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Abstract

Reachability and Real-Time Actuation Strategies for the Active SLIP Model

by

Giulia Piovan

Running and hopping follow similar patterns for different animals, independent of the

number of legs employed. An aerial phase alternates with a ground contact phase, dur-

ing which the center of mass moves as if a spring were compressed and then extended

to recover stored elastic energy. Hence, consisting of a point mass mounted on a mass-

less spring leg, the Spring Loaded Inverted Pendulum (SLIP) is a prevalent model for

analyzing running and hopping. In this work we consider an actuated version of the

SLIP model, with a series elastic actuator added to the leg, serving the purposes of

adding/removing energy to/from the system and of modifying dynamics during stance,

toward achieving non-steady locomotion on varying terrain. While the SLIP model has

been a topic of research in legged locomotion for several decades, studies on the effect

of actuation on the system’s behavior are still not complete. The goal of this thesis

is to explore how a series elastic actuator applied to the SLIP model’s leg can change

the system’s dynamics. This, in turn, enables a variety of long-term planning strategies

for using limited footholds and design non-steady gaits while simultaneously recovering

from unexpected perturbations, both sensorial and due to a limited knowledge of the

terrain profile. We principally investigate how, through actuation, we can solve partially

or completely the system’s equations of motion, to enforce a desired trajectory and reach

a desired state. We also determine the reachable state space of the model using several

different actuation strategies, investigating the variation of the reachable set with respect

to particular actuator motions and providing relationships between local actuator dis-

vii



placements throughout stance and location of the reached apex state. We then propose

a control strategy based on graphical and numerical studies of the reachability space to

drive the system to a desired state, with the ability to reduce the effects of sensing errors

and disturbances happening at landing as well as during ground contact.
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Chapter 1

Introduction and Motivation

Thanks to consolidated knowledge in modelling, manufacturing and control, wheeled

vehicles are still the most popular choice in terms of locomotion. Their efficiency on

continuous surfaces, however, is paired with a lack of versatility and adaptability that

poses a limitation in many real-world applications, particularly those instances that see

the presence of obstacles in the terrains. These same terrains can easily be reached

by most animals and humans. Hence, legged locomotion has been a topic of study

in robotics and has seen remarkable advances in the last forty years. The advantages of

legged systems over wheeled or track-based systems are multifold. Firstly, the continuous

path of support needed by wheeled vehicles is substituted by a set of isolated footholds in

the case of legged systems and, as a consequence, not all the terrain needs to be specified

and to be accessible. This implies an ability to adapt to surfaces that are uneven or with

big variations. Additionally, the movement is determined by the robot’s dynamics more

than by the terrain surface due to an active suspension of the body. Finally, by studying

legged locomotion, we hope to gain insights into human mobility as well, which can be

applied to different areas of medicine, for example prosthetics.

Based on our daily experience, walking on legs seems to be a trivial task, and yet the
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Introduction and Motivation Chapter 1

capabilities of legged animals are far superior to those of any existing robot in that animals

can negotiate a variety of different terrains in an extremely efficient way. However,

since the mechanisms of locomotion are yet not fully understood, and are coupled with

mechanical and sensorial limitations ([1]), legged locomotion is still very much an open

problem. First of all, it is governed by a much more complicated dynamics than wheeled

systems, which presents a challenge from the controller’s point of view. Furthermore,

legged systems have higher peak energy and torque requirements than wheeled vehicles,

and they experience energy loss at each impact and due to friction at the joints. On

hardware platforms, autonomous legged robots need to carry all their weight (motors,

actuators, batteries) on their legs, which have to be robust.

1.1 Literature Review

The two basic gaits available to legged systems are walking and running. Loosely

speaking, the distinction between the two is dependent on the presence or absence of an

aerial phase: while running, there is at most one leg in contact with the ground at any

given time, followed by a state with no ground contact, Fig. 1.1.

Figure 1.1: Man running at full speed. From Muybridge’s Human Figure in Motion

(1872-1885), by Eadweard Muybridge. Courtesy of Dover Publications, Inc.

Legs acting in unison in some respects can be considered as equivalent to a virtual

leg located at the center of the pair. For this reason, numerous researchers interested in

running have focused their attention to single-legged systems.

2



Introduction and Motivation Chapter 1

The conventional template used for analyzing running and hopping is the so-called

Spring Loaded Inverted Pendulum (SLIP) model. Consisting of a point mass mounted on

a massless spring leg, this 2 degrees of freedom (DOF) system is energetically conserva-

tive. The 2-DOF SLIP model can be extended to its 3-DOF counterpart by substituting

the point mass with a body that is free to rotate via an applied torque at the hip. The

spring-mass system mimics animals that hop at a particular preferred frequency below

which the motion requires more energy. Furthermore, it can be seen that hopping fol-

lows similar patterns for different animals, e.g., the ratio of contact time versus aerial

time, which are independent on the number of legs. During contact with the ground,

the center of mass moves as if a spring were compressed and then extended recovering

its stored elastic energy. Hence, in combination with biological data fitting, this simple

model can predict the center of mass dynamics of running insects and animals, as shown

in [2], in [3], as well in [4], [5], and [6]. These works stress the capability of the SLIP

model of describing the interdependency between physical and morphological parameters

characterizing running and hopping, such as frequency, stiffness and stride time. In gen-

eral, animals’ anatomy is far more complex than what the SLIP model captures, due to

the presence of joints, ankles, knees, hips, leg mass and inertia, and muscles that act as

nonlinear springs. However, as Full and Koditschek explain in [1], the SLIP model is a

valid template which removes the non essential complexity of the animal’s anatomy but

still preserves the behavior that serves as a guide for the development of control strategies

for locomotion. These strategies can then be applied to an anchor, a more complex and

realistic model to mimic the animal’s morphology and physiology.

Studies on guinea fowls ([7]), and on insects ([8], and [9]), show that animals and

insects use their legs’ natural actuation to stabilize their body. This suggests that the

passive SLIP is not fully able to model running and hopping gaits. Since it is clearly

3
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desirable to enable legged locomotion in situations with variability in both terrain height

and forward velocity, requiring accompanying modification of net energy, this justifies

the introduction of an actuated version of the SLIP. There are several methods to add

actuation to the SLIP model. The most common is the use of a telescopic leg with elastic

actuator acting during the stance phase to modify the net energy of the system ([10],

[11], [12],[13], [14], [15], [16]). Authors of [17] added a clock-based torque at the hip of

the system, while [18] propose instead to modify the leg length during the flight phase.

In [19], authors consider the effect of modifying both leg length and spring stiffness during

stance, limiting their analysis to the vertical hopping case. These added actuations have

been used to reach different energy levels, meaning changing the velocity or height of the

body, toward controlling step size.

1.1.1 Control Strategies

The passive 2-DOF SLIP model has been employed as a starting point in studies

focusing on control strategies to stabilize the system in the presence of disturbances due

to uneven terrain or unexpected forces. Because of the completely passive nature of the

system, its main tool in terms of balance is the placement of the swing leg. In general,

to each forward speed corresponds a ground contact leg angle for steady-state motion.

Variations of this angle have the effect of decelerating or accelerating the system. A

proper adjustment of spring stiffness and fixed leg angle serves as a control strategy for

stabilization [20], and in [21] it is shown how choosing a fixed leg angle at touch-down

results in asymptotically stable periodic gaits.

By observing that running animals retract their legs right before contact to the

ground, Seyfarth et al. ([22]) propose a swing-leg retraction strategy for steady-state

running. Instead of being kept fixed during the flight phase, the leg angle moves as a
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linear function of time. Due to the constant rotational speed at flight, the leg angle at

ground contact varies as a function of the apex state (i.e., the highest point reached dur-

ing flight), and the relative speed of the foot with respect to the ground is reduced. The

system is stabilized at steady-state faster than when using a fixed angle of attack, and

it is stable with respect to variations on the spring stiffness, the forward speed and the

leg angle. The optimal retraction rates for maximum disturbance rejection, for minimal

energy loss at impact, and for minimal slipping, are studied by Karssen et al. in [23].

Return maps for both fixed contact angle and swing-leg retraction are computed in [24].

This stability analysis determines necessary parametric condition for asymptotic stability,

and it is used to quantify sensory costs.

Another parameter that could be varied is the leg stiffness. Stance time, and conse-

quently leg compression, is a function of leg stiffness, and therefore a careful choice can

maximize the passive stability of the system. For example, in [25], Ernst and colleagues

propose a feedforward controller that continuously adapts spring stiffness and leg angle

during flight (following a precomputed curve stored in a look-up table) regardless of when

the foot touches the ground, thus allowing the system to hop on uneven terrain. Riese

and Seyfarth [19] investigate stability of vertical hopping while varying spring stiffness

and leg length.

For the active SLIP model, the most famous control strategy is proposed by Raib-

ert [10]: a constant thrust is applied during ground contact at the point of maximum

spring compression in order to change the net energy of the system. Theoretical work

in [12], integrated by experimental work in [26], considers a 3-DOF SLIP model with

a series elastic actuator at the leg, and a rotational actuator and a spring at the hip.

The control action proposed exploits the system’s passive dynamics motion in the hip to

minimize energy consumption and reach a steady state gait at a target forward speed.

Other studies, either with the passive or active SLIP model, focus on negotiating
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uneven terrains: e.g., [27] propose three strategies for step-length adjustment that involve

changing either one of forward speed, stance time or flight time, while keeping the other

two constant, [25] propose a control action to keep the running speed constant. Koepl and

Hurst [28] apply the leg controller proposed in [25] to the leg actuated 3-DOF SLIP model,

and incorporate it with a controller of the impulses applied by leg and hip actuators during

ground contact to match the impulse profile of the passive SLIP model, in order to reject

unexpected ground disturbances (of damping, stiffness and surface height). Schmitt and

Clark [13] propose a leg-length actuation strategy inspired by muscle activations seen in

cockroaches running over uneven terrain. The actuator is moved following a sinusoidal

function of time, so that energy is removed from the system during leg compression

and added during leg extension. This latter control strategy is extended by Andrews et

al. [14], who compare its stability to Raibert’s fixed thrust controller and to the swing-leg

retraction technique, both in simulation and experimentally.

The authors of [29] propose an algorithm for trajectory planning, robust to model

uncertainty and measurement noise.

Work in [15] combines an actuator displacement strategy with a model predictive

control approach to plan a trajectory based on a fixed set of desired footholds.

1.1.2 Approximation of the system’s dynamics

While the SLIP model is a very simple system, there is not an analytic solution

for its dynamics during ground contact [30]. Trajectories have to be pre-computed and

stored in look-up tables, which can be timely and computationally expensive to generate,

store and access. Furthermore, motions not pre-computed need to be interpolated from

existing trajectories. Additionally, the lack of closed-form solution represents a limitation

on our ability to understand the SLIP dynamics and to design and implement real-time

6
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controllers, as well as when generating return maps to investigate the system’s stability.

To overcome these issues, several approximations to the closed-form solution have

been given throughout the years. Schwind and Koditschek [31] apply the mean value

theorem to the integral of the SLIP dynamics, and find a closed-form solution for the

case where there is conservation of momentum. Then, the effects of gravity are iteratively

added to equations so that under certain assumptions the solution will converge to the

exact SLIP dynamics. Geyer et al. [32] have proposed a solution based upon conservation

of momentum and the hypothesis of small angle span. Conservation of momentum is a

consequence of ignoring the effect of gravity along the leg; hence, the accuracy of this

solution degrades the more the trajectory deviates from the symmetric case.

Locomotion on uneven terrain may imply non-symmetric strides, where the effect

of gravity cannot be neglected. Following this observation, works by Arslan et al. [33]

and Yu et al. [34] propose approximations which include gravity corrections, improving

the model performance. More recently, [35] propose an approximation of the stance

phase that yields linear equations, thus allowing to write the entire SLIP dynamics as a

piecewise linear function.

1.1.3 SLIP-based robots

In the 80s, Mark Raibert [10] presented the first and best-known planar monopod

hopping robot, the so-called Raibert hopper, Fig. 1.2a. The Raibert hopper consists of a

body and a compliant elastic leg, both with mass and inertia, connected by a joint at the

hip. An actuator at the hip can provide torque between the body and the leg, while a

series elastic actuator at the leg compresses or extends the spring. The three-part control

strategy considers hopping height, speed and body attitude as three separate problems:

forward velocity is controlled by the positioning of the leg; hopping height is regulated

7
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by the amount of thrust given by the linear actuator at the leg; and the body attitude

is controlled by applying torque at the hip. A state machine permits switching between

states. Subsequently, Raibert extended the same mechanism and controls to a 3D version

of the monopod, Fig. 1.2b, and to biped and quadruped robots with prismatic legs.

(a) (b)

Figure 1.2: Raibert planar hopper (a) and 3-dimensional hopper (b). From M. Raib-
ert, Legged Robots That Balance, MIT Press, 1986

The Raibert hopper opened the door to a long series of SLIP-based robots. Zeglin’s

Bow Leg hopper [11] is composed of a leg controlled with strings that store energy

during flight but are loose during ground contact, so that it behaves like a spring-mass

system. A planar hopper mounted on a boom, the Bow Leg hopper, has been also

extended to a 3D version ([36] and [37]). An autonomous and untethered hexapod robot,

RHex, is proposed by Saranli et al. [38]. With its 6 compliant legs, this robot is able to

undergo uneven terrains with obstacles exceeding its body clearance, with limited energy

consumption. The ARL-Monopod II [26] (and a previous version [39]) is a hopping robot

with a prismatic leg attached to the body via a torsional joint at the hip, hopping on a

treadmill. Jonathan Hurst’s BiMASC [40] and the most recent ATRIAS robot have been

8
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mechanically designed to match the dynamics of the active SLIP model, with particular

focus on energy efficiency (see, for example [41]).

1.2 Motivation and Contributions

With so much pre-existing research on the SLIP model, one can ask “What is still

left to be done?”. Surprisingly, while most SLIP-like robots are equipped with compliant

legs, there is little investigation on the effect that actuation has on the system’s dynamics.

As shown in the previous section, actuation is mostly applied in a “blind” way (i.e., via

feedback) or by mimicking animals’ muscles. Besides inputting energy into the system

to compensate from losses at impact or due to friction, actuation is employed to reach

a certain state in terms of running speed/height or stride length. What is missing is an

understanding of how a different amount of actuation applied at different times during

stride can modify the state reached by the robot. In particular, is it possible to use

actuation to simplify the system’s dynamics? What is the reachable state-space of the

system, and what actuation policy enables the system to reach the most states?

The goal of this thesis is to explore how a series elastic actuator applied to the

SLIP model’s leg can change the system’s dynamics. We principally investigate how,

through actuation, we can solve partially or completely the system’s equations of motion,

and enforce a desired trajectory. We also determine the reachable state-space of the

model using several different actuation strategies, and we investigate the variation of the

reachable state with respect to the particular actuator motion, providing a relationship

between direction of actuator displacement and location of the reached state. Since the

SLIP model can be seen as a template for more complex systems, it is realistic to believe

that studies on the effect of actuation can be applicable to more realistic dynamics.

This thesis is structured as follows. Chapter 2 introduces the passive and active SLIP

9
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models, characterizes their dynamics, underlines the differences between the two, and

contains symbols and definitions that will be used throughout the document. Chapter 3

investigates the shape of the reachable space for the active SLIP model for different

actuator motions. Chapter 4 proposes an actuation strategy to enforce a symmetric

trajectory for the stance phase, and, at the same time, to allow us to compute an ana-

lytical solution for the system’s dynamics. In Chapter 5 we propose a partial feedback

linearization action for actuator displacement to analytically solve part of its dynamics,

thereby reducing computational time and increasing the practicality of performing on-

line control actions. This is then paired with a two-part control action to add/remove

energy to/from the system and modify the upcoming apex state to span an open set

within the reachable apex states. In addition, we develop two control strategies for on-

line computation of actuator displacement and leg positioning: one to drive the system

to a desired state, even in the presence of terrain perturbation; the other to control the

system to hop on a desired set of terrain footholds. Furthermore, we propose an adap-

tive control technique for steady-state locomotion on flat terrain to reduce computation

errors by the use of an approximation of the leg-angle dynamics during the stance phase,

and we demonstrate the proposed strategy on a more dynamically sophisticated planar

hopper model. In Chapter 6 we investigate how different actuator motions can affect

the system’s state, and we propose a control strategy, based on graphical and numerical

studies of the reachability space, and updated throughout the stance phase, to drive the

system to a desired state. We quantify its performance benefits, particularly in serving

as an error-recovering method. The objective of our control strategy is not to replace

any leg-placement approach proposed by other works, but rather to be paired with any

other leg-placement or path planning method. Its main advantage is the ability to reduce

the effects of sensing errors and disturbances happening at landing as well as during the

stance phase. Finally, Chapter 7 contains conclusions and future work.

10



Chapter 2

The SLIP Model: Preliminaries

In this chapter we review the structure of the passive SLIP model and its dynamics. We

also introduce its actuated version that will be used throughout the thesis, the so-called

active SLIP model, explaining in detail its dynamics and the modifications made to the

original model to incorporate energy variations.

