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Climate trauma from wildfire 
exposure impacts cognitive 
decision-making
Jason Nan1,3, Satish Jaiswal1, Dhakshin Ramanathan1,2,4,5, Mathew C. Withers6 & 
Jyoti Mishra1,2,5

Climate trauma refers to the chronic mental health sequalae of climate disaster events. We have 
previously shown evidence for such trauma with accompanying anxiety and depression symptoms 
after California’s 2018 Camp Fire wildfire. Here, we investigate whether this climate trauma also 
impacts cognitive decision-making and its neural correlates. One year after the wildfire, we recruited 
three groups - those directly exposed (n = 27), indirectly exposed (community members who witnessed 
the wildfire but not directly exposed, n = 21), versus non-exposed controls (n = 27). Participants 
performed a decision-making task that led to immediate and cumulative point rewards on each 
trial with simultaneous electroencephalography (EEG) recordings. We evaluated Win-Stay behavior 
in choosing to stay with the greater expected value (cumulative reward) option. Directly-exposed 
individuals showed significantly reduced Win-Stay behavior relative to the other groups. EEG analyses 
showed significantly greater parietal alpha activity for the selected choice and ensuing rewards 
in directly fire-exposed individuals, with an underlying cortical source of this activity in posterior 
cingulate cortex. Overall, these findings suggest that climate trauma may significantly impact neuro-
cognitive processing in the context of value-based decision-making, which may serve as a useful 
biomarker target for future mental health interventions in climate change impacted communities.

Keywords  Decision-making, Reward, EEG, Alpha, Posterior cingulate cortex

Our changing climate is posing a global crisis that has drawn the attention of health scientists worldwide to 
understand and address the impacts of extreme weather events and climate disasters1,2. In the western United 
States, warming of 1.5 °C over the last 30 years has paralleled a ~ 1000% increase in annual forest-fire area3. As 
climate change accelerated disasters such as the wildfires in the western US become frequent, significant impacts 
are being observed not just on human physical health but also mental health4–6.

Our recent studies in communities impacted by California’s deadliest wildfire to-date, the Camp Fire of 
2018, have demonstrated mental health as well as neuro-cognitive impacts of wildfire exposure7,8. In a sample of 
725 California residents, Silveira et al.8 found that individuals directly exposed to the wildfire disaster, showed 
significantly pronounced symptoms of post-traumatic stress disorder (PTSD), depression and anxiety even a 
year after the wildfire event. Such complex mental health impacts of a climate disaster event have been referred 
to as climate trauma9.

There are very few studies that have investigated the cognitive and neurobiological impacts of climate 
disasters10. In a recent empirical study, we examined a range of core cognitive abilities in individuals affected by 
the 2018 California wildfire disaster7. These cognitive assessments were conducted one year after the wildfire 
event and included tasks of selective attention, response inhibition, interference processing, working memory 
and emotion bias. This study found a significant and selective deficit in interference processing, i.e., the ability 
to deal with distractions in individuals who had suffered from climate trauma from the wildfire disaster relative 
to those who did not. Additionally, electroencephalographic (EEG) recordings conducted simultaneous to the 
cognitive tasks showed significantly greater activity in frontal cortex in individuals who were directly fire-exposed 
relative to others, and specifically for the impacted interference processing task. Notably, this state of frontal 
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hyperarousal observed under climate trauma also dovetails with evidence for frontal cortex hyperexcitability 
observed in PTSD11,12, and may reflect the greater cognitive effort needed to process irrelevant distractions13,14.

One of the critical cognitive functions affected by psychological trauma, in general, is decision-making15,16, 
particularly in the form of deficits in reward functioning17. Studies show that individuals with PTSD exhibit 
higher approach-aversion conflict when making decisions18 and show changes in reward processing often 
characterized as anhedonia17. Furthermore, decision-making is heavily influenced by fundamental attention 
and distraction processes19, which we have already shown to be impacted by climate trauma7. However, findings 
are still mixed regarding whether and how more complex decision-making and associated rewards are affected 
in PTSD17,20. Yet, recovering from trauma of any kind, including climate trauma, requires optimal reward 
processing, which builds intrinsic motivation and reconnection with positive experiences and thereby, supports 
stress resilience21,22. Thus, understanding of cognitive and neural mechanisms underlying decision-making 
and associated reward processing can offer insights into novel diagnostic methods and personalized treatment 
strategies for trauma impacts.

