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Abstract Measures taken to cope with the possible ef-
fects of climate change on water resources management
are key for the successful adaptation to such change. This
work assesses the environmental water demand of the
Karkheh river in the reach comprising Karkheh dam to
the Hoor-al-Azim wetland, Iran, under climate change
during the period 2010–2059. The assessment of the
environmental demand applies (1) representative concen-
tration pathways (RCPs) and (2) downscaling methods.
The first phase of this work projects temperature and
rainfall in the period 2010–2059 under three RCPs and
with two downscaling methods. Thus, six climatic sce-
narios are generated. The results showed that temperature
and rainfall average would increase in the range of 1.7–
5.2 and 1.9–9.2%, respectively. Subsequently, flows cor-
responding to the six different climatic scenarios are
simulated with the unit hydrographs and component

flows from rainfall, evaporation, and stream flow data
(IHACRES) rainfall-runoff model and are input to the
Karkheh reservoir. The simulation results indicated in-
creases of 0.9–7.7% in the average flow under the six
simulation scenarios during the period of analysis. The
second phase of this paper’s methodology determines the
monthly minimum environmental water demands of the
Karkheh river associated with the six simulation scenar-
ios using a hydrological method. The determined envi-
ronmental demands are compared with historical ones.
The results show that the temporal variation of monthly
environmental demand would change under climate
change conditions. Furthermore, some climatic scenarios
project environmental water demand larger than and
some of them project less than the baseline one.

Keywords Environmental water demand . Climate
change .Uncertainty .RCP.Change factor downscaling .

Regression downscaling . Karkheh basin

Introduction

The drying of wetlands, the reduction of river
streamflow, and the associated degradation of ecosys-
tems due to human overuse of water resources have
become commonplace, especially in arid and semiarid
regions. The environmental water demand is a key
factor determining the proper functioning of riverine
ecosystems and associated wetlands. The environmental
water demand, or environmental demand, for short, is
the rate of water inflow necessary for the proper
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physical, chemical, and biological functioning of an
aquatic ecosystem. This flow rate may vary seasonally.
It is essential under these circumstances of water over-
exploitation to assess the environmental demands of
water bodies and dependent ecosystems. There are
several methods that are applied to the calculation of
environmental demand in rivers. Tharme (2003) sur-
veyed 207 applications of environmental demand stud-
ies in 44 countries which are categorized in four major
groups including (1) hydrological, (2) hydraulic rating,
(3) habitat simulation, and (4) holistic methods. Each
method proposed for determining the environmental
demand of rivers has advantages and disadvantages
according to the complexity and amount of required
data. On the one hand, there are relatively simple and
inexpensive hydrological methods that rely on flow time
series, and the other hand, there are holistic methods that
require extensive data and are costly to implement.
Therefore, there is no generally preferred accepted
method for evaluating the environmental demand. Hy-
drological methods are the simplest and most inexpen-
sive way to determine the environmental demand, and
they do not require considerable fieldwork. Hydraulic
rating methods are designed to be applied in rivers that
have a single defined channel (Linnansaari et al. 2012),
and they require some field study data. Despite the fact
that habitat simulation methods are more precise than
hydrological and hydraulic methods, they are time con-
suming and costly. Also, they involve substantial bio-
logical data. Holistic methods consider several different
aspects of river flow conditions. As a result, they need
comprehensive data sets and expert opinions to evaluate
the environmental demand. Therefore, they are general-
ly time consuming and expensive to implement
(Linnansaari et al. 2012). Among the commonly applied
environmental demand determination methods are the
physical habitat simulation (PHABISM) (US Fish and
Wildlife Service (FWS), 1970s), the Tennant method
(Tennant 1976), the Tessman method (Tessman 1980),
the range of variability approach (RVA) (Richter et al.
1997), the Building Block Method (BBM) (King and
Louw 1998), and Downstream Response to Imposed
Flow Transformation (DRIFT) (King et al. 2003).

