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a b s t r a c t

During gastrulation and neurulation, foxj1 expression requires
ATP4a-dependent Wnt/β-catenin signaling for ciliation of the
gastrocoel roof plate (Walentek et al. Cell Rep. 1 (2012) 516–527.)
and the mucociliary epidermis (Walentek et al. Dev. Biol. (2015))
of Xenopus laevis embryos. These data suggested that ATP4a
and Wnt/β-catenin signaling regulate foxj1 throughout Xenopus
development. Here we analyzed whether foxj1 expression was also
ATP4a-dependent in other ciliated tissues of the developing
Xenopus embryo and tadpole. We found that in the floor plate of
the neural tube ATP4a-dependent canonical Wnt signaling was
required for foxj1 expression, downstream of or in parallel to
Hedgehog signaling. In the developing tadpole brain, ATP4-
function was a prerequisite for the establishment of cerebrospinal
fluid flow. Furthermore, we describe foxj1 expression and the
presence of multiciliated cells in the developing tadpole gastro-
intestinal tract. Our work argues for a general requirement of
ATP4-dependent Wnt/β-catenin signaling for foxj1 expression and
motile ciliogenesis throughout Xenopus development.
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Specification Table
Subject area
 Biology

More specific subject
area
Cell and developmental biology
Type of data
 Text file, figures, movies

How data was
acquired
Microscopy (fluorescent, confocal, bright-field)
Data format
 Analyzed and annotated figures and movies

Experimental factors
 NA

Experimental
features
Xenopus embryos were manipulated by morpholino oligonucleotide-mediated knockdown and
application of pharmacological inhibitors. Gene expression, morphology and cilia function were
analyzed by in situ hybridization, immunofluorescence, and quantification of extracellular fluid flow
Data source location
 NA

Data accessibility
 The data described here is presented in this article in form of figures and supplemental movies
Value of the data
�
 Our results indicate that the ATP4/Wnt/β-catenin module is required for neural foxj1 expression
downstream of, or in parallel to, Hedgehog signaling.
�
 ATP4 function is required for the generation of cerebrospinal fluid flow.

�
 atp4a and foxj1 are co-expressed in the gastrointestinal tract.

�
 The tadpole stomach is lined by multiciliated cells, which generate an extracellular fluid flow.
1. Data, experimental design and methods

1.1. Analysis of ATP4a/Wnt-dependent foxj1 expression in floor plate of the neural tube

The floor plate and the brain represent additional sites of vertebrate foxj1 expression [1,5,6,13]. We
tested whether floor plate expression of foxj1 required ATP4 and Wnt/β-catenin signaling in Xenopus
by injection of 1 pmol/injection of atp4a morpholino oligonucleotide (atp4aMO) targeted to dorso-
medial regions of developing embryos. Embryos were injected at the two- to four-cell stage using a
Harvard Apparatus or Picospritzer setup in 1� modified Barth's solution (MBSH) with 4% Ficoll
(BioChemica) and transferred to 0.1� MBSH 15 min after injection. Gene expression was analyzed by
whole mount in situ hybridization (WMISH). atp4amorphants showed a reduction of foxj1 expression
in the floor plate (po0.001; Fig. 1A,C and G), which was rescued by co-injection of 1 ng/μl β-catenin
DNA (po0.01; Fig. 1E and G).

1.2. Monitoring floor plate formation in atp4a morphants

Formation of the floor plate in atp4amorphants was analyzed histologically and by analysis of gene
expression. Embryos were embedded in gelatin–albumin and sectioned on a vibratome (30 μm). The
floor plate was present, as judged by concentration of pigment due to apical constriction of medial
neural plate cells, both in atp4amorphants and in specimens co-injected with β-catenin DNA (Fig. 2A–
C, A`–C`). Floor plate-specific sonic hedgehog expression (shh; [12]) was also present in atp4a
morphants (Fig. 2D and E).

1.3. Analysis of Hedgehog-dependent foxj1 expression in the floor plate of the neural tube

To analyze if Xenopus foxj1 expression depended on Hedgehog (HH) signaling, as reported for
zebrafish foxj1 [3,20], embryos were incubated with the HH signaling inhibitor cyclopamine



Fig. 1. Floor plate foxj1 expression requires ATP4a and β-catenin downstream or in parallel of Hedgehog signaling. (A–F)
WMISH for foxj1 expression in control and manipulated embryos at stage 16. (A, B) Normal foxj1 expression in the floor plate of
control uninjected (uninj.; A) and ethanol (1%; EtOH; B) treated specimens. (C) Strong reduction of foxj1 signals in atp4a
morphants was partially rescued by co-injection of β-catenin DNA (ß-cat.; E). (D) Inhibition of Hedgehog signaling by
cyclopamine treatment decreased foxj1 expression in the floor plate and was partially rescued by injection of β-catenin DNA (ß-
cat.; F). (G) Quantification of results. a, anterior; l, left; n, number of embryos; p, posterior; r, right; st., stage.