To the best of our knowledge, the current research is a first to study cognitive and neural processes during 
decision-making and ensuing reward processing in the context of climate trauma. For this study, individuals 
who had been exposed to the 2018 California wildfire disaster as well as non-exposed controls participated 
in a simple, two-choice decision-making task23, 6–12 months after the wildfires. Study participants choose 
between one probabilistic choice deck that yielded small frequent gains but had low expected value (EV) of 
cumulative gains over time versus a second choice deck that yielded higher EV cumulative gains but had small 
frequent losses. We chose this two-choice task as it is able to distinguish decision-making bias towards frequent 
small gains versus longer-term EV-based choices, which can be confounded in other multi-choice tasks24,25. 
Specifically, we focused on assessing preference for the large EV choices as it marks the important ability for 
reward learning over time and foresighted long-term decision-making. We used the Win-Stay behavior metric 
to evaluate individual preference for large EV choices23,26–28; this metric quantifies the ability to stay with (i.e., 
continue to choose) the deck that delivers higher EV after experiencing a win (i.e., gain) on this deck. This 
Win-Stay metric has also been shown to be more sensitive at distinguishing behavior on choices that differ in 
EV than comparing the overall proportion of choices made for contrasting options23. It has also been shown 
that individuals with PTSD sacrifice rewards in the presence of negative stimuli29, and show deficits in reward 
learning16. Hence, it is possible that individuals exposed to climate trauma may be averse to frequent losses even 
if that choice ultimately has higher EV and/or fail to learn the distinction between low vs. high EV choices given 
impacted attention and distractor processing7,19. Therefore, we hypothesize that long-term decision-making 
ability, indexed by Win-Stay behavior on the higher EV choice, may be impacted by climate trauma in the 
context of a wildfire disaster.

We further hypothesize that effects of climate trauma on decision-making ability may be linked to underlying 
neural dynamics, especially within fronto-parietal brain regions that dictate attention and decision-making. 
There is convergent evidence from healthy participants as well as lesion studies demonstrating the critical 
role of the fronto-parietal regions in decision-making30–33. Relevant to the current research, in a functional 
neuroimaging study Paulus et al.32 showed that response inconsistencies on Win–Stay (or Lose–Shift) behavior 
in a two-choice prediction task are linked with activation of parietal cortex. Given the lack of neural evidence in 
the context of climate trauma, other neurophysiological studies of non-climate trauma may serve as a reference 
guide, and have also implicated atypical processing in fronto-parietal brain regions21,34,35. Thus, overall, this 
study hypothesizes that cognitive decision-making dynamics indexed by the Win-Stay measure may differ for 
individuals who have experienced climate trauma and further may be associated with altered neural dynamics 
in fronto-parietal brain regions.

Methods
Participants
 This study included 75 participants (mean age: 24.57 ± 6.20 years, range: 18–47 years, 63 females), who took 
part in the cognitive and neural decision-making evaluation and were a subset of participants sampled in our 
previous wildfire study8. All participants were sampled at 12 months after the 2018 Camp Fire in Northern 
California, i.e. all study data was collected prior to the COVID-19 pandemic period. This sample included three 
groups of participants: directly exposed to the wildfire (n = 27), indirectly exposed to the wildfire (n = 21), and 
non-exposed controls who were age and gender-matched to the directly exposed group (n = 27). The groups were 
classified based on self-reports on the Life Events Checklist 5 8, i.e., in the context of the fire, the three groups 
responded as ‘happened to me personally’ for the directly exposed group; ‘witnessed it happen to someone else’ 
for the indirectly exposed group; and ‘learned about it or not applicable’ for non-exposed controls, respectively. 
An additional group was created called ‘other’ which comprises of the indirectly exposed and non-exposed 
control groups.

All participants provided written informed consent for the study approved by the local university Institutional 
Review Board (IRB) and in accordance with the Declaration of Helsinki. Specifically, the directly and indirectly 
exposed participants were located at California State University (CSU) at Chico, within 10–15 miles of the Camp 
Fire, and were approved by the CSU Chico IRB#22838, while non-exposed controls were located in the San 
Diego region, 600 miles away from the Camp Fire, and were approved by the University of California, San Diego 
IRB#180140. The majority of participants (95%) were right-handed. All participants had normal/corrected-to-
normal vision and hearing, and no participant reported color blindness. All participants had at least a high-
school education.

Scientific Reports |        (2025) 15:11992 2| https://doi.org/10.1038/s41598-025-94672-0

www.nature.com/scientificreports/

http://www.nature.com/scientificreports


Demographics
 All participants provided demographic information by self-report including age, gender, and ethnicity. Socio-
economic status was measured on the Family Affluence Scale36; this scale measures individual wealth based 
on ownership of objects of value (e.g., car/computer) and produces a composite score ranging from 0 (low 
affluence) to 9 (high affluence).

Mental health 
All participants self-reported whether they had experienced recent trauma as per the standard PTSD checklist 
screen (“were you recently bothered by a past experience that caused you to believe you would be injured or 
killed?” 1: Not bothered at all, 2: Bothered a little, 3: Bothered a lot)37. Participants rated anxiety symptoms on 
the Generalized Anxiety Disorder: GAD7 scale38 and depression symptoms on the Patient Health Questionnaire: 
PHQ9 scale39.

All participant demographics and mental health characteristics have been tabulated and discussed in our 
previous study in which the same sample underwent other neuro-cognitive assessments7, and are also shown in 
Results Table 1.