Tennant (1976) proposed 10, 30, and 60% of average
annual flow to maintain river at minimum, good, and
excellent level for aquatic life condition, respectively.
Despite the fact that the Tennant method is a commonly
applied hydrological method, it was not proposed for
arid and semiarid regions. PHABISM, which is the

widely used of habitat simulation method, was devel-
oped by the US Fish and Wildlife Service. PHABISM
simulates the relation between river flow and the phys-
ical condition of aquatic ecosystems. Therefore, in ad-
dition to hydrological data, it requires a hydraulic and
ecological database (Milhous et al. 1989). DRIFT is a
holistic method, which was developed in South Africa
by King et al. (2003). It includes four main modules
which are (1) biophysical, (2) sociological, (3) scenario
development, and (4) economic module (Arthington
et al. 2003). The output of DRIFT is scenarios that
indicate how river flow changes affect environmental
riverine conditions. Holistic methods require broad data
in various fields; thus, they are time consuming and
costly to implement. Reinfelds et al. (2004) proposed a
hydraulic method to determine the minimum environ-
mental demand in perennial gravel-bed rivers. They
suggested the 50th flow duration percentile as the min-
imum environmental demand for perennial rivers that
have high degree of variability. Kashaigili et al. (2007)
suggested that 21.6% of the mean annual flow in Ruaha
river, Tanzania, estimates its environmental demand.

The threats of contemporary climate change af-
fected by greenhouse gas emissions have been sum-
marized by the Intergovernmental Panel on Climate
Change (IPCC 2014). The awareness of such cli-
mate threats has led to an international covenant
for the reduction of fossil fuel use in an attempt
for climate stabilization. Middle East countries, in-
cluding Iran, are vulnerable to climate change
(Jamali et al. 2012). Many other studies have report-
ed climate change effects on water resources the
world over.

Qian and Zhu (2001) reported climate change effects
in parts of China. Dust storms in northern China, flow
reduction in the downstream reach of the Yellow river,
and changes in drought and wetness conditions were
among the adverse impacts identified by Qian and Zhu
(2001). Thodsen (2007) evaluated climate change ef-
fects on Danish rivers in the period 2071–2100. The
results showed that the mean annual precipitation and
evapotranspiration would increase by 7 and 12%, re-
spectively. Githui et al. (2009) evaluated the potential
climate change effects on the runoff of the Nzoia Catch-
ment which is tributary to Lake Victoria in Africa. The
climate change projections estimated precipitation in-
creasing between 2.4 and 32.2% under various scenarios
which lead to changes of runoff in the range of 6–115%.
Ashofteh et al. (2013) studied river inflow to the
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Aidoughmoush reservoir located in East Azerbaijan,
Iran. This study showed a 0.7% decrease in mean annual
runoff. Ngoc et al. (2016) showed that river flow in
central Vietnam during wet and dry seasons might be
increased by 200% and decreased by 7–30%, respec-
tively, under climate change conditions.

Reservoirs are major regulators of river flow. The
determination of the environmental water demand
downstream of reservoirs is key to supporting a depen-
dent and vulnerable ecosystem, as exemplified in Iran,
where riverine ecosystems and wetlands have been se-
verely affected by declining river inflow. Contemporary
climate change may exacerbate conditions in riverine
ecosystems and wetlands already stressed by river flow
regulation and diversions. The assessment of climate
change effects on such vulnerable aquatic environment
entails several tasks, such as (1) developing greenhouse
gas emission scenarios, (2) implementing general circu-
lation models (GCMs), (3) downscaling methods of
GCM outputs to drive regional hydrologic models, and
(4) implementing rainfall-runoff models (Oyebode et al.
2014). Wilby and Harris (2006) stated that the major
sources of climate change uncertainty predictions in
decreasing order of importance are (1) GCMs’ climatic
simulations, (2) downscaling methods, (3) hydrological
models’ structure, (4) hydrological model parameteriza-
tion, and (5) estimation of emission scenarios. Burlando
and Rosso (2002) estimated the reduction of runoff by
climate change in the Arno river runoff, Italy. Minville
et al. (2010) simulated climate with five GCMs and two
emission scenarios to estimate hydrologic variables in
2020, 2050, and 2080 in the Québec region, Canada.
Results indicated that seasonal temperature would in-
crease by 1–14 °C, and the seasonal precipitation might
change between −9 and 55%. The latter authors estimat-
ed that GCM climatic simulations were the most impor-
tant determinant of the hydrologic simulation results.

