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Single-Cell Profiling Reveals
Divergent, Globally Patterned Immune
Responses in Murine Skin Inflammation

Yale Liu,1,2,3,13 Christopher Cook,1,2,13 Andrew J. Sedgewick,4,13 Shuyi Zhang,5 Marlys S. Fassett,1,6

Roberto R. Ricardo-Gonzalez,1,6 Paymann Harirchian,1,2 SakeenW. Kashem,1 Sho Hanakawa,7 Jacob R. Leistico,5

Jeffrey P. North,1 Mark A. Taylor,1 Wei Zhang,2 Mao-Qiang Man,2 Alexandra Charruyer,1,2

Nadejda Beliakova-Bethell,8,12 Stephen C. Benz,4 Ruby Ghadially,2 Theodora M. Mauro,2 Daniel H. Kaplan,9

Kenji Kabashima,7,10 Jaehyuk Choi,11 Jun S. Song,5 Raymond J. Cho,1,14,* and Jeffrey B. Cheng1,2,14,15,*

SUMMARY

Inflammatory response heterogeneity has impeded high-resolution dissection of
diverse immune cell populations during activation. We characterize mouse cuta-
neous immune cells by single-cell RNA sequencing, after inducing inflammation
using imiquimod and oxazolone dermatitis models. We identify 13 CD45+ sub-
populations, which broadly represent most functionally characterized immune
cell types. Oxazolone pervasively upregulates Jak2/Stat3 expression across
T cells and antigen-presenting cells (APCs). Oxazolone also induces Il4/Il13
expression in newly infiltrating basophils, and Il4ra and Ccl24, most prominently
in APCs. In contrast, imiquimod broadly upregulates Il17/Il22 and Ccl4/Ccl5. A
comparative analysis of single-cell inflammatory transcriptional responses re-
veals that APC response to oxazolone is tightly restricted by cell identity,
whereas imiquimod enforces shared programs on multiple APC populations in
parallel. These global molecular patterns not only contrast immune responses
on a systems level but also suggest that themechanisms of new sources of inflam-
mation can eventually be deduced by comparison to known signatures.

INTRODUCTION

The term ‘‘inflammation’’ serves as an abstraction that summarizes the activity of dozens of types of immune

cells, whose global reprogramming by exogenous antigens counteracts pathologic intrusions. Until

recently, the heterogeneity of the immune response has been addressed by applying flow cytometry

and immunohistochemistry to interrogate specific subpopulations such as innate lymphoid cells (Sonnen-

berg and Artis, 2015), regulatory B cells (Rosser and Mauri, 2015), and regulatory T cells (Malhotra et al.,

2018). Although these studies assigned functional repertoires to cellular subtypes, their scope limited sys-

tematic comparisons between cell types and the discovery of rare, functionally active cell subpopulations.

The recent emergence of single-cell sequencing approaches has enabled the characterization of multiple,

divergent immune cell populations in parallel (Villani et al., 2017).

Active inflammation typifies the skin, both in host defense and pathogenic processes that cause rashes.

Studies using single-cell RNA-sequencing (scRNA-seq) have recently refined the contributions of T cells

(Hughes et al., 2019), myeloid cell subsets (Jordão et al., 2019), keratinocytes (Cheng et al., 2018), and fi-

broblasts (Croft et al., 2019) to cutaneous inflammation. Because the skin is persistently, naturally exposed

to exogenous provocation, it offers a tractable means to recapitulate physiologic inflammation. Indeed,

mouse skin has been used to model common human rashes, using topical and systemic administration

of inflammation-inducing agents. For example, application of oxazolone to mouse skin activates cytotoxic

CD8+ T cell-mediated delayed hypersensitivity, in which mast cells and neutrophils play a critical role in

priming the inflammatory reaction (Dudeck et al., 2011; Vocanson et al., 2009; Weber et al., 2015).

Oxazolone-mediated inflammation also appears to involve various dendritic and T helper (Th) cell types,

the roles of which remain incompletely understood (Vocanson et al., 2009). In contrast, imiquimod, an

agonist of Toll-like receptor 7, activates the IL-23/IL-17/IL-22-axis and interferon signaling pathways,
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modeling an established pathogenic mechanism for psoriasis vulgaris. However, imiquimod also likely ac-

tivates additional pathways, reportedly producing molecular and histopathologic changes suggestive of

systemic lupus erythematosus (Liu et al., 2018) and contact dermatitis (Garzorz-Stark et al., 2018).

We sought to understand how single-cell analysis could enhance our understanding of the molecular ef-

fects of topical provocations such as oxazolone and imiquimod on the cutaneous immune system. To

what extent are inflammatory transcriptional programs shared across related CD45+ subpopulations,

rather than being compartmentalized by cell identity? We were especially interested in exploring whether

this patterned distribution of such transcriptional responses could be quantitatively described. An in-depth

understanding of these molecular signatures might be used to help dissect the causes of pathogenic

inflammation in which classical immunopathology or conventional flow cytometry may be limiting, ulti-

mately allowing us to better classify complex skin pathologies in clinical settings such as immunological

senescence (Dulken et al., 2019).

RESULTS

Unbiased Classification of Single-Cell Transcriptomes Readily Recapitulates Known,

Cutaneous Immune Cell Populations

To explore and compare inflammatory responses, we applied two distinct topical inflammatory agents, ox-

azolone and imiquimod, in parallel with their vehicle controls, to the ear skin of C57BL/6J mice. Each of the

four treatments was applied over the course of a week, and each treatment condition was performed on

three different mice (biological replicates, see TransparentMethods for details). We refer to these triplicate

samples hereafter as OXA-C (oxazolone control), OXA (oxazolone), IMQ-C (imiquimod control), and IMQ

(imiquimod). For each replicate, two �0.5 3 1.0-cm samples of treated ear skin were harvested 24 h after

the last challenge. Histological analysis revealed an acanthotic epidermis with parakeratosis and spongio-

sis and a dermal inflammatory infiltrate with oxazolone treatment, whereas imiquimod-treated skin dis-

played an acanthotic epidermis with mounds of parakeratosis, underlying attenuation of the granular layer,

and a dermal inflammatory infiltrate (Figure S1A). We enzymatically digested these skin samples, flow

sorted for individual CD45+ cells, and then performed scRNA-seq using droplet-based microfluidics

(10X Genomics). The number of total single cells initially isolated from each treatment condition was

OXA-C: 20,120; OXA: 21,316; IMQ-C: 10,247; and IMQ: 7,632 (Table S1).

Using Seurat (Stuart et al., 2019), data were log-normalized and canonical correlation analysis was per-

formed using 3,000 input variable genes to identify integration anchors among the four different treatment

datasets (see Transparent Methods for details). Following integration, dimensional reduction and unsuper-

vised Louvain modularity-based clustering was performed on 59,315 total cells to yield 21 initial cell clusters

(see Methods). Visualizing these subpopulations using t-distributed stochastic nearest neighbor embed-

ding (t-SNE, Figure S1B) confirmed their distinct identities. To define these populations, we utilized the

Seurat FindAllMarkers and FindConservedMarkers functions (Stuart et al., 2019), which combine p values

using meta-analysis methods to identify differentially expressed genes between clusters (conserved across

treatment conditions for the latter function; Table S2). After thus identifying transcripts enriched in and

typifying each of our 21 initial cell classes (p.adj <0.05), we manually assigned class identity based on com-

parison to well-established marker genes (Table S3). We excluded small numbers of apparent contaminant

keratinocytes expressing high levels of Krt15, Col17a1, Krt2, Krt5, and Krt17; fibroblasts expressing Col1a2,

Col1a1, Col3a1, Col6a1, Col6a2, and Col6a3; and endothelial cells expressing Selp, Sele, Cdh5, Cd34, and

Cd93 (Hughes et al., 2019) (Figure S1B and Table S2). We also observed, as have others, that actively

dividing cells cluster independently, regardless of cell identity, because of the large number of shared

mitotic transcripts (Hsiao et al., 2019). Dividing cells were represented in our data by three groupings

with elevated expression of Pclaf, Top2a, Mrc1, Mki67, Birc5, and numerous histone genes. Finally, we

also excluded two other small CD45+ groupings. The first was enriched in the lncRNAs Gm42418 and

Gm26917 associated with ribosomal RNA contamination. The second was characterized by only a few tran-

scripts (Neb, Ppp1r16b, Rora, Odc1, Uhrf2, Fnbp1), for which a clear immune cell class could not be defined

(Figure S1B and Table S2).

These exclusions produced 13 distinct immune cell subpopulations, each showing robust representation

across both our oxazolone and imiquimod induction and control treatments (Figures 1A and 1B Tables

S3 and S5). Six cell classes harbored markers, such as MHC II transcripts, suggestive of antigen-presenting

cells (APCs). One subpopulation appeared consistent with macrophages (‘‘Mac’’), based on its expression
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Figure 1. Single-Cell Profiling Demarcates Key Immune Cell Populations in Murine Skin

(A) t-SNE map shows 13 immune cell classes conserved across treatment conditions, delineated by Louvain clustering.

Each dot represents one of 44,130 profiled cells.