Experimental task
 We investigated a two-choice decision-making task23 that we refer to as Lucky Door in which participants were 
given the below instruction:

“You will see two doors.
Tap left or right to choose a door.
You will gain or lose coins at each door. Choose the lucky door.”

In this task, participants chose between one of two doors, either a rare gain door (RareG, probability for gains 
P = 0.3, for losses P = 0.7) or a rare loss door (RareL, probability for losses P = 0.3, for gains P = 0.7). Participants 
used the left and right arrow keys on the keyboard to make their door choice. Door choice was monitored 
throughout the task. The task choice decisions on each trial were response-constrained, not time-constrained, 
i.e. participants could take their time to select their choice.

The task consisted of two blocks, an experimental block and a baseline block that were counterbalanced 
across participants. In the experimental block, expected value (EV) was greater for the RareG door (P = 0.3 for 
+ 60 coins, P = 0.7 for − 20 coins, EV = + 40) than for the RareL door (P = 0.3 for − 60 coins, P = 0.7 for + 20 coins; 
EV = − 40). Manipulation of EV, with greater expected value tied to the RareG door, allowed for investigating 
individual propensities to prioritize long-term (or cumulative) versus short-term (or immediate) rewards. 
The RareG door was assigned greater EV because selecting this door suggests EV magnitude-based decision 
processing in subjects as opposed to simply choosing based on frequency of gains, in which case the RareL 
choice should be preferred.

In the baseline block, EV was the same for both RareG (P = 0.3 for + 70 coins, P = 0.7 for − 30 coins, EV = 0) 
and for the RareL door (P = 0.3 for − 70 coins, P = 0.7 for + 30 coins; EV = 0), and allowed investigation of gain 
frequency bias towards the RareL door without EV differences.

40 trials were presented per block approximating similar trial numbers as previous human reward task 
studies40,41. Figure 1A shows a schematic of the task stimulus sequence. On each task trial, a fixation cue was 

Demographics and mental health

Directly exposed (n = 27) Indirectly exposed (n = 21) Not exposed (n = 27) Other (n = 48)

Mean ± STD Mean ± STD Mean ± STD Mean ± STD

Age 24.4 ± 5.9 25.7 ± 7.0 23.9 ± 5.9 24.6±6.4

Gender n (%)

 Male 4 (14.8) 4 (19.0) 4 (14.8) 8 (16.7)

 Female 23 (85.2) 17 (81.0) 23 (85.2) 40 (83.3)

Ethnicity n (%)

 Caucasian 21 (77.8) 12 (57.1) 8 (29.6) 20 (41.7)

 Black/African American 1 (3.7) 0 (0) 0 (0) 0 (0)

 Asian 0 (0) 2 (9.5) 11 (40.7) 13 (27.1)

 More than one ethnicity 4 (14.8) 5 (23.8) 6 (22.2) 11 (22.9)

 Other 1 (3.7) 2 (9.5) 2 (7.4) 4 (8.3)***

SES 4.0 ± 1.7 4.0 ± 1.7 4.9 ± 2.0 4.5±1.9

Recent trauma N (%) 18 (66.7) 3 (14.3) 0 (0) 3 (6.3)***

Anxiety (GAD7) 10.1 ± 6.6 9.7 ± 5.2 3.2 ± 2.1 6.0±5**

Depression (PHQ9) 8.9 ± 6.5 11.8 ± 6.1 2.6 ± 2.1 6.6±6.3

Table 1.  Demographic characteristics and self-reported mental health for participants by group. Stars indicate 
significant differences between the directly exposed and other groups. P-values are from non-parametric rank 
sum test comparisons between groups for all variables except gender and ethnicity for which Χ2 tests were 
used. (*** p < 0.001; ** p < 0.01).
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followed by two door choices that remained on the screen until a choice was made. After choice selection, central 
fixation was presented for 500-ms duration followed by selected choice presentation for 500-ms duration, then 
immediate reward presentation for 500-ms duration corresponding to the reward for the selected door on that 
trial, and then cumulative reward presentation for 500-ms duration corresponding to total reward earned until 
that trial during the block.

The Lucky Door task was deployed in Unity as part of the assessment suite on the v2019.1 BrainE (short for 
Brain Engagement) platform ​h​t​t​p​s​:​​/​/​p​l​a​y​​.​g​o​o​g​l​​e​.​c​o​m​/​​s​t​o​r​e​​/​a​p​p​s​/​​d​e​t​a​i​l​​s​?​i​d​=​c​​o​m​.​n​e​​a​t​l​a​b​s​​.​b​r​a​i​n​​e​&​h​l​=​e​​n​_​U​S42. 
The Lab Streaming Layer (LSL43), protocol was used to time-stamp each stimulus/response event during the 
task. Study participants engaged with the assessment on a Windows 10 laptop sitting at a comfortable viewing 
distance.