Previous studies addressed may impact areas for
contemporary climate change. Yet, the issue of environ-
mental water demands affected by climate change has
not been given in-depth research attention. This paper’s
objectives are the determination of the Karkheh river
environmental demand under climate change conditions
and the assessment of the sources of climate change
uncertainty on the estimation of the environmental water
demand. To accomplish these objectives, the output of
the CanESM2 large-scale climate model simulated un-
der three representative concentration pathways (RCPs)
(2.6, 4.5, and 8.5) is applied to temperature and rainfall

projection in the period 2010–2059 for the Karkheh
river basin. The large-scale GCM output is downscaled
with the change factor and regression approaches. Thus,
six climatic scenarios are created in this paper’s analysis.
The identification of unit hydrographs and component
flows from rainfall, evaporation, and stream flow data
(IHACRES) rainfall-runoff model is herein implement-
ed to project runoff for each scenario. Subsequently, the
monthly environmental flow demand corresponding to
each scenario is calculated with the RVA method.
Figure 1 presents the flowchart of this paper’s
methodology.

Case study

The Karkheh river basin is located in western Iran
between longitudes 46° 23′ and 49° 12′ east and be-
tween latitudes 31° 40′ and 35° 00′ north. The general
topographic slope declines from north to south. Figure 2
shows the location of the Karkheh basin. The total area
of the basin equals 51,604 km2, 55% of which is moun-
tainous. Minimum and maximum average temperatures
equal 12.22 and 36.0 °C, respectively, and minimum
and maximum rainfall equal 0.0 and 44.20 mm, respec-
tively (Table 1).

The Hoor-al-Azim wetland is the discharge portion
of the basin, which is located on the border between Iran
and Iraq. The major water supply to the Iranian section
of the wetland is the Karkheh river. The area of the
wetland is almost 118,000 ha under normal conditions.
Yet, the lack of water supply, which has fallen below the
environmental demand, has reduced the Iranian portion
of the wetland by about one half. The minimum yearly
environmental demand of the Hoor-al-Azim wetland
has been estimated to be about 1271 × 106 m3 based
on ecological considerations.

Data and methods

Climate change considerations

Climate change is a long-term terrestrial-atmospheric-
oceanic complex phenomenon of global reach caused
by natural processes and by human-induced actions
such as the emission of greenhouse gases by burning
fossil fuels. Climate change is reflected in many ways
such as modification of (i) the temporal and spatial
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distribution of rainfall and its form (solid and liquid), (ii)
the pattern of natural disasters related to hydrological
conditions such as floods and droughts, (iii) streamflow
characteristics, and (iv) evapotranspiration, and in gen-
eral, new trends in the global climate. A key factor
needed to predict future climate conditions and to mit-
igate and adapt is the future concentration of greenhouse
gases as affected by human activities. The IPCC’s
Fourth Assessment Report (AR4, IPCC 2007) issued
40 greenhouse gas emission scenarios in its Special
Report on Emissions Scenarios (SRES). These scenari-
os were categorized into four main groups, namely, A1,
A2, B1, and B2, each of which projected the emissions
of greenhouse gases until year 2100 on the basis of rates
of population growth, economic development, and
environmental protection throughout the world. The
IPCC (2014) (Intergovernmental Panel on Climate

Change 2014) issued four new scenarios named RCPs
of future emissions of greenhouse gases. These are the
RCP 2.6, RCP 4.5, RCP 6, and RCP 8.5 concentration
pathways. These four pathways lay out four different
climatic conditions depending on future atmospheric
greenhouse gas concentrations on the basis of economic
activities, energy sources, population growth, and other
social factors by year 2100. The climatic conditions are
expressed in terms of the radiative forcing (RF) in units
of watts per square meter of the Earth’s surface (W/m2).
General information about the RCPs is listed in Table 2
(see also Fujino et al. 2006; Riahi et al. 2011; Thomson
et al. 2011; Van-Vuuren et al. 2011; Wayne 2013).

This study relies on the outputs of the Canadian
CanESM2 large-scale climate model under emission
scenarios RCPs 2.6, 4.5, and 8.5 to forecast temperature
and rainfall by 2010–2059 in the Karkheh river basin,

RCP 2.6

CanESM 2
model

RCP 4.5

RCP 8.5

Projection of 3 
climatic scenarios 
by Change Factor

Projection of 3 
climatic scenarios 

by SDSM

Projection of 6 
runoff scenarios by 

IHACRES

Calculation of 
environmental 

demand by RVA

Fig. 1 Flowchart of this paper’s methodology

Fig. 2 Location map of the Karkheh basin
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located in Iran. The climate model outputs were
downloaded from the www.ccds-dscc.ec.gc.ca website.
The resolution of the CanESM2’s predictions in the
atmosphere and the ocean is listed in Table 3.