(B) Relative proportions for each immune cell population for each paired treatment condition and its control. Top panel

shows imiquimod (IMQ, blue), and imiquimod control (IMQ-C, green). Bottom panel shows oxazolone (OXA, red) and

oxazolone control (OXA-C, turquoise).

(C) Immune cell population marker transcript expression levels (x axis) for the 13 immune cell populations (y axis). Size of

dots represents the fraction of cells expressing a particular marker, and color intensity indicates mean normalized scaled

expression levels.

(D) Violin plots show normalized transcript expression distribution on a per cluster basis for selected immune cell

population marker genes that distinguish major populations. Cd163,Mrc1, and Folr2 for macrophages; Clec9a for cDC1;

Sirpa in macrophages, monocytes, and cDC2;Cd207 for LC; andCd4, Cd8a, and Foxp3 for Thet. Each dot represents gene

expression of a single cell, and the kernel density plot shape represents the overall distribution.

See also Figure S1 and Tables S1, S2 and S3.
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of Adgre1, Itgam, Fcgr1, and Cd68 (Yu et al., 2016). This population also expresses the so-called tissue-re-

modeling macrophage markers (similar to a class also referred to as M2 macrophages or alternatively acti-

vated macrophages) such as Cd163, Mrc1, Folr2, and intermediate levels of Arg1 and Chil3 (R}oszer, 2015)

(Figures 1C, 1D, and S2 and Tables S2 and S3). The second cluster appears to represent a combination of

monocytes and monocyte-derived macrophages (designated as ‘‘M/MdM’’ in this report). This population

expresses not only macrophage markers (Adgre1, Fcgr1, Itgam) but also monocyte markers (e.g., Lyz2,

Ly6c2, Plac8, and Cd14) (Figures 1C and S2 and Tables S2 and S3). A smaller population of cells with

elevatedCd207, Cd24a, and Epcam expression defines Langerhans cells (referred to hereafter as ‘‘LC’’; Fig-

ures 1C, 1D, and 2A and Tables S2 and S3).

The three remaining APC populations display increased expression of H2-Ab1, H2-Eb1, and Flt3 and lack the

monocyte/macrophage marker Fcgr1 and are consistent with dendritic cells. To better understand these three

populations, we identified differentially expressed genes for each, in comparison with the aforementioned

macrophage and Langerhans cell classes. One subpopulation shows elevated Xcr1, Irf8, and Clec9a and

absence of Irf4, Itgam, and Sirpa, identifying them as likely conventional type 1 dendritic cells (referred to here-

after as ‘‘cDC1’’) (Kashem et al., 2017) (Figures 1C, 1D, and S2 and Tables S2 and S3). A second population

showed upregulated transcripts consistent with conventional type 2 dendritic cells (cDC2s), including Mgl2,

Sirpa, Itgam, and Irf4, and absence of cDC1markers (Irf8, Batf3, and Cd207) (Figures 1C, 1D, and S2 and Tables

S2 and S3). The third population is characterized by elevated migration and activation markers Fscn1, Cacnb3,

Ccr7, Cd40, Tmem123, and Cd274, demarcating a group of migratory/mature dendritic cells (referred to here-

after as ‘‘mDC’’) (Bros et al., 2011; Ma and Clark, 2009; Riol-Blanco et al., 2005; Takekoshi et al., 2010; Versteven

et al., 2018; Yamakita et al., 2011; Figures 1C and S2 and Tables S2 and S3).

Of the remaining seven non-APC CD45+ cell classes, three harbored elevated Cd3e/g expression sugges-

tive of T cells. The first of these classes was characterized by high relative expression of Cd3e/g, Trdc, Tcrg-

C1, Thy1, Nkg7, Fcer1g, and Il2rb, and lack of Cd4/Cd8a expression, consistent with dendritic epidermal

T cells (DETCs), a population of embryonically derived, tissue-resident gd T cell receptor-expressing cells

that function in cutaneous immune surveillance (O’Brien and Born, 2015; Turchinovich and Pennington,

2011) (Figures 1C, 1D, and 2A and Tables S2 and S3). We identified a second cluster as dermal gd T cells

(dgdT) based on strong Rora expression and intermediate expression of Cd3e/g, Trdc, and Tcrg-C1/2/4,

as well as expression of either Scart1 (Cd163l1; indicative of Vg6 cells) or Scart2 (5830411N06Ri; indicative

of Vg4 cells) and lack of Cd4 and Cd8a expression (Tan et al., 2019) (Figures 1C, 1D, and 2A and Tables S2

and S3).

The remaining T cell cluster was consistent with ⍺b T cells displaying broad expression of Cd3d, Trac,

Trbc1, Cd4, and Foxp3, suggesting a heterogeneous mix of T regulatory and conventional Cd4+ cells.

We thus denoted this category as ‘‘heterogeneous T cells,’’ or Thet (Figures 1C and 1D, and S2 and Tables

S2 and S3). To better define this mixed Thet population, we executed a transcriptional gating strategy

based on classic T cell markers (see Methods) and were able to identify Foxp3+ Tregs, conventional Cd4+

Foxp3- T cells (Tconv), Cd8+ T cells, and double-negative T cells (Figure S4; Table S5).

We identified another cluster as type 2 innate lymphoid cells (ILC2) based on high expression of the tran-

scription factors Gata3, Rora, Thy1, as well as Il7r, Il5, and Il13 coupled with very low levels of Cd3d/e/g,

Eomes, Rorc, Tbx21, and Cd4 (Figures 1C, 1D, and S2 and Tables S2 and S3). This group was also negative

for natural killer (NK) and NK T cell markers, e.g., Klra7, Klra8, and Klrb1 (Haug et al., 2019; Juvet and Zhang,

2012; Dutton et al., 2018; Vivier et al., 2018) (Figure S2). An NK cluster with increased relative expression of

NK markers, e.g., Gzma, Klra8, Klra7, Klrb1c (NK1.1), Eomes, Ncr1 was identified (Figures 1C, 1D, and S2

and Tables S2 and S3). Finally, a population of granulocytes likely composed of both mast cells and baso-

phils (hereafter referred to as ‘‘M/B’’) was defined by Gata2, Ms4a2, Kit, Mcpt4, Itgam, and Mcpt8 expres-

sion (Figures 1C and S2 and Tables S2 and S3; Li et al., 2015), whereas neutrophils, termed ‘‘Neu’’, were

typified by Cd14, S100a8, S100a9, Csf3r, Cebpd, Slc11a, and Spi1 (Park et al., 2018).

Epitope and Biaxial Transcript Analysis Validate and Refine Transcriptional Classification

To compare transcript-based immune cell classifications with more traditional surface epitope-based ap-

proaches (e.g., flow cytometry or CyTOF), we utilized Cellular Indexing of Transcriptomes and Epitopes by

Sequencing (CITE-seq) on the OXA-C and OXA samples to quantitate single cell-level protein expression

utilizing a sequencing-based output (Stoeckius et al., 2017). We bioinformatically ‘‘gated’’ populations
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based on CITE-seq expression to define protein epitope-based cell populations (Zhang et al., 2020), as

would be done with flow cytometry, and overlaid these on our transcript-based clusters. Consistent with

our APC transcript based-assignments (Mac, M/MdM, cDC1, cDC2, mDC, and LC), we find strong

overlap with CD3�I-A/I-E+ CITE-seq gated cells (Figure 2B). CD3�I-A/I-E+CD24+CD326+ cells localize to

the transcript-defined LC population. CD3+TCRg/d+CD90.2+ cells show ample representation within the

Figure 2. Cluster-Specific Single-Cell Transcript and Protein Expression Validates Immune Cell Population

Assignments

(A) Cluster-specific heatmaps show normalized RNA expression count values of selected marker genes on the x axis and

single cells on the y axis. Cells are ordered on y axis by treatment condition (IMQ-C, IMQ, OXA-C, OXA).

(B) Projection of protein epitope (CITE-seq) expression ‘‘gated’’ immune cell populations from OXA-C/OXA datasets

onto transcript-based t-SNE plot from Figure 1A. Depicted are CD3�I-A/I-E+ APC cells, CD3�I-A/I-E+CD24+CD326+

Langerhans cells, CD3+TCRg/d+CD90.2+ DETCs, and CD3�CD117+ mast cells.

See also Figure S2 and Tables S2 and S3.
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RNA-based DETC cluster but not dgdT cells (which show lower g/d expression than DETCs). The transcript-

based mast cell population harbors CD3�CD117+-expressing cells (Figure 2B).

Oxazolone or Imiquimod Treatment Induce APC-Dominant Shifts into Mouse Skin

Although the OXA and IMQ datasets contained the same basic cell types, their composition by type

showed substantial differences. To evaluate the relative abundance of 13 immune cell types in two condi-

tions, we examined the percentage of each subpopulation in each of the OXA-C, OXA, IMQ-C, and IMQ

datasets (Figure 3A and Table S5). However, because a subpopulation can only be assessed as a proportion

of total cells in a given profile, it is not possible to formally ascertain if changes in population abundance

represent absolute increased numbers of a cell type or relative decreases in other major cell types. There-

fore, the largest shifts are more likely to represent new, infiltrating cells during treatment. Imiquimod and

oxazolone both lead to marked increase in relative percentages of macrophage (102% and 273% for OXA

and IMQ, respectively), M/MdM (340% and 476%), mDC (133% and 147%), NK (2,087% and 44%), and

neutrophil (1,643% and 555%) cells. Population shift decreases after oxazolone treatment include dermal

gd T cells (�87%), ILC2 (�90%), and LC (�65%), as well as decreases for DETC for both oxazolone

(�92%) and imiquimod (�68%) (Figure 3A and Table S5).