Behavior analysis
 Behavioral data were obtained from 74 of 75 participants, except for missing data from one participant in the 
control group. The main behavior metric was Win-Stay, i.e., participant’s willingness to stay with the RareG door 
that had greater EV (but lesser immediate gains) after they encountered a winning trial for this choice in the 
experimental block. Win-Stay was calculated as the ratio of times a participant stayed with the RareG choice 
after a win compared to total number of trials after a win. On the baseline block that had no EV differences, 
we also calculated Win-Stay for RareG choices as a control to confirm the hypothesis that Win-Stay behavior 
selectively shows group differences on the experimental block that had EV differences between choices23.

To analyze group differences while accounting for all covariates of age, gender, ethnicity, socioeconomic 
score, and mental health scores of anxiety and depression, we modeled the behavior metrics across all three 
groups with a linear model using the fitlm function in MATLAB with robust regression option applied to reduce 
outlier influence44.

Sample size and power
 Our total sample size was a priori adequately powered to detect a medium effect size relationship between 
Win-Stay behavior and group differences in the above behavioral regression analysis at beta of 0.8 and alpha 
significance level of 0.05 as calculated using v3.1.9.4 of G*Power software ​h​t​t​p​s​:​​/​/​w​w​w​.​​p​s​y​c​h​o​​l​o​g​i​e​.​​h​h​u​.​d​​e​/​a​r​b​e​​i​
t​s​g​r​u​​p​p​e​n​/​a​​l​l​g​e​m​​e​i​n​e​-​p​​s​y​c​h​o​l​​o​g​i​e​-​u​​n​d​-​a​r​​b​e​i​t​s​p​​s​y​c​h​o​l​​o​g​i​e​/​g​​p​o​w​e​r45. Standardized regression coefficients > 0.1 
are considered small effect size, > 0.3 medium and > 0.5 are large46. For all other analyses, we also report effect 
sizes, where medium effect sizes (Cohen’s d > 0.5) can be considered scientifically meaningful.

EEG processing
 EEG simultaneous to the decision-making task was acquired in most participants (n = 57) with missing EEG due 
to technical issues in 3 participants in the control group, 7 participants in the indirectly exposed group, and 8 
participants in the directly exposed group. RareG trials were analyzed coinciding with the behavioral analyses on 

Fig. 1.  Task Design and Performance. (A) Flow of a Lucky Door task trial. On each trial, participants are 
initially presented with a choice of two doors. After they make a choice, they are shown the chosen door (for 
a duration for 500 ms), then presented with the amount of coins they received for that choice (immediate 
reward, shown for a duration of 500 ms) followed by presentation of their total coin tally (cumulative reward, 
also shown for 500 ms). (B) Box plot of the Win-Stay behavioral metric for high expected value (EV) choices 
in the experimental block of the Lucky Door task, showing group based probability of participants staying with 
the high EV door after winning coins. Individuals directly exposed to fires showed significantly lower Win-Stay 
behavior relative to other, i.e., indirectly exposed and non-fire-exposed study participants.
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these trials. Since we are analyzing neural correlates related to decision making and ensuing reward processing, 
we segmented the trial structure into three distinct time period associated with choice defined as 0-500 ms after 
the chosen door is presented, immediate reward defined as 500–1000 ms after the chosen door appears, and 
cumulative reward defined as 1000–1500 ms after the chosen door appears. Each of the time periods are 500 
ms to align with the duration of each stimulus (i.e., chosen door, immediate reward and cumulative reward) 
appearing on the screen. These three timings are also shown in Fig. 1A.

Neural data analyses were conducted using a uniform two-step processing pipeline published in several of 
our studies7,23,42,47–54. Step (1) EEG channel data processing was conducted using the EEGLAB toolbox v2020 
in MATLAB v2022b. EEG data was resampled at 250 Hz and filtered in the 1–45 Hz range to exclude ultraslow 
DC drifts at < 1 Hz and high-frequency noise produced by muscle movements and external electrical sources at 
> 45 Hz.

There were no missing channels in the EEG data across subjects. Epoched data were cleaned using the 
autorej function in EEGLAB to remove noisy trials, i.e. >5SD outliers rejected over max 8 iterations, followed 
by further cleaning of electrooculographic, electromyographic or non-brain source artifacts using the Sparse 
Bayesian learning (SBL) algorithm (https://github.com/aojeda/PEB)52. In addition to the automatic rejection, we 
also implemented an amplitude criterion where any trial exceeding 100 uV was considered noisy and removed. 
The cleaned data were then band filtered in the physiologically relevant theta (4–8 Hz), alpha (8–13 Hz), and 
beta (13–30 Hz) frequency bands. Gamma band (30–70 Hz) was excluded from analysis because it requires an 
electronically shielded acquisition environment and more sensitive recording devices, which were not accessible 
for this study. Epoched events were then extracted and averaged across trials to remove single trial noise.