GCMs are complex, large-scale, numerical models
implemented to simulate future climatic conditions
(Wilby and Harris 2006; and many others). GCMs are
based on the physical processes governing the transient
states of the earth’s atmosphere, oceans, and continents.
GCMs’ outputs must be downscaled to render them
useful for basin-scale analysis. The downscaling may
be achieved with (1) statistical methods that are based
on empirical relations between large-scale climatic var-
iables and regional-scale variables, or with (2) dynamic
methods that rely on regional climate models (RCMs)
that are nested within GCMs and simulate climate var-
iables with a higher spatial resolution. The change factor
and regression methods are applied in this work to
forecast temperature and rainfall within the study
region.

Change factor method

An approach to downscale statistically GCM projec-
tions is by means of the change factor method. It is
based on the ratio of a GCM future-year prediction to
baseline-year prediction and multiplying such ratio by
the observed climatic variable (for rainfall variable) in a
baseline period to calculate predicted, future, and cli-
matic variables. The change factor method applies

differences to temperature. In this case, the method
calculates the difference between future-year and
baseline-year temperature predictions and adds those
differences to observed data in the baseline period to
predict future temperatures (see Loáiciga et al. 2000;
Loáiciga 2003; Ahmadi et al. 2015). Among the variety
of simulated climatic variables predicted from the im-
plementation of the CanESM2 model, we chose tem-
perature and rainfall variables to simulate the rainfall-
runoff process at the basin scale in the period of time
2010–2059 using as baseline years 1980–2009. The
change factors for temperature and rainfall at monthly
time scale are calculated respectively by Eqs. (1) and
(2):

ΔTi ¼ TGCM;fut;i−TGCM ;base;i

� �
ð1Þ

ΔRi ¼ RGCM;fut;i

RGCM;base;i

 !
ð2Þ

in whichΔTi andΔRi are change factors for temper-
ature and rainfall for the ith month of the year, respec-

tively; TGCM;fut;i and RGCM;fut;i are long-term means of
simulated temperature and rainfall, respectively, by the

GCM in future years for the ith month; and TGCM;base;i

and RGCM;base;i are long-term means of simulated tem-
perature and rainfall, respectively, by the GCM for the
ith month in the baseline and observation periods.

Table 1 Monthly average temperature and rainfall in Karkheh basin in the baseline period (1980–2009)

Month

Variable Jan. Feb. Mar. Apr. May Jun. Jul. Aug. Sep. Oct. Nov. Dec.

Temperature (°C) 12.22 13.91 18.17 23.65 29.89 34.31 36.00 35.24 31.62 26.07 19.48 13.91

Rainfall (mm) 43.46 35.87 30.07 19.62 7.11 0.18 0.00 0.11 0.70 8.12 28.89 44.20

Table 2 RCPs’ characteristics

Name Radiative forcing Increasing mean annual
temperature (°C)

Increasing mean annual
temperature (°C)

(2046–2065) (2081–2100)

RCP 2.6 3 W/m2 before 2100, declining to 2.6 W/m2 by 2100 1 (0.4–1.6) 1 (0.3–1.7)

RCP 4.5 4.5 W/m2 post 2100 1.4 (0.9–2.0) 1.8 (1.1–2.6)

RCP 6 6 W/m2 post 2100 1.3 (0.8–1.8) 2.2 (1.4–3.1)

RCP 8.5 8.5 W/m2 in 2100 2 (1.4–2.6) 3.7 (2.6–4.8)
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The change factors are applied to observed tempera-
ture and rainfall as expressed by Eqs. (3) and (4), re-
spectively:

i ¼ 1; 2; 3;…Ti ¼ Tobs;i þΔTi
i ð3Þ

i ¼ 1; 2; 3;…Ri ¼ Robs;i �ΔRi ð4Þ
in which Ti and Ri are temperature and rainfall pre-

dictions under climate change in future years for the ith
month, respectively, and Tobs , i and Robs , i are the ob-
served temperature and rainfall for the ith month,
respectively.

Regression downscaling method

The regression downscaling approach is based on em-
pirical relations between regional predicted variables
and regional predictor(s) (Wilby et al. 2002). The statis-
tical downscaling method (SDSM) is a regression-based
downscaling proposed by Wilby et al. (2002) for the
assessment of regional climate change. Regression
downscaling has five steps: (1) screening of variables:
in this step, suitable predictor(s) are chosen; (2) model
calibration: in which multiple linear regressions are
developed and a model structure is determined; (3)
synthesis of observed data: that enables the verification
of calibrated models: (4) generation of scenarios: in
which ensembles of synthetic weather series are pro-
duced; and (5) analysis of scenarios (Wilby et al. 2002).