2.1 Passive SLIP Model

The passive SLIP is modelled as a point mass, M , attached to a massless spring leg,

with length ` and spring stiffness constant k, as shown in Fig. 2.1. The terminal part

of the leg is referred to as the foot. Running dynamics for the SLIP model occur on

the sagittal plane, and constitute an hybrid system. In fact, they consist of two phases

(see Fig. 2.2a): the flight phase, where the body is in the air and follows a ballistic

trajectory; and the stance phase, where the foot is in contact with the ground, and the

compression/extension of the spring completely defines the mass dynamics. We will call

touch-down (TD) the instant that marks the transition from flight to stance; and take-off

(TO) the instant that marks the transition between stance and flight. During the flight
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phase gravity is the only force acting on the system. Defining as x and y respectively the

forward and vertical coordinates of the mass, the equations of motion during flight can

be written as:

ẍ(t) = 0,

ÿ(t) = −g,

where, as customary, g is the gravitational acceleration. The highest point reached by

the mass during flight is called the apex state, and it is defined by zero vertical velocity,

i.e., ẏa = 0 [m/s]. Therefore, the apex state is completely defined by a three-dimensional

vector s = {xa, ya, ẋa}.

The stance phase starts with the leg hitting the ground with a touch-down angle

θTD. While the body moves forward, the spring compresses until it reaches its minimum

compression point, then it starts expanding (see Fig. 2.2b). When the spring reaches

its equilibrium position (i.e., when the forces in the spring are back to zero), the system

leaves the ground with a certain take-off angle θTO. As shown in Fig. 2.1, we define `(t) as

the leg-length as a function of time, and θ(t) as the leg-angle measured counterclockwise

with respect to the positive horizontal axis, while `k is the spring length, and `k,0 is

the spring length at equilibrium. The state of the mass can be easily converted from

Cartesian coordinates into polar coordinates:

x(t) = `(t) cos θ(t), y(t) = `(t) sin θ(t).

Then, the Lagrangian for the system during stance phase is derived as follows:

L =
M

2
(`2θ̇2 + ˙̀2)−Mg` sin θ − k

2
(`k − `k,0)

2,

12
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and the equations of motion in polar coordinates for the stance phase can be written as:

῭= − k

M
(`k − `k,0)− g sin θ + `θ̇2, (2.1)

θ̈ = −2
˙̀

`
θ̇ − g

`
cos θ. (2.2)

Note that, despite their simplicity, equations (2.1)-(2.2) are not analytically solvable.

Let us introduce the commonly used non-dimensional relative spring stiffness, γ, that

will be used throughout this thesis, defined as:

γ =
k`0
Mg

. (2.3)

The introduction of the relative spring stiffness is motivated by the fact that, if we focus

on biped and quadruped robots where each leg functions and behaves the same way as

the other(s), we can study their performance by considering the relative spring stiffness

γ per leg (or net per multiple legs in contact).

In this work, we will call jump the transition from one apex state to the next. A

jump is successful if the forward velocity during the entire trajectory only takes positive

values. Furthermore, to allow the leg to swing forward in flight, we require the distance

between ya and the terrain height to be bigger than the leg length at equilibrium `0.

θ

M

k

! !k

Figure 2.1: Classic SLIP model (passive SLIP)

For each forward velocity (or apex height, equivalently, since energy is conserved)

13
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stance

flight

(a)

!̇ > 0!̇ < 0

!̇ = 0

(b)

Figure 2.2: (a) Scheme that illustrates the phases of the SLIP model trajectory. (b)
Stance phase: the point of maximum compression corresponds to ˙̀ = 0.

there is a unique touch-down angle the gives a symmetric step, i.e., the apex state is

preserved due to zero net acceleration during stance. The corresponding point on the

ground is called the neutral point. Variations from the neutral point have the effect of

increasing or decreasing the next forward velocity. For forward hopping, if the foot is

positioned before the neutral point, than there is a net acceleration, while if the foot is

positioned after the neutral point there is a net deceleration.

2.2 Active SLIP model

The classic SLIP model is energetically conservative: the repositioning of the leg to

the desired touch-down angle does not require any energy, and no energy is lost during

impact with the ground as well. However, various studies on legged locomotion, e.g., [8]

and [42], suggest that legs store and dissipate energy during motion. Based on this

evidence, we modify the passive SLIP by adding to the leg a piston-like actuator in series

with the spring, as shown in Fig. 2.3. We will refer to the actuated SLIP model as the

active SLIP.

14
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!k

!act !

Figure 2.3: Active SLIP model (active SLIP)

Define `act(t) to be the actuator length, and `act,0 be its nominal position at rest.

Throughout the stance phase, the actuator can continuously extend (`act > `act,0) or

retract (`act < `act,0) from its nominal position within a certain displacement range.

Then, the equation that describes the evolution of the leg length (2.1) can be re-written

as:

῭(t) = − k

M
(`(t)− `0 − `act(t))− g sin θ + `θ̇2, (2.4)

where `0 = `act,0 + `k,0. The actuator manages absorption and production of energy

during the stance phase by compressing and decompressing the spring, with the main

advantage of allowing the energy at the beginning and at the end of the stance phase

to be different. Positive and negative values of `act correspond to a compression and

extension of the spring, respectively.

15



Chapter 3

Reachable Space

Given an inital apex state s0 = {xa, ya, ẋa}, let us define the following function as the

transition from one apex to the next:

Xpass(s0, θTD) = s1, (3.1)

in the case of the passive SLIP, or, for the active SLIP:

Xact(s0, θTD, `act(t)) = s1, (3.2)

where s1 is the apex state reached in one jump from the initial apex state s0, with touch-

down angle θTD and actuator value function during stance phase `act(t) (if applicable).

Then, we call the reachable space of s0 the set of all apex states that can be reached

from s0 in one jump by positioning the leg and, in the case of the active SLIP, by moving

the actuator:

Rpass(s0) := {s1 | ∃ θTD : Xpass(s0, θTD, `a(t)) = s1}, (3.3)

16



Reachable Space Chapter 3

and

Ract(s0) := {s1 | ∃ θTD, `a(t) : Xact(s0, θTD) = s1}, (3.4)

where θTD ∈ [π/2, π], and `act(t) is a continuous function bounded by the physical

limitations of the actuator, such as limited travel and velocity and torque limits.

For the passive SLIP model, the reachable space is a line in the {x, y, ẋ}−space, or,

when fixing the touch-down angle, a point in the {x, y, ẋ}−space. Adding the series

actuator has the effect of extending the reachable set to a 3-dimensional surface, whose

shape is determined by the ”shape” of the function `act(t) during the stance phase, and is

a function of the actuator’s characteristics, such as maximum and minimum compression

and extension, and maximum velocity and acceleration allowed. To take into account

the limitations of a real-life actuator, we model the actuator dynamics as:

`act(t) = `act(ti) + ˙̀
act(ti)(t− ti) + kacc(t− ti)

2, (3.5)

where kacc is the acceleration constant, and ti is the time at which movement first occurs.

When the actuator reaches its maximum velocity allowed, vmax, it stops accelerating

and proceeds with a constant velocity motion. Additionally, the maximum actuator

displacement is assumed to be 10% of the leg length at equilibrium, `0, and the actuator

is assumed to start its motion with zero velocity and displacement. By fixing the touch-

down angle, the reachable space for any actuator movement consists of a 2-dimensional

manifold, as shown in Fig. 3.1a and 3.1b. The apex states {x, y, ẋ} reachable in one step

from a fixed touch-down angle form a 2-dimensional manifold, suggesting that the three

coordinates are not independent from each other. In Fig. 3.2, the complete reachable

space for different values of the actuator’s acceleration constant, kacc are computed. As

one might expect, the higher the acceleration, the bigger the reachability space. In
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Figure 3.1: Subplots (a) and (b) show two different views of the 3-dimensional reach-
able space in one step for a fixed touch-down angle. As we can see, the set is a
2-dimensional manifold.

these particular examples, initial conditions were chosen to achieve a passive symmetric

jump, i.e., χact(s0, θTD, 0) = χpass(s0, θTD)s0 with no actuator movement. Note that,

due to the lack of closed-form solution for the stance dynamics of the SLIP model, the

18



Reachable Space Chapter 3

reachable spaces were numerically computed. This operation generally requires significant

computational effort; hence, it is not normally feasible to compute in real time the

reachable set for any particular initial condition.

3.4 3.6 3.8 4 4.2 4.4 4.6 4.8
0.8

1

1.2

1.4

1.6

1.8

y
[m

]

 

 

ẋ [m/s]

kacc
0.8kacc
0.5kacc
0.2kacc

Figure 3.2: Reachability space on the {y, ẋ}−space for a passively symmetric jump
with actuator moving at different acceleration values, given a maximum allowed ve-
locity of vmax = 0.5 [m/s], and maximum acceleration constant of kacc = 10 [m/s2].
The ”corner” points are the points reached with maximum actuator movement in
the positive (upper corner) or negative (lower corner) direction. The black x mark
represents the apex state passively reachable (i.e., without any actuation). From this
graph we can see that the higher the maximum acceleration allowed, the bigger the
reachability space is, in terms of area. Initial conditions chosen: γ = 10, initial apex
state s0 = {0, 1.3 [m], 4 [m/s]}, touch-down angle θTD = 122.14 [deg].

In general, for varying touch-down angle, the reachable space is a set of 2-dimensional

manifolds, one for every touchdown angle employed, forming a fan-shaped 3-dimensional

volume, as shown in Fig. 3.3a and 3.3a.
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Figure 3.3: Subplots (a) and (b) show two different views of the 3-dimensional reach-
able space in one step for varying touch-down angles. The dark grey manifold corre-
sponds to the reachability space in Fig. 3.1a and 3.1b.
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Chapter 4

Enforced Symmetry of the Stance

Phase

Let us assume we want to control the system dynamics to follow a certain trajectory

during stance. From equation (2.4), the actuator displacement necessary to maintain a

desired feasible trajectory θdes(t) and `des(t) during the stance phase is given by:

`act(t) =
M

k
(῭des(t) + g sin θdes(t)− `des(t)θ̇

2
des(t)) + `des(t)− `0. (4.1)

For the control action to succeed, the commanded trajectory needs to be feasible: the

trajectory we want to enforce needs to be consistent with the dynamics of the system

and its limitations. Since the dynamics of θ(t) and `(t) are strongly coupled, it is not

possible to control them separately by applying actuation at the spring. Furthermore,

to compute (4.1), the desired trajectory needs to be fully known. Given we can observe

the initial conditions at touch-down, one starting point in planning is to exploit the fact

that it is often possible to reach the same conditions at take-off. When this is the case,

the straightforward answer is to find a symmetric trajectory which gives a closed-form
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solution for the stance phase.

4.1 Enforced symmetric gait

The control action required to enforce a symmetric gait to the SLIP model is not

unique. However, not all possible symmetric laws can be solved in closed form. In what

follows, we start by observing that the passive natural dynamics of the angular velocity

with respect to the angular position has a shape that is similar to a part of a sine wave

(see Fig. 4.1c). Therefore, a logical approach is to enforce the following dynamics to the

angular velocity:

θ̇(t) = A sin θ(t) + c1, (4.2)

where the parameters A and c1 are uniquely determined such that position and velocity

of the mass at the start of the stance phase match the ones at the touch-down state.

From (2.2) and the time derivative of (4.2), we have:

A = −2 ˙̀TDθ̇TD + g cos θTD

`TDθ̇TD cos θTD

,

c1 = θ̇TD −A sin θTD,

where θTD, θ̇TD, `TD, ˙̀
TD are position and velocity at touch-down of leg angle and leg

length, respectively. We can then solve (2.1) to find a closed-form solution for the leg

length dynamics:

`(t) =
g

Aθ̇(t)
+

c2
√

θ̇(t)
, (4.3)

with

c2 = `TD

√

θ̇TD − g

A
√

θ̇TD

.

22



Enforced Symmetry of the Stance Phase Chapter 4

It is important to note that the leg length `(t) can never take negative values. Since the

minimum value of `(t) corresponds to the case θ(t) = π/2, then

g

A(A+ c1)
+

c2√
A+ c1

> 0.

For the leg angle, we can solve (4.2) to find a closed-form solution for the angle dynamics

during stance:

θ(t) = −2 tan−1

(A+ c4 tanh(c4(t+ c3)/2)

c1

)

, (4.4)

for t ∈ [0, tTO], with

c3 = − 2

c4
tanh−1

(A+ c1 tan(θTD/2)

c4

)

,

and

c4 =
√

A2 − c21. (4.5)

The take-off time, tTO, is given by:

tTO = −c3 −
2

c4
tanh−1

(A + c1 tan(θTO/2)

c4

)

,

where θTO is the take-off angle. In order for the above equations to be feasible, we require

the following constraint:

|A+ c1 tan (θTD/2)| ≤ |
√

A2 − c21|,

and the same constraint can be enforced for all θ(t), obtaining the following:

θ(t) ∈ [2 tan−1

(−c4 − A

c1

)

, 2 tan−1

(c4 − A

c1

)

]. (4.6)
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Note that the parameter c4, defined in (4.5), can be a real or imaginary number. All

equations from (4.4) to (4.6) still hold.
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Figure 4.1: In these figures, the blue dotted line refers to the passive SLIP, while the
solid red line refers to the active SLIP. Figs. (a) and (b) show the mass trajectory for
passive and active SLIP with respect to the horizontal position and with respect to
time, respectively. Fig. (c) shows the evolution of α = π−θ and α̇ during stance for the
passive and active SLIP, and Fig. (d) represents the required actuator displacement
∆`act. The parameters used are k/M = 500[s−2], `0 = 1[m] and `k,0 = 0.5[m]. The
initial apex state is sa = {0 [m], 1.4 [m], 2 [m/s]}, the touch-down angle is θTD = 100
[deg], and terrain height is 0 [m].

Plots in Fig. 4.1 show an example of the mass trajectory and the angular acceleration
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of passive and active SLIP for the same initial conditions, and the required actuator

displacement for the active case.

4.2 Control actions

4.2.1 Fixed leg length at take-off

When the trajectory is symmetric, we have that θTO = π−θTD , and the apex velocity

components, ẋa and ẏa, and the mass apex height ya are preserved from one apex state

to the next. The only control action available is the touch-down angle θTD, and its choice

affects the forward position xa at the next apex state. If we start from the same initial

apex state and we use the same set of possible touch-down angle θTD, it is clear that

enforcing a symmetric trajectory changes the set of reachable apex states with respect to

the set reachable by the passive SLIP. As an example, Fig. 4.2 shows the set of reachable

apex states for the active and passive SLIP. We can see that, despite the different spatial

direction of the two curves, the span of reachable points is comparable in size. This

suggests that, even if the reachable apex states are not the same, enforcing a symmetric

gate does not generally represent a limitation with respect to the passive SLIP, but it

rather changes the direction of the reachable space.

4.2.2 Variable leg length at take-off

There are some cases when enforcing a symmetric gait can pose a limit on the capa-

bility of successfully undergoing a particular terrain. For example, on terrains with tall

obstacles, or with stairs, it may be necessary to add (or remove) energy to the system

to achieve a successful jump. Therefore, we allow the leg to leave the ground either

before or after the state which mirrors the touch-down state has been achieved. This
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Figure 4.2: The dotted blue line and the solid red line represent the reachable points
for passive and active SLIP, respectively, with touch-down angle θTD ∈ [10, 90] [deg].
The system parameters are k/M = 500[s−2], `0 = 1 [m], initial apex state
sa = {0 [m], 1.4 [m], 2 [m/s]}, and terrain height 0 [m]. Note that both lines lie on a
surface of constant energy.

simply requires setting `act such that the leg spring is fully unloaded, i.e., such that

`act = ` − `0 + `act,0. It is then possible to choose the leg length at take-off, or equiv-

alently to choose the take-off angle θTO to be different than π − θTD. Hence, the mass

will leave the ground at a different take-off state, (xTO, yTO, ẋTO, ẏTO), and will reach a

different new apex state than otherwise reached. In particular, the velocity components

at take-off, ẋTO and ẏTO, will be different than the velocity components at touch-down,

ẋTD and ẏTD. Fig. 4.3 shows the set of all the apex states reachable from an initial

nominal apex state. The coloring scheme reflects the direction of the next apex in state

space with respect to controlling the touch-down angle θTD, Fig. 4.3a, or the leg length

at take-off `TO, Fig. 4.3b.
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Figure 4.3: These plots represent the set of apex states reachable from the ini-
tial apex state sa = {0 [m], 1.4 [m], 2 [m/s]} in the actuated case with leg length at
take-off `TO ∈ [0.5, 1.2] [m] and θTD ∈ [100, 117] [deg]. The system parameters are
k/M = 500[s−2], `0 = 1 [m], and the terrain height is 0 [m].

The main advantages of such a procedure are twofold. First, the capability of

adding/subtracting energy to/from the system allows us to reach apex states otherwise

unreachable, which translates into the ability of operating in a wider variety of terrains.

Second, while the choice of θTD acts as a control action that happens before the impact
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with the terrain, the choice of θTO is done after the impact. This represents a big advan-

tage in case of noisy measurements (e.g., on the terrain, on the position of the leg, etc.),

since it is now possible to partially act against the effect of the noise during the actuated

stance phase.

4.3 Applications

This section contains two applications of the proposed symmetric enforcement strat-

egy. Note that the applications are manifold, and here below we just show two useful

examples. In the first application, we assume the terrain is divided into allowed and not

allowed foothold sets, and we want to determine a path from an initial foothold to an end

foothold. In the second application, we aim to reach a desired constant forward velocity

or constant apex height during motion on unknown rough terrain. We will assume that

the actuator can be extended/contracted only up to a certain percentage of its equilib-

rium length, and define with `max
act the maximum feasible actuator length. This will pose

a constraint on the velocity/height reachable in one step.

