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Large language models (LLMs), such as OpenAI's Generative Pre- 
Trained Transformer- 4 (GPT- 4), can generate, audit, and process 
data without domain- specific training. LLMs have many potential 
health care applications but require validation and testing before 
deployment. Much of the current LLM research in health care has 
focused on supporting clinical decision making.1 Charting augmen-
tation is another potential area for LLM application, with a lower risk 
of patient harm than applications that directly influence medical de-
cision making.

In particular, procedure documentation may be a simple but 
high- impact charting use case for LLMs. In settings like the emer-
gency department (ED), where procedures are a routine part of clini-
cal practice, the time- consuming task of completing procedure notes 
is often neglected. This oversight can have serious implications for 
patient care, data integrity, and the financial viability of healthcare 
organizations. Many hospitals employ operations and billing spe-
cialists who manually review charts to identify missed procedure 
documentation, an expensive, labor- intensive process that remains 
error- prone.2 The retrospective nature of procedure documentation 
exacerbates clinician burnout by increasing postshift documentation 
burden.3

This procedure documentation workflow—simple relative to 
other charting tasks, monotonous for clinicians, and financially im-
portant with minimal patient risk—provides an ideal use case for 
LLMs. However, an essential first step prior to LLM integration is 

determining whether the technology can accurately identify pa-
tient encounters requiring procedure documentation. Our study 
focused on laceration repairs, a common procedure accounting for 
more than 8% of ED visits.4 We evaluated GPT- 4 performance in 
identifying patient encounters requiring laceration repair procedure 
documentation.

We performed a cross- sectional study of the publicly available 
Medical Information Mart for Intensive Care (MIMIC)- IV- Note 
2.2 database. MIMIC- IV contains deidentified hospital data span-
ning 2008–2019 from Beth Israel Deaconess Medical Center, with 
prior institutional review board approval (see also Supplemental 
Methods).5

Our initial data set consisted of all MIMIC- IV discharge summa-
ries which contained the keyword “laceration” (case- insensitive), in-
cluding both elective surgical admissions and patients admitted from 
the ED. We focused on admitted patients to increase the cohort 
complexity for GPT- 4 analysis. We included a small number of elec-
tive surgical admissions to evaluate GPT- 4 performance in identify-
ing lacerations repaired in the operating room, which do not require 
a separate procedure note. Discharge summaries for ED admissions 
included the initial history and physical examination for the patient. 
Three trained human reviewers (JB, HS, NS) reviewed a random 
sample of these encounters to create human labels for patient charts 
requiring laceration repair documentation according to prespecified 
criteria (Table S1). Ten percent of encounters were independently 
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labeled by two reviewers to determine inter- rater reliability using 
Cohen's kappa.

We randomly divided the labeled data set into (1) a development 
set for prompt engineering and (2) an independent test set (Figure S1). 
Encounters with discharge summaries exceeding the ~8000 token 
(approximately 6000 word) GPT- 4 context window were excluded, 
as this was the largest GPT- 4 context window available to us at the 
time of the study. We prompted GPT- 4 to review each discharge 
summary and determine whether a laceration repair procedure note 
was required. We evaluated GPT- 4 performance against the human 
labels using the following metrics: sensitivity, specificity, positive 
and negative predictive values and likelihood ratios, accuracy, and 
F1 score. To better understand reasons for GPT- 4 mislabeling, we 
subsequently conducted an unblinded, post hoc re- review of the 
following encounters: (1) all encounters in which GPT- 4 and human 
labels were discordant, (2) all encounters with concordant labels re-
quiring laceration repair documentation, and (3) a random sample of 
encounters with concordant labels not identifying laceration repairs.

We reviewed 800 MIMIC- IV discharge summaries for inpa-
tient encounters. These encounters were randomly divided into a 
development set of 50 and a test set of 732 encounters. Eighteen 
encounters exceeded the token count and were excluded. Twenty 
of these encounters (2.7%) were elective surgical admissions, and 
97.3% were admissions from the ED. In total, 163 of 732 (22.3%) en-
counters required a laceration repair procedure note as determined 
by human review. The mean age of the cohort was 57 years, and 22 
patients (3%) died while hospitalized. Other demographic informa-
tion is reported in Table S2. Cohen's kappa was 0.822 for the 80 
encounters labeled by two reviewers.

GPT- 4 performance on the test set is reported in Table 1. 
Sensitivity was 77.3% and specificity was 94.6%, with overall accu-
racy of 90.7% and F1 score of 0.788. These results were unchanged 
when elective surgical admissions were excluded.

There were 31 encounters that GPT- 4 identified as requiring a 
laceration repair note when human reviewers did not. On re- review, 
seven of these encounters had erroneous human labels. Of the re-
maining 24 encounters mislabeled by GPT- 4, 12 included lacerations 
repaired at another hospital before transfer or during a prior ED visit.

Thirty- seven encounters identified by GPT- 4 as not requiring 
a laceration repair note were discordant with human review. On 
manual re- review, 23 of these encounters were mislabeled during 
the original human review: seven with laceration repair at another 
hospital, 13 with a laceration identified but no specific repair men-
tioned, and three with a repaired laceration in the initial physical 
examination. The latter two categories met predefined exclusion cri-
teria (Table S1), yet human reviewers determined that they required 
documentation based on clinical context not accounted for in the 
labeling instructions.