Oxazolone and Imiquimod Divergently Reprogram CD45+ Cell Transcriptomes toward JAK2

or Interferon Responses

Our initial classification of CD45+ single-cell transcriptomes into 13 subpopulations conflates some im-

mune cell populations that are differentiated through classical serial gating strategies, particularly for

T cell classes. However, we hypothesized that transcriptional commonalities and differences in these initial

classes would enable an informative, high-level survey of gene expression differences caused by oxazolone

and imiquimod. We compared transcripts differentially expressed (avg_logFC >0.5, p.adj <0.05) in either

treatment condition in at least one cluster (1,088 transcripts in total, Figures 3B and S3A). This approach

Figure 3. Oxazolone and Imiquimod Divergently Reprogram Immune Cells

(A) Stacked bar plots showing relative percentages of each immune cell population for each of the treatment conditions (IMQ-C, IMQ, OXA-C, and OXA).

(B) Unsupervised hierarchical clustering heatmap for treatment-induced differentially expressed genes on a per cluster basis. Columns depict average logFC

of oxazolone- or imiquimod-treated cells (versus control) for each cluster. Rows depict selected treatment-specific DEGs for OXA versus OXA-C and IMQ

versus IMQ-C.

(C–F) (C) Cluster-specific scatterplots showing OXA or IMQ treatment-induced differentially expressed genes for macrophages, (D) M/MdM cells, (E) dgdT

cells, and (F) M/B populations (avg_logFC for OXA DEGs relative to OXA-C on y axis and IMQ DEGs relative to IMQ-C on x axis). Pseudocolored dots

represent significant DEGs (p.adj <0.05) for OXA (red), IMQ (blue), or both treatments (purple).

See also Figures S3 and S4 and Tables S4 and S5.
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immediately accentuated striking treatment- and cluster-specific transcriptional shifts. Globally, IL17/22

and IFN-g signatures emerge inmultiple subpopulations after imiquimod treatment. In contrast, oxazolone

generates a more complex picture, with upregulation of type 1 and type 2 cytokines, and IFN-responsive

genes in selected cell classes, consistent with previous reports (Liu et al., 2019; Pantelyushin et al., 2012;

Thomson et al., 1993; Wenzel et al., 2005) (Figures 3B, S3A, and S3B and Table S4).

The widespread IMQ-specific induction of IL17a, Il17f, and Il22 transcripts is most robust in dgdT cells (Fig-

ures 3B, 3E, and S3A and Table S4). We also observe pervasive upregulation of interferon-responsive

genes, including a gene cluster composed of Ifitm3, Isg15, Zbp1, Rtp4, and Isg20 as well as transcripts

not classically known to be interferon responsive (e.g., Ly6c2, Ms4a4c, and Pld4). This interferon signature

is most prominent in imiquimod-treated APC populations (such as Mac, M/MdM, and cDC2) and seen only

faintly in the corresponding oxazolone-treated APC populations (Figures 3B, S3A, and S3B and Table S4).

Imiquimod also upregulates chemokines associated with type 1 inflammatory responses (Ccl4 and Ccl5)

most prominently in M/B cells and APC populations (Figures 3B, 3D, 3F, S3A, and S3B). Oxazolone, in

contrast, primarily elevates only Ccl4, in M/B cells and neutrophils.

Oxazolone widely elevates Jak2 and Stat3 expression, as well as Il4ra, effects absent after imiquimod treat-

ment (Figures 3B and S3A and Table S4). Oxazolone-treated cells also show marked upregulation of type 2

cytokine transcripts (Il4, Il6, Il13) and CCR1 chemokine ligands (Ccl6 and Ccl9), most prominently in M/B

cells (Figures 3B and 3F and Table S4). We also observe robust upregulation in OXA-treated APC popula-

tions of genes such as the Ccr1 and Ccr5 chemokine receptors, the Ccl8 and Ccl24 beta-chemokines, as

well as matrix metalloproteinases (Mmp12/14/19) and Fabp5 (Figures 3B–3D and S3 and Table S4). Except

for Ccr5, these shifts are nearly absent from the IMQ dataset. The neutrophil chemoattractant Cxcl3 is also

elevated in oxazolone-treated neutrophils (Figures 3B and S3 and Table S4).

To better characterize the effects of imiquimod and oxazolone on the Thet cell population, we subsetted these

cells based on a transcriptional gating approach into the four T cell types described above: Foxp3+ Tregs, con-

ventionalCd4+Foxp3- T helper cells (Tconv),Cd8a/b1+ T cells, andCd4-Cd8a/b1- double-negative T cells (DNT)

(Figure S4 and Tables S4 and S5; Methods) (Gao et al., 2011). We then assessed imiquimod or oxazolone-

induced RNA expression changes for the 265 most variable genes, as well as selected type 1, type 2, type 17

cytokine, and interferon response-related genes (Figure S4). We find key treatment-induced differentially ex-

pressed genes previously identified in the Thet population in all four Thet subpopulations, i.e., IMQ-specific up-

regulation of Il17a, Il17f, Il22, and OXA-specific upregulation of Jak2 and Stat3.

Oxazolone induced a marked increase in the number of Tregs (Table S5), which was accompanied by up-

regulation of Ets1 and Ikzf2, transcription factors known to both regulate Foxp3 expression and mediate

the suppressive activity of this cell type (Kim et al., 2015; Mouly et al., 2010) (Figure S4, Table S4). In oxazo-

lone-treated cells, there is a trend toward T cell activation gene upregulation in Cd8+ cells, e.g., the co-

inhibitory receptors Pdcd1 (Pd-1), Lag3 and Havcr2 (Tim-3), granzyme molecules Gzma and Gzmb, and

Ccr5 (Okoye et al., 2017; Viola and Luster, 2008) (Figure S4 and Table S4). We also observe OXA-induced

upregulation of Havcr2 in Cd4+T cells, comporting with its known expression in CD4+ Th1 cells, where it

negatively regulates IFNG production (Das et al., 2017; Hastings et al., 2009) (Figure S4 and Table S4).

Imiquimod treatment induced the upregulation of MHC I and interferon response genes across all T cell

types, although only Ifi27l2a was significant across all T cell subpopulations (Figure S4 and Table S4). Inter-

estingly, the cathepsinCtss,which is known to be expressed in barrier skin cells and is mechanistically impli-

cated in both atopic dermatitis and psoriasis, was strongly upregulated in all imiquimod-treated T cell

types (Figure S4 and Table S4; Ainscough et al., 2017; Kim et al., 2012; Schönefuss et al., 2010). Consistent

with our transcriptional data, flow cytometry analysis revealed a trend toward increased IL17A and IL22

expression in Tconv, CD8, and dgdT cells, as well as increased CCL5 expression in CD8 and Treg cells

with imiquimod treatment (Figure S5).

Basophils Infiltrate Skin as Primary Producers of IL4 and IL13 following Oxazolone but Not

Imiquimod Treatment

We observed Il4 and Il13 inductionmainly restricted to theM/B cluster, which expresses known granulocyte

markers (Figure 3 and Table S4). To more deeply understand this phenomenon, we subjected these cells to

k-means clustering, which revealed two distinct classes (Figure 4A). Although M/B granulocyte cells
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globally express Gata2 (Figure 4B), the putative mast cell cluster was clearly demarcated byMcpt4 and Kit

(the latter on both the transcript and epitope levels), whereas the presumptive basophils uniquely ex-

pressed Mcpt8 and Itgam (Akahoshi et al., 2011; Siracusa et al., 2013) (Figure 4B). Surprisingly, basophils

were found almost exclusively in the OXA dataset, and not in OXA-C, IMQ-C, or IMQ (Figure 4B).

The restriction of basophils to this dataset suggests that they were uniquely induced to infiltrate skin by oxazo-

lone (Figure 4B). Given the transcriptional relatedness of granulocytes, we first evaluated the alternative hypoth-

esis that our putative basophilsmight instead represent reactivemast cells. Utilizing global lineage structure and

inference of pseudotime variables (Street et al., 2018) (Slingshot), we were unable to discern an evolutionary tra-

jectory connecting these subpopulations (Figure 4C). We next analyzed gene expression differences between

mast cells (found in bothOXA and IMQ) and basophils (foundonly inOXA). Basophils infiltrating after oxazolone

treatment appear not only specifically enriched in key marker transcripts such asMcpt8 but also appear to serve

as the exclusive source of new Il4, Il6, and Il13 (Figure 4D).