4.3.1 Foothold placement

One of the main applications of the closed-form solution is the ability to plan a

trajectory given a set of feasible footholds: for example, trajectory planning on a terrain

with forbidden areas, such as holes or water.

For any initial apex state {xa, ya, ẋa} and terrain height h, we can identify a minimum

and a maximum touch-down angle, θmin and θmax, that allow the system to complete a

successful jump. Let us call step length the distance between two subsequent landing
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points (Fig. 4.4), and let us define the two quantities dm and dM as

dm = ẋa

√

2

g
(ya − h− `0 sin θmax)− `0 cos θmax,

dM = ẋa

√

2

g
(ya − h− `0 sin θmin)− `0 cos θmin.

(4.7)

When the gait is symmetric, the minimum and maximum step lengths at each apex state

{xa, ya, ẋa} depend on the length of the previous step as follows: the minimum step

length is sm = d0 + dm, and the maximum is sM = d0 + dM , where d0 is the distance

between xa and the previous landing point. It follows that the distance between two

Figure 4.4: The figure shows the distance between touch-down locations for two con-
secutive steps.

feasible footholds has to take values between [d0 + m, d0 + M ]. It is straightforward

to show that d0 is bounded: d0 ∈ [dm, dM ]. Therefore, a necessary but not sufficient

condition for foothold placement is that the distance between two feasible footholds has

to be between [2dm, 2dM ]. It is clear that the required distance between footholds is not

an absolute measure, but it depends on the previous step length and, in the case of rough

terrain, on the terrain height. In fact, values (4.7) depend on the terrain height at the
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landing point, h. For simplicity, we will assume the terrain to be flat; however, what

follows can be easily adjusted in case of rough terrain.

Assume now that the terrain is divided into allowed and not allowed foothold sets, and

that we want to determine a path from one foothold v0 to another one vend (or to a set of

footholds, Vend), given an initial apex state and initial d0. We also assume that, at each

step, we have the capability to see the terrain up to a certain distance D from our current

location. Let us create a graph where each vertex represents a foothold. Starting from an

initial foothold/vertex v0, and initial length d0, ifD ≥ d0+m we add an edge from v0 to all

the footholds vi whose forward distance from v0 is d(v0, vi) ∈ [d0+dm, min{D, d0+dM}],

and we associate to the edge connecting v0 and vi the length di = d(v0, vi)− d0. (Note

that, if D < d0+dm, there is no feasible foothold for that specific initial condition.) Then,

for each vertex vi, we repeat the same process, until all footholds have been explored.

As output, we obtain a graph for each feasible path from node v0 to node v ∈ Vend. The

optimal path can then be chosen based on the specific definition of cost function: e.g., we

can associate a cost to each edge based on the length covered, or based on the probability

that the foothold location is correctly sensed to be feasible.

Algorithm 1 compute feasible paths

1: V = {f0, ... fn} set of all footholds
2: Vend ⊆ V set of desired path end
3: Initial state v = f0, initial length d0
4: graph G = (V,E,W ), with V = {v}, E = ∅, W = ∅.
5: for vi ∈ V s.t. d(vi, v) ∈ min{D, [d0 + dm, d0 + dM ]} do
6: create edge ev,vi with weight di = d(v, vi)− d0
7: cost Ci

8: Vi := {V, vi}, Ei := {E, ev,vi}, Wi := {W, d0}
9: Gi := {Vi, EiWi}
10: Repeat steps 5–10 for v = vi, d0 = di, and G = Gi until no more possible forward

jump is feasible
11: end for
12: return all graphs G that end in Vend
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The complexity of Algorithm 1 grows with the amount of knowledge of the terrain

available and the number of feasible footholds. However, we can intuitively suspect that,

when the feasible regions of the terrain are high in number and equally spaced, a complete

knowledge of the terrain is not required. Such an algorithm is practical if jump transitions

can be computed quickly, therefore having an analytic solution is a necessary condition

to keep the computation complexity low.

4.3.2 Constant forward velocity/constant apex height

Here, we consider two applications for our variable take-off leg length strategy, con-

cerning the problems of reaching a desired running speed and of reaching a desired apex

height with respect to the terrain. In particular, the problem of reaching a desired run-

ning speed has already been studied in the literature with different assumptions on the

model (see [25] and [43]).

First, let us consider the problem of reaching a desired running speed at the next apex

state, ẋd, on rough terrain. Given the initial touch-down conditions (θTD and `TD), we

want to compute the take off angle that allows us to obtain the desired forward velocity,

i.e., we need to solve the following equation:

ẋd = ˙̀
TO cos θTO − θ̇TO`TO sin θTO. (4.8)

Define the variable z =
√
A sin θTO + c1. After some tedious calculations, one can show

that solving equation (4.8) is equivalent to solving for z the following equation:

Ac2z
5 + (2c1g + 2A2ẋd)z

2 + (A3c2 − Ac21c2)z + (2A2g − 2c21g) = 0,

which cannot be solved analytically but can be easily solved numerically. In order to
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obtain ẋd, the leg needs to leave the ground at an angle θTO = π − sin−1 ( z
2
−c1
A

), corre-

sponding to a certain take-off leg length.

Since the actuator ability to contract/extend is limited to `max
act , then `max = `max

act +`k.

From equation (4.3) we obtain

g

Aθ̇TO

+
c2

√

θ̇TO

≤ `max,

and therefore

z ≥ c2 +
√

c22 + 4g`max/A

2`max

. (4.9)

By defining

ẑ =
c2 +

√

c22 + 4g`max/A

2`max

, c5 =
ẑ2 − c1
A

,

we can compute the maximum forward velocity obtainable in one step as:

ẋmax = ...

= (
g

Aẑ2
+
c2
ẑ
)(−A

2
+
Ac25
2

− ẑ2c5) +
g

2ẑ2
(c25 + 1).

(4.10)

The minimum forward velocity can be easily computed as the value the velocity takes at

the time t̃ when θ(t̃) = π/2.

Now, let us consider the problem of maintaining a constant apex height with respect

to the ground. This application is particularly useful in situations where the terrain

height is progressively increasing and/or decreasing. In fact, it is crucial to maintain a

certain minimum distance from the terrain to avoid collision of the leg with the ground.

At the same time, it is important to keep the relative apex height limited to avoid

gaining excessive velocity during the ballistic descent, to avoid “bottoming out” the

passive spring, with the resulting impossibility to perform a successful jump.
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Let us assume no prior knowledge of the terrain, in which case our strategy focuses on

keeping the height of the next apex constant with respect to the ground at the previous

landing point, which is known a posteriori. Given the initial touch-down conditions (θTD

and `TD) and the terrain height at the previous foothold, yt, we want to compute the

take-off angle that results in obtaining the desired apex height ∆yd with respect to yt.

Note that ∆yd = ya = yt, where ya is the next apex height. Solving this problem is

equivalent to solving for θTO the following equation:

∆yd = `TO sin θTO +
1

2g

(

˙̀
TO sin θTO + `TOθ̇TO cos θTO

)2

. (4.11)

As for the constant velocity case, this is equivalent to solve for z =
√
A sin θTO + c1 a

10th-order polynomial equation in z (not shown here because of its excessive length).

Because of limitation on the actuator length, we obtain again constraint (4.9) on z.

Correspondingly, we can compute the maximum and minimum apex height obtainable

in one step.

4.4 Simulations

In what follows we illustrate through simulations the performance of our example

control strategies as discussed in 4.3.1 and 4.3.2. The system parameters used are defined

in the following table:

k/M [s−2] g [m/s2] `act,0 [m] `k,0 [m]
100 9.81 0.5 0.5

4.4.1 Foothold placement

The following simulations refer to 4.3.1. Algorithm 1 has been tested on a rough

terrain of length 50 [m]. Knowledge of the terrain ahead has been assumed to be D = 10
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[m]. The terrain height has been built as a normal distribution with 0 mean and standard

deviation σ = .1. The terrain step length has been chosen to be 0.6 [m]. The apex state

is sa = {1.3 [m], 1.4 [m], 3 [m/s]} and d0 = 1.3 [m]. In order to use the algorithm, we

discretized the terrain in intervals of size 0.1 [m], and we considered to be unfeasible all

the points xt with height yt(xt) such that |yt(xt)| ≥ 0.2 [m], and all the parts close to

a change of height, in order to avoid leg collision with the terrain during stance. The

cost function has been chosen to be the final covered distance. The output is shown in

Fig. 4.5. The green line and red line represent respectively the feasible and unfeasible

parts of the terrain, the blue dotted line represents the mass trajectory, and the black x

marks are the landing points.

34



Enforced Symmetry of the Stance Phase Chapter 4

0 10 20 30 40 50 60
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

x [m]

y 
[m

]

 

 

20 21 22 23 24 25 26 27 28

−1

−0.5

0

0.5

1

1.5

2

2.5

x [m]

y 
[m

]

 

 

Figure 4.5: The figure shows the path computed by algorithm 1 where the cost function
is defined to be the final covered distance. The green and red line represent respectively
the feasible and unfeasible parts of the terrain, the blue line represents the mass
trajectory, and the black x marks are the landing points.
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4.4.2 Constant forward velocity/constant apex height

We now demonstrate through simulations the performance typical of the control

strategies introduced in 4.3.2.

First, let us examine the problem of reaching a desired forward speed. Consider the

active SLIP model, and assume the actuator on the leg can extend/contract up to 20% of

the leg equilibrium length. Let us assume the active SLIP travels on a rough terrain, but

that it is not provided with any knowledge of it. We will then treat the terrain as if it were

completely flat. We also fix the touch-down angle at θTD = 100 [deg]. During stance,

we compute the take-off angle to reach the desired velocity by solving (4.8) as follows.

If the maximum forward velocity obtainable in one step, ẋmax computed with (4.10),

is ẋmax ≥ ẋd, then the take-off angle θTO will be computed using (4.8). If ẋmax < ẋd,

then θTO will be chosen to reach at the next apex forward velocity ẋmax, and therefore

the number of steps necessary to reach the desired steady-state will be greater than one.

Fig. 4.6a shows a numerical example, with initial apex state sa = {0 [m], 1.3 [m], 2 [m/s]}

and desired forward velocity ẋd = 2.5 [m/s]. As we can see, the system reaches the desired

forward velocity in 2 steps, and it is able to successfully run on a rough terrain with error

that often exceeds 50% of the leg length. Fig. 4.6b shows a numerical example, with initial

apex state sa = {0 [m], 2.5 [m], 2.3 [m/s]} and desired forward velocity ẋd = 2[m/s],

smaller than the inital apex velocity. As we can see, the system reaches the desired

forward velocity in 1 step.

Let us now examine the problem of reaching a desired height from the terrain, as-

suming the actuator can extend/contract up to 20% of the leg equilibrium length. Let

us assume the active SLIP is not provided with any knowledge of the terrain it trav-

els on. We fix the touch-down angle at θTD = 100 [deg]. During stance, we compute

the take-off angle to reach the desired terrain height with respect to the previous land-
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Figure 4.6: The figure shows two numerical examples of the forward velocity control
strategy proposed in 4.3.2. The black line represents the real terrain, and the dotted
green flat line the sensed terrain. The red x marks are the landing points and the
dotted blue line is the mass trajectory.
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ing height by solving (4.11). Fig. 4.7a shows a numerical example, with initial apex

state sa = {0 [m], 2.3 [m], 2.3 [m/s]} and desired relative height ∆yd = 1.5 [m], whereas

Fig. 4.7b shows a numerical example, with initial apex state sa = {0 [m], 1.3 [m], 2 [m/s]}

and desired relative height ∆yd = 1.7 [m].
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Figure 4.7: The figure shows two numerical examples of the relative height control
strategy proposed in 4.3.2. The black line represents the real terrain, the dotted blue
line is the mass trajectory, the red x marks are the landing points and the magenta
dots are the apex states.
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4.5 Conclusions

In this chapter, we developed a control law for actuator displacement in order to

enforce a symmetric stance phase to the model. For the specific control law we enforced,

we were able to compute a closed-form solution for the trajectory of the mass during

the stance phase. We then exploited the possibility of the leg leaving the ground either

before or after reaching the take-off state that is symmetric to the touch-down state,

and as a consequence we were able to add and remove energy from the system. We

also provided two examples of useful applications for our method (trajectory planning

on fixed footholds, and running on rough terrain at constant forward velocity and at a

constant relative height), and we validated them through simulations.
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Chapter 5

Approximation and two-element

control

We have seen in Chapter 4 that the series elastic actuator can be used to enforce a

trajectory for the stance phase. In particular, the trajectory was chosen to be symmetric

to be able to analytically solve the equations of motion. There are undeniable benefits in

having access to a closed-form solution for the system’s dynamics, both on a control and

on a computational point of view. Unfortunately, it is not always practical to enforce a

symmetric stance phase. Especially if the ability of locking the leg at take-off is precluded,

it is not possible to inject/remove energy to/from the system.

In this chapter we investigate how it is possible to use actuation to analytically

solve part of the stance phase dynamics. Subsequently, we pair this solution with an

approximation for the remaining equation, and we propose a control strategy to drive

the system to a desired apex state.
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5.1 Approximating the stance phase dynamics through

PFL

Here, we propose a strategy for the actuator displacement `act(t) to solve part of the

stance dynamics, and we propose an approximation of the remaining equation.

5.1.1 Exact solution via partial feedback linearization

Let us write the total actuator displacement as: `act(t) = `nl(t) + `c(t), with to-

tal velocity vact(t) = vnl(t) + vc(t). The first term, `nl(t), performs a partial feedback

linearization (PFL): it has the purpose of cancelling the nonlinear terms in (2.4):

`nl(t) =
M

k

(

g sin θ(t)− `(t)θ̇(t)2
)

. (5.1)

Note that, at touch-down, this becomes:

`nl,TD =
M

k

(

g sin θTD − `0θ̇
2
TD

)

,

which is in general not zero, and therefore the spring may need to be pre-compressed or

pre-extended during flight. Substituting (5.1) in (2.4), we obtain:

῭(t) = − k

M
(`(t)− `0 − `c(t)),

where `c(t) is chosen as follows.

We drive the second term, `c(t), to a particular value ¯̀
c. However, since the actuator

does not move instantaneously, we assume that, after cancelling the nonlinearity, the

actuator moves with a constant velocity vc from its initial position, `c(ti) , until it reaches
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the desired value ¯̀
c:

`act(t) =















`nl(t) + `c(ti) + vct, if |vct+ `c(ti)| < | ¯̀c|

`nl(t) + ¯̀
c, otherwise,

as illustrated in Fig. 5.1.
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Figure 5.1: Example of the total actuator value `act(t) during stance phase, and its
two components `nl(t) and `c(t).

Note: in general, vnl(t) is not a constant value. Since vc is set to be a constant, the total

actuator velocity required vact(t) is a time-varying function.

During the transition time required to reach the desired actuator value ¯̀c, the equation

that describes the leg-length dynamics can be analytically solved as

`(t) = r + vct + a cos (ωt+ β), (5.2)
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where1

β = atan2

(

−
˙̀(ti)− vc

ω
, `(ti)− `0 − `c(ti)

)

,

a =
`(ti)− `0 − `c(ti)

cos β
, r = `0 + `c(ti),

ti is the initial time, and ω =
√

k/M .

Once the actuator reaches the desired final value ¯̀
c, the leg-length dynamics are

described by

`(t) = r + a cos (ωt+ β), (5.3)

where

β = atan2(−
˙̀(tc)

ω
, `(tc)− `0 − ¯̀

c),

a =
`(tc)− `0 − ¯̀

c

cos(β)
, r = `0 + ¯̀

c,

and tc is the time at which vctc = ¯̀
c.

5.1.2 Approximation of the leg angle dynamics

The equation of motion for the angular displacement over time, θ(t) (2.2), is still

not analytically solvable. However, we notice that Equation (5.3) has the same form as

the approximation of the leg-length dynamics in [34], with two main differences: (i) [34]

considers the passive SLIP model only, and (ii) the equation for the leg-length dynamics

provided in [34] is an approximation, while (5.3) and (5.2) are exact solutions. We then

chose to follow the same initial steps of the procedure to approximate θ(t) proposed

in [34], modifying and extending the results to adapt them to our actuated case.

1For any point (x, y) in the xy-plane minus the origin, arctan2(y, x) is defined to be the angle between
the horizontal positive axis and the point (x, y) measured counterclockwise.
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When the actuator reaches the final desired value `c, the dynamics of the leg length

during stance are described by Equation (5.3). Let us define α(t) = θ(t) − π/2, and

assume that both α(t) and the angular span ∆α = αTD−αTO are sufficiently small to be

simplified as sin(α) ≈ α. Then, equation (2.2) can be simplified and re-written in terms

of α, becoming:

α̈(t) ≈ −2
˙̀(t)α̇(t)

`(t)
+

g

`(t)
α(t). (5.4)

Toward solving for a corresponding analytic approximation for α(t), we introduce the

variables u(t) and p(t) such as α(t) = p(t)u(t). Substituting α(t) in (5.4), we obtain

üp+ u̇(2ṗ+ 2
˙̀p

`
) + u(p̈+ 2

˙̀ṗ

`
− g

p

`
) = 0.