This paper applies the SDSM version 4.2.9 to predict
necessary climatic data at the monthly time scale.

Flow simulation

Runoff is simulated with the IHACRES model in the
time interval 2010–2059 following the projection of
temperature and rainfall. IHACRES is a conceptual
model that produces runoff by applying temperature
and rainfall as inputs in two steps: (1) nonlinear module
and (2) linear module. In step (1), the effective rainfall is
estimated where temperature and rainfall are the model
inputs (Eqs. (5), (6), and (7). Step (2) simulates
streamflow Q from the effective rainfall with a linear
module (Eq. (8)) (Croke and Jakeman 2008). The sim-
ulation equations for effective rainfall, soil moisture,
and the drying rate are as follows, respectively:

t ¼ 1; 2; 3;…ut ¼ c φt−lð Þ½ �p � Rt ð5Þ

t ¼ 1; 2; 3;…φt ¼ Rt þ 1−1
.
τ t

� �
φt−1 ð6Þ

t ¼ 1; 2; 3;…τ t ¼ τw exp 0:062 f T r−Ttð Þ½ � ð7Þ
in which ut = effective rainfall, Rt and Tt = input

rainfall and temperature, φt = soil moisture index, τt =
drying rate, c = mass balance parameter, l = soil mois-
ture index threshold, p = nonlinear response term, τw =
reference drying rate, f = temperature modulation, and Tr
= reference temperature. Runoff is calculated with the
following equation:

t ¼ 1; 2; 3;…Qt ¼ aqQt−1 þ bq ut−1ð Þ þ asQt−1

þ bs ut−1ð Þ ð8Þ
where Qt and Qt − 1 = runoff at times t and t − 1,

respectively, and aq, bq, as, and bs = parameters of the
linear module (Ashofteh et al. 2013).

The IHACRES rainfall-runoff model was applied to
simulate streamflow with the projected temperature and

Table 3 CanESM2’s characteristics

GCM Resolution in the atmosphere Resolution in the ocean

Latitude Longitude Latitude Longitude

CanESM2 2.7906° 2.8125° 0.9303–1.1407° 1.4062°

Table 4 Calibrated pa-
rameters values of the
IHACRES model

Parameter Value

c 0.000016

l 0

p 1

τw 22

f 1.5

Tr 20
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rainfall. IHACRES is a lumped, continuous, and con-
ceptual hydrological model that requires monthly tem-
perature and rainfall data as driving inputs. Monthly
data in 1982–1990 and 1991–1993 for the Karkheh river
basin were applied for calibration and validation of the
IHACRES model, respectively. The model calibration
step estimated optimal parameters for the IHACRES
model, which are described in past studies, listed in
Table 4.

The IHACRESmodel performance in calibration and
validation and the differences between observed and
simulated time series are presented in Fig. 3. Model
performance was measured with two criteria, namely,
relative bias (RB) and the Nash-Sutcliffe efficiency
(NSE) index, given by Eqs. (9) and (10), respectively:

RB ¼
∑
T

t¼1
Qot−QMt

� �

∑
T

t¼1
Qot

ð9Þ

NSE ¼ 1−
∑
T

t¼1
Qot−QMtð Þ2

∑
T

t¼1
Qot−Qo

� �2 ð10Þ

in which RB = relative bias, Qot = observed flow in
month t, QMt = simulated flow by the IHACRES model

in month t, NSE = Nash-Sutcliffe efficiency index, and

Qo = average of the observed flow. The calculated
values of the efficiency indices are shown in Table 5
for calibration and validation intervals separately.

Environmental water demand

Rivers constitute essential water sources. The construc-
tion of dams, water diversions, river engineering, and
contaminated discharges to rivers cause a variety of
adverse impacts to rivers and dependent environments.
It is essential to establish the environmental water de-
mand to mitigate the negative effects of humans’ action
on rivers and riverine ecosystems (Yin et al. 2015). This
paper focuses on the environmental water demand, or, in
short, environmental demand, which is herein defined as
the flow required in a river reach to maintain functional
riverine ecosystems. The operation of reservoirs to meet
required downstream environmental demands is tackled
in this work. Mazvimavi et al. (2007) proposed 30–60%
of the mean annual runoff as environmental demand of
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Fig. 3 Comparison of observed and simulated flow time series for the calibration and validation periods