Oxazolone Provokes aMore Compartmentalized Pattern of Global Transcriptional Response,

Relative to CD45+ Cell Identity, Than Imiquimod Stimulation

As noted above, oxazolone activates sharply distinct transcriptional programs in different immune cell

types. Imiquimod, in contrast, appears to activate related patterns across multiple populations. One of

Figure 4. Infiltrating Basophils Produce Il4 and Il13 after Oxazolone but Not Imiquimod Treatment ofMurine Skin

(A) Heatmap displaying count values for the top 100 most variable genes (y axis) defined by pseudotime (x axis) for M/B

population cells. Two nonredundant and non-covariate k-means-defined subpopulations are denoted by the color bar at

the top of the panel (mast cells, red, left; basophils, blue, right). Rows represent genes and columns represent single cells

of the M/B cluster.

(B) Feature plots showing mast and basophil marker expression projected onto the t-SNE M/B cluster from Figure 1A.

Each row depicts transcript expression of a different marker gene for mast cells (c-Kit RNA and protein [CITE-seq] and

Mcpt4) and basophils (Itgam,Mcpt8). Each column showsM/B population t-SNE plots representing only the cells from the

treatment condition listed at the top.

(C) Principal-component analysis (PCA) of mast cells (orange/red, left) and basophils (blue/green, right) demonstrating

these subpopulations do not share a differentiation trajectory.

(D) Differential gene expression volcano plot between mast cells and basophils. x axis depicts the average logFC for

basophils relative to mast cells. y axis depicts –log10(p.adj). Significant genes are defined as |avg_logFC |R1 and p.adj%

0.05 [–log10(p.adj) R1.3]. Blue dots represent basophil, and red dots represent mast cell upregulated genes.

See also Table S4.
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the opportunities conferred by single-cell data is the ability to quantitate such differing global molecular

responses, allowing their comparison and classification by algorithms. Such approaches could eventually

enable us to deduce the mechanism of new sources of inflammation, based solely on analyzing single-

cell patterns of immune response and placing them in context of known agents.

As an initial test of this hypothesis, we first systematically identified global, single-cell, transcriptional

response patterns produced by oxazolone and imiquimod. We next examined whether these patterns

showed simple compartmentalization between our identified immune cell types, or whether they showed

more complex distribution throughout our CD45+ subpopulations. In other words, we sought to ask

whether the molecular responses to a given agent are wholly defined by immune cell type, or are they

more heterogeneously distributed across cell types? We aimed to develop unbiased, quantitative means

to make such an assessment.

To technically execute this approach, for each cell in the oxazolone and imiquimod-treated samples, we

initially identified one cell in its respective control group with the most similar, harmonized transcriptomic

pattern, hypothesizing that this control cell could be used as a proxy for a pre-treatment version of the

same cell type (Figure 5A). We only considered control cells that were in the top 50 nearest neighbors.

We then calculated gene expression differences over the 1,000 most variable genes between thousands

of such pairs of cells, generating a vector of pairwise single-cell gene expression comparisons between

a treatment and its control:

DiVNCE(Tx) = sctx(Tx) - sctx(C(Tx))

where Tx represents a treated cell, C(Tx) represents the nearest control cell, and sctx() is a vector of scaled

expression values for 1,000 genes in a given cell. We refer to this library of pairwise comparisons as ‘‘Dif-

ference Vs. Nearest Control cEll,’’ or ‘‘DiVNCE’’ profiles. The DiVNCE profiles were clustered, producing

11 discrete response signatures for the OXA dataset and 13 for IMQ (Table S6). We next compared DiVNCE

patterns for OXA and IMQ against our initial 13 CD45+ cell classifications. This unsupervised approach re-

identifies a basophil Mcpt8/Il13 DiVNCE signature in the OXA M/B granulocyte cluster and an Il17 signa-

ture in a subset of IMQ dermal gd T cells, validating our approach (Figures 5B and S6 and Table S6).

In Figure 5B, the upper left UMAP shows OXA CD45+ cells clustered based on 12 DiVNCE signatures; the

upper right panel shows the same cell organization colored by our original 13 CD45+ cell identities. Simi-

larly, the lower left shows the IMQ dataset clustered based on 13 DiVNCE patterns, then colored on the

lower right panel by cell identity. It is readily apparent from this representation that DiVNCE signatures

more precisely delineate cell identities for OXA than for IMQ. For example, the OXA Mac subpopulation

is subdivided into five single-cell DiVNCE subpopulations (MacS1–5), each with distinct inflammatory pat-

terns (Figure 5C). Even in the Mac DiVNCE cluster that includes other APCs groups such as mDC and M/

MdM (MacS 5), these other APCs are spatially distinct (Figure 5B), suggesting that they express the

MacS 5 pattern differently. Overall, the DiVNCE clusters recapitulate cell identities in the OXA data, in

cases at higher resolution. In contrast, APCs in the IMQ data are mixed in five DiVNCE clusters based on

interferon response signatures (IRS 1–5) (Figures 5B and 5C). We generated a quantitative measure for pos-

itive compartmentalization by calculating the adjusted rand index (ARI) between the DiVNCE cluster

assignment and the CD45+ cell type assignments. The ARI for OXA is 0.272, 95% confidence interval

(CI) = (0.268–0.275), compared with 0.128, 95% CI = (0.124–0.131) for IMQ, reflecting significantly enhanced

compartmentalization of global expression changes in the oxazolone response.

DISCUSSION

We present here one of the first single-cell comparisons of inflammatory responses to distinct provocations in

mouse skin. While confirming well-establishedmolecular features of the response to oxazolone and imiquimod,

our global CD45+ cell capture also allows us to directly examine the molecular behavior of multiple cell popu-

lations, someof which have not been interrogated directly in standard reports. In each of our datasets, we readily

identify major APC and T cell classes, many of which we further refine with successive rounds of multiparametric

segregation. To validate our transcript-based classifications, we also utilized sequencing-based protein epitope

analysis (CITE-seq), which showed strong correlation for transcript- and protein epitope-defined APC, Langer-

hans cell, DETC, and mast cell populations. This approach validates most functionally important immune cell

subpopulations, including DETC and cDC2, as well as Langerhans and mast cells.
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These single cell profiles offer unprecedented resolution in dissecting divergent cutaneous inflammatory

immune response. Continuous oxazolone application is classically associated with immediate type hyper-

sensitivity followed by a shift toward production of Th-2-associated cytokines (Man et al., 2008; Wang et al.,

2000). Oxazolone has been used to model both allergic contact dermatitis and atopic dermatitis, although

transcriptomic studies suggest that IL23 injection more closely resembles the latter (Ewald et al., 2017). Our

data was striking for elevation of Jak2 and Stat3 expression inmost CD45+ cell populations, suggesting that

a global activation of this pathway is central to some instances of allergic contact dermatitis. Successful JAK

inhibition of the oxazolone response has been observed previously, primarily using JAK3-selective agents

Figure 5. DiVNCE Analysis Yields High Degree of Compartmentalization by Cell Identity for Oxazolone but not

Imiquimod Transcriptional Response in CD45+ Cells

(A) Schematic representation by which DiVNCE identifies the most similar, ‘‘neighboring’’ control cell for each treatment

cell and then catalogs their transcriptional differences.

(B) UMAP representation showing partitioning of oxazolone-treated cells based on 12 DiVNCE profiles (six highlighted for

comparison, upper left panel), with same clusters colored by cell identities as depicted in Figure 1A (upper right). Lower

left panel shows imiquimod-treated cells partitioned on 11 DiVNCE profiles (six highlighted for comparison) and same

clusters colored by cell identity (lower right). Mac clusters 1–5 represent five DiVNCE patterns finely subdividing

macrophages in the Mac classification, highlighting greater compartmentalization. In contrast, in the IMQ dataset,

interferon-responsive DiVNCE signatures (IRS 1–5) are each shown by multiple APC types, showing mixing and lower

relative compartmentalization. Also displayed for validation are unbiased detection of a basophil Mcpt8/Il13 DiVINCE

signature in the OXA M/B granulocyte cell identity cluster and an IL17 signature in a subset of IMQ dermal gd T cells

(Figure S6 and Table S6).

(C) Log2-fold elevations from DiVNCE comparisons (represented by circle size) for inflammatory transcripts (y axis) for

MacS S and IRS signatures (x axis), all p.adj <1 3 10�3.

See also Figure S5 and Table S6.
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(Fujii and Sengoku, 2013; Mahajan et al., 2015), leaving open the possibility that JAK2-selective agents may

be even more effective in counteracting a subset of delayed-type hypersensitivity.

While granulocytes have longbeenknown tobegenerally capableof Il4and Il13production (Gessneret al., 2005),

our analyses demonstrate thepowerof scRNA-seq toprecisely differentiate cell identity anddemarcate transcript

expression as a function of that cell identity. Our single-cell analyses detect newly arriving basophils after oxazo-

lone treatment, which then appear to serve as the sole detectable source of elevated Il4 and Il13 production. The

restriction of this induction to infiltrating basophils is nearly complete, echoing type 2 results in human patients

with atopic dermatitis (Mashiko et al., 2017). Thus, agents inhibiting basophil migration or activity may be espe-

cially useful in ameliorating some type 2 responses. Althoughmast cells are known to produce these type 2 cyto-

kines under some conditions, they do not demonstrate this role inour study. Imiquimodprovokes no comparable

Il4 or Il13 production. Future investigation will determine whether other inducers of delayed-type hypersensitivity

produce a similar profile, or whether the landscape of type 2 cytokines production is instead antigen-specific.