Setting the coefficients associated to u̇ to be equal to zero yields

`ṗ + ˙̀p = 0,

whose solution is p = 1/`. Then, equation (5.4) becomes:

ü− u
(

῭+ g

`

)

= 0. (5.5)

When the actuator reaches the final desired value `c, the equation that describes the

dynamics of the leg length during stance is Equation (5.3). Then, (5.5) becomes

ü− u

(

−ω2 +
ω2 + g/r

1 + ε cos (ωt+ β)

)

= 0,
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with r = `(tc) + `c, and ε =
a
r
. We can write

ε =
z

cos β
,

where

z =
`(tc)

`0 + ¯̀
c

, or z =
`(ti)

`0 + `c(ti)
.

Let us assume small leg compression and small actuation, i.e., (`(t)−`0−`c)/(`0+`c) � 1,

then we have that

lim
z→0

|ε| = |
˙̀(tc)

ω(`0 + ¯̀
c)
|,

which, for typical values of w and leg length velocity, has magnitude less than 1. Then,

for small values of ε, we have that

1

1 + ε cos (ωt+ β)
≈ 1− ε cos (ωt+ β) + ε2 cos2 (ωt+ β)− · · · ,

and thereby obtain the Mathieu equation

ü− u
(

λ2 − εδ cos (ωt+ β)
)

, (5.6)

with

δ = ω2 + g/r, λ2 = g/r.

Equation (5.6) can be developed as

u(t) = u0(t) + εu1(t) + ε2u2(t) + · · · .
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We then obtain

α(t) ≈ 1

`(t)
(u0(t) + εu1(t)),

where u0(t) and u1(t) are solutions of

d2

dt2
u0 − λ2u0 = 0,

d2

dt2
u1 − λ2u1 = −δu0 cosωt+ β.

We want now to modify the procedure to approximate the leg angle dynamics pro-

posed in [34] and performed above, to adapt it to (5.2). During the transition time

required to reach the desired value `c, the equation that describes the leg length dynam-

ics can be analytically solved as (5.2). Then, equation (5.5) becomes

ü(t)− u(t)
−c2ω2 cos (ωt+ β) + g

c1 + c2 cos (ωt+ β) + vct
= 0.

Defining ψ = ωt+ β, we have d
dt
u(t) = ωu′(ψ) and ü(t) = ω2u′′(ψ), where (·)′ represents

the derivative with respect to ψ. Then, the previous equation becomes:

u′′(ψ)− u(ψ)
(

− 1 +
1 + ζ + ξψ

1 + κ cosψ + ξψ

)

= 0, (5.7)

with

ξ =
vc

c1ω − βvc
, κ =

ξc2ω

vc
, ζ =

ξg

ωvc
.

We can expand the fractional term in (5.7) around cosψ = 0, obtaining

− 1 +
1 + ζ + ξψ

1 + κ cosψ + ξψ
w

λ̃2 − δ̃(ε̃ cosψ − ε̃2 cos2 ψ + ε̃3 cos3 ψ − · · · ),
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where

ε̃ =
2(κ− ξ)

2 + πξ
, λ̃2 =

2ζ

2 + πξ
, δ̃ =

κ

(κ− ξ)
+

2(1 + ζ)

2 + πξ
.

Then

α(t) ≈ 1

`(t)
(ũ0(t) + ε̃ũ1(t)),

where ũ0(t) and ũ1(t) are solutions of

ũ′′0 − λ̃2ũ0 = 0,

ũ′′1 − λ̃2ũ1 = −δ̃ũ0 cosψ.
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5.2 Choice of the actuator constant value `c: two-

element strategy

We now propose a strategy for the choice of the actuator constant value `c.

Let us divide the stance phase in two parts, separated by the point of maximal leg

compression: a first part, where ˙̀(t) ≤ 0, and a second part, where ˙̀(t) ≥ 0. Our main

control action consists in choosing two constant values for `c: one for the first part, `c1,

and one for the second part `c2, of the stance phase, as shown in Fig. 5.2.

!act = !nl + !c2

!act = !nl + !c1

Figure 5.2: Proposed two-element actuator motion during stance phase

Dissimilarly from Raibert’s famous single-legged hopper, which adjusts the energy

via actuation once at mid-stance, we propose to adjust the actuator motion twice during

stance. This approach allows us not only to regulate the system’s energy, but, more

particularly, its two components of forward velocity and apex height. As Fig. 5.2 il-

lustrates, actuation during the entire stance phase allows the system to reach a wider

variety of apex states than would otherwise be reached with mid-stance actuation only.

Specifically, using a single (1-dimension) thrust parameterization will clearly map to

only a 1-dimensional set of apex states, while the full reachable set of apex states is an
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approximately 2-dimensional surface ( [44], [15]).

Furthermore, the decision of limiting our control to a two-parameter (`c1, `c2) choice

for the actuator displacement as opposed to a time dependent function (as, for example,

in [13], [44], and [15]) has been dictated by the purpose of keeping the system as simple

as possible, without much loss on performance. Fig. 5.3a and 5.3b provide an example of

how, by setting only two actuator values, it is possible to reach in one jump a wide range

of apex states, influencing both apex height, apex velocity and apex forward position, in

all reachable directions.
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Figure 5.3: Apex states {y, ẋ} (a), and {x, y, ẋ} (b), reachable in one jump, with
M = 10 [kg], k = 1962 [N/m], `0 = 1 [m]. Initial apex: xapex = 0 [m], yapex = 1.4
[m], ẋapex = 2 [m/s], θTD = 103 [deg]. Maximum/minimum actuator length: ±0.05
[m]. Actuator moves with velocity vc = 0.5 [m/s]. Each solid blue line corresponds
to a different actuator value during the first half of the stance phase, `c1, while each
dotted red line corresponds to a different actuator value during the second half of the
stance phase, `c2. The black lines correspond to the case of either `c1 = 0 or `c2 = 0.

Because the reachable {x, y, ẋ}−space obtained by regulating the actuator value

(Fig. 5.3b) takes the form of a 2-dimensional surface, increasing the dimension of the

reachable state-space requires that we add another degree of freedom. This can be done
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by varying the touch-down angle θTD. Then, the reachable space becomes a non-convex

set in the 3-dimensional space, as shown in Fig. 5.4.
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Figure 5.4: Apex states {x, y, ẋ} reachable by our control strategy in one jump from
the initial apex state {0, 1.4 [m], 2 [m/s]}, for varying values of θTD ∈ [85, 170] [deg]
(colorbar), `c1 and `c2 ∈ [−.05, 0.5]. Actuator moves with velocity vc = 0.5 [m/s].
Relative spring stiffness γ = 20, and leg length `0 = 1 [m].

As stated earlier, moving the actuator results in a change of the system’s energy. The

energy at apex is defined as

Ea =Mgya +
1

2
Mẋ2a. (5.8)

Fig. 5.5 shows the change in energy from one initial apex state to the next for different

values for the couple (`c1, `c2). As a general rule of thumb, the maximum energy increase

is obtained by extending the spring in the first half of the stance phase (i.e., `c1 < 0) and

compressing it during the second half (i.e., `c2 > 0), while compressing first, and then

extending (i.e., `c1 > 0 and `c2 < 0) results in a maximum energy decrease.

50



Approximation and two-element control Chapter 5

−150

−125

−125

−
12

5

−
100

−100

−100 −
50

−50

−50

−50

0

0

0

50

50

50

100

100

100

100125

125

125

150 15
0

` c
2
[m

]

`c1 [m]
−0.05 −0.025 0 0.025 0.05

−0.05

−0.025

0

0.025

0.05

Figure 5.5: The contour plot represents the energy change values ∆E = Ea,2 − Ea,1.
Ea,1 is the energy (5.8) at the initial apex state ya = 1.4 [m] and ẋa = 2 [m/s]. Ea,2

is the energy (5.8) at each next apex state computed for θTD = 103 [deg] and varying
values of the couple (`c1, `c2).

The lack of body inertia in this simplified model prevents the use of body attitude

as additional control action to reach a desired state. However, it is not unreasonable to

believe that the strategy we propose can be easily paired with other leg placement and

body attitude control strategies. For example, the leg actuator proportional controller

proposed in [12] could be replaced by a two-part thrust actuation strategy such as ours,

preserving the energy efficient hip actuator controller based on the hip passive oscillations.

5.3 Performance

We study the performance of our monoped hopper in terms of the relative spring

stiffness γ as defined in (2.3). Simulations are conducted for γ ∈ [10, 200], using constant

values for `0 and M , and varying k. The initial apex height and velocity have been
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chosen as a function of the leg length and the time scale τ = 1 [s] to be ya ∈ [`0, 2.5`0]

and ẋa ∈ [0.5 `0
τ
, 3 `0

τ
], while touch-down angle has been chosen as θTD ∈ [90, 150] [deg].

The spring length at equilibrium has been assumed to be `k,0 = 0.5`0, with a maximum

compression of `k,min = 0.05`0.

5.3.1 Feasibility

It is important to point out that, depending on the system’s parameters and its initial

conditions, the actuator displacement required to cancel the nonlinear terms, `nl(t), could

exceed the maximum actuator displacement and velocity allowed, or could bottom-out

the spring. To include such feasibility constraints in our work, we assume the total

actuator displacement `act(t) = `c(t) + `nl(t) must not exceed 10% of the leg length `0,

the maximum velocity vact = vc + vnl not exceed `0/τ , and that `act(t) at any given

time must not bottom-out the spring, i.e., `k(t) ≥ `k,min. The allowable amount of

displacement and velocity for the nonlinear part (`nl) and the constant part (`c) can

be allocated in an infinite number of ways. For example, Fig. 5.6a shows the initial

apex states that require `nl ≤ 0.5`0 and vnl ≤ 0.5`0/τ to perform a symmetric jump,

while Fig. 5.6b considers apex states that require `nl ≤ 0.4`0 and vnl ≤ 0.3`0/τ . The

simulations have been computed for several values of γ.

Our strategy works well for values of γ ≥ 100 for both allocations considered. For

γ ≤ 10 the size of the set of feasible initial conditions is small, posing a heavy limit to

the application of our controlling strategy.

5.3.2 Error reduction

Now, we want to test the benefits (in terms of approximation error) of our proposed

strategy for cancelling the nonlinear terms via our active SLIP control. We introduce the
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ẋ [`0/τ ]

y
[`
0
]

 

 
γ ≥ 200
γ ≥ 100
γ ≥ 40
γ ≥ 20
γ ≥ 10

(b)

Figure 5.6: Subplot (a) shows the initial apex states that require `nl ≤ 0.5`0 and
vnl ≤ 0.5`0/τ to perform a symmetric jump, while subplot (b) considers apex states
that require `nl ≤ 0.4`0 and vnl ≤ 0.3`0/τ . Different shades refer to different intervals
of γ: γ ≥ 10 (black), γ ≥ 20, γ ≥ 40, γ ≥ 100, and γ ≥ 200 (light yellow).

non-dimensional percentage errors of variables x, y and ẋ, respectively, as:

PEx = 100
‖ x− x̃ ‖2

`0
, PEy = 100

‖ y − ỹ ‖2
`0

,

PEẋ = 100
‖ ẋ− ˜̇x ‖2

`0
τ,

(5.9)

where ỹ and ˜̇x are height and velocity at apex computed via approximation, while y and

ẋ are the actual apex height and velocity computed using Matlab numerical solver ode45,

with absolute and relative tolerances set at 10−8. The time constant τ has been chosen

to be equal to τ = 1 [s].

First of all, why is it useful to cancel the nonlinear terms, i.e., what is the benefit

of having an exact solution for `(t)? We answer this question by comparing the per-

centage errors (5.9) for the approximation proposed in [34] versus our approximation

with nonlinearity cancellation (5.1). Since the approximation in [34] does not consider
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actuation, the comparison is performed with respect to our approximation computed

with `act(t) = `nl(t), i.e., `c(t) = 0. Fig. 5.7a, 5.7b and 5.7c show the mean percentage

errors PEx, PEy and PEẋ for symmetric and non-symmetric trajectories, with values

of γ ∈ [20, 200] (values of γ < 20 have not been considered due to their limitation, as

shown in Subsection 5.3.1). We can see that our proposed strategy significantly reduces

the percentage errors, especially for lower values of γ. This can serve as a starting point

for the choice of γ while building a hardware prototype.

We now compute the percentage errors (5.9) for the actuated SLIP model, with our

proposed actuator displacement strategy `act(t) as in (5.1.1). Fig. 5.8a, 5.8b and 5.8c show

the mean and standard deviation of, respectively, the percentage errors PEx, PEy and

PEẋ, computed for several values of γ ∈ [20, 200] and a set of 60,000 initial conditions.
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Figure 5.7: The blue stars represent the PEs computed with respect to the stance
phase approximation proposed in [34]. The red diamonds represent the PEs com-
puted using our proposed approximation via nonlinearity cancellation. Initial apex
conditions have been chosen to be y ∈ [`0, 2.5`0], ẋ ∈ [0.3 `0

τ
, 3 `0

τ
], and θTD ∈ [85, 150]

[deg]. Maximum actuator displacement and velocity are max(|`act|) = 0.05`0 and
max(|vact|) = 0.5`0/τ . 55
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Figure 5.8: Percentage errors PEx (a), PEy (b) and PEẋ (c) for our proposed ap-
proximation with actuator displacement (5.1.1). The colored symbols represent the
mean values of the percentage errors, and the vertical bars the respective standard
deviations, computed for a pool of 60,000 initial conditions. The initial apex con-
ditions have been chosen to be y ∈ [`0, 1.8`0], ẋ ∈ [0.5 `0

τ
, 3 `0

τ
], and θTD ∈ [90, 135]

[deg]. Maximum actuator displacement and velocity are max(|`act|) = 0.1`0 and
max(|vact|) = 1`0/τ , with `c ∈ [−0.05`0, 0.05`0], and vc ∈ [0.5`0/τ, 0.5`0/τ ]. If either
the total actuator displacement or velocity exceeds the maximum values allowed, the
actuator is assumed to saturate during numerical computation of the stance phase
trajectory.
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5.3.3 Robustness to sensor noise

The exact solution of the leg length dynamics via partial feedback linearization and,

more generally, the approximation of the overall stance dynamics, depend on the accu-

racy of the sensors’ measurements available. We test the percentage errors (5.9) for the

actuated SLIP model when sensor noise is present. In particular, we consider errors in the

detection of the initial apex height, position and forward velocity, which translates into

errors of the stance phase’s initial conditions, and noise on the partial feedback lineariza-

tion term (5.1). Fig. 5.9a, 5.9b, and 5.9c show the mean percentage errors when sensor

noise is present, and compare it with the noiseless case. Sensor noise on the initial apex

state is taken from a uniform distribution within ±1% the actual values. Furthermore,

we assume the controller is updated at 1000 Hz, and the partial feedback linearization

term (5.1) is affected by measurement noise modelled as a Gaussian distribution with

zero mean and standard deviations σ = 0.1 for θ and θ̇, and σ = 0.01 for `. While the

presence of noise degrades the accuracy of the approximation of the system’s dynamics,

the noise considered still results in a good level of accuracy.
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Figure 5.9: Percentage errors PEx (a), PEy (b) and PEẋ (c) for our proposed approx-
imation with actuator displacement (5.1.1), with and without sensor noise. The blue
diamond dotted lines represent the mean values of the percentage errors with noisy
sensors, while the red star solid lines represent the mean values of the percentage errors
with perfect sensing, for varying values of γ. PEs are computed for a pool of 60,000
initial conditions, chosen to be y ∈ [`0, 1.8`0], ẋ ∈ [0.5 `0

τ
, 3 `0

τ
], and θTD ∈ [90, 135]

[deg]. Maximum actuator displacement and velocity are max(|`act|) = 0.1`0 and
max(|vact|) = 1`0/τ , with `c ∈ [−0.05`0, 0.05`0], and vc ∈ [0.5`0/τ, 0.5`0/τ ]. Sensor
noise is modelled as follows. Noise on the initial apex states are taken from a uniform
distribution within ±1% of the actual values, while the partial feedback linearization
term (5.1) noise is modelled as a Gaussian distribution with zero mean and standard
deviations σ = 0.1 for θ and θ̇, and σ = 0.01 for `.
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5.3.4 Cost of Transport

At each time t during the stance phase, it is possible to compute the total work done

by the spring as:

Wspring(t) =

∫ t

tTD

k(`k(t)− `k,0) ˙̀(t)dt. (5.10)

Note that ˙̀(t) = ˙̀
k(t) + ˙̀

act(t), where ˙̀
act(t) is the actuator’s velocity.

The energy stored in the spring is

Ek(t) =
k

2
(`k(t)− `k,0)

2.

If there is no actuation, the energy stored in the spring is equivalent to the work done by

the spring, i.e., Ek(t) = Wspring(t). However, when actuation is present, it is responsible

for part of the energy stored in the spring: Ek(t) =Wspring(t) +Wact(t), where Wact(t) is

the work done by the actuator. Then

Wact(t) = Ek(t)−Wspring(t)

=
k

2
(`k(t)− `k,0)

2 −
∫ t

tTD

k(`k(t)− `k,0) ˙̀(t)dt

= . . .