P. Walentek et al. / Data in Brief 4 (2015) 22–3124



Fig. 2. Normal floor plate induction and Hedgehog signaling in ATP4a-deficient embryos. (A–E) Normal floor plate formation in
atp4a morphants. WMISH for foxj1 (A–C) and shh (D, E) revealed attenuated foxj1 expression but unaffected floor plate
formation, as judged by apically constricted cells (histological vibratome sections in A–C`; planes indicated in A–C) and shh
expression in atp4a morphants. (F–K) Unaffected Hedgehog signaling in atp4a morphants with (H) or without (G) co-injection
of ß-catenin (β-cat.) DNA, as judged by WMISH for ptch1, a direct Hedgehog signaling target, to monitor activity of Hedgehog
signaling, as compared to uninjected controls (uninj.). ptch1 expressionwas decreased in cyclopamine-treated embryos (J, K), as
compared to ethanol (1%) controls (I), but independent of β-catenin DNA injection (K, K`). a, anterior; l, left; p, posterior, right;
st., stage.
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(Selleckchem; solvent: ethanol; concentration: 100 μM). Incubations were performed according to
standard procedures [7] from stage 8 until fixation, on embryos treated with Proteinase K (as
described; [15]) in order to permeabilize the fertilization membrane. Proteinase K-treated embryos
incubated with corresponding concentrations of ethanol were used as controls. Cyclopamine
treatment reduced foxj1 expression in the floor plate (po0.001; Fig. 1B, D and G). Injection of
β-catenin DNA partially rescued floor plate foxj1 expression in cyclopamine-treated specimens
(po0.01; Fig. 1F and G).

1.4. Monitoring hedgehog signaling state in atp4a morphants and cyclopamine treated embryos

Analysis of patched 1 (ptch1) expresson by WMISH was used to monitor HH signaling activity [9].
Embryos were embedded in gelatin–albumin and sectioned on a vibratome (30 μm). ptch1 expression
was downregulated in cyclopamine treated specimens, but unaffected by atp4aMO or β-catenin DNA
injection (Fig. 2F–K).
2. Analysis of cerebrospinal fluid flow in atp4a morphant tadpoles

To investigate whether ATP4 was required for brain cilia, we analyzed cerebrospinal fluid (CSF)
flow as a proxy. For imaging and calculation of ependymal flow cf. Hagenlocher et al. [6] andWalentek
et al. [18]. To facilitate late analysis of atp4a morphants, we used 1 pmol/injection of a splice-site MO
(atp4aSplMO) which targeted the second exon/intron boundary of zygotically expressed pre-mRNA.
Injection of fluorescent beads into the brain ventricles at stage 45 revealed a significant reduction of
CSF flow velocity in atp4a morphants (po0.001; Fig. 3; Movie 1). In contrast, velocity of CSF flow in
atp4a morphants was increased by co-injection of either atp4a or foxj1 DNA constructs (po0.05/
0.001; Fig. 3; Movie 1).

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.
dib.2015.04.003.

2.1. Analysis of atp4aSplMO-induced intron retention

4-cell stage embryos were injected four times with 1 pmol/injection of atp4aSplMO into the
vegetal halve (Fig. 5O), thereby targeting the developing gastrointestinal tract including the stomach,
where zygotic atp4a expression was previously confirmed [17]. At stage 45 total RNAs were isolated
from injected and uninjected tadpoles and atp4a intron 2 retention was confirmed (Fig. 4) by standard
RT-PCR using the following primers on cDNA and genomic DNA extracts:
atp4aEx2-for 50-GCATGAAAAAATGGAC-30;
atp4aInt2-rev 50-TCCTGTCTGCCAATAAACCC-30;
RT-PCR for elongation factor 1α (ef1a) was used as loading control employing the following primers:
forward 50-CAGATTGGTGCTGGATATGC-30;
reverse 50-ACTGCCTTGATGACTCCTAG-30.
3. Analysis of atp4a and foxj1 expression in the gastrointestinal tract