Topical provocation with imiquimod is known to produce Il17, mainly from IL23-induced Th17 cells (Zheng

et al., 2007). More recently, skin gdT cells, mainly Vg4+ gdT cells, as well as Rorgt+ ILCs cells, have been es-

tablished to produce Il17a, Il17f, and Il22 (Pantelyushin et al., 2012). Consistent with these reports, we

detect dgdT cells as the main producer of these cytokines (Figure 3A), but there is also significant Il17/

Il22 production by Vg6+ gdT cells (Figure 2A). Along with type 17 cytokine upregulation in macrophage,

M/MdM, and Thet cell subpopulations, our data suggest that imiquimod impacts target tissue through a

broader set of immune cells than previously appreciated.

We also observed the pan-upregulation of Ccl4 and Ccl5 in most imiquimod-treated CD45+ subpopulations, a

less-described phenomenon. A recent study indicates that these cytokinesmay also be involved intimately in the

imiquimod response, quenching inflammation through Treg recruitment (Oka et al., 2017). However, Ccl5 and

Ccr5 (encoding the receptor for both CCL4 and CCL5 ligands) are upregulated in human psoriasis and down-

regulated after treatment, supporting a role in pathogenicity. The discrepancy may derive from the differences

between humans and mice (Mack et al., 2001), as well as complex ligand-receptor interactions between CCL4/

CCL5 and CCR1/CCR3. Further work will be required to deconvolute these roles.

We describe and demonstrate a novel method, DiVNCE, that quantitatively describes discrete expression

programs generated by stimuli and allows us to assess their distribution among immune cell populations.

We show that whereas oxazolone produces a highly cell type-specific pattern, imiquimod enforces a more

heterogeneous response in T cells, consisting of multiple, distinct, interferon-related programs (Figure 5B).

Interestingly, APCs show greater plasticity in response to the agents in this study than T cell subpopula-

tions. We describe and apply the ARI metric, which quantitates this greater degree of molecular response

compartmentalization for oxazolone at statistical significance. Even more nuanced pattern-based match-

ing approaches may allow the immunological consequences of new chemical agents to be rapidly assessed

by comparison against a library of existing compounds. Further investigation, based on profiling additional

types of immune stimulation, will be required to validate and extend our findings.

Limitations of the Study

Transcriptional similarity-based single-cell computational classificationmay lead to conflation of similar im-

mune cell types. In particular, this was noted in the heterozygous T cell and mast/basophil populations,

which required further computational subdivision to identify cell populations that better correlate with

classic flow cytometry-defined populations. Furthermore, the inherent biases of droplet-based scRNA-

seq and utilization of RNA expression for immune cell type classification will lead to variation from protein

epitope-based flow cytometry-defined populations.

Large treatment-induced increases in APC populations and their known anatomic site-specific diminish-

ment in mouse cutaneous ear led to a relative paucity of certain T cell subtypes (e.g., CD4, CD8, Treg).

Consequently, statistical power for analyses with these populations was limited.

Resource Availability

Lead Contact

Further information and requests for resources should be directed to and will be fulfilled by the Lead

Contact, Jeffrey Cheng (jeffrey.cheng@ucsf.edu).
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Materials Availability

This study did not generate new unique reagents.

Data and Code Availability

Single-cell RNA-seq data have been deposited in the NIH Gene Expression Omnibus (GEO) database, un-

der accession number GSE149121. All statistical analysis and plotting of scRNA-seq and cell surface protein

data were performed using Rstudio software (Version 1.2.5033). All analysis scripts are available upon

request to corresponding authors.

METHODS

All methods can be found in the accompanying Transparent Methods supplemental file.

SUPPLEMENTAL INFORMATION

Supplemental Information can be found online at https://doi.org/10.1016/j.isci.2020.101582.
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Figure S1. Histology and cell types with imiquimod-and oxazolone-induced skin 
inflammation (related to Figure 1 and Table S5). (A)  Representative hematoxylin and eosin-
stained histological sections of imiquimod-treated (left, 200x) and oxazolone-treated (right, 200x) 
mouse ear skin, at time of harvesting for single cell isolation. Scale bar 500 microns. (B) t-SNE 
plot shows initial 21 clusters conserved across treatment conditions, delineated by Louvain 
clustering.  Each dot represents one of 52,086 profiled cells. 
  



 

Figure S2. Cluster-specific heatmaps with selected marker genes (related to Figure 2, 
Table S2, and Table S3). Normalized RNA expression count values of selected marker genes 
on the x-axis and single cells on the y-axis. Cells are ordered on y-axis by treatment condition 
(IMQ-C, IMQ, OXA-C, OXA).  



 

 

Figure S3. Divergent immune cell transcriptomes with imiquimod- and oxazolone- induced 
skin inflammation (related to Figure 3, Table S4, and Table S5). (A) Unsupervised hierarchical 
clustering heatmap for treatment-induced differentially expressed genes on a per cluster basis. 
Columns depict average logFC of oxazolone or imiquimod treated cells (vs control) for each 
cluster. Rows depict 885 treatment-specific DEGs with average log fold change > 0.5 and p.adj < 
0.05 in at least one cluster for either treatment arm (OXA vs. OXA-C and IMQ vs. IMQ-C). (B) 
Cluster-specific scatter plots showing OXA or IMQ treatment-induced differentially expressed 
genes for cDC1, cDC2, mDC, LC, DETC, Thet, ILC2, NK, and Neu populations (avg_logFC for IMQ 
DEGs relative to IMQ-C on x-axis and OXA DEGs relative to OXA-C on y-
axis). Pseudocolored dots represent significant DEGs (p.adj < 0.05) for OXA (red), IMQ (blue), or 
both treatments (purple). 

  



 

Figure S4. Imiquimod and oxazolone divergently reprogram T cell subpopulations (related 
to Figure 3, Table S2, and Table S4).  (A) Single-cell heatmap for the Thet cluster displaying 
normalized RNA expression count values of selected marker genes on the x-axis and single cells 
on the y-axis. Cells were grouped by treatment condition and then ordered along the y-axis 
sequentially by expression of key T-cell marker genes (Foxp3 → Cd4 → Cd8a → Ctla4) to reveal 
subpopulations. (B) Unsupervised hierarchical clustering heatmap of treatment-induced 
differentially expressed genes for the 4 T cell subpopulations. Columns depict average logFC of 
oxazolone or imiquimod treated cells (vs control) for each T-cell subpopulation, for each treatment 
condition. Rows depict 265 treatment-specific genes composed of DEGs with average log fold 
change > 0.5 and p.adj < 0.05 in at least one population for either each treatment arm (OXA vs. 
OXA-C and IMQ vs. IMQ-C) and a manually curated list of type I/type II/type 17/interferon 
response genes and T-cell co-inhibitory receptors. (C) Scatter plots showing DEGs for OXA or 
IMQ for CD8+ T cells, Conventional CD4+ T cells (Tconv), Foxp3+ Tregs, and double negative 
regulatory T cell (DNT) populations (IMQ DEGs relative to IMQ-C on x-axis and OXA DEGs 
relative to OXA-C on y-axis). Pseudocolored dots represent significant DEGs (p adj value < 0.05) 
for OXA (red), IMQ (blue), or both treatments (purple). Genes in grey did not reach statistical 
significance in either OXA or IMQ treatment arms.   



 



Figure S5. Intracellular cytokine flow cytometry analysis of imiquimod-treated cutaneous 
immune populations (related to Figure 3 and Table S4). (A) Gating strategy and sub-
population identification of isolated cutaneous immune cells from IMQ and IMQ-C treated mice. 
PMA and ionomycin-stimulated cells were stained for cell markers (CD45, CD3, CD4, CD8, γδTCR, 
CD11b, FOXP3) and intracellular cytokines/chemokines (IL17A, IL22, and CCL5). Concatenated 
flow plots of 5 imiquimod treated samples are depicted. (B) Bar graphs depict frequency of 
cytokine/chemokine-expressing cutaneous immune populations with IMQ and IMQ-C treatment (5 
mice per condition; t test, unpaired, two-tailed, * P < 0.05, ** P < 0.01, *** P < 0.001; Data are 
reported as mean ± SEM) (C) Representative intracellular staining plots from each population in 
A used to assess the frequency of cytokine/chemokine expression in IMQ treated cells. 



 

Figure S6. DiVNCE cluster representations with mapping to Table S6 (related to Figure 5 
and Table S6). UMAP representation showing partitioning of oxazolone treated cells based on 
12 DiVNCE profiles (upper left panel), with same clusters colored by cell identities as depicted in 
Fig 1A (upper right). Lower left panel shows imiquimod treated cells partitioned on 
12 DiVNCE profiles and same clusters colored by cell identity (lower right). DiVNCE numbering 
in left panels corresponds to DiVNCE cluster numbering in Table S6. 