=

∫ t

tTD

Pact(t)dt+
k

2
(`k(tTD)− `k,0)

2,

and Pact(t) = −k(`k(t)− `k,0) ˙̀act(t) is the power required by the actuator.

The dimensionless specific cost of transport is defined as:

cot ,
Wact,tot

Mgd
, (5.11)

where d is the total distance travelled by the system, and Wact,tot is the total work done
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by the actuator for the entire stance phase. To avoid power regeneration, it is appropriate

to compute Wact,tot as the integral of the unsigned power:

Wact,tot =

∫ tTO

tTD

|Pact(t)|dt+
k

2
(`k(t0)− `k,0)

2.

In our case, the total cost of transport can be computed for one jump (apex-to-

apex), and therefore the distance travelled d is equal to the distance travelled from

one initial apex state to the next. The work done by the actuator is a combination of

the work done to cancel the nonlinearity as in (5.1), and the work required to move

the actuator at the desired constant values `c,1 and `c,2. Fig. 5.10a shows the cost of

transport computed for symmetric jumps starting at different initial conditions, where

the only actuation considered is the one due to `nl, while `c,1 and `c,2 are set to zero.

For varying initial conditions, cancelling the non-linear terms in equation implies a cost

of transport cot < 0.21. One should note that the considered jumps are, in general,

passively non-symmetric, and therefore the cost of transport computed includes the cost

to drive many non-symmetric jumps to be symmetric. Fig. 5.10b shows instead the cost

of transport for an assigned initial conditions, considering both the effect of `nl and of

varying values of `c1 and `c2. Also in this case the cost of transport is cot < 0.26.
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(a) (b)

Figure 5.10: Fig. 5.10a illustrates the cost of transport computed for symmetric jumps
starting at different initial conditions, where the only actuation considered is the one
due to `nl, while `c,1 and `c,2 are set to zero. Fig. 5.10b shows instead the cost of
transport for an assigned initial apex state, ya = 1.3 [m], ẋa = 2 [m/s], and θTD = 78
[deg]. Both the effect of `nl and of varying values of `c1 and `c2 are considered.
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5.4 Control Actions: Online Computation of Opti-

mal Parameters

We start by noting that, in order to increase the dimension of the reachable state-

space to a 3-dimensional space, we need to add another degree of freedom: the touch-down

angle θTD, as illustrated in Fig. 5.4. In the formulation of our strategies, we will then

consider three control parameters: the actuator values `c1 and `c2, and the touch-down

angle θTD.

The main advantage of using an approximation of the stance phase versus its nu-

merical solution is a reduction of computational time, which increases the practicality of

performing online control actions. To give an example, on a representative pool of 60,000

initial conditions (apex state and touch-down angle), we computed the average time to

simulate the stance phase using Matlab’s function ode45 versus an analytical approxi-

mation. The calculations were performed on a Microsoft Windows based computer (Intel

Core i7 eight core processor CPU, 2.80 GHz) using Matlab version R2012a. While the

average time for ode45 was 0.0259 [s], the average time for an approximate solution was

9.4243 ∗ 10−5 [s]: a decrease in computation time of over 250 times.

We start from this preliminary remark to introduce our proposed control actions.

5.4.1 Controlling the {y, ẋ}−state space

In this subsection we will focus our attention on controlling the height and velocity

at apex only, disregarding the forward position. Therefore, the apex state becomes a

two-dimensional vector s = {ya, ẋa}. We use a modified version of the Matlab function

fminsearch (which optimizes constrained problems using the Nelder-Mead algorithm).
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At any current apex state sn = {yn, ẋn}, we compute the values for the touch-down

angle θTD and the two actuator values `c1 and `c2 that minimize in one jump the distance

to a desired apex sdes = {ydes, ẋdes}. The optimization problem is defined to be con-

strained due to the bounds on the values taken by the touch-down angle and the actuator

displacement.

At each step, n, the cost function to be minimized, J(n), is defined as:

J(n) = 100

√

(yn+1 − ydes)2

`20
+
τ 2(ẋn+1 − ẋdes)2

`20
, (5.12)

which expresses the percentage distance from the next apex state sn+1 = {yn+1, ẋn+1}

to the desired one, sdes.

Note that the average time to solve the optimization problem has been computed to be

0.05 [s], which is much faster than the average ballistic apex-to-apex time. In particular,

the shortest apex-to-apex time corresponds to a take-off and touch-down angle θTO = 90

[deg] and θTD = 90 [deg]. In order to guarantee the apex-to-apex time to be smaller than

0.05 [s], it is required for the apex height to be yap ≥ 1.0123`0.

5.4.2 Adaptive control for steady-state locomotion

Due to errors in the approximation (see Fig. 5.8a, 5.8b and 5.8c), the touch-down angle

and actuator values that minimize the cost function in Equation (5.12) may drive the

system to an apex state that differs from the desired one by a certain amount. Therefore,

the system will converge to an apex state that is not the desired one. In order to address

this problem, we propose here a strategy to reduce such steady-state error, driving the

system closer to the desired apex state over time. The strategy is summarized as follows.

Let us start from an initial apex state, {y(0), ẋ(0)}, and let us assume we want to

ultimately reach the value {ydes,0, ẋdes,0}. At each step n, we define the error between
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the actual and the approximate state as

∆yn = yn − ydes,0, (5.13)

∆ẋn = ẋn − ẋdes,0, (5.14)

where y and ẋ are the actual apex height and velocity of the system. At the n− th step,

we update the desired value for the next step ydes,n+1 and ẋdes,n+1 to be

ydes,n+1 = ydes,n − σ1∆yn

ẋdes,n+1 = ẋdes,n − σ2∆ẋn.

The proportional gains σ1 and σ2 are chosen to be 0 < σ1 < 1, 0 < σ2 < 1. The

desired apex state is updated at each step, until the errors ∆y = 0 and ∆ẋ = 0, and the

system reaches an equilibrium. Fig. 5.11a, 5.11b, 5.11c and 5.11d show, respectively, the

percentage distance J(n) from the desired apex state after n = 1, 3, 6 and 9 jumps, on flat

terrain, for γ = 20 and σ1 = σ2 = 0.8. Our proposed controller reduces the percentage

distance J after 9 jumps from a maximum of about 70% to a maximum of about 0.3%.

Fig. 5.12a, 5.12b, and 5.12c show an example of error reduction for 3 different initial

conditions: the error converges to zero.
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Figure 5.11: These plots show the percentage error J after 1 (a), 3 (b), 6 (c) and 9 (d)
jumps, for γ = 20. The x-axis and y-axis represent the apex velocity and the apex
height, respectively. Parameters σ1 and σ2 have been chosen to be equal to 0.8.
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Figure 5.12: Evolution at each jump of the apex errors ∆y (5.13) and ∆ẋ (5.14), and
the cost function J (5.12) for inital and desired apex state s = {ya, ẋa} = {2.4, 2.8}
(a), {1.8, 1.6} (b), and {1.3, 0.8} (c). As we can see, the errors converge to zero.
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5.4.3 Foothold Placement Control

One of the key problems in legged locomotion on different kinds of terrain is to

determine whether the foothold, i.e., the point at which the foot comes in contact with

the terrain, is considered safe. For example, we can imagine the case of a terrain where

only a specific set of N footholds, xfdes,i, i = {1, . . .N}, is allowed, and everything else

has to be avoided, as studied in [15]. We can then plan a trajectory to follow based

on the knowledge we have of the terrain. In particular, at each jump i we want to find

a sequence of control actions θTD, `c1, and `c2, to minimize the distance between the

desired footholds, xfdes,i and the actual landing of the foot, xf :

di =‖ xfi − xfdes,i ‖2,

where the position of the foot at touch-down is computed as:

xf = xa + ẋa

√

2

g
(ya + `0 cos θTD) + `0 sin θTD.

The foothold error is dependent on the planning horizon, i.e., the number of jumps we

can pre-compute. For a planning horizon of length N , we can write the following cost

function to minimize:

Jf
N =

N
∑

i=1

d2i .

However, to ensure that the hopper maintains a certain desired height, ydes,i, with respect

to the terrain, we can modify the above cost to be:

Jf
N =

N
∑

i=1

d2i + wy

N
∑

i=1

(yi − ydes,i)
2,
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where wy ∈ [0, 1] is the associated weight. Furthermore, to ensure that the optimal

solution at the N -th step does not result in a jump with negative forward velocity,

another element can be added to the cost function, and we obtain:

Jf
N =

N
∑

i=1

d2i + w

N
∑

i=1

(yi − ydes,i)
2 + wẋ(ẋN − ẋN−1)

2, (5.15)

with wẋ ∈ [0, 1].

Ideally, one would want an infinite planning horizon: N = ∞. In fact, the longer

the horizon, the better the performance of the optimized problem (e.g., see Fig. 5.13).

However, the horizon length affects the computation time required to plan the desired
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Figure 5.13: Example of foothold error for 100 jumps for the case with horizon N = 3
(green bars) and N = 5 (black bars). As expected, a higher planning horizon gives
better performances in terms of error.

trajectory online. This is where having an approximation for the stance phase becomes

highly beneficial: in fact, being able to compute the optimal path via approximation

significantly reduces the computational time, and as a consequence, it is possible to

extend the planning horizon. However, one should keep in mind that the approximation,

as such, carries an error: there is then a trade-off between horizon length/computation

time, and foothold error. Fig. 5.14a and 5.14b show an example of trajectory planning on
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flat terrain, comparing a case in which the optimization problem has been solved using

the approximate solution for the stance phase, and a case in which the numerical solution

has been used. As expected, the minimization via numerical solution has a smaller error

but a higher computational time compared to the minimization via approximation (on

the same horizon length N). To be able to perform an online computation of the optimal

control parameters, the computation time needs to be much smaller than the average

time during flight: t � 0.5 [s]. Then, the only viable option for the numerical solution

case is N = 2, with average foothold error over 10, 000 jumps of 3.64 [cm]. For the

approximate solution case, instead, one can use N = 6, and the mean foothold error is

only 0.45 [cm], i.e., 8 times smaller than the numerical case.
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Figure 5.14: These plots show the mean foothold error (a) and the mean computation
time (b) over 10,000 jumps, for trajectory planning, for different horizon lengths. The
terrain has been chosen to be flat, with footholds drawn from a uniform distribution
on the open interval (0.3`0, `0). The blue dotted bars refer to the optimization using
the numerically computed solution, while the yellow bars refer to the optimization
computed using the approximate solution.
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5.5 Applications

In this section we show the performance of our controller to perturbations in terrain.

In particular, we test recovery for perturbations on the terrain height, and we show an

example of running on rough terrain.

The parameters and initial conditions used in our simulations are defined in Table 6.1,

and are based on biological data for a typical human. In [3], the relative spring stiffness

γ was found to be very similar for different gaits, such as running and hopping, of various

animals. In particular, values were computed to be between 7.1 and 14.6 for runners,

and 7.7 and 13.6 for hoppers. Because of the limitations shown in Fig. 5.6a and 5.6b,

for our simulations we use γ = 20, which is slightly higher than the average biological

value, but it also matches a hardware prototype currently under development in our lab.

During simulations, if either the total actuator displacement `act = `nl + `c or the total

actuator velocity vact = vnl+vc required were exceeding the maximum values allowed, the

actuator was assumed to saturate its maximum allowed value for `act or vact, respectively.

Furthermore, to acknowledge the time to solve the optimization problem, we limit our

simulations to initial apex heights and touch down angles that corresponds to a time

during flight tf ≥ 0.15 seconds.

5.5.1 Recovery from perturbations

We consider the set of initial conditions in Table 6.1. We test the recovery capabilities

of our controller when the active SLIP encounters an unexpected (positive or negative)

perturbation on the terrain height of up to 50% of the leg length `0.

At each apex state, we use the strategy in 5.4.1 to compute the optimal values for

`c1, `c2 and θTD for flat terrain. Once the leg touches the ground with the computed

touch-down angle and the desired `c1, the strategy in 5.4.1 is simulated again during
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Simulation Parameters
g = 9.81 m/s2

M = 80 kg
`0 = 1 m
`k,0 = 0.5 m
`k,min = 0.05 m
`act ∈ [−0.1, 0.1] m
`c ∈ [−0.05, 0.05] m
vact ≤ 1 m/s
vc = 0.5 m/s
y ∈ [1, 2.5] m
ẋ ∈ [0.5, 3] m/s
γ = 20

Table 5.1:

the first half of the stance phase, this time to compute only `c2 to take into account

the encountered perturbation on the terrain height. Note that the search of this second

value takes on average 0.01 [s], which is much smaller than the average time required

for the first half of the stance phase, and therefore it can be realistically implemented.

Fig. 5.15a, 5.15b, 5.15c, and 5.15d show the number of jumps necessary for the system

in order to return within 1% of the initial apex state, in the case of positive or negative

perturbations. Our controller is robust to perturbations of varying magnitudes, with

ability to recover in up to 8 jumps. Clearly, these results are not only due to the control

strategy, but are partly affected by actuator limits. One can expect the number of

jumps to recover to increase or decrease if the actuator limits are more or less stringent.

Fig. 5.16a and 5.16b show an example of apex recovery for an unforeseen drop of

magnitude 50% of the leg length.
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ẋ [m/s]

y
[m

]

step height =-0.5

(b)

1

2

3

4

5

6

7

8

9

0.5 1 1.5 2 2.5 3

1.4

1.6

1.8

2

2.2

2.4
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Figure 5.15: Number of jumps (colorbar) to reach 1% of desired value, for terrain
perturbation of magnitude (a) −0.2 [m], (b) −0.5 [m], (c) 0.2 [m], (d) 0.5 [m]. Simu-
lation parameters are chosen as per Table 6.1. Note that in case of a positive terrain
perturbation (subplots (c) and (d)), the apex height y has been chosen to leave enough
room to the leg to swing during flight without colliding with the terrain.
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Figure 5.16: Plot (a) shows the trajectory of the active SLIP for initial apex state
y = 2 [m], ẋ = 1.3 [m/s], and negative terrain perturbation of magnitude 0.6 [m]. The
blue dotted line represent the trajectory of the mass, the purple circles the desired
apex height. The green solid line is the terrain height and the red x marks are the
landing points of the foot. Plot (b) shows the percentage error of apex height (red
circle) and velocity (blue diamond) at each jump after the drop. We can see that the
controller reaches and remains within 1% of the original apex state in 5 jumps.

5.5.2 Hopping on rough terrain

In this section we show an example of the active SLIP model hopping on rough terrain.

Additionally, we assume that the estimates of upcoming terrain height are faulty, and we
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want to maintain the same forward velocity and the same distance from the terrain with

respect to the last jump. As we can see from Fig. 5.17a, 5.17b, and 5.17c, the system is

able to successfully hop on a rough terrain with a maximum magnitude landing height of

0.26 [m] and a maximum perturbation of 0.46 [m], i.e., 46% of the leg length. Consistent

with what is in Fig. 5.8b and 5.8c, the error on ẋ is on average higher than the error on

y, and in this example they both do not exceed 4%. Note that, since the terrain height

varies continuously, the energy of the system varies at each jump.

The strategy of recomputing `c2 during the first portion of the stance phase after

encountering a perturbation can dramatically improve the performance of our controller.

Indeed, performance on the same terrain has been studied using the computation during

flight only versus with controller update via recomputing of `c2 during the first half of

stance. Fig. 5.17c shows that the cost function J (computed as in (5.12)) is significantly

smaller than the case without controller update.
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Figure 5.17: Plot (a) shows the trajectory of the active SLIP hopping on a random–
generated rough terrain. The controller acts to maintain a constant apex height with
respect to the terrain of y = 1.5 [m], and a constant forward velocity of ẋ = 2 [m/s].
The blue dotted line represent the trajectory of the mass, the purple circles the desired
apex height. The black dotted line is the expected terrain height, while the green solid
line is the actual terrain height and the red x marks are the landing points of the foot.
Plot (b) shows the percentage error of apex height PEy (circle) and velocity PEẋ

(diamond) at each jump. Plot (c) shows the cost J as in (5.12) for the case without
(blue star) and with (red square) controller update during the first part of the stance
phase.
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5.5.3 Landing on feasible footholds

We show here an example of hopping on a set of predefined footholds.

The set of footholds on an uneven terrain have been generated taking points from a

uniform distribution between 0.6 [m] and 1.2 [m]. The cost function the be minimized

is defined in Eq. (5.15), with weights wy = 0.8 and wẋ = 1. We used a least-square

algorithm to find the optimal solution for a planning horizon of N = 4 steps, for a total

of 50 steps. Note that, according to the specifics of our minimization algorithm, the

hopper was allowed to skip some footholds if pertinent. Fig. 5.18a shows a close-up of

the output trajectory, while Fig. 5.18b shows at each step the foothold error (i.e., the

distance from the desired to the actual foothold), the forward velocity and the apex

height. The desired apex height with respect to the terrain was set as ydes = 1.4 [m]. As

we can see, over 50 steps, the mean foothold error was 2.05 [cm].
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Figure 5.18: Plot (a) shows the trajectory of the point mass (blue dotted line) on
a terrain (green line). The white circles are the desired footholds, while the red x
marks are the actual placements of the foot. As noted in the text, our minimization
algorithm allows for some footholds to be skipped. Plot (b) from top to bottom shows
the foothold error (red bars), the forward velocity (yellow bars) and the apex height
with respect to the terrain height (green bars). The dotted blue line represents the
desired apex height.
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5.5.4 Extension to general planar hopper models

The actuated SLIP model, while encompassing the general behavior of hopping spring-

mass systems, is a highly idealized model. It is then logical to ask how the strategy

presented in this work would fare when applied to models that match more accurately

real hardware prototypes. To answer this question, the two-step strategy has been tested

on a more realistic hopper model, shown in Fig. 5.19, similar to the hopper studied in [10].