Step (2) We used the block-Sparse Bayesian learning (BSBL-2 S) algorithm to localize frequency band filtered 
EEG data and partitioned the signals into cortical regions of interest (ROIs) and artifact sources52,55. For the 
source space activations, ROIs were based on the standard 68 brain region Desikan-Killiany atlas56 using the 
Colin-27 head model57. BSBL-2 S is a two-step algorithm in which the first-step is equivalent to low-resolution 
electromagnetic tomography (LORETA58). LORETA estimates sources subject to smoothness constraints, 
i.e. nearby sources tend to be co-activated, which may produce source estimates with a high number of false 
positives that are not biologically plausible. To guard against this, BSBL-2  S applies sparsity constraints in 
the second step wherein blocks of irrelevant sources are pruned. Notably, this data-driven sparsity constraint 
reduces the effective number of sources considered at any given time as a solution. The sparsity is imposed at 
the level of cortical ROIs, thereby projecting the data onto this space of few ROIs and reducing the uncertainty 
of the inverse solution. Thus, it is not that only higher channel density data can yield source solutions, the ill-
posed inverse problem can also be solved by imposing more aggressive constraints on the solution to converge 
on the source model at lower channel densities, as also supported by prior research59,60. Of note, the BSBL-2 S 
two-stage algorithm has been benchmarked to produce evidence-optimized inverse source models at 0.95AUC 
relative to the ground truth, while without the second stage < 0.9AUC is obtained, verified using both data and 
simulations52,55. We have also shown that cortical source mapping with this method has high test-retest reliability 
(Cronbach’s alpha = 0.77, p < 0.0001) obtained with recordings conducted one-week apart42.

Neural data analysis
 Here, we applied a standardized pipeline with modifiable parameters to streamline both scalp and source space 
neural analyses. A github with the source code can be found in (​h​t​t​p​s​:​​/​/​g​i​t​h​​u​b​.​c​o​m​​/​j​a​s​o​n​​n​a​n​2​/​​A​u​t​o​m​a​​t​e​d​-​A​n​​
a​l​y​s​i​s​​-​o​f​-​E​E​G​/)61.

This standardized pipeline included.

	1.	 Outlier rejection on the final trial-averaged scalp and source data, which sets any datapoint > 5SD across all 
subjects to NaN.

	2.	 Baseline correction was done on both scalp and source activity relative to the − 250 ms to − 50 ms fixation 
time window prior to choice presentation in each scalp electrode/ source ROI within each subject. This 
baseline was chosen as it provides a silent period of neural activity wherein no stimulus-evoked processing 
occurs62.

	3.	 Differential scalp topography maps comparing groups were plotted for each of the three frequency bands 
(theta, alpha, beta) and three trial periods (choice, immediate reward, cumulative reward) for a total of 9 
scalp maps. Patterns of significantly different electrodes between groups of interest were validated with per-
mutation clustering across 10,000 iterations, and false discovery rate (FDR) corrections were applied for 9 
topographic map comparisons (3 frequency bands × 3 trial periods)63.

	4.	 Alpha band event-related activity was also averaged over a standard posterior alpha electrode cluster (Pz, P3, 
P4, and POz) for significance testing between groups. Theta and beta band average electrode clusters were 
not defined as activity in these bands did not differ in step 3 above.

	5.	 To find relationships between behavior and neurophysiology, we fit linear models to test for group x neural 
interaction predicting behavior data (i.e., Win-Stay for large EV RareG choices). These models controlled for 
relevant demographic covariates. Here, the neural variable refers to average alpha activity in the posterior 
electrode cluster as well as in the individual component electrodes (P3, Pz, P4, and POz). Relevant demo-
graphic covariates were determined by the behavior analysis done prior to neural analysis. All models were fit 
with FDR corrections applied for multiple comparisons. All continuous variables were z score standardized 
for the models so effect size can be reported as standardize beta values.

	6.	 Withing-group Spearman’s correlations were used to follow-up on any significant neuro-behavioral group 
interactions obtained in step 5 above.
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	7.	 We conducted cortical source localization analysis for any relevant scalp electrode activities that showed sig-
nificant group differences and neurobehavioral correlations (i.e., alpha activity in the 500 ms choice period 
per the Results).

Results
Behavioral performance
 The two-choice decision-making task design and corresponding Win-Stay behavior performance on high EV 
(i.e., rare gain or RareG) choices that resulted in greater long-term cumulative reward, are shown in Fig.  1. 
We implemented a robust linear regression of Win-Stay behavior with participant group as predictor and also 
included covariates of age, gender, ethnicity, socioeconomic scores, anxiety and depression shown in Table 1. 
The regression model was overall significant (adjusted R = 0.35, Fstat = 2.38, p = 0.03), and notably, showed a 
significant effect only for the directly-exposed group (standardize β=-0.76±0.34, tstat=-2.2, p = 0.03) but not for 
the indirectly-exposed or non-exposed group (p > 0.57). Thus, only the directly-exposed group showed lower 
Win-Stay choices relative to the other two groups. Also, age was the only significant covariate in the model 
(standardize β=-0.35±0.13, tstat=-2.8, p = 0.007).