Table 5 Performance indices for IHACRES rainfall-runoff model

RB (%) NSE

Calibration interval (1982–1990) 11.48 0.6

Validation interval (1991–1993) −18.88 0.7

Table 6 Long-term projected average temperature (°C)

Time interval (year) Climatic scenario

C-2.6 C-4.5 C-8.5 S-2.6 S-4.5 S-8.5

2010 25.02 24.99 25.00 25.67 25.58 25.65

2020 24.82 24.78 24.80 25.78 25.67 25.71

2030 25.04 25.01 25.02 25.77 25.77 25.72

2040 25.06 25.16 25.30 25.73 25.82 25.93

2050 24.86 24.96 25.10 25.76 25.85 26.07
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perennial rivers in Zimbabwe. Liu et al. (2016) stated
that 26% of blue water resources should be allocated to
environmental demand in the Huangqihai river basin,
China, to maintain a healthy riverine ecosystem. Richter
et al. (1997) proposed the range of variability approach
(RVA) for the statistical assessment of the ecological
condition of a river flow regime that affects riverine
ecosystems. The RVA method was developed for and
has been applied to rivers where maintaining natural
ecosystems and biodiversity is a main management
objective. The RVA method seeks to achieve river man-
agement that maintains the Indicators of Hydrologic
Alteration (IHA) (such as monthly river flow) within
their ranges of natural variation. The variability of the
IHA parameters is measured by their standard devia-
tions (SD), or by their 25 and 75% quartiles. The RVA
method requires at least a 20-year time series of river
flow to estimate statistical parameters. Hydrologic sim-
ulation may be applied to make up for the shortage of
hydrologic data.

The RVAmethod determines a specific range of river
flow statistically and designates that range as the envi-
ronmental demand. This study calculates the environ-
mental demand in month k (k = 1, 2,…, 12) of a year by
means of the 25 and 75% quartiles of the river flows of
month k calculated over the previous 20 years of river
flow data. Therefore, for example, the minimum and
maximum environmental demands in January of year
2000 equal respectively the 25 and 75% quartiles of the
January river flow calculated from data for years 1980
through 1999. The environmental demand for the other

months of year 2000 (or any other year being assessed)
is calculated analogously. This study considers that the
minimum bound of the environmental demand calculat-
ed with the RVA method meets a river’s ecosystem
functions. Based on these considerations, this study
calculates the environmental demand with Eq. (11):

n ¼ 1; 2; 3;…Denk ¼ Q1nk ð11Þ
In which Denk = environmental demand of month k,

k = 1, 2, …, 12, for all n years, an Q1nk = the 25%
quartile of river flow in month k calculated from river
flow data in the previous n = 20 years.

Results and discussion

Six climatic scenarios for temperature and rainfall in the
study region were produced by applying the RCPs 2.6,
4.5, and 8.5 and the change factor and regression down-
scaling methods (the latter herein denoted by SDSM) in
periods 2010–2019 (designated by 2010), 2020–2029
(designated by 2020), 2030–2039 (designated by 2030),
2040–2049 (designated by 2040), and 2050–2059 (des-
ignated by 2050). The six scenarios are named C-2.6,
C-4.5, C-8.5, S-2.6, S-4.5, and S-8.5, in which BC^ and
BS^ are indicative of the change factor and SDSM
methods, respectively, and the numbers are related to
the RCPs. The long-term means of temperature and
rainfall are calculated and listed in Tables 6, 7, and 8,
respectively.

It is seen in Table 6 that temperature changes in the
period 2010–2050 calculated with the change factor
method varying. Thus, in 2010–2020, the mean temper-
ature declines and it increases until 2040, followed by a
decline through 2050. The mean temperature changes
calculated in the period 2010–2050 applying the down-
scaling SDSM method exhibit a general ascending
trend. In general, the predicted mean temperature with
the SDSM method is higher than that predicted with the
change factor method. Figure 4 graphs the temperature
predictions associated with the RCPs. The graphs
shown in Fig. 4 affirm that the SDSMmethod predicted
the temperature to exceed those calculated with the

Table 7 Long-term projected average rainfall (mm)

Time
interval
(year)

Climatic scenario

C-2.6 C-4.5 C-8.5 S-2.6 S-4.5 S-8.5

2010 193.88 198.42 204.76 227.16 260.45 254.80

2020 252.13 257.69 267.42 247.29 215.50 252.54

2030 191.59 195.25 202.75 239.76 230.25 235.57

2040 206.67 199.74 209.31 214.27 230.07 224.93

2050 271.08 206.67 274.48 262.11 236.85 210.53

Table 8 Average monthly environmental demand of Karkheh river for six climatic scenarios