The leg has mass ml and moment of inertia, Jl, while the body has mass and inertia M

and J . Body and leg are connected by a joint at the hip, where an actuator can apply a

torque, τhip. Equations of motion for this system can be easily computed, for example via

!l

θ

!

φ, τhip

M, J

m, Jl

Figure 5.19: Planar hopper model. The body has mass M and moment of inertia J ,
and center of mass at the hip. φ is the body angle. The leg has unsprung mass ml and
moment of inertia Jl, and its center of mass is located at distance `l from the foot. `
is the total leg length, and θ the angle that the leg forms with respect to the ground
during contact. The spring has stiffness k. `act denotes the length of the series elastic
actuator. An actuator at the hip can apply a torque τhip between the body and the
leg.

the Lagrangian method. During flight, a PD controller is applied to the the hip motor

to position the leg at the desired angle, and the center of mass of the system follows a

ballistic trajectory. The effect of the energy loss at impact on the velocities of the leg

length and leg angle is approximated to determine the initial (post-impact) conditions

of the stance phase. During stance, the rotation of the body affects the dynamics of the
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leg angle, while the dynamics of the leg length is not affected and can be solved as in

Section 5.1. To keep a body attitude, i.e., to prevent the body from tipping forward or

backward during stance, a torque is applied at the hip. Therefore, an approximation

of the equation of motion for the angular displacement over time, θ(t), is given by the

approximation computed in Section 5.1, with the addition of a term that approximates

the effect of the motion of φ(t). Note that this is still an approximation, and we exploit

the actuator at the hip by applying an additional torque to control the system to follow

the approximated trajectory. The series elastic actuator is modelled as a function of input

current, with a damping and friction term. Details of the approximation, controllers and

parameter values are illustrated in Appendix A.

The control strategy has been tested on a flat terrain. Every 10 jumps the target

apex height and velocity have been changed to random values taken form a uniform

distribution between ±0.1 [m] and ±0.3 [m/s] from the previous target state, respectively.

Fig. 5.20a and 5.20b show the results for 100 jumps. The system is controlled to reach

simultaneously the apex height and forward velocity desired.
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Figure 5.20: Data showing the apex state reached for a set of 100 jumps. Plot (a) and
(b) show, respectively, the apex height and forward velocity reached (red dots) and
the desired values (black line).
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5.6 Conclusions

In this chapter we proposed a strategy for actuator displacement of the active SLIP

model. On one hand, it allows us to analytically solve the equation that describes the

leg-length dynamics during stance via partial feedback linearization. On the other, by

dividing the stance phase in two parts defined by the point of maximum leg compression

and setting two different actuation values for each part, it allows us to add or remove

energy and to modify the upcoming apex state to span an open set within the reachable

apex state set. Our strategy was tested to deal with terrain perturbations, and, for a

set of system parameters, we quantitatively define the number of jumps necessary for

full recovery. We additionally extend the proposed approximation to the case of a more

realistic hopper model with leg mass and body inertia.
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Reachability-based control

As seen in the previous chapters, actuating the leg has the effect of modifying the apex

state that would otherwise be reached passively. In particular, each specific actuation

policy differently modifies the reachable space of the active SLIP model. In this chapter,

we want to answer the following questions. “Is it possible to characterize the effect that

the actuation has on the following apex state? How does applying different amounts of

actuation at various instances during the stance phase affect the apex state? Furthermore,

is there an actuation strategy that maximizes the reachability space?”

Displacing the actuator during the stance phase affects all three dimensions of the

next apex state reached. However, any leg actuation strategy applied to its motion

can only control two of the three dimensions simultaneously, as shown in Chapter 3.

For this reason, here we choose to consider the apex height and forward velocity only,

disregarding the forward position x, which is useful mostly in path planning scenarios.

Hence, we will define the reduced apex state as S = {ya, ẋa}. In this work, we are

interested in determining how the actuator’s displacement affects the reachable space.

Our study does not aim to propose a leg-placement strategy, but rather to understand

the effect that the actuation has during the stance phase. Therefore, we limit our analysis

82



Reachability-based control Chapter 6

to a reduced reachable space, restricted to the case where the touch-down angle, θTD, is

fixed. The reachable space defined in (3.4) reduces to:

R̂(S0, θTD) := {S1 | ∃ `act(t) : X (S0, θTD, `a(t)) = S1}.

Obviously, R̂(S0, θTD) ⊆ R(s0).

As mentioned in Chapter 3, adding the series actuator has the effect of extending the

reachable set to a 2-d surface, whose shape is determined by the shape of the function

`act(t) during the stance phase. A few leg-actuation functions have been proposed and

can be found in the literature. Among them, we choose two functions that we consider

relevant because they provide an insightful representation of how different leg-actuation

motions can affect the locus of all the points that can be reached in one step. Indeed,

we want here to compare their reachability, to determine the best course of action when

choosing an actuation strategy.

In [13], J. Schmitt and J. Clark propose a leg-length actuation inspired by studies on

the net energy production of muscles groups in humans:

`act(t) = `act,0 − `dev sin (ωt), (6.1)

where `act,0 is the initial actuator length, `dev is the amplitude of the variation of the

actuator length from its nominal length, and ω is the frequency of the actuator’s motion.

t is the time from the beginning of the stance phase, and t = 0 corresponds to the touch-

down time. Let us use R̂s(S0, θTD) to indicate the reachable space computed with the

actuator movement described in (6.1).

In Chapter 5, the stance phase is divided in two parts marked by the point of maximal

spring compression (which is equivalent to ˙̀(t) = 0). The actuator is then moved from
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its initial position to a desired value `c,1 during the first half of the stance phase, and a

desired value `c,2 during the second half:

`act(t) =















`c,1, ∀t : ˙̀(t) ≤ 0

`c,2, ∀t : ˙̀(t) ≥ 0.

(6.2)

According to the finite response of a physical actuator, the actuator does not move

instantaneously, but it is assumed to move with its maximum allowable velocity and

acceleration. Let R̂p(S0, θTD) be the reachable space computed with the actuator move-

ment (6.2), as described in Chapter 5.

How do the reachable spaces R̂s(S0, θTD) and R̂p(S0, θTD) compare? And, how do

they compare with respect to all the possible apex states reachable in one step for other

actuator’s motions? To answer to these questions, we compare the two reachable sets

with the set of all reachable states obtained by moving the actuator at any time during

the stance phase in any direction. Let us call this space R̂tot(S0, θTD). Fig. 6.1 shows

the reachability space of the three methods considered, starting from the same initial

conditions at touch-down, and with the same actuator’s limitation. The actuator has

been modelled as in Equation (3.5). As we can see, the area of R̂tot is bigger than the

areas of R̂s and R̂p. Furthermore, the convex ellipsoid-like shape of R̂tot presents the

advantage of reaching any point close to a desired state. This suggests that, in order to

reach a wider range of apex states, it is beneficial to consider a strategy that involves

updating the actuator movement throughout the entire stance phase, instead of choosing

a priori some fixed parameters. Additionally, it was shown in Fig. 3.2 that the complete

reachable space is a function of the actuator’s characteristics. As a result, in the strategy

proposed in this work, we will focus on moving the actuator with its maximum allowed

parameters.
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Figure 6.1: Reachable space of a passively symmetric jump R̂(S0, θTD) computed for
S0 = (1.3 [m], 4 [m/s]), θTD = 122.14 [deg], leg length `0 = 1 [m], and γ = 10. Max-
imum actuator velocity allowed vmax = .5 [m/s] and maximum acceleration constant
kacc = 10 [m/s2], respectively. Defining Atot, Ap and As the areas of, respectively,
R̂tot, R̂p, and R̂s, we have that Ap

∼= 0.619Atot , and As
∼= 0.445Atot. Note that, while

R̂p ⊂ R̂tot, this does not necessarily hold true for R̂s, since its actuator dynamics (6.1)
start with nonzero velocity.
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6.1 Actuator movement

In this section, we aim to understand and characterize the effects that actuation

motion has on the next apex state reached. We will show the relationship between

moving the actuator at different times during the stance phase and the variation of the

apex state thereby reached.

Our objective is to find an actuator movement strategy to (i) move the system to

a desired apex and (ii) counteract the effects of perturbations (on terrain height or on

initial position at apex). As previously stated in Section 2.2, compressing or extending the

actuator during the stance phase corresponds to an increase or decrease of the system’s

energy: the additional potential energy stored in the spring through actuation will then

be transformed into additional kinetic energy throughout the stance phase, until take-off,

and vice versa. However, the system’s energy variation is a function of the values of the

states of the system when actuation is performed. Therefore, to drive the system from

an initial state S0 = {y0, ẋ0} to a desired apex state, Sdes = {ydes, ẋdes}, it is crucial to

understand the effects that the particular time during stance when actuation happens

has on the evolution of the states, and, therefore, on the position of the reached apex.

The lack of closed-form solution for the system’s dynamics constrains us to perform

a numerical study. Toward generality in this particular analysis, we consider a step-type

actuation, i.e., we assume that the actuator can be instantaneously moved to reach a

specified value, `act,des:

`act(t) =















0, ∀t < ts

`act,des, ∀t ≥ ts

(6.3)

where ts is the time at which the step actuation occurs. From an inital apex state

and touch-down angle, we computed the passively-reached state, i.e., the state reached

without actuation Spass = {ypass, ẋpass}. Given a positive and negative step actuation,
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we computed the apex reached as a function of the time at which the positive or negative

actuation was applied: Sr(`act,des, ts) = {y(`act,des, , ts), ẋ(`act,des, ts)}. Fig. 6.2 shows an

example of the variation of the two components of the reached apex with respect to the

passively-reached apex, as a function of the time ts at which the step actuation is applied:

∆yr(`act,des, ts) = (yr(`act,des, ts)− ypass)/`0,

∆ẋr(`act,des, ts) = (ẋr(`act,des, ts)− ẋpass)/
√

g`0,

where the states are normalized to be dimensionless for comparison purposes. As we can

see, the variation of yr follows the sign of the step input: any positive actuation will result

in an increase of the next apex height, whereas any negative actuation will result in its

decrease, regardless of the time at which the actuation is performed. Dissimilarly, the

evolution of ẋr initially increases or decreases according to the sign of the actuation, and
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Figure 6.2: This figure shows the variation of ∆yr and ∆ẋr as a function of the time
ts at which the step actuation is applied to the system. The blue lines refer to a
positive actuation `act,des = 0.3 [m], while the red lines refer to a negative actuation
`act,des = −0.3[m], for a model with `0 = 1 [m] and γ = 20. The vertical dotted line
signals the time at which the spring reaches its maximum compression.
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then increases of decreases opposite of the sign of the actuation. By lacking analytical

solution for the stance phase, it has not been possible to pinpoint the exact time at which

the variation of apex state happens. However, we can see that the change in direction

for ∆ẋr happens when the actuator moves close to the time corresponding to the point

of half stance with respect to the spring movement, i.e., when the spring reaches its

maximum compression. We can then summarize the above observations as:

• First half:

∗ ˙̀
act > 0: y ↑, and ẋ ↓,

∗ ˙̀
act < 0: y ↓, and ẋ ↑,

• Second half:

∗ ˙̀
act > 0: y ↑, and ẋ ↑,

∗ ˙̀
act < 0: y ↓, and ẋ ↓.

Another important insight we can gather from Fig. 6.2 concerns the different rates at

which y and ẋ vary throughout stance. While providing actuation during the first half of

stance has the biggest effect on the variation of the ẋ component of the next reached apex

state, the second half has little effect on it. On the contrary, the y component is influenced

throughout the entire stance phase, with maximum variation during the second part.

This is an indicator and a confirmation of our idea that varying the actuator throughout

stance gives the greatest control authority to reach a desired state, compared to choosing

any fixed time during stance at which to activate the actuation. This, for example,

also explains and is confirmed by the bowtie-like shape of the reachability set R̂s in

Fig. 6.1: in order to modify y without much variation of the otherwise passively reached

value of ẋ, the actuation should mostly be applied during the first half of the stance
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phase. However, the choice of the sinusoidal function (6.1) with constant amplitude and

frequency, distributes the actuation almost evenly throughout the entire stance phase,

precluding the possibility of favoring one part of stance with respect to another.

These observations consider only one-step actuator movement during stance, but

can be generalized to the case of subsequent actuation movements, with more realistic

dynamics, as for example (3.5). We accomplish this by updating the actuator value

every few time-steps during the stance phase. Let us define t as the time elapsed from

the beginning of the stance phase (where t0 = 0 is the touch-down time), and divide

the stance phase in time intervals of length δt. Let S̃n be the apex state that would be

reached if the actuator were to be moved as a certain function fn(t) from touch-down to

time nδt, and then stopped at the current value for the rest of the stance phase:

S̃n −→ `act =















fn(t), if t ∈ [t0, nδt]

fn(nδt), if t > nδt

Then, S̃n+1 will be the apex state reached if the actuator were to be moved as:

S̃n+1 −→ `act =















fn+1(t), if t ∈ [t0, (n+ 1)δt]

fn+1((n+ 1)δt), if t > (n+ 1)δt

where fn+1(t) = fn(t), for t ∈ [0, nδt].

Fig. 6.3a and 6.3c show the position of the next apex, S̃n, when moving the actuator

as respectively in Fig. 6.3b and 6.3d for values of n = 1, 2, . . . until take-off. A time

interval of length δt = 0.02 [s] has been chosen. As we can see, and according to earlier

observations, at each time step n, compressing the spring results in an increase of yn,

while extending the spring results in a decrease of yn with respect to its value at the
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(n− 1)−th step. Conversely, any spring compression translates in a decrease or increase

of ẋn if this happens, respectively, during the first or second half of the stance phase. Vice

versa, an extension of the spring applied during the first or second half of the stance phase

results in an increase or decrease, respectively, of ẋn. This is summarized graphically in

Fig. 6.4.
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ẋ [m/s]

S̃−

17

S̃+
17

S̃2

S̃0

S̃1

S̃−

17

(c)

  0 0.16 0.32 0.48
−0.07

−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

0.02

0.03

` a
ct
[m

]

t [s]

S̃+
17

S̃−

17

(d)

Figure 6.3: Subfig. 6.3a and Subfig. 6.3c show the next apex states S̃n, n = 1, 2, ...
until take-off, for the different actuation motions shown in Subfig. 6.3b and 6.3d. The
blue line and the dotted red line in Subfig. 6.3a and 6.3c are the apex states reachable
if the actuator motion follows the solid blue and dotted red trajectories in Subfig. 6.3b
and 6.3d, respectively. The black star symbol represents S̃0, i.e., the passively reached
state. The yellow diamonds represent the apex states reached following the dotted
red actuator trajectory in Subfig. 6.3b and 6.3d, while the green squares represent the
apex states reached if the actuator follows the solid blue trajectory in Subfig. 6.3b
and 6.3d.
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Figure 6.4: Position of the apex state that would be reached providing a positive or
negative actuation during the following interval [(n−1)δt, nδt]. Note that the slope of
the directional curve from S̃n−1 to S̃n is a function of the particular actuation motion,
the system’s parameters and the initial condition S̃n−1.
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6.2 Control Strategy

We introduce here our control strategy to reduce the error between the reached and

a desired apex state, first giving an example, and then explaining in detail our proposed

algorithm.

The objective of our control strategy can be summarized as follows.

Let S0 = {y0, ẋ0} be the initial apex state, and θTD the angle of the leg at touch-

down. Let us define Sdes = {ydes, ẋdes} as the desired apex state, and Sr = {yr, ẋr} the

apex state reached with a certain actuation motion. Then, we want to find an actuation

motion strategy to reduce the Euclidean distance between the desired apex and the

actual apex reached. In order to compute the Euclidean distance over variables with

different measurement units (apex height and velocity), we reduce the states to their

dimensionless counterpart. By defining the dimensionless time τ =
√

g/`0t, we can write

the dimensionless apex height as ŷ = y/`0, and the dimensionless apex forward velocity

as ˙̂x = ẋ/
√
g`0. The dimensionless apex state is Ŝ = {ŷ, ˙̂x}. The error is then computed

as:

Err =‖ Ŝdes − Ŝr ‖2 . (6.4)

We explain here our proposed strategy to minimize error during stance.

During the stance phase, let us define each time interval of size δt as ∆tn = [nδt, (n+

1)δt], n = 1, 2, . . . until take-off. Our control strategy for actuator movement is to update

the actuator’s value every time-step δt of the stance phase, according to predictions of

next apex state based on the current state. This means that at each time interval

∆tn, a new value for the actuator displacement at the next time interval, `act(∆tn+1), is

computed.