In total, the most common clinical scenarios among discordant 
labels were lacerations repaired at another hospital or a prior visit 
(22/68, 32%), lacerations identified with no specific repair men-
tioned (20/68, 29%), and those repaired by consulting surgical ser-
vices (18/68, 26%).

Manual re- review of all 126 patient encounters with concordant 
labels requiring a laceration repair note revealed that initial human 
review had an accuracy of 90% (113/126). Twelve of the 13 inaccu-
racies on initial human review were due to lacerations repaired at 
another hospital or ED visit. Manual re- review of a random sample of 
126 concordantly labeled encounters that did not require laceration 
repair documentation demonstrated 100% accuracy.

GPT- 4 accurately identified patient encounters requiring a lac-
eration repair note using a patient's discharge summary, with an F1 
score of 0.788 and accuracy exceeding 90%. Our results underscore 
the potential application of LLMs to identify patient encounters re-
quiring procedure notes, an important first step to improving ED 
procedure documentation. To our knowledge, no study to date has 
assessed GPT- 4's performance on such a task, limiting direct com-
parisons of our findings. However, our results compare favorably to 
GPT- 4 accuracy in other charting domains, which has ranged widely 
from 25% when selecting CPT codes for spinal procedures to 89% 
when identifying high- acuity ED patients.1,6

Identification of encounters requiring procedure documentation 
is the most difficult task in the procedure documentation workflow. 
Once relevant encounters are identified, the assessment of whether 
procedure documentation was “missed” simply requires query-
ing whether a procedure note is present. After missed procedures 
were identified, even simple interventions such as pages and email 
reminders to clinicians have successfully increased documentation 
rates.7

Although GPT- 4 achieved relatively high accuracy in this study, 
we do not consider its current performance sufficient for clinical de-
ployment. With current sensitivity and specificity, for every 1000 
patients, GPT- 4 would miss 24 encounters deemed by humans to 
require laceration repair notes while sending 48 inappropriate pro-
cedure note completion alerts to clinicians. Although our specificity 

TA B L E  1  Test characteristics of GPT- 4 in identifying ED patient 
encounters requiring laceration repair procedure notes (n = 732).

Human review

+ −

GPT- 4 review

+ 126 31

− 37 538

Test set n 732

F1 score 0.788

Accuracy 90.7%

Sensitivity 77.3%

Specificity 94.6%

PPV 80.3%

NPV 93.6%

LR+ 14.188

LR− 0.240

Abbreviations: GPT- 4, Generative Pre- trained Transformer- 4; LR, 
likelihood ratio; NPV, negative predictive value; PPV, positive predictive 
value.
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of 95% compares favorably to other clinical GPT- 4 tasks,8 this num-
ber of discordant labels nevertheless risks exacerbating alert fatigue. 
Future studies should consider the addition of lower acuity ED pa-
tients, more heterogeneous selection of electronic health record 
data elements for identifying procedures, routing notes to the ap-
propriate clinician, and the effects of prompt engineering on model 
calibration to reduce the rates of discordant labels.

GPT- 4's true performance may have exceeded these metrics, 
as many of the discordant labels were the result of scenarios not 
precisely addressed in labeling criteria, alongside errors in initial 
human review. Concordant labels had very low human error rates, 
possibly reflecting lower complexity scenarios. GPT- 3.5- turbo has 
previously demonstrated higher accuracy in text annotation than 
untrained human annotators, as well as higher inter- rater reliability 
than both untrained and trained annotators.9 The discrepancies be-
tween GPT- 4 and our trained annotators, who in some cases used 
clinical intuition not present in the labeling criteria, highlight the 
importance of re- reviewing discordant encounters to inform future 
LLM prompting. Although our labeling criteria addressed scenarios 
such as transfers from another hospital, initial physical examinations 
with repaired lacerations, bedside repair by consulting services, and 
encounters in which a laceration was identified but no repair was ex-
plicitly mentioned, these scenarios were nevertheless sources of dis-
cordance between human and GPT- 4 review. A focus on even more 
specific prompting in these areas could improve future performance.

Our study has several other limitations. First, the MIMIC- IV data 
set used was limited to hospitalized patients, with a 3% in- hospital 
mortality rate similar to that of national ED admissions (2.7%).10 
This artificially raised the complexity of our cohort and limits gen-
eralization of our results to a representative ED population that 
includes discharges. Second, the enrichment of the test data using 
a keyword search may not reflect real- world populations and con-
tributes to overrepresentation of lacerations (22% prevalence in 
our study compared to the 8% seen in national ED data4) and false 
positives. Third, the unblinded post hoc re- review could introduce 
bias. Future research should validate our findings across additional 
procedures with a complete medical record, which could improve 
GPT- 4 performance.

As each iteration of GPT has consistently outperformed prior 
versions on health care tasks,6,8 we expect future LLMs to further 
improve test characteristics. Testing current models and developing 
applications for procedure documentation holds value even without 
immediate clinical use. As improved LLMs are released, health care 
organizations ready to integrate them will gain an edge in achieving 
real- time identification of missed procedure documentation in the 
ED and other clinical settings.
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