 

KEY RESOURCES TABLE 

REAGENT or RESOURCE SOURCE IDENTIFIER 
Antibodies 

CD16/CD32 Fc Block  BD biosciences Cat#BDB553141 

CD16/CD32 Fc Block  BioXCell  Cat#BE0307 

anti-CD45-APC-Cy7  BD Biosciences Cat#30F-11 

anti-CD45-APC BD Biosciences Cat#17-0451-82 

TotalSeq™-A anti-mouse CD3 Biolegend Cat#100251 

TotalSeq™-A anti-mouse CD4 Biolegend Cat#100569 

TotalSeq™-A anti-mouse CD8a Biolegend Cat#100773 

TotalSeq™-A anti-mouse CD69 Biolegend Cat#104546 

TotalSeq™-A anti-mouse CD62L Biolegend Cat#104451 

TotalSeq™-A anti-mouse CD44 Biolegend Cat#103045 

TotalSeq™-A anti-mouse CD25 Biolegend Cat#102055 

TotalSeq™-A anti-mouse CD127 
(IL-7Rα) Biolegend Cat#135045 

TotalSeq™-A anti-mouse TCR γ/δ Biolegend Cat#118137 

TotalSeq™-A anti-mouse CD19 Biolegend Cat#115559 

TotalSeq™-A anti-mouse IgM Biolegend Cat#406535 

TotalSeq™-A anti-mouse CD335 
(NKp46) Biolegend Cat#137633 

TotalSeq™-A anti-mouse NK-1.1 Biolegend Cat#108755 

TotalSeq™-A anti-mouse CD90.2 Biolegend Cat#105345 

TotalSeq™-A anti-mouse I-A/I-E Biolegend Cat#107653 

TotalSeq™-A anti-mouse 
CD45R/B220 Biolegend Cat#103263 

TotalSeq™-A anti-mouse CD11b Biolegend Cat#101265 

TotalSeq™-A anti-mouse CD172a 
(SIRPα) Biolegend Cat#144033 



 

TotalSeq™-A anti-mouse XCR1 Biolegend Cat#148227 

TotalSeq™-A anti-mouse CD103 Biolegend Cat#121437 

TotalSeq™-A anti-mouse CD64 
(FcγRI) Biolegend Cat#139325 

TotalSeq™-A anti-mouse CD11c Biolegend Cat#117355 

TotalSeq™-A anti-mouse CD24 Biolegend Cat#101841 

TotalSeq™-A anti-mouse CD326 
(Ep-CAM) Biolegend Cat#118237 

TotalSeq™-A anti-mouse CD195 
(CCR5) Biolegend Cat#107019 

TotalSeq™-A anti-mouse CD196 
(CCR6) Biolegend Cat#129825 

TotalSeq™-A anti-mouse CXCR4 Biolegend Cat#146520 

TotalSeq™-A anti-mouse CD134 
(OX-40) Biolegend Cat#119426 

TotalSeq™-A anti-mouse CD278 
(ICOS) Biolegend Cat#313555 

TotalSeq™-A anti-mouse CD223 
(LAG-3) Biolegend Cat#125229 

TotalSeq™-A anti-mouse CD274 
(B7-H1, PD-L1) Biolegend Cat#153604 

TotalSeq™-A anti-mouse KLRG1 
(MAFA) Biolegend Cat#138431 

TotalSeq™-A anti-mouse CD27 Biolegend Cat#124235 

TotalSeq™-A anti-mouse 
CD21/CD35 (CR2/CR1) Biolegend Cat#123427 

TotalSeq™-A anti-mouse CD86 Biolegend Cat#105047 

TotalSeq™-A anti-mouse IgD Biolegend Cat#405745 

TotalSeq™-A anti-mouse CD1d 
(CD1.1, Ly-38) Biolegend Cat#123529 

TotalSeq™-A anti-mouse CD138 
(Syndecan-1) Biolegend Cat#142532 

TotalSeq™-A anti-mouse CD117 
(c-kit) Biolegend Cat#105843 

TotalSeq™-A anti-mouse CX3CR1 Biolegend Cat#149041 

TotalSeq™-A anti-mouse F4/80 Biolegend Cat#123153 

TotalSeq™-A anti-mouse CD192 
(CCR2) Biolegend Cat#150625 

CCL5     Biolegend     Cat#149103 



 

CD3epsilon     Biolegend     Cat#50-7177-82 
CD4     Biolegend     Cat#100421 
gdTCR     Biolegend     Cat#118119 
IL-22     Biolegend     Cat#516411 
CD8alpha     Biolegend     Cat#100743 
CD45     Biolegend     Cat#103147 
CD11b     Biolegend     Cat#101225 
Foxp3     eBioscience     Cat#11-5773-82 
IL-17A     eBioscience     Cat#17-7177-81 
Fixable viability stain eflour 780    Thermofisher     Cat#65-0865-14 

Chemicals, Peptides, and Recombinant Proteins 

Imiquimod Taro 
pharmaceuticals Cat# 51672-4145-6 

Vehicle (vanicream moisturizing 
cream) 

Vanicream, 
Pharmaceutial 
Specialties, Inc. 

N/A 

Oxazolone Sigma-Aldrich Cat#E0753 

Ethanol Fisher Brand Cat#HC-1000-1GL 

RPMI 1640 UCSF Cell Culture 
Facility Cat#CCFAE001 

FBS UCSF Cell Culture 
Facility Cat#CCFAQ008 

Liberase TL Sigma Cat# 5401020001 

DNAse I Sigma Cat#10104159001 

Collagenase XI Sigma Cat# c9407 

DAPI (4′,6-diamidine-2′-
phenylindole dihydrochloride) Life Technologies Cat#A20502 

Human TruStain FcX Biolegend Cat#422301 

Cell stain buffer Biolegend Cat#420201 

Chromium Single cell 3’ Solution V2 
kit 10x Genomics Cat#220104 

Chromium Single cell 3’ Solution V3 
kit 10x Genomics Cat#2000059 

SPRI beads Beckman Coulter Cat#B23317 

ADT additive primer IDT CCT TGG CAC CCG AGA ATT* C*C 

SI PCR primer IDT AATGATACGGCGACCACCGAGATCTA
CACTCTTTCCCTACACGACGC*T*C 

TruSeq small RNA RPI1 IDT 
CAAGCAGAAGACGGCATACGAGATC
GTGATGTGACTGGAGTTCCTTGGCAC
CCGAGAATTC*C*A 



 

TruSeq small RNA RPI2 IDT 
CAAGCAGAAGACGGCATACGAGATA
CATCGGTGACTGGAGTTCCTTGGCAC
CCGAGAATTC*C*A 

TruSeq small RNA RPI3 IDT 
CAAGCAGAAGACGGCATACGAGATG
CCTAAGTGACTGGAGTTCCTTGGCAC
CCGAGAATTC*C*A 

TruSeq small RNA RPI4 IDT 
CAAGCAGAAGACGGCATACGAGATT
GGTCAGTGACTGGAGTTCCTTGGCAC
CCGAGAATTC*C*A 

TruSeq small RNA RPI5 IDT 
CAAGCAGAAGACGGCATACGAGATC
ACTGTGTGACTGGAGTTCCTTGGCAC
CCGAGAATTC*C*A 

TruSeq small RNA RPI6 IDT 
CAAGCAGAAGACGGCATACGAGATAT
TGGCGTGACTGGAGTTCCTTGGCAC
CCGAGAATTC*C*A 

Kapa library quantitation kit Kapa Biosystems Cat#KK2601 

Deposited Data 

scRNA-seq and CITE-seq data from 
this publication 

 GSE149121 

Experimental Models: Cell Lines 

HEK 293 cells Sigma Cat#85120602-1VL 

Experimental Models: Organisms/Strains 

Mouse: C57BL/6J Jackson Laboratory Cat#: 000664 

Software and Algorithms 

10x Cellranger v3.1.0 10x Genomics 
https://support.10xgenomics.com/single-
cell-gene-
expression/software/downloads/latest? 

Mouse (mm10) reference dataset 10x Genomics 
https://support.10xgenomics.com/single-
cell-gene-
expression/software/downloads/latest? 

Human (GRCh38) and mouse 
(mm10) reference dataset  10x Genomics 

https://support.10xgenomics.com/single-
cell-gene-
expression/software/downloads/latest? 