Climatic scenario C-2.6 C-4.5 C-8.5 S-2.6 S-4.5 S-8.5

Environmental demand (m3/s) 76.90 77.27 78.69 105.51 108.94 115.99
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change factor method. The maximum temperature dif-
ference obtained with SDSM and the change factor

method is observed in 2050, in which the temperature
prediction by SDSM is about 3.7% higher than that
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Fig. 4 Projected mean
temperature in future periods
under a RCP 2.6, b RCP 4.5, and
c RCP 8.5
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obtained with the change factor method under RCP 8.5.
On the other hand, the minimum temperature difference

between the two downscaling methods occurs corre-
sponding to the RCP 4.5 in 2010, in which the
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Fig. 7 Projected mean rainfall in
future periods under a RCP 2.6, b
RCP 4.5, and c RCP 8.5
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temperature predicted by SDSM is about 2.3% than that
calculated with the change factor method. Thus, the
difference between temperature values predicted by the
change factor and SDSM methods increases over time.
This means that the effect of downscaling uncertainty
increases over time.

Figure 5 depicts the predicted average monthly tem-
perature in the periods starting in 2010, 2020, 2030,
2040, and 2050. It is seen in Fig. 5 that the mean
monthly temperature calculated by SDSM with all
RCPs and in most months (particularly in July, August,
and September (summer)) exceeds the temperature cal-
culated with the change factor method.

Figure 6 depicts the projected temperatures associat-
ed with the RCPs and downscaling methods relative to
the temperature in the baseline period 1980–2009. The
largest and smallest temperature changes correspond to
RCP 8.5 and SDSM (S-8.5), which is about 5.2%, and
to RCP 2.6 with the change factor method (C-2.6),
which is about 1.7%.

Tables 7 and 8 and the graphs of Fig. 7, which depict
the predicted mean annual rainfall in periods 2010,
2020, 2030, 2040, and 2050, establish that the rainfall
trend in future periods is increasing under RCP 2.6 with
both downscaling methods (Fig. 7a). RCP 4.5 exhibits
increasing and constant trends of predicted rainfall by
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Fig. 8 Comparison of mean monthly rainfall projected with two downscaling methods under a RCP 2.6, b RCP 4.5, and c RCP 8.5
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the change factor and SDSM methods, respectively
(Fig. 7b). The values of predicted mean rainfall by the
two downscaling methods under RCP 8.5 exhibit oppo-
site trends in future periods: they are decreasing and
increasing by the SDSM and change factor methods,
respectively (Fig. 7c). This is a source of uncertainty in
the results introduced by conflicting rainfall predictions
by the two downscaling methods under the same RCP.

Our results establish that the SDSM predicts higher
temperature in almost all months and larger rainfall in
most of months than the change factor method. This
assertion is confirmed for predicted mean monthly rain-
fall by the graphs shown in Fig. 8, which establishes
larger mean monthly predicted rainfall by SDSM com-
pared with the rainfall predictions obtained with the
change factor method especially in wet months when
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S-2.6, S-4.5, S-8.5)
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the peak values occurred. It is also seen in Fig. 8 that the
rainfall predicted by both downscaling methods equals
zero in the warm months. The rainfall predictions by the
two downscaling methods differ from each other in wet
and cold months.

Figure 9 presents graphs for the predicted rain-
fall in future periods (2010–2050 combined dura-
tion) and for the baseline period (1980–2009). The
graphs in Fig. 9 establish that the average rainfall
increases compared with the baseline years under
all climatic scenarios. The maximum and minimum
changes between predicted and baseline rainfall
correspond to RCP 2.6 with the SDSM method

(S-2.6), which is about 9.2%, and to RCP 4.5 with
the change factor method (C-4.5), which is about
1.9%.

River flow was simulated by applying IHACRES
rainfall-runoff model once the temperature and rainfall
projections were obtained. Simulated river flow under
the RCPs with the change factor downscaling method
(Fig. 10a) exhibits a clear similarity among the three
RCPs, especially in periods 2010, 2020, and 2030. It
reflects the relatively minor effect of the greenhouse
concentration scenarios on the change factor downscal-
ing method. The periods 2040 and 2050 exhibit slight
differences between the scenarios. These differences are
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Fig. 11 Projected river flow time series under a C-2.6 and S-2.6, b C-4.5 and S-4.5, and c C-8.5 and S-8.5 scenarios
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accentuated in high-flow months. Thus, the uncertainty
associated with the RCPs increases over time. In the
latter two decades, the river flow values predicted with
the C-2.6 and C-8.5 scenarios are greater than those
obtained with C-4.5. This assertion holds true for the
mean rainfall values predicted with these three
scenarios.

