions based
on collision detection events. The use of multiple correction maps is therefore suitable
for simulations dependable on cyclic animations such as walking.

6.5 Results

In order to test the applicability of our method to different cloth simulation scenarios
we have tested our directional correction algorithm with cloths with different numbers
of fixed vertices and at different places. Figure 6.5 shows the different correction maps
produced for different initial sets of fixed vertices. Although the order of the corrections
change, the number of springs to be corrected stays practically the same. The only
exception is the scenario with the falling cloth on the table. In that scenario, a large
circular set of fixed vertices is naturally marked as fixed, and the number of springs to
be corrected is much less.

We have also tested our method on a more complex long skirt cloth model interacting
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Figure 6.5: The figure shows the correction maps generated by our algorithm and their
associated cloth simulation scenarios.

with a walking character. Our method proved to be efficient and did not cause any
undesired visual artifacts. Additional examples of edge correction orders obtained for
the skirt cloth model are shown in Figure 6.6 and rendered results are shown in Figure
6.7.

Our correction methodology is dependent on the set of fixed vertices on the surface of
the cloth. In most of the cloth simulation scenarios, such as hanging clothes, capes,
flags, table clothes, or dressed characters, the set of fixed vertices stays the same dur-
ing the whole animation. Therefore, in these cases the correction map would only be
precomputed once and in a very small amount of time. The precomputation time of the
correction map is about 0.52 seconds for a cloth of 1681 particles on a 2.4 GHz Intel
Core 2 Duo computer.

In terms of visual quality, our model achieves visually satisfying results from a single
correction pass over the list of edges. This is a major improvement in respect to the
original (non-ordered) constraint enforcement procedure that relies on several passes
to achieve good results. One aditional important advantage of our method is that the
directional correction completely eliminates the shaky cloth behavior that is frequently
seen in multiple pass procedures.

6.5.1 Limitations

As previously stated, our correction methodology is dependent on how predictable the
set of fixed vertices is. In cloth simulation scenarios where the set of fixed points
change very frequently, our method would need to update the correction map after each
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significant change. In such situations an automatic procedure for detecting the validity
of correction list L and triggering an ordering update everytime the set of fixed vertices
significantly changes from the original set can be integrated in the simulation system.
However, this would still maintain the negative effect of penalizing the overall perfor-
mance of the simulation. On the other hand, if the change on the set of fixed vertices is
not frequent, this will not represent a major slow down in the overall computation time.

We are also assuming that the cloth stretches under one single major constant external
force (gravity). Although this assumption addresses the vast majority of cloth simula-
tion scenarios, more complex situations where the stretch direction would be affected
by multiple varying external forces have not been tested.

6.6 Conclusions

We have introduced a new methodology for determining an efficient and effective
traversal order for the iterative edge length enforcement in cloth simulations. Our
method is robust, simple to be implemented and is able to achieve realistic stiff cloth
behavior without causing overstretching or visual artifacts (like shaky effects). Further-
more, our method improves the computation time by 80% with respect to the regular
iterative constraint enforcement procedure. We believe that our directional constraint
enforcement approach will prove itself useful to a number of scenarios employing
particle-based deformable models, and in particular in real-time applications such as
computer games.
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Figure 6.6: Top row: Order of correction obtained with fixed vertices selected at the
shoulder and belt regions. Bottom row: A small number of vertices (shown by the circle
on the bottom-left image) is added to the set of fixed vertices. Notice how the new
correction order obtained is different and how the correction map visually corresponds
to the expected buckling of the cloth.
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Figure 6.7: Example of a long skirt that would significantly overstretch if no constraint
enforcement is made. Our method eliminates the overstreching in an efficient manner.
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CHAPTER 7

Conclusions

In this dissertation, we introduced three physics-based animation models based on frac-
tional calculus. These methods are applied to the problems in popular areas of computer
graphics such as cloth simulation and Newtonian and non-Newtonian fluid simulation.
In this chapter, we will discuss our main contributions and conclude the dissertation.

7.1 Summary of Contributions

Our primary objective was to explore the contributions that fractional calculus can offer
the computer graphics community. To that end, this dissertation presents three contri-
butions: (1) underwater cloth model with history-based damping, (2) SPH model with
history-based viscosity term that can better represent the dynamics of colliding flows,
(3) shear thickening fluid model with history-based stiffness.