Seurat v3.1.2 Satija Lab https://satijalab.org/seurat/install.html 

Rstudio v1.2.5033 RStudio, Inc. https://rstudio.com/ 

R v3.6.2  N/A https://cran.r-project.org/mirrors.html 

Slingshot 1.4.0   N/A https://bioconductor.org/packages/releas
e/bioc/html/slingshot.html 

 



Table S1 scRNA-seq dataset metrics (related to Figure 1) 

Samples Estimated Number of Cells Post-filtering # of cells Mean Reads per Cell 
IMQ-C1 3,584 3,339 157,072 
IMQ-C2 2,641 2,280 214,772 
IMQ-C3 4,022 3,626 160,432 
IMQ1 3,426 3,376 138,165 
IMQ2 1,728 1,685 323,814 
IMQ3 2,739 2,411 212,937 

OXA-C1 5,304 4,576 32,558 
OXA-C2 6,875 6,075 26,164 
OXA-C3 7,941 7,378 21,694 
OXA1 8,123 6,923 22,311 
OXA2 6,333 5,160 23,309 
OXA3 6,860 5,257 23,291 



Table S3 Representative marker genes for immune cell populations (related to Figure 1 and Figure 2) 

 Classic 
markers 

% cells in 
cluster 

Adjusted 
p-value  

Extended 
markers 

% cells 
in 
cluster 

Adjusted 
p-value  

Negative 
markers 
 

Macrophage (Mac) Adgre1 
Ms4a7 
C1qc 
Itgam 
Cd68 

41.4 
71.6 
66.3 
47.1 
63.3 

2.9E-112 
1.0E-249 
2.4E-222 
4E-160 
1.5E-58 

Mrc1 
Folr2 
Arg1 
Chil3 

93.9 
28.2 
35.9 
32.6 

2.3E-81 
5.8E-103 
0 
0 

 

Monocytes/Monocyte-
derived Macrophages 

(M/MdM) 

Adgre1 
Itgam 
Fcgr1 
Cd14 
Plac8 
Ly6c2 
Lyz2 

34.8 
61.6 
49.3 
67.9 
67.5 
51.3 
88.4 

4E-273 
1.1E-157 
1.1E-82 
5.4E-16 
0 
7.1E-176 
3.1E-216 

    

Type 1 conventional 
dendritic cells  

(cDC1) 

H2-Ab1 
H2-Eb1 
Clec9a 
Xcr1 
Irf8 
Batf3 

100 
99.9 
36.7 
30.0 
91.8 
46.5 

2.9E-58 
7.5E-59 
0 
7.1E-171 
9.2E-63 
1.3E-40 

    

Type 2 conventional 
dendritic cells 

(cDC2) 

H2-Aa 
H2-Eb1 
Itgax 
Mgl2 
Cd209a 
Cd209d 
Sirpa 
Irf4 

97.9 
97.4 
21.5 
70.6 
58.2 
58.0 
55.1 
28.5 

1.3E-267 
1.7E-271 
6.6E-68 
2.3E-246 
0 
1.7E-239 
0 
0 

    

Mature/Migratory 
Dendritic cells 

(mDC) 

Fscn1 
Cacnb3 
Ccr7 
Cd40 
Tmem123 
Cd274 

80.2 
82.3 
89.5 
60.4 
97.5 
67.8 

0 
0 
5.7E-141 
5.6E-96 
6.7E-29 
1.4E-18 

    

Langerhans Cells 
(LC) 

H2-Eb1 
H2-Ab1 
Cd207 
Epcam 
Cd24a 
Csf1r 

99.9 
99.9 
91.8 
87.4 
70.2 
89.0 

1.2E-53 
6.5E-52 
1E-290 
1.2E-167 
4.3E-23 
1.6E-07 

    

Dendritic Epidermal T 
cells 

(DETC) 

Cd3e 
Cd3g 
Trdc 
Tcrg-C1 
Thy1 

94.6 
98.4 
98.7 
89.8 
79.4 

3.9E-87 
2.1E-202 
0 
0 
3.9E-94 

   Cd4 
Cd8a 

Dermal gamma delta T 
cells 

(dγδT) 

Cd3g 
Trdc 
Tcrg-C1 
Tcrg-C2 
Tcrg-C4 
Thy1 
Cd44 
Cd69 

90.0 
76.5 
43.5 
22.74 
9.31 
71.0 
78.4 
51.3 

2.3E-37 
5.2E-25 
0 
0 
1.2E-22 
1.2E-69 
1.9E-90 
1.5E-40 

5830411
N06Rik 
Cd163l1 

54.6 
36.0 

0 
3.3E-181 

Cd4 
Cd8a 

Heterogeneous T cells 
(Thet) 

Cd3d 
Trac 

60.6 
41.1 

2.6E-13 
5.1E-156     



Trbc1 
Trbc2 
Cd4 
Cd8a 
Foxp3 

41.2 
60.1 
23.5 
8.4 
23.7 

1.7E-147 
9.3E-129 
9.8E-140 
 -- 
1.3E-109 

Type 2 Innate lymphoid 
cells (IlC2) 

Gata3 
Rora 
Il7r 
Il5 
Il13 

73.0 
84.9 
77.4 
12.0 
20.4 

1.5E-252 
2.5E-224 
2.1E-75 
0 
1.3E-225 

   

Cd3d/e/g 
Eomes 
Rorc 
Tbx21 
Cd4 

Natural Killer Cells 
(NK) 

Gzma 
Klra8 
Klra7 
Klrb1c 
Eomes 
Ncr1 
Prf1 

95.7 
50.1 
41.1 
56.2 
50.7 
36.2 
67.7 

0 
0 
5.9E-144 
2E-184 
0 
0 
0 

   

 

Mast cells/basophils 
(M/B) Gata2 

Ms4a2 
71.2 
31.1 

6.6E-258 
0 

Kit 
Mcpt4 
Itgam 
Mcpt8 

15.5 
28.4 
26.7 
51.8 

2.6E-170 
0 
3.8E-49 
0 

 

Neutrophils  
(Neu) 

S100a8 
S100a9 
Csf3r 
Cebpd 
Slc11a1 
Spi1 

97.4 
98.0 
43.2 
11.6 
21.0 
24.1 

3.1E-141 
5.6E-182 
1.4E-25 
1.1E-74 
0 
8E-130 

   

 

 

Note:  

Markers with adjusted p-value in black text are output from table 2 (FindConservedMarkers 
output) and in red text are output from table 2 (FindAllMarkers output). The 
FindConservedMarkers function identifies differentially expressed genes between clusters that 
are conserved across all treatment conditions. For marker genes that are enriched in a given 
cluster but are only upregulated in specific treatment conditions (e.g. Arg1, Chil3 representing 
the increase in tissue-remodelling macrophages with OXA treatment or Mcpt8 in the M/B cluster 
representing the basophil influx in OXA-treated immune cells), these DEGs would be missed by 
FindConservedMarkers.  Thus, we also ran the FindAllMarkers function which performs 
differential expression analysis for all cells in a cluster (irrespective of treatment condition) 
against cells from all other clusters. 



Table S5 Relative percentages of immune cell populations for each treatment condition (related to 
Figure 3) 

Cluster % of all IMQ-C cells % of all IMQ cells % of all OXA-C cells % of all OXA cells 
Mac 1.31 4.90 16.42 33.26 

M/MdM 3.27 18.87 4.79 21.09 
cDC1 1.52 1.65 2.22 1.09 
cDC2 5.62 8.71 17.27 9.88 

LC 2.73 3.07 1.23 0.43 
mDC 0.80 1.98 0.73 1.71 
DETC 47.95 15.45 14.01 1.11 
dγδT 15.55 17.96 17.25 2.25 
Thet 6.68 8.87 7.04 12.03 
ILC2 12.43 11.95 16.31 1.68 
NK 0.64 3.46 0.07 1.54 

M/B 1.19 1.15 2.24 6.61 
Neu 0.30 1.98 0.42 7.32      

     

Thet 
subpopulations 

% of all IMQ-C cells % of all IMQ cells % of all OXA-C cells % of all OXA cells 

CD8+ 0.42 0.77 0.27 2.03 
CD4+ 0.72 1.23 1.17 1.74 
Treg 1.59 1.46 1.37 2.56 
DNT 0.64 0.95 0.66 1.25 

 



Transparent Methods 

Mice treatment 

Mouse experiments were conducted according to protocols approved by the Institutional Animal 

Care Use Committees at UCSF and the San Francisco Veteran’s Affairs Medical Center, following 

the recommendations of the American Association for the Accreditation of Laboratory Animal 

Care. Male C57BL/6J mice were purchased from the Jackson Laboratory and housed in specific 

pathogen-free conditions and treated at 8 weeks of age.    

IMQ-induced skin inflammation was performed as previously described (Gray et al., 2013). Briefly, 

three mice received a daily topical thin coat of commercially available IMQ cream (5%) (Taro 

pharmaceuticals) on both ears for 7 consecutive days. Control mice were treated similarly with 

vehicle cream (Vanicream Moisturizing Skin Cream, Pharmaceutical Specialties, Inc.). Mouse ear 

skin samples were collected 24h after the last application. 

Oxazolone (OXA; Sigma-Aldrich)-induced skin inflammation was performed as previously 

described (Man et al., 2008). OXA and control treated mice were sensitized by applying two 50uL 

treatments of 3% OXA in ethyl alcohol (EtOH) on shaved dorsal skin 24h apart. Nine days after 

sensitization, OXA treated mice were challenged with 10ul of 0.5% OXA in EtOH to the dorsal 

and ventral pinnae of both ears (40uL total per mouse) every other day for 3 challenges, while 

control mice were treated with 100% EtOH. Mouse ear skin samples were collected 24 hours 

following the final challenge.  