We further modeled gain frequency bias based on group and including all demographic and mental health 
covariates per Table 1. But this model was not significant (adjusted R = 0.23; Fstat = 1.52, p > 0.1). Also, Win-
Stay behavior on RareG trials on the baseline block that had no EV differences between choices, did not have a 
significant regression model (adjusted R = 0.31, Fstat = 1.96, p = 0.07) and with no effect of group (p > 0.1). Thus, 
we confirmed our hypothesis that Win-Stay behavior only differs when there are EV differences between choices.

Neural processing
As there were no significant behavioral differences between the indirectly exposed group and non-exposed 
groups, for neural analyses we combined these into one group (Other) to compare against the directly exposed 
group. Summary of demographic characteristics & self-reported mental health for all groups are shown in 
Table 1.

Figure 2A shows EEG scalp topographies contrasting group neural activity in the directly exposed vs. other 
group in theta, alpha and beta frequency bands within the 500 ms time period after choice, immediate reward 
and cumulative reward presentations. Electrodes showing significant group differences (i.e., directly exposed 
vs. other) after permutation clustering are marked with + (p < 0.0001), and notably appeared only in the alpha 
band. Given the known posterior parieto-occipital origins of alpha band activity64–71 and its typical topography 
appearing in our scalp maps (Fig.  2A), we further quantified parietal cluster alpha (at Pz, P3, P4, and POz 
electrodes) in grouped bar graphs in Fig. 2B. Parietal alpha differences were consistently found during the choice 
(effect size, Cohen’s d = 0.72; t(54)=-2.6; p < 0.05), immediate reward (Cohen’s d = 0.78; t(54)=-2.8; p < 0.01) and 
cumulative reward periods (Cohen’s d = 0.75; t(54)=-2.7; p < 0.01) as compared in between-group t-tests. We also 
checked that parietal alpha activity did not significantly differ between the indirectly exposed and non-exposed 
groups that were combined in the other group (p > 0.43). The average time course ERP for each of the bar graphs 
in Fig. 2B are shown in Fig. 2C.

To investigate whether alpha activity is a neural correlate of behavior, we implemented robust regression 
models that predicted Win-Stay behavior on the high EV choice; predictors included group (directly-exposed 
vs. other), parietal alpha activity and the interaction between group and alpha activity. Since age was a significant 
predictor of Win-Stay behavior, it was entered as a covariate in all models. Since ethnicity and anxiety were also 
significantly different between the two groups (Table 1), these were also added as model covariates. No models 
using average alpha activity in the parietal electrode cluster (comprised of P3, Pz, P4, POz) showed a significant 
neural effect on behavior. Hence, we explored models for individual electrodes in the cluster, correcting for 
multiple comparisons across four electrodes and three time windows (choice, immediate reward and cumulative 
reward). In this case, only the model for Pz alpha activity during the choice period showed a significant alpha 
activity by group interaction (standardize β = 0.57 ± 0.27, tstat = 2.1, p = 0.04). The overall model was significant 
(adjusted R = 0.46, F-stat = 3.34, p < 0.007), and also showed a significant effect of group (standardize β = 0.62 
±0.3, tstat = 2.0, p = 0.048) and age (standardize β= -0.42 ± 0.13, tstat=-3.2, p = 0.002). Anxiety (p > 0.1) and 
ethnicity (p > 0.4) were not significant covariates, and there was also no effect of alpha activity alone (p > 0.3). 
No significant neural effects were observed in the immediate/cumulative reward periods at any of the parietal 
electrodes.

Figure 3A illustrates the group specific alpha activity response at electrode Pz as it relates to Win-Stay 
behavior; a significant Spearman’s correlation was observed only in the other group (rho = 0.34 p = 0.04) but not 
in the directly exposed group (p = 0.5). Figure 3B shows the cortical source localization of the Pz alpha activity 
during the choice period masked by significant difference between activity in the directly exposed vs. other 
group; the source region as highlighted in the figure was observed to be right posterior cingulate cortex with 
greater activity in the directly exposed than the other group (Cohen’s d = 0.65; t(54)=-2.33; p < 0.05) as seen in 
Fig. 3C.