At each interval ∆tn, we can compute the apex state, Sn, that the SLIP model would
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reach if the actuator remains at the current value (computed at ∆tn−1):

`act(t) = `act((n−1)δt), ∀t ≥ nδt,

i.e., the apex state reachable without further actuator movement. This is motivated by

the observations highlighted in Section 6.1, i.e., that activating the actuator during the

first part of the stance phase has the effect of increasing or decreasing the value of the

forward height at the next apex, y, while at the same time decreasing or increasing,

respectively, the value of the next apex’s forward velocity, ẋ. By contrast, moving the

actuator during the second half of the stance phase has the effect of increasing or de-

creasing the values of both y and ẋ at the next apex state. Hence, to determine how to

control the actuator’s displacement at the next time step, it is imperative to determine

the position of Sn with respect to the position of the desired apex state Sdes. At the same

time, the choice of the next value for the actuator, `act(∆tn+1), is computed predicting

the position of Sn+1 when moving the actuator for one step ∆t to one direction or the

other, i.e., compressing or extending the spring.

For example, let us assume that the relative position of Sdes with respect to Spass is

given in Fig. 6.5 I. From what is graphically summarized in Fig. 6.2 and Fig. 6.4, we can

already expect that the actuator motion necessary to reach the desired state will consist

of either an initial spring extension or compression, followed by a compression during

the second half of the stance phase. What we aim to accomplish with our algorithm,

is to control the amount of the desired compression/extension, by updating its value

throughout the entire stance phase. At each time-step during the first half of the stance

phase, we will compute the next apex reached if the actuator were to be compressed or

extended during the next time-step, Fig. 6.5 II, kept at the reached value for the rest of

the first half of the stance phase, and subsequently compressed during the entire second
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half of the stance phase, as in Fig. 6.5 III. By computing and averaging the distance

of the resulting apex states to the desired state, we can compute how much to move the

actuator at the next step, Fig. 6.5 IV . Once the dynamics enter into the second half

of the stance phase, Fig. 6.6 I, we can start compressing the actuator: we compute the

states the system would reach if the actuator were to move at its maximum and at half

its capabilities (e.g., actuator acceleration) at the next time step, and then kept at the

current value for the rest of the stance phase, Fig. 6.6 II. Based on an average of the

distance of these two predicted states with respect to the desired apex, the actuator’s

action to implement at the following time step can be computed, Fig. 6.6 III. Final

result of our algorithm is shown in Fig. 6.6 IV .

Since at each step the algorithm predicts where the next apex state would be when

displacing the actuator in the following time step and in the second half of the stance, the

algorithm is essentially creating approximate “grid lines” (see Fig. 6.5 III) that are based

on limited numerical simulations of the stance phase. Computing more intermediate

states, i.e., higher order fits for the dynamics of the system subjected to actuation,

would certainly result in a better estimate, but would require more computational time.

For applicability, we want to ensure that the algorithm finishes well within the time

δt between actuation updates. As a result, an error is introduced in the algorithm.

Such error is the greatest during the first half of the stance phase, when we have more

uncertainty about the direction the motion will go, and results in the bouncing motion

of the running estimate of the next apex state, seen in Fig. 6.6 IV . Fortunately, the first

half of the stance is also characterized by a higher time-to-apex, allowing for adequate

time to significantly reduce the approximation error.
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Figure 6.5: These plots show an example of the steps implemented during the first
half of the stance phase in order to approach the desired apex state.
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Figure 6.6: Plots I to III show an example of the steps implemented during the
second half of the stance phase in order to approach the desired apex state. Plot IV
provides a summary of the steps implemented during the entire stance phase.
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6.2.1 Algorithm

Let us call `mact(∆ti) and −`mact(∆ti) the maximum actuator movements possible in the

time interval ∆ti with respect to the actuator’s initial position and its specifications, re-

spectively in the positive (spring compression) and negative (spring extension) direction.

Let `endact (∆ti) be the value that the actuator assumes at the end of ∆ti.

At each time interval ∆tn, with n = 0, 1, . . . , until the end of the stance phase:

(i) Compute the apex state, S̃n+1, that the SLIP model would reach if keeping the

actuator at the current value :

`act(t) = `endact (∆tn), ∀t ≥ (n+ 1)δt,

i.e., the apex state reachable without further actuator movements.

• If ˙̀(t) ≤ 0 (first half of stance phase):

(iiA) Compute the apex state that the SLIP model would reach if we were to control

the actuator’s movement at its maximum negative or positive motion for a

time interval ∆t, with no further actuation movement occurring for the rest

of the stance phase.

`act(t) =















±`mact(∆tn+1), ∀t ∈ ∆tn+1

`endact (∆tn+1), otherwise.

Let us call these points S+
n+1 and S−

n+1.

(iiiA) Compute the apex state that the SLIP model would reach if we were to move

the actuator with its maximum negative or positive motion for a time interval
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∆t and then stop until the beginning of the second half of the stance phase.

Then, the actuator moves at its maximum negative or positive motion until

the end of the stance phase.

`act(t) =































±`mact(∆tn+1), t ∈ ∆tn+1

`endact (∆tn+1), ∀t : ˙̀(t) ≤ 0

ξ`mact(∆tn+1), ∀t : ˙̀(t) > 0,

The direction of movement during the second half ( ˙̀(t) > 0) is dictated by the

position of Sn+1 with respect of Sdes, as shown in Fig. 6.7a. In fact, during the

second half of the stance phase, a positive actuation (+`mact) would increase

both y and ẋ values at the next apex, while a negative actuation (−`mact) will

result in a decrease of y and ẋ. Therefore, if Sn is in zone I (see Fig. 6.7a),

then ξ = 1; else, ξ = −1. Let us call these points P+
n+1 and P−

n+1.

(ivA) Consider the line segments s+ = (S+
n+1, P

+
n+1) and s− = (S−

n+1, P
−

n+1), and

compute the vector distance between the segments and the desired apex state

Sdes:

d+ := vector distance(s+, Sdes),

d− := vector distance(s−, Sdes).
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(vA) Now, Compute the next actuator value desired, `act(∆tn+1), as follows.

`act(∆tn+1) =














µ`mact(∆tn+1), if |d+| ≤ |d−|

−µ`mact(∆tn+1), if |d−| ≤ |d+|

where the parameter µ is a weight ∈ [0, 1]. In particular, if the two vectors

d+ and d− have a positive dot product, then µ = 1, as shown in Fig. 6.7c

and 6.7d. Otherwise, the desired apex point is ”between” the two line seg-

ments, and the required actuator movement will be a fraction of the previous

predictions, as shown in Fig. 6.7b:

µ =

∣

∣

∣

∣

|d−| − |d+|
|d−|+ |d+|

∣

∣

∣

∣

.
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Figure 6.7: Subfig. 6.7a shows the two dividing zones where Sn+1 can be with respect
to the position of Sdes. If Sn+1 is in zone I, during the second half of stance the actu-
ator displacement needs to increase; else, it needs to decrease. The algorithm creates
approximate grid lines (dotted blue line segments) based on limited numerical simula-
tions of the stance phase: only the states S+

n+1, S
−

n+1, P
+
n+1, and P−

n+1 are computed.
The actuator motion during the first half of stance is chosen based on the distance
and location of the line segments with respect to the desired state: Subfig. 6.7b, 6.7c,
and 6.7d demonstrate possible location of vectors d+ and d− with respect to Sdes.
Computing more states would result in a better fit for the direction along which the
dynamics of the system move when subjected to actuation, which is in general not
a straight line, and as a consequence it would result in a more accurate choice of
actuator motion. However, this would be at the expense of the computational time,
and could preclude the use of the algorithm in real time.
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• If ˙̀(t) > 0 (second half of the stance phase):

During the second part of the stance phase, both ẋ and y functions are increasing

or decreasing, as seen in Fig. 6.2. Therefore, the choice of whether moving the

actuator in the positive or negative direction is again done based on the position

between Sn+1 and Sdes, and it is the same as the value of ξ computed in (iii) .

(iiB) Compute the apex state that the SLIP model would reach if we were to control

the actuator’s movement at its maximum velocity for the time interval ∆tn+1.

Then, no further actuation movement occurs for the rest of the stance phase.

`act(t) =















ξ`mact(∆tn+1), ∀t ∈ ∆tn+1

`endact (∆tn+1), otherwise.

Let us call this point P+
n+1.

(iiiB) Compute the apex state that the SLIP model would reach if we were to

control the actuator’s movement at half of its maximum (positive or negative)

displacement possible for a time interval ∆tn+1. Then, no further actuation

movement for the rest of the stance phase.

`act(t) =















ξ 1

2
`mact(∆tn+1), ∀t ∈ ∆tn+1

`endact (∆tn+1), otherwise.

Let us call this point P−

n+1.

(ivB) Consider the line segments s+ = (Sn+1, P
+
n+1) and s

− = (Sn+1, P
−

n+1). Com-

pute the vector distance between the segments and the desired apex state
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Sdes:

v+ := vector distance(s+, Sdes),

v− := vector distance(s−, Sdes).

(vB) Now, compute the next actuator value desired, `act(∆tn+1), as follows.

`act(∆tn+1) =














µ`mact(∆tn+1), if |v+| ≤ |v−|

µ1

2
`mact(∆tn+1), if |v−| ≤ |v+|

where the parameter µ is a weight ∈ [0, 1]. In particular, if both or neither

vectors are orthogonal to the respective line segment s+ or s−, then µ = 1,

as shown in Fig. 6.8b and 6.8c. Else, the desired apex point is ”between” the

two line segments, and the required actuator movement will be a fraction of

the previous predictions, as in Fig. 6.8a:

µ =

∣

∣

∣

∣

|v−| − |v+|
|v−|+ |v+|

∣

∣

∣

∣

.

(vi) repeat (i) to (v) until the end of the stance phase.

Note that the choice of moving the actuator with its maximum velocity and accelera-

tion allowed results from the fact that a higher velocity and acceleration correspond to a

bigger reachability space (e.g., see Fig. 3.2 where reachability sets computed for different

values of maximum velocities are compared). The algorithm can of course be imple-

mented with any other velocity and acceleration values, provided they are in accordance

with the limitations of the specific actuator used.
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Figure 6.8: These figures demonstrate possible locations of the vectors v+ and v−

with respect of Sdes.
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6.3 Performance

We show here the performances of our algorithm. In particular, we start with con-

siderations on the required time delay for the algorithm implementation and the time

interval used, and we continue with simulation results showing how effective the algorithm

is in reducing the distance to the desire state.

6.3.1 Time interval and delay at first computational instance

The choice of the time interval δt determines the frequency at which the algorithm

is updated. Any control action applied in real-time during the stance phase needs to

be executed in finite time, which corresponds to the duration of the stance phase itself.

The execution of one update of the algorithm is only a function of the processor used,

and therefore the number of iterations of the algorithm depends on the duration of the

stance phase, which in turn is a function of the relative spring stiffness γ: higher values

of γ correspond to a stiffer spring, and therefore a shorter stance phase; conversely, lower

values of γ correspond to a longer stance phase caused by a softer spring. Let us choose

initial conditions and parameters based on biological data for a typical human, as in

Table 6.1. Then, the average stance time is shown in Fig. 6.9a as a function of the

Parameters
g = 9.81 m/s2

M = 80 kg
`0 = 1 m
`k,0 = 0.5 m
`act ∈ [−0.1, 0.1] m
y ∈ [1, 2.5] m
ẋ ∈ [0.4, 5] m/s

Table 6.1: Parameters based on biological data for a typical human.

relative spring stiffness. Considering that on an average computer (Intel Core i7 eight
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core processor CPU, 2.8GHz) running Matlab R2012a, the average time to perform all the

calculations required for one update of the algorithm is ≈ 0.01, 0.02 [s], one can ask what

values of γ for a real robot are a good trade-off between number of algorithm iterations

and considerations on biological inspiration. Fig. 6.9b shows how many algorithm updates

are possible on average during stance, for δt = 0.01 [s] and δt = 0.02 [s]. As expected, the

smaller the value of γ, the more algorithm iterations can be performed. A study by [3]

shows that the relative spring stiffness assumes very similar values for various gaits in

different animals (both quadrupeds and bipeds). For runners, values were found between

γ ∈ [7.1, 14.6], while γ ∈ [7.7, 13.6] in hoppers. It is then reasonable to use values of

γ ∈ [8, 13], which correspond to a high number of algorithm iterations, validating the

applicability of our control strategy.
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Figure 6.9: Subfig. 6.9a shows the average stance time as a function of γ for a set of
initial apex states and system’s parameters as in Table 6.1. Subfig. 6.9b shows instead
the corresponding number of algorithm iterations.
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When implementing a control action, the time delay of such controller is usually a

concern that requires considerations. In the case of the algorithm here proposed, each

time interval ∆tn is dedicated to plan the desired actuation value at the next interval,

`act(∆tn+1). This implies that at the initial time interval ∆t1 there will be no actuation;

namely, the actuator will begin its motion from the second time-step. We want here to

investigate how this will affect the performances of our algorithm. As one would expect,

increasing time delay reduces the reachable space (Fig. 6.10) by limiting the maximum

achievable actuator movement.
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ẋ [m/s]

 

 

δt = 0[s]
δt = 0.01[s]
δt = 0.02[s]
δt = 0.04[s]

Figure 6.10: Reachability sets computed for different delay values. As expected,
increasing δt reduces the reachable space.

The delay depends on the time interval chosen to perform our algorithm, δt, which in

turn depends on the computational velocity of our computer. While the delay may seem

a limitation, it is important to point out the following. On an average computer, the

required time step is δt ' 0.01 [s]. In these circumstances, we can compare the reachable

space with delay with the reachable spaces obtained with other control strategies, as
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shown in Fig. 6.11. As we can see, the reachability set with delay is still bigger (area-

wise) than the case R̂p and R̂s. Thus we conclude that even with a time delay, the

proposed algorithm offers significant advantages to previous control strategies.
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Figure 6.11: Reachability sets with δt = 0.01 [s] delay, compared to R̂p and R̂s.

This performance study considers the ideal SLIP model, where the body is a point

mass, and the leg is massless. Nonetheless, we expect to be able to utilize the same

control strategy on a real platform with SLIP-like dynamics. Because of the nature of its

dynamics, the real system will behave similarly to the ideal model when subjected to a

piston-like actuation, e.g., it is reasonable to believe that a negative actuation will result

in a decrease of the apex height. Additionally, at each time step throughout the stance

phase, computations of the subsequent reachable state are performed numerically using

equations of motion for a model of the system. Thus, the performance of the algorithm

is strongly tied to how accurately the model that we construct of the physical system
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captures its actual dynamics.

6.3.2 Percentage change

We will evaluate our controller using equation (6.4). To quantify the reduction in

Err, for an initial apex we introduce the percentage change, PC, as:

PC = 100
‖ Ŝpass − Ŝdes ‖2 − ‖ Ŝr − Ŝdes ‖2

‖ Ŝpass − Ŝdes ‖2
, (6.5)

where Ŝdes is the dimensionless desired apex state, Ŝpass is the dimensionless state reached

without actuation, and Ŝr is the dimensionless apex state reached with our control strat-

egy. Using percentage change as a performance index allows us to compare the system

performance with and without control action over a broad range of desired states.

The performance of the controller has been tested as follows: an initial apex state S0

and touch-down angle θTD are chosen, and a set of 10, 000 points are generated inside the

corresponding reachability set without delay, R̂tot(S0, θTD). Spass is defined as the passive

apex state, i.e., the apex state that is reached without actuation movement. Then, for

each point chosen inside the reachability set, the controller is tested by setting the desired

apex state, Sdes, to be one of those points, with a controller update time step of δt = 0.01

[s]. As we can see in Fig. 6.12 and Fig. 6.13, the effect of the controller is to dramatically

reduce the error.
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Figure 6.12: Error from desired point, Err =‖ Ŝr−Ŝdes ‖2, computed for 10, 000 points
randomly taken inside the reachable set R̂(S0, θTD}, with S0 = {1.3 [m], 4 [m/s]} and
θTD = 121.15 [deg]. The update time has been chosen to be δt = 0.01 [s].
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Figure 6.13: Percentage change graph computed for 10, 000 points randomly taken
inside the reachable set R̂ = {S0, θTD}, with S0 = {1.3 [m], 4 [m/s]} and θTD = 121.15
[deg]. The update time is δt = 0.01 [s], and the inner dotted black line marks the
border of the reachability space computed with a δt gap. The black x mark represents
Spss, the apex state reached without any actuator motion. As expected, the percent
change of the subset R̂ − R̂gap is on average smaller than the one on R̂ alone, since
points in R̂ − R̂gap are not directly reachable with our proposed strategy. Note that
the dark (lower improvement) and empty areas around Spass are mainly due to the
fact that since the desired apex points are so close to the passively reached apex, the
margin for improvement is very slim.
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Figure 6.14: Percentage distribution of PC. The bars represent the percentage of
points with a PC between [0, 10], (10, 20],... (90, 100] [%] in the reachability set
without delay (light grey bars) and in the reachability set with delay δt = 0.01[s]
(dark bars).

Fig. 6.14 shows how many point inside the reachability set have a PC value between

[0, 10], (10, 20],... (90, 100] [%], both with and without time delay (δt = 0.01 [s]),

for 10, 000 random desired states. If we consider only the points inside the time-delay

reachability set, we can see that ∼ 50% of the points show a percentage change PC ∈

(90, 100], meaning that the actuator motion has reduced the error by a factor between

90% and 100%. However, if we consider instead the set of all points reachable (i.e.,

without delay), the percentage of points with PC ∈ (90, 100] is instead ∼ 42%, as

expected smaller than its subset with delay. Indeed, due to the delay in the execution of

the controller, points outside the subset R̂ − R̂gap are not reachable anymore. In both

cases, though, more than two thirds of the points have PC ∈ (80, 100], highlighting the

performance of our proposed controller, even if it requires a delay.