The SDSM downscaling method (Fig. 10b) pro-
duced flow projections without a regular pattern of
similarity or differences between them, except that
the differences between projections tend to be more
pronounced in wet months. This finding establishes
that the SDSM method introduces high uncertainty
in river flow predictions.
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Fig. 13 Minimum environmental demand under six climatic scenarios calculated with a change factor and b regression (SDSM) method
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Figure 11 depicts the uncertainty associated with
predictions of river flow by the two downscaling
methods. The figure’s graphs highlight the key role that
uncertainty introduced by the downscaling method has
on predicted river flow. This indicates that the uncer-
tainties introduced by the choice of the downscaling
method are more significant than that introduced by
the RCP uncertainty.

Figure 12 shows the percentage change in the uncer-
tainty of river flow prediction in relation to the baseline
period, which is between 0.9 and 7.7% for the C-4.5 and
S-2.6 scenarios, respectively.

The environmental demand for the Karkheh reservoir
releases to the downstream Hoor-al-Azim wetland was
determined with the RVA method under the six climatic
scenarios of climate change conditions. The minimum
environmental demand of any particular month in each
of n years is equal to the 25% flow quartile for that
particular month calculated over the 20 years immediately
preceding year n in order to consider the hydrological
regime changes. Figure 13a, b portrays the graphs of the
monthly environmental demand under each climatic sce-
nario corresponding to the change factor and SDSM
methods, respectively. It is seen in Fig. 13a, b that the
calculated series for minimum environmental demand un-
der different greenhouse gas concentration scenarios ex-
hibit similar trends. Therefore, it is concluded that the
RCPs have no significant impact on the pattern of the
25% river flow quartile, and that the downscaling method
is the controlling factor explaining the differences between
river flow projections in the study area. The data plotted in
Fig. 14 indicate that the largest and smallest monthly
environmental demand would occur in March and Sep-
tember, respectively, in all climatic scenarios under climate
change conditions. Also, it can be seen that the largest

difference between C and S scenarios occurs in January,
February, andMarch (winter). This indicates that there is a
wide range of uncertainty in the wet months. Furthermore,
the monthly environmental demand under climate change
conditions was compared with that of baseline period
1980–2009 in Fig. 14. Despite the fact that the largest
monthly environmental demand occurs in the same month
(March) in all six climatic scenarios and the baseline
period, the smallest monthly environmental demand oc-
curs in different months. The smallest monthly environ-
mental demand occurs in August for the baseline period;
however, it occurs in September for the six projected
scenarios under climate change conditions.

Tables 7 and 8 list the estimated average monthly
environmental demand under the six climatic scenarios
entertained in this study. The monthly largest and
smallest environmental demand estimates are projected
by the S-8.5 and C-2.6 calculations as being 115.99 and
76.90 m3/s, respectively. The data listed in Tables 7 and
8 shows that the average monthly environmental de-
mand corresponding to the C-2.6, C-4.5, and C-8.5
predictions range between 10 and 12% below the base-
line environmental demand of the river to the wetland,
and for the other scenarios downscaled by SDSM the
projections range between 20 and 32% above the base-
line environmental demand. Clearly, the C-scenarios
under climate change conditions suggest that environ-
mental threats are likely in the next decades within the
Karkheh basin/Hoor-al-Azim wetland ecosystem.

Conclusions

This study addressed climate change effects on climatic
parameters and the hydrological regime in 2010–2059
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within the Karkheh basin by generation of six climatic
scenarios. The results indicate that the average temper-
ature, rainfall, and river flow would increase compared
to the baseline period (1980–2009). The climate change
effects on the environmental water demand and its tem-
poral variation were also assessed. It can be concluded
that climate change might have potential effects on the
environmental water demand regime that should be
considered in the environmental assessment of the Kar-
kheh basin to mitigate negative effects on its riverine
ecosystems. The effects of two main uncertainty sources
in climate change studies were determined. The uncer-
tainties introduced by downscaling methods are more
significant than the RCPs in the projection of climate
change effects on the hydrologic regime.
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