Discussion
In the current study, our main objective was to investigate how mental health trauma from a major wildfire 
disaster may affect cognitive decision-making of impacted community members. For this, we specifically 
investigated the ability to engage and stay with high expected value choices, marked by the Win-Stay behavior 
metric obtained on high EV trials. We further investigated the neural dynamics of such behavioral modulation 
as affected by direct wildfire exposure. We observed that individuals directly exposed to the climate trauma 
event showed significantly lower ability to stay with the high EV choice after winning compared to indirectly 
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Fig. 2.  Neural activity contrasted in directly exposed vs. other (i.e., indirectly exposed and non-exposed 
combined) groups. (A) Baseline corrected scalp topography plots are shown for the 500 ms choice period, 
immediate reward period and cumulative reward period in theta, alpha and beta frequency bands contrasting 
activity in the directly exposed vs. other group participants. ‘+’ points represent permutation corrected 
significant electrode clusters at p < 0.0001. (B) Bar graphs show activity in the parietal alpha cluster (P3, Pz, P4, 
POz) observed to be significantly greater in the directly exposed (red) vs. other group (blue). Activity values 
are in µV. **: p < 0.01, *:p < 0.05 (C) Time course of event-related alpha band activity is shown at electrode Pz 
for the directly exposed (red) vs. other group (blue). Shaded boundaries represent standard error of the mean.
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exposed community participants (who witnessed the wildfire in their community but were not directly 
impacted) and non-exposed control participants. Additionally, there were no behavioral differences in Win-
Stay behavior between the indirectly exposed and non-exposed participants. At the neural level, across three 
pertinent processing time windows of selected choice presentation, immediate reward and cumulative reward 
presentation, we observed significantly greater alpha band EEG activity especially over parieto-occipital brain 
regions in the directly exposed group vs. all other participants. Finally, a robust regression model investigating 
neurobehavioral relationships showed that alpha activity at the midline parietal electrode (Pz) during choice 
presentation could predict Win-Stay behavior with a significant alpha activity by group interaction. Together, 
these findings illustrate the impact of a traumatic climate event such as the deadly wildfire in California that we 
focused on here, on behavioral and neural correlates of decision-making.

The observation of impacted cognitive decision-making after climate trauma exposure, as indexed by the 
Win-Stay metric was consistent with our primary hypothesis. We hypothesized this impact based on prior 
studies of decision making in general, i.e., in non-climate related contexts in PTSD and depression15–17,72,73. 
For instance, Sailer et al.16 examined reward processing in clinically diagnosed PTSD patients using a decision-
making task (adapted from74,75), and observed that individuals with PTSD showed lower accuracy in late phase 
reward learning relative to control subjects, suggesting lower efficiency of reward-based decision-making in 
PTSD. Similarly in the decision-making reward task we deploy here, high EV choices also need to be implicitly 
learned and differentiated from low EV choices, and failure of such learning would result in low Win-Stay 
behavior on high EV trials.

In the EEG neural recordings, we observed significantly greater parietal alpha on high EV trials in the 
directly-exposed group vs. all other participants. This observation is in line with previous reports in PTSD, 
showing involvement of fronto-parietal regions in decision-reward processes76,77. For example in a functional 
neuroimaging study on combat veterans, Howlett et al.77 observed an exaggerated neural response, specifically 
in the parietal region to surprising errors while participants were performing a probabilistic learning task. 
Interrogating neurobehavioral correlations, we found that parietal alpha, specifically at the Pz electrode during 
choice presentation showed group-specific modulations in the context of Win-Stay behavior. In the non-directly 
exposed (i.e., other group) participants, greater Pz alpha was associated with greater Win-Stay performance. In 
contrast, in the directly-exposed group, Pz alpha was generally of greater magnitude in the group as a whole but 
did not show modulation with Win-Stay behavior. Flexible alpha modulation during decision-making behavior 
has been associated with greater task-related cognitive effort in healthy participants78,79, which may explain our 
findings in the other group i.e., greater Win-Stay behavior is achieved with greater cognitive effort. Studies also 
suggest that reward-related learning during decision-making harnesses working memory processes80,81, and 
relatedly, prior work has shown that parietal alpha indexes working memory performance82–84. Thus, parietal 
alpha modulation in the other group participants may also suggest that they successfully recruit working memory 
processes for learning the high EV choices and thereby, generate greater Win-Stay performance. Overall higher 
parietal alpha magnitudes in the directly-exposed group may suggest greater cognitive effort, hyperarousal or 
even altered attention allocation in this group, but an inability to translate this to superior behavior performance. 
Indeed, attention is critical to decision making19, and greater parietal alpha in the directly exposed group in all 
three interrogated time periods of choice presentation as well as immediate and cumulative reward presentation 
may be reflective of hypervigilant attentive processing.

The between-group difference in parietal alpha activity in scalp EEG localized to a significant cortical source 
difference observed in posterior cingulate cortex (PCC), with greater activity observed in the directly exposed 

Fig. 3.  Neurobehavioral model relating posterior alpha activity to win-stay behavior (A) Pz alpha activity 
during the choice period showed a differential relationship with Win-Stay behavior within each group. 
Within-group Spearman’s correlations show a positive neurobehavioral correlation in the other group (r = 0.34 
p = 0.04), but not in the directly exposed group (p = 0.5). (B) Alpha activity during the choice period localized 
to a cortical source in the posterior cingulate cortex (PCC) region. (C) Right PCC alpha activity was greater in 
the directly exposed vs. other group (p < 0.05, arbitrary source units).
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vs. other group. Several studies have reported the role of the PCC, a key node of the posterior default mode 
network, in modulation of ruminative behavior85–88. Rumination is also one of the primary ways in which 
emotion regulation is impacted in affective disorders89,90, and further predicts PTSD91. Thus, it may be plausible 
that directly exposed individuals under the duress of climate trauma, engage in distracted rumination behavior 
indexed by PCC source activity, which may affect their decision-making strategy and hence reduce Win-Stay 
performance.