Fig. 6.15, and Fig. 6.16a and 6.16b show an example of the performance of our

controller. An initial apex state has been chosen to be S0 = {1.3 [m], 4 [m/s]}, and
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θTD = 121.15 [deg], γ = 10. The desired apex state is Sdes = {1.5 [m], 3.8 [m/s]}.

Maximum velocity and acceleration constant were chosen to be vmax = 0.5 [m/s] and

kacc = 10 [m/s2]. After running the controller with δt = 0.01 [s], the reached state is

Sr = {1.505 [m], 3.805 [m/s]}. Fig. 6.15 shows the values of Sn computed at each time

interval ∆t, while Fig. 6.16a and 6.16b show, respectively, the errors ‖ Sdes − Sn ‖2 and

its ẋ and y component at each time interval, and the actuator value `act(t) over time.
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Figure 6.15: Example of the performance of the proposed control algorithm. The
red diamond is the passive state, i.e., the state reached without any actuation. The
x-marked line represents the apex states Sn, n = 1, 2, . . . computed by the algorithm,
while the yellow circle and the cyan star represent respectively the desired state, Sdes,
and the reached state, Sr.
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Figure 6.16: Subfig. 6.16a and 6.16b show respectively the evolution of the error (6.4)
and the evolution of its component in ẋ and y, and the computed actuation for the
example in Fig. 6.15.
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6.3.3 Percentage change over a set of consecutive steps

Section 6.3.2 presents the performance of our control strategy for one specific set of

initial conditions: starting from one apex state and the touch-down angle necessary to

perform a symmetric hop, we showed the performance of the algorithm when trying to

reach 10, 000 states inside its reachability set. To show that the presented results still

hold for arbitrary initial conditions and touch-down angles, we consider a path of 1, 000

subsequent hops. At each hop, the touch-down angle is chosen randomly from the set of

angles that allow a successful jump, not necessarily symmetric, where a successful jump is

defined as any apex-to-apex hop characterized by a positive velocity and an apex height

exceeding the leg length to avoid collision between the leg and the ground. Then, the

desired apex state is set by adding to each dimension of the passively reached state an

offset picked from a uniform distribution. Fig. 6.17 shows all the apex states reached by

the system during the 1, 000 subsequent hops. As each one of these states is the initial

condition of the following hop, our control algorithm has been tested for a wide variety

of initial conditions which encompass the typical operating range for the SLIP model.

Furthermore, generating desired apex states by adding uniformly distributed noise to the

passive apex state ensures that our controller has been tested for a wide range of initial

error. Fig. 6.18 shows the resulting percentage change for 1, 000 hops. As we can see,

over two thirds of the states have a percentage change PC ∈ [90, 100], meaning that

the controller is able to reduce the distance to the desired state of a factor between 90%

and 100%. Overall, over 80% of the states have a PC ≥ 70. More in detail, Fig. 6.19

shows the output error ‖ Ŝr − Ŝdes ‖2 as a function of the magnitude of the initial error

‖ Ŝpass − Ŝdes ‖2. For each initial error interval of size 0.025, the mean value (grey

circle) and standard deviation (black line) of the output error has been computed: as

expected, while the output error is higher for higher initial error, there is on average an
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improvement of over 70%.
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Figure 6.17: This plot shows the 1, 000 hops (initial conditions) used to test the
controller. The initial apex state has been chosen as S0 = {1.3 [m], 4 [m/s]}. At each
hop, the desired apex state has been chosen by adding to the passively reached state an
offset drawn from a uniform distribution between [−.3, , .3] for y and [−0.46, 0.46] for
ẋ. These bounds have been chosen based on the reachability set previously computed
for the initial condition S0. However, note that each hop drives the system to a new
apex state, hence a new reachability set, whose computation is expensive and not
feasible in real time. It is therefore possible at any given hop that the desired apex is
not in the corresponding reachability set.

117



Reachability-based control Chapter 6

[−10, 0) [0, 10) [10, 20) [20, 30) [30, 40) [40, 50) [50, 60) [60, 70) [70, 80) [80, 90) [90, 100]
0

100

200

300

400

500

600

700

Percentage change [%]

N
u
m
b
er

o
f
h
o
p
s

Figure 6.18: In this figure the resulting percentage change values are shown: as we
can see, 675 points have a PC ≥ 90, i.e., the initial distance to the desired apex
is reduced of more than 90%. Overall, 832 states over 1, 000 have an improvement
above 70%. Note that two states have negative percentage change, meaning that in
these two cases our algorithm failed at improving the initial error, due to numerical
approximation introduced by the algorithm.
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Figure 6.19: Plot of the initial error versus the final error. Each grey circle represents
the mean value of the final error for all the initial errors in the corresponding interval,
i.e., between [0, 0.025), [0.025, 0.05), etc. The black vertical lines are the corresponding
standard deviations.
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6.4 Conclusions

In this chapter, we have proposed a control algorithm for the actuated SLIP model

to reach a desired apex state. Its main application is to correct errors happening at

touch-down and/or during the stance phase, independent of any foot placement strat-

egy employed. Most of the control strategies developed in the past for the SLIP model

(whether passive or active) are aimed at controlling the touch-down position of the leg,

θTD, and/or the leg length at touch-down, in order to reach a stable gait even on un-

known or partially known terrain, or in presence of system noise. For the actuated case,

this choice was paired with actuation displacement during the stance phase, and the

desired actuation was precomputed during flight based on the knowledge on the terrain.

Conversely, our strategy focuses on reaching a desired apex state without any insight

on the choice of the touch-down angle: the actuation is computed online during the

stance phase, based on the particular state of the system at each time interval. The

main advantage of this procedure is not only the ability to counteract sensing errors at

landing (e.g., ground sensing noise), which is a goal taken into consideration by other

works as well, but especially the ability to reduce errors and disturbances that happen

during stance. For example, a slipping of the foot, or an external force, such as a strong

wind. Furthermore, we want to point out that our strategy does not aim to replace any

leg-placement strategy: on the contrary, it is reasonable to think that our controller can

easily be paired with any other leg-placement or path planning method.

Another contribution of this chapter is a qualitative characterization of the effects of

the actuator motion on the reachable apex state. Throughout the stance phase, comput-

ing the spatial relationship between the current reachable state without further actuation

and the desired state gives a strong indication of how to provide additional actuation to

the system.
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Finally, by delineating the reachability space for a given apex state and touch-down

angle, this chapter reveals the advantage of utilizing the actuation at its maximum capa-

bilities. In fact, we show that updating the actuation values throughout the stance phase

allows the system to reach a wider range of evenly distributed apex states with respect

to the ones reached by pre-computing some fixed actuator motions.
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Conclusions and future work

In this thesis we considered the SLIP model, used as a template for modelling the dynam-

ics typical of legged systems. In particular, we considered an actuated version of the SLIP,

with an added series elastic actuator to the leg, serving the purpose of adding/removing

energy to/from the system. While the SLIP model has been a topic of research in legged

locomotion for several decades, studies on the effect of actuation on the system’s behav-

ior are still not complete. Additionally, most of the proposed control strategies focus on

steady-state gaits and are tuned over a set of initial conditions or terrain profiles. The

purpose of this thesis is to fill the gap, and give a characterization of the reachable space

for the active SLIP, paired with real-time actuation strategies to maximize the reachable

space and drive the system to a desired state, with the ability to change stride at each

step.

Chapter 3 characterized the reachability space of the actuated SLIP model by acti-

vating the series elastic actuator at any possible time during the stance phase. Starting

from the same initial conditions at apex, for each possible touch-down angle the reach-

able space is shown to be a set of 2-dimensional manifolds, one per touch-down angle,

forming a fan-shaped 3-dimensional volume.
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In Chapter 4, we investigated the possibility to use actuation to solve in closed-form

the system’s dynamics. This has been done by enforcing a desired trajectory for the

dynamics during stance phase. The actuator only acts along the leg of the system,

and therefore it is not possible to independently enforce a trajectory for both degrees

of freedom (leg angle and leg length). The desired trajectory has then been chosen to

be consistent with the system dynamics. In particular, the desired trajectory has been

chosen to achieve a symmetric motion, i.e., apex height and forward velocity are preserved

from one jump to the next. Enforcing a symmetric trajectory limits the reachable space,

which becomes a point in the 3-dimensional space. Therefore we proposed to lock the

spring during stance to reach an asymmetric take-off state, thus combining the ability

to having a closed-form solution of the stance phase with the possibility to reach several

points in the state space.

Chapter 5 aimed to extend the concept of utilizing the series elastic actuator to solve

the system’s dynamics. Via partial feedback linearization we were able to fully solve the

dynamics of the leg-length, `(t), and we then proposed an approximation of the leg-angle

equation that took into account the actuator’s dynamics. The main benefit of having

an approximation for the stance phase dynamics is the reduced computational time to

predict the system’s behavior and the effect that diverse actuation strategies have on

the next apex reached. We then proposed a two-element control strategy to apply two

actuation references throughout the stance phase, thus driving the system to a desired

apex state. The advantage of proposing a two-element control strategy with respect to

other strategies proposed in the past (for example, Raibert’s thrust at mid stance) lays

in the fact that it is possible to reach a wider number of apex states in one step. Also, by

having an approximation of the stance phase, we can pre-compute optimal trajectories.

Finally, in Chapter 6 we studied the effect that applying actuation at different times

during stance has on the overall reachable region, and on independently controlling each

122



Conclusions and future work Chapter 7

of the two apex dimensions (height and forward velocity). Based on an understanding of

how to change the next apex through actuation, we developed an algorithm to iteratively

re-direct the dynamics throughout the entire stance phase to achieve a desired apex

state, if reachable, or decrease the distance to it. We also showed how this strategy

maximizes the reachable set with respect to other actuation strategies, and since it is

iteratively computed throughout the stance phase, it can deal with errors or adverse

events happening during motion.

Overall, the main contribution of this thesis is to understand the implications that

adding a series elastic actuator have on the system’s dynamics, and particularly on the

system’s reachable space, and to determine closed-form solutions for the stance phase.

Based on this understanding, we proposed real-time control strategies for actuator’s

motion that drive the system to a desired state, and that can be applied to a variety of

situations, from running on rough terrain to running on a set of desired footholds.

Future work can take several directions. The most natural, and what we are currently

working on, is the application of our proposed strategies to a hardware implementation

of the SLIP model. As clearly explained in [1], the ideal SLIP model is a template

that can then be ”anchored” to systems with more complex dynamics. The prototype

presently under development and study at the UCSB Robotics Laboratory can be seen

in Fig. 7.1a and 7.1b. The UCSB hopper consists of a body of mass M = 7.6 [kg]

mounted on a compliant leg of natural length `0 = 0.54 [m] and mass mleg = 0.55 [kg]

that can move both in the x and z direction. Actuation on the leg is applied through a

series of pulleys activating a motor at the hip that compresses/extends the spring. As

many other hopping/walking robots, the UCSB hopper is currently mounted on a boom

to reduce lateral stability issues, and can therefore only move in the 2-dimensional space.

However, it will eventually be unmounted from the boom with the goal to control it in
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(a) (b)

Figure 7.1: UCSB hopper, CAD design (a), and hardware prototype (b)

the 3-dimensional space. The body is free to rotate around the hip, where a motor can

apply a torque to control leg positioning and body attitude. However, to resemble the

point-mass of the classical SLIP model, the body is currently locked via a mechanical

stop at the base of the boom. Encoders at the leg, actuators and boom allow us to

measure leg’s and actuators’ positions. A gyroscope on board, coupled with two distance

sensors at the two corners of the body, gives us a measurement of the body tilt.

There are several challenges in applying our proposed strategy to the UCSB hopper.

First of all, some parameters such as the body inertia are still undetermined and need to

be computed via system identification. Also, the mechanical lock is applied at the boom,

thus locking the body on the boom side. However, on the hopper side the body is still free

to vibrate a few degrees, both due to impact and robot movements as well as to torsional

dynamics of the boom. Sensor noise is another issue, coupled with computing the exact

instances at which touch-down and take-off happen. The control strategies proposed

and the reachable space then have to be adapted to take into account the additional

complexity of this system and the actuator’s dynamics versus the ideal SLIP model.
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Other directions for this work involve extending our control strategies to optimize

energy expenditure, as well as expanding our strategies to include optimal leg placement

at touch-down. It would be interesting as future work to quantify the range of terrain

where the SLIP model successfully works (in terms of metastability and/or energetic

requirements). For example, there can be terrains where a hopping gait is optimal,

but on other terrain profiles, two legs and a walking gait would be more efficient. We

can then foresee the possibility and the benefits of combining the hopping SLIP model

with a compass gait like robot, in order to be able to transition between walking and

running/hopping and negotiate virtually any terrain profile.
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Appendix

A.1 Planar one-legged hopper

The approximation for the stance phase dynamics discussed in Section 5.1 can be

extended and used to predict the dynamics of more realistic planar one-legged hoppers.

In particular, we show here how our approximation can be applied to the system shown

in Fig. 5.19 and described in Section 5.5.4.

The equations of motion for this one-legged hopper can be easily computed from its

Lagrangian, with non conservative forces given by the torque at the hip, τhip. During

flight, the center of mass of the system follows a ballistic trajectory, and the servo at the

hip moves the body to drive the leg to a desired touch-down angle. The initial conditions

for the leg-angle and leg-length dynamics during the stance phase depend on the state

of the body at touch-down, xbody(tTD), ybody(tTD), and their velocities. These values can
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be approximated from the touch-down state of the center of mass as:

xbody(tTD) ≈ xcom(tTD) +
m(`0 − `l)

M +m
sin θTD,

ybody(tTD) ≈ ycom(tTD) +
m(`0 − `l)

M +m
cos θTD,

ẋbody(tTD) ≈ ẋcom(tTD),

ẏbody(tTD) ≈ ẏcom(tTD).

The energy loss at impact is taken into account at take-off as follows:

ẋcom(tTO) ≈
M

M +m
ẋbody(tTO) +

m`l
M +m

sin (θTO)θ̇TO,

ẏcom(tTO) ≈
M

M +m
ẏbody(tTO) +

m`l
M +m

cos (θTO)θ̇TO.

During stance, the partial feedback linearization (5.1) is applied to the system; hence,

the closed form solution for the leg length ` derived in section 5.1 is still valid. The series

elastic actuator as a function of input current ucurr(t) is modelled as:

῭
act =

1

meff

(−b ˙̀act − κu(t))− fsign( ˙̀act), (A.1)

where meff is the effective mass seen by the actuator, b is the damping constant, f is

the friction constant, and κ is the motor constant.

In general, the non-zero momentum of the body affects the dynamics of the leg-angle,

θ(t). Then, θ can be approximated with the solution computed in section 5.1, θappr, with

the addition of the term that includes the effect of the body motion over the leg angle,

θφ:

θ(t) = θappr(t) + θφ(t), (A.2)
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where

θφ =
J(M +m)

Jl(M +m) +Mm(`− `1)2
φ̈.

From the equations of motion, we have that Jφ̈ = τhip; hence, by choosing an appropriate

torque at the hip, θφ can be analytically solved. In particular, to avoid excessive tipping

of the body, τhip has been chosen as the constant value necessary to keep the body

upright. The solution for θ(t) computed in (A.2) is an approximation. During stance,

a high level PID controller for τhip is applied to control the system to follow the target

dynamics (A.2).

Simulation Parameters
M = 10 kg
m = 1 kg
J = 10 kg · m2

Jl = 1 kg · m2

`0 = 1 m
`l = 0.5 m
`act ∈ [−0.1, 0.1] m
`c ∈ [−0.05, 0.05] m
vact ≤ 1 m/s
vc = 0.5 m/s
γ = 20
ucurr ∈ [−20, 20] A
τhip ∈ [−50, 50] N · m
b = 50
f = 5
κ = 68.8
meff = 10 kg

Table A.1:

This approximation has been tested on a path of 100 jumps with varying target apex

states, as described in 5.5.4, with parameters from Table A.1. Fig. A.1a show an example

of the approximated dynamics of the leg angle during stance compared to their numerical

solution, and A.1b the hip torque required. Fig. A.2 shows the series elastic actuator

motion, `act and its two components: `nl and `c, and the current required ucurr.
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Figure A.1: (a) Data showing the approximated solution of the dynamics of θ(t) and
θ̇(t) compared to the numerically computed solution. Fig. (b) shows the required
torque at the hip.

In Fig. A.3a we can see the approximation of the trajectory of the body mass com-

pared to the numerical computed solution, while Fig. A.3b show the approximation and

numerical solution of the forward velocity of the center of mass, for a few jumps.
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Figure A.2: Series elastic actuator motion `act(t) = `nl + `c and current ucurr. A
PID controller drives the actuator dynamics (A.1) to the target values. The constant
values desired during the first and second half of the stance phase are, respectively,
`c1 = 0.03, and `c2 = 0.01.
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Figure A.3: Approximation of the trajectory (a) and forward velocity (b) of the mass
compared to the numerically computed solution. The apparent mismatch during the
stance phase in ẋ is due to the fact that the energy loss at impact is modelled at
take-off in the approximated solution.
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