High levels of atp4a transcripts were found in the stomach of the tadpole (Fig. 5A and C), where
ATP4 localization and function have been previously described [8]. We also observed weaker atp4a
expression in the embryonic esophagus and the proximal small intestine (Fig. 5D). Analysis of foxj1
mRNA transcription in stage 45 tadpoles revealed expression in the very same regions of the
gastrointestinal (GI) tract (Fig. 5E and F).

http://dx.doi.org/10.1016/j.dib.2015.04.003
http://dx.doi.org/10.1016/j.dib.2015.04.003


Fig. 4. The atp4a splice-site MO causes atp4a intron 2 retention. To facilitate late analysis of atp4a morphants, a splice-site MO
(atp4aSplMO) was used, which targeted the second exon/intron boundary of zygotically expressed mRNA and caused atp4a
intron 2 retention. atp4aSplMO targeted to gastrointestinal tract caused intron2 retention, as shown by RT-PCR using primers
(blue arrows) which bind to exon 2 (yellow) and intron 2 (black). Genomic DNA served as positive control. Total RNA extracts
without reverse transcription (-RT) and water (H2O) served as negative controls. RT-PCR of ef1α served as loading control. λ-
phage DNA digested with Pst1 (λ PST) served as size marker.

Fig. 3. ATP4a is required for foxj1-dependent cerebrospinal fluid in the tadpole brain. To investigate whether ATP4 was required
for brain cilia, we analyzed cerebrospinal fluid (CSF) flow as a proxy. Injection of fluorescent beads into the brain ventricles at
stage 45 revealed a significant reduction of CSF velocity in atp4a morphants. In contrast, velocity of CSF flow in atp4a
morphants was partially rescued by co-injection of either atp4a or foxj1 DNA constructs. cf. Movie 1.

P. Walentek et al. / Data in Brief 4 (2015) 22–31 27
3.1. Analysis of multiciliated cells in the gastrointestinal tract

Gastrointestinal (GI) tract cilia have previously only been reported in the esophagus of Xenopus
tadpoles [4]. In order to test whether other parts of the GI tract were ciliated, we stained for



Fig. 5. foxj1 and atp4a are co-expressed in the gastrointestinal tract which transiently harbors motile cilia in the stomach. (A–F)
WMISH for atp4a (A,C,D) and foxj1 (E,F) in the GI tract of stage 43–45 tadpoles (A–C, E; stomach highlighted by arrowheads;
ventral views) and isolated GI tracts (D, F). (B) atp4a sense control revealed no staining. Note the co-expression of atp4a and
foxj1 at stage 45 (C–F). (G–M) GI tract ciliation as shown by immunofluorescent staining of cilia/tubulin (acetylated-α-tubulin
staining, red) and staining for actin (phalloidin, green) as well as nuclei (DAPI, blue) on cryosections from stage 45 tadpoles
(planes indicated in J). MCCs (M) were found in the esophagus (es; G–I,K), stomach (sto; G–I,L) and the proximal part of the
small intestine (smi; H, I). (N, N`) Scanning electron microscopy analysis of gastric epithelia from adult frogs revealed the
presence of short monocilia, but lack of MCCs. (O) Injection of atp4aSplMO targeted to the endoderm prevented normal
development of the GI tract. Targeting was monitored by co-injection of fluorescent rhodamine dextrane (red). Embryos are
shown in ventral view. a, anterior; d, dorsal; es, esophagus; l, left; p, posterior; r, right; st., stage; smi, small intestine; sto,
stomach; v, ventral.

P. Walentek et al. / Data in Brief 4 (2015) 22–3128
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acetylated-α-tubulin by immuno-histochemistry (Fig. 5G–L). GI tract ciliation was analyzed on
cryosections (40 μm) of embryos embedded in O.C.T. (Tissue-Tek) using standard procedures. This
analysis confirmed the presence of multiciliated cells (MCCs) in the esophagus and identified the
stomach and the proximal small intestine as additional sites of ciliated cells in tadpoles (Fig. 5G–M). In
contrast to tadpoles, only short monocilia of about 2 μm length were detected in the adult gastric
epithelium by scanning electron microscopy (Fig. 3N and N`).