The study’s limitations include the potential for observed group differences to be inherent traits predating 
the traumatic wildfire event. This constraint is common to all disaster research, as investigations typically occur 
post-event. Additionally, this is a first study exploring how decision-making on a simple two-choice task can 
be affected in populations who have suffered from climate trauma. We hypothesized that after suffering from 
losses in a major disaster, affected individuals may focus more on immediate small gains than stick with higher 
EV choices that result in cumulative gains yet have immediate small losses, i.e., these individuals may become 
loss averse. This hypothesis was born out in our behavioral findings as reflected by Win-Stay behavior on the 
higher EV choices. However, we are limited at explaining the mechanisms of these findings – do these changes 
reflect altered attention and greater distractibility as per our prior research7 and/or specific changes in reward 
learning and loss-aversion. Future research with more resolved neuroimaging techniques can provide more 
insights into mechanistic details. Further, as climate disasters become more frequent and more severe, it would 
be important to extend this neuro-cognitive research longitudinally to understand pre vs. post-disaster effects 
as well as impacts of repeated exposure, which is now unfortunately common occurrence for many of these 
vulnerable communities.

Among other study limitations, it has also been well-documented that individuals in lower socioeconomic 
strata are more vulnerable to suffering from climate related disasters92. However, our cohort did not have 
significant group differences in socioeconomic scores, hence, we cannot determine interactions between the 
decision-making results and socioeconomic status. Also a technical constraint is our utilization of a moderate 
channel density EEG system for neural recordings, and future validation could be achieved through the use of a 
high-density EEG or alternative neuroimaging techniques such as functional magnetic resonance imaging. Yet, 
notably, it is important to highlight that the choice of the moderate channel density EEG was motivated by its 
cost-effectiveness and feasibility within a community research setting7. Indeed, in such community studies, there 
is a crucial need to strike a balance between accessibility, feasibility, cost considerations, and data resolution93. 
We have further shown that results obtained with a moderate channel density EEG system such as the one used 
in this study are highly correlated to results obtained with higher density EEG systems88. Hence, the benefits of 
using greater resolution neuroimaging in future community studies should be carefully evaluated alongside cost 
considerations and whether those additional costs could be alternatively allocated to community service within 
the project scope. Future community research should also focus on procuring larger sample sizes of the neuro-
cognitive data.

Overall, the current research is a first in terms of examining the effect of climate trauma on decision making. 
We observed that directly fire-exposed individuals showed impacted decision-making indexed by reduction 
in Win-Stay performance on high EV choices alongside higher alpha activity in posterior parietal regions 
compared to other, indirectly exposed or non-exposed study participants. Cortical source localization revealed 
significantly greater PCC activity in the directly exposed group suggesting that distracted rumination that 
often originates from PCC may be a potential contributor to impacted decision-making in this group. Future 
neuro-cognitively targeted trauma interventions in this context may thus aim to reduce PCC related default 
mode network activity. Our related intervention research with a scalable digital mindfulness and compassion 
training has shown significant default mode network suppression alongside enhancement of mindfulness and 
compassion relevant behaviors49. Thus, such scalable digital mental health strategies may also be tailored as 
potential interventions for climate trauma within impacted communities. This is especially pertinent since our 
prior observational studies point to mindfulness as a protective trait in this traumatic setting8,94. We expect to 
observe improved decision making post-completion of such interventions, and early access to such interventions 
may further prevent longer-term impacts. Indeed, mobilizing early community access to such post-disaster 
intervention resources is a top priority of our California wide Climate Resilience Initiative95.

With the planet experiencing escalating temperatures, an increasing number of individuals confront 
extreme climate events, and it is very important to understand impacts on cognitive health that can have future 
repercussions. Here, we demonstrate evidence for significantly altered neuro-cognitive processing underlying 
decision-making in the aftermath of a climate change accelerated wildfire event, notably observed even 12 
months post-disaster. Impulsive decision-making has been shown to predict future substance use problems96,97. 
Additionally, impulsive buying has been observed as a coping strategy in the aftermath of a natural disaster98. 
This implies that impairments in cognitive decision-making may concerningly reduce the ability of individuals 
and communities to adapt and/or reduce investments in future-based solutions in favor of impulsive choices. 
These findings underscore the urgency to explore novel resiliency tools from diverse disciplines to renormalize 
cognitive decision-making processes immediately post-disaster to mitigate long-term impacts. The objective 
neuro-cognitive markers of decision-making we find here can potentially be used to guide interventions, and 
map the success of such intervention within climate vulnerable communities.

Data availability
De-identified and processed study data are available upon request from the corresponding author.
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