7.1.1 Underwater Cloth

Our first contribution emerged from fluid mechanics findings showing that the his-
tory forces on a solid particle moving underwater can be calculated based on the half-
derivative of the particle’s velocity. This implies that underwater behavior can be ac-
quired up to some extent without simulating the body of fluid around the particle. We
extended this approach to a particle system that constitutes the cloth model. We re-
placed the integer order derivatives with half-derivatives in the damping equations of
the cloth, therefore achieving realistic underwater cloth motion.

Creating similar effects using conventional methods requires a simulation of the fluid
body around the cloth. This kind of simulation is known to take hours of computation
time even when a modest number of particles is used. With respect to this aspect, the
creation of underwater behavior without simulating the body of water is remarkable
and it saves considerable time for animators for the creation of underwater effects.

Furthermore, the fact that fractional terms well model history effects can be clearly seen
in our animations. In real life experiments, force impulses applied to cloth underwater
show distinctive lasting effects. The evaluations in Figure 3.10 especially show very
clearly how well this behavior can be achieved in animation. A solid sphere colliding
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with the cloth creates long lasting propagations. These effects are a direct result of
history effects.

Diverging from the main focus of the dissertation, we also contributed in the simulation
of cloth in computer games. We increased the efficiency of the constraint enforcement
procedure by decreasing the running time by 80%. The model is simple, efficient and
has the potential to be very useful in real-time cloth simulation scenarios.

7.1.2 Colliding Flows

After the first application of fractional calculus on cloth simulation, we aimed to extend
our research to fluid simulation. The main motivation for this research originated from
fluid mechanics studies that present definitive experimental evidence of fractional his-
tory effects in the unsteady viscous motion of oscillating particles in Newtonian fluid.
We applied this idea to a simulation scenario rich in unsteady particle motion. We used
half-derivative based viscosity terms in the equations of a very popular particle-based
fluid simulation method called SPH. The model successfully improved the accuracy of
the simulation in regions where flows collide and create unsteady behavior.

The fact that our model modifies the viscosity terms in the SPH method raises the ques-
tion of whether the resulting effects are due to a change in viscosity of the fluid. We
specifically addressed this concern by validating our method against fluid simulations
from benchmark software and showed that our simulations in fact do not add any artifi-
cial viscosity and hence produce valid results. Furthermore, we numerically compared
our results against the classical SPH method and concluded that our fractional SPH
produces more accurate results for colliding flow regions.

In the underwater cloth research, it was not possible to numerically compare our method
with any other work in the literature as there is no prior effort to simulate similar sce-
narios in computer graphics. However, in the research on the colliding flow animation,
our results are mostly numerically evaluated. This is important for the completeness of
this dissertation in terms of providing both visual and numerical evidence for fractional
calculus based methods.

7.1.3 Shear Thickening Fluids

The third major contribution is the application of fractional calculus for the simulation
of shear thickening fluids. This type of fluid has very unconventional behaviors of phase
changing and solidification upon impact. These features makes shear thickening fluids
an interesting simulation topic for computer graphics. Motivated by the physics and
rheology papers that model non-Newtonian fluid behavior through fractional derivative
based elasticity terms, we aimed to adapt the idea to computer graphics. We presented
a combination of SPH and mass-spring system to simulate shear thickening fluids. Our
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contribution is mainly on the employment of fractional derivatives in order to create
history-based stiffness for springs connecting the particles.

Our model simulates shear thickening fluid in a great extent and is able to produce
most of the interesting behaviors that this fluid exhibits. We were able to demonstrate
simulations very similar to real life experiments, strongly validating our results. Shear
thickening fluids were never simulated before in computer graphics and our work is the
first to simulate this material.

7.2 Future Directions

For the future work, we believe the use of fractional calculus based models will be
proven useful in a variety of problems. The animations of deformable objects moving
underwater can definitely benefit from the ability of fractional calculus based methods
in simulating the history forces. More realistic animation of hair moving underwater
can be achieved. Moreover, the movements of the body parts of sea animals such as the
bell and tentacles of a jellyfish can be described more accurately.

The study of the effects of different orders of fractional derivatives can be an interest-
ing research direction. This would require numerical data from physics and rheology
experiments of materials that have some kind of memory effects. This data can later
be compared against models employing various orders of fractional derivatives and any
possible correlations can be investigated. Materials exhibiting any kind of memory
effects, hysteresis or viscoelastic behavior would be a good candidate to model with
fractional calculus.

Another important future direction would be the application of fractional calculus based
models for organ or tissue simulations. Organs have viscoelastic behavior that can be
modeled with fractional calculus. This kind of research would be particularly beneficial
for surgical simulations that require a high precision level of accuracy.
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