3.2. Assessment of extracellular fluid flow in the gastrointestinal tract

In order to assess motility of endodermal MCCs, the anterior portion of the GI tract of anesthetized
stage 45 tadpoles was dissected and incubated in 0.1� MBSH containing benzocaine (Sigma)
to prevent peristaltic movements. FITC-conjugated latex beads (FluoSpheress carboxylate-modified
microspheres, 0.5 μm, yellow–green fluorescence (505/515), 2% solids, Life Technologies; diluted to
0.04% in 0.1� MBSH) were diluted to 0.04% in 0.1� MBSH and applied to the anterior esophagus
using a Harvard Apparatus injector. The chamber was sealed and imaged for 2 min using
epifluorescent illumination at 10� magnification on a Zeiss Axioskop 2 microscope (Movie 2). Beads
were transported through the esophagus and stomach until they reached the small intestine, i.e. the
region where ciliation starts to decline.

Supplementary material related to this article can be found online at http://dx.doi.org/10.1016/j.
dib.2015.04.003.

3.3. ATP4a loss of function in the gastrointestinal tract

To test the functional relevance of ATP4a in the context of GI tract ciliation, atp4aSplMO was
injected vegetally to target the endoderm (Fig. 5O). Although inhibition of endodermal ATP4a function
reduced intestinal foxj1 expression (not shown), it also interfered with normal development of the GI
tract (Fig. 5O), a phenotype reminiscent of failure in Wnt-dependent specification of the proximal GI
tract [21].
4. Ethics statement

All animals were treated according to the German regulations and laws for care and handling of
research animals, and experimental manipulations according to §6, article 1, sentence 2, no. 4 of the
animal protection act were approved by the Regional Government Stuttgart, Germany (Vorhaben A
365/10 ZO “Molekulare Embryologie”).

This work was also done with approval of University of California, Berkeley's Animal Care and Use
Committee. University of California, Berkeley's assurance number is A3084-01, and is on file at the
National Institutes of Health Office of Laboratory Animal Welfare.

4.1. Statistical evaluation of results

Statistical evaluation of experiments represented by bar graphs was performed using chi-square
tests (http://www.physics.csbsju.edu/stats/contingency.html). Statistics of experiments represented
by box plots were calculated by Wilcoxon sum of ranks (Mann–Whitney) tests (http://www.fon.hum.
uva.nl/Service/Statistics/Wilcoxon_Test.html).

4.2. Constructs used for Manipulation of embryos

Morpholino oligonucleotides (MOs) were obtained from Gene Tools:
–
 atp4aMO (50-GTCATATTGTTCCTTTTTCCCCATC-30) 1 pmol,

–
 atp4aSplMO (50-CCCCCCCCCCCATTTCTTACAATGT-30) 1 pmol.

http://dx.doi.org/10.1016/j.dib.2015.04.003
http://dx.doi.org/10.1016/j.dib.2015.04.003
http://www.physics.csbsju.edu/stats/contingency.html
http://www.fon.hum.uva.nl/Service/Statistics/Wilcoxon_Test.html
http://www.fon.hum.uva.nl/Service/Statistics/Wilcoxon_Test.html
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Midiprep kit (Promega):

The following DNA constructs were used for injections after purification using a PureYield Plasmid
–
 atp4a-CS2þMT [17] 1 ng/μl,

–
 foxj1-CS2þ [16] 0.5 ng/μl,

–
 β-catenin-gfp-CS2þ [10] 1 ng/μl.
Drop size was calibrated to about 7–8 nl per injection. Rhodamine-B or Cascade-blue dextran (0.5–
1.0 mg/ml; Molecular Probes) were co-injected and used as lineage tracer.
4.3. Whole-mount in situ hybridization

Embryos were fixed in MEMFA for 1–2 h and processed following standard protocols. Digoxigenin-
labeled (Roche) RNA probes (atp4a and foxj1, [17]; shh probe was generated according to
NM_001088313; ptch1, [11]) were prepared from linearized plasmids using SP6, T3, or T7 RNA
polymerase (Promega). In situ hybridization was conducted following standard procedures.
4.4. Immuno-histochemistry and scanning electron microscopy

Immuno-histochemistry followed standard protocols, using antibodies specific for acetylated-α-
tubulin (mouse, 1:700; Sigma), anti-mouse Cy3 (sheep, 1:250; Sigma); anti-rabbit Alexa-555 (1:250;
Invitrogen), anti-mouse Alexa-555 (1:250; Invitrogen). Cell boundaries were visualized by Alexa 488-
conjugated phalloidin (Invitrogen), which stained the actin cytoskeleton. DAPI (Invitrogen) was used
to visualize nuclei. Imaging was performed on a Zeiss LSM710. Maximum intensity projections of
confocal z-scans were computed using ImageJ [14]. Scanning electron microscopy was as previously
described [2].
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