Cutaneous immune cell isolation 

Mouse ears were minced and incubated in digestion media A (5 ml of RPMI 1640 supplemented 

with 10% FBS, 100uL of a 12.5 mg/ml stock of Liberase TL (Sigma 5401020001), and 50uL 

0.1mg/ml of DNAse I (Sigma 10104159001)) for IMQ/IMQ-C samples or digestion buffer B (RPMI 

1640 supplemented with 10% FBS, collagenase XI (2 mg/mL; Sigma c9407), and DNAse I (0.1 

mg/mL; Sigma 10104159001) for OXA/OXA-C samples at 37 °C for 90 minutes with 200–250 rpm 

agitation. Cells were dispersed using a tissue dissociator (GentleMACS; Miltenyi Biotec – running 

program C) for 44s. Single cell suspensions were passed through 40-100 μm filters and washed 

with FACS buffer (PBS with 2% FBS). Isolated cutaneous cells were incubated at 4 °C with 

blocking buffer composed of 20 uL mouse CD16/CD32 FcBlock (BD biosciences, #553141) for 



OXA/OXA-C or 10uL of 1mg/ml stock of Fc Block (Bioxcell, #BE0307) for IMQ/IMQ-C diluted into 

1 mL FACS buffer for 15 minutes.  

This was followed by addition of a 1:200 dilution of mouse CD45 antibody conjugated to APC-

Cy7 (BD Biosciences, 30F-11) for IMQ single cell suspensions and a 1:40 dilution of mouse CD45 

antibody conjugated to APC fluorophore (BD Biosciences, #17-0451-82) for OXA single cell 

suspensions for 30 minutes. Live/dead exclusion was performed using 0.1 mg/mL DAPI (4′,6-

diamidino-2′-phenylindole dihydrochloride) and CD45 positive cells were collected by flow 

cytometry cell sorting using a MoFlo Cell Sorter (Beckman Coulter) or a SH800S Cell Sorter (Sony 

Biotechnology) for IMQ and OXA samples, respectively. IMQ sorted cells were then centrifuged 

and resuspended in PBS with 0.04% FBS. OXA/OXA-C single cell suspensions were spiked with 

5% HEK 293 cells and incubated with blocking solution for CITE-seq (93 uL cell stain buffer 

(Biolegend, #420201), 5 uL Human TruStain FcX (Biolegend, Cat#422301), and 2 uL Mouse Fc 

block (BD biosciences, #553141)  at 4 °C for 10 minutes, and then with 0.5 ug/1 million cells of 

TotalSeq™-A antibodies (Biolegend) for 30 minutes at 4 °C. OXA/OXA-C cells were then washed 

with cell staining buffer three times and resuspended in 10ul cell staining buffer (Biolegend, 

#420201). 

Single cell RNA and Cellular Indexing of Transcriptomes and Epitopes by Sequencing 

(scRNA- and CITE-seq) 

Single cell Gel-bead-in-Emulsions and mRNA libraries were generated by the Genomics Core 

Facility, UCSF Institute for Human Genetics per manufacturer’s protocol (Chromium Single cell 3’ 

Solution V2 kit for IMQ samples and V3 kit for OXA samples; 10x Genomics, Pleasanton, CA) 

except for the addition of 1 µl ADT(antibody derived tag) additive primer at the cDNA amplification 

step for OXA samples. For OXA samples, CITE-seq libraries were prepared according to 

TotalSeq-A Antibodies with 10x Single Cell 3’ Reagent Kit v3 3.1 manufacturer’s protocol 

(Biolegend) with slight modifications. In brief, ADTs (cDNA amplification supernatant) were 

purified with 2 rounds of 2X SPRI beads and then amplified for fourteen cycles using HiFi HotStart 

ReadyMix (2X) (KAPA, Roche Sequencing & Life Science, Wilmington, MA) and 2.5 uM of oligos 

corresponding to SI PCR primer and Truseq Small RNA RPI1-6 primers. After amplification, 

libraries were purified by 1.2X SPRI bead cleanup, and then QC and quantification performed 

with Agilent 2100 Tape station and Kapa library quantitation kit prior to sequencing. mRNA and 

ADT libraries were sequenced using an Illumina Novaseq 6000 (IMQ/IMQ-C) or HiSeq 4000 

(OXA/OXA-C) per manufacturer's instructions. Sequencing parameters for the Novaseq 6000 



were read 1, 26 cycles; i7 index, 8 cycles; i5 index, 0 cycles; and read 2, 98 cycles, while Paired 

end 150 base pair sequencing was used on the HiSeq 4000.  

Single-cell data pre-processing and QC 

FASTQ files were initially processed using Cellranger version 3.1.0 to perform sample de-

multiplexing, barcode processing, single-cell gene UMI-counting, and feature barcode (CITE-Seq) 

read-matching. IMQ/IMQ-C transcripts were mapped to the mm10 reference genome while 

OXA/OXA-C transcripts were mapped to the mm10 + GRCh38 reference genome (as OXA/OXA-

C samples contained spike-in human cells to assess for CITE-seq background staining levels). 

Data from ambient RNA was trimmed based on an UMI-barcode saturation curve. Post-quality 

control, 41,436 cells were obtained from the OXA experiment (21,316 cells from OXA-treated 

mice and 20,120 cells from OXA-C mice), and 17,870 cells were obtained from the Imiquimod 

experiment (7,623 cells from IMQ-stimulated mice and 10,247 cells from IMQ-C) (Table S1).  

Data were further filtered using the Seurat package (version 3.1.2) in R (version 3.6.1). Cells were 

filtered to include only cells displaying > 300 genes/cell and < 4000 genes/cell, and no more than 

20% mitochondrial gene expression. Post-filtration we obtained 52,086 cells in total, 35,369 were 

obtained from the OXA experiment (17,340 cells from OXA-treated mice and 18,029 cells from 

OXA-C mice), and 16,717 cells were obtained from the IMQ experiment (7,427 cells from IMQ-

stimulated mice and 9,245 cells from controls) (Table S1). 

Seurat integration with batch correction 

In our analysis, we used Seurat v3.1.2 in Rstudio to perform batch-effect correction. Log-

normalization was first used to normalize datasets with NormalizeData function and 3000 highly 

variable genes were defined within the twelve mouse samples with the Seurat 

FindVariableFeatures function. We also identified unsupervised integration  “anchors” for similar 

cell states using shared nearest neighbor graphs (FindIntegrationAnchors), and then integrated 

(IntegrateData function) our 4 different treatment datasets using these anchors. The output was 

then transformed into principal component analysis (PCA) space for further evaluation and 

visualization. 

ScRNA-seq clustering 

To identify cell clusters, PCA was first performed on the list of highly variable genes. Significant 

PCs were identified  using an Elbowplot and the first 30 PCs were used for clustering with the 



Louvain modularity-based community detection algorithm (Stuart et al., 2019) to generate cell 

clusters (FindClusters function, 21 clusters with resolution = 0.35). To present high dimensional 

data in two-dimensional space, we performed t-SNE analysis using the results of PCA with 

significant PCs as input. Cluster-specific marker genes were found using the Seurat functions 

FindConservedMarkers and FindAllMarkers using the Model-based Analysis of Single-cell 

Transcriptomics (MAST) test (Finak et al., 2015; Luecken and Theis, 2019). Cell types for each 

cluster were determined using marker genes collated from the literature. This analysis identified 

21 total clusters (Figure S2), for which we excluded non-immune clusters (cluster 7, 12, 18), 

clusters enriched for cell cycle genes (cluster 11, 13, 20), and two other small CD45+ groupings 

(cluster 8, 19) with indeterminate identity and/or obvious heterogeneity.  

Identification of treatment-induced differentially expressed genes  

Treatment-induced (OXA vs OXA-C and IMQ vs IMQ-C) differentially expressed genes (DEGs) 

were identified for each cluster using the FindMarkers function from the Seurat R package using 

MAST. Genes were considered differentially expressed if they had an average log fold-change of 

more than 0.25 and the p.adj was lower than 0.05. Treatment-induced differentially expressed 

genes were displayed on a scatterplot using the R package “ggplot2” for DEGs (p.adj< 0.05) from 

each cluster. 

To identify putative T cell subtypes, first a single-cell heatmap of normalized RNA expression 

count values was constructed within the Thet cluster and sequentially sorted by key T cell subtype 

marker genes, Foxp3, Cd4, Cd8a and Ctla4 (Figure S2A). Populations of cells were then defined 

using logical operators to include and exclude specific genes for specific cell types based on 

known flow cytometry gating strategies. For example, within the Thet cluster, Cd8+ T cells were 

transcriptionally gated by the following criteria applied to the normalized count matrix: ((Cd3d >0 

| Cd3e >0 | Cd3g >0) & (Cd4 == 0) & (Foxp3 == 0) & (Cd8a > 0 | Cd8b1 >0) (Table S4). Applying 

the “OR” operator to genes with multiple subunits or chains (Cd3, Cd8) dramatically reduced the 

effect of drop-out with this gating approach. These individual T cell subtypes were then analyzed 

for treatment induced DEGs.  

To construct expression heatmaps, relationships among genes were calculated across 

treatments as pairwise Pearson correlations.  The resulting correlation matrix was converted to a 

dissimilarity matrix and clustered hierarchically by complete linkage clustering implemented by 

the R package hclust. 



 

Analysis of ADT count data: batch correction 

With the method of Cellular Indexing of Transcriptomes and Epitopes by Sequencing (CITE-seq), 

simultaneously measuring the mRNAs and a multitude of cell-surface proteins for single cells has 

become possible(Stoeckius et al., 2017). Sequencing antibody-derived tags (ADTs) allowed us 

to quantitatively study the surface protein expression on single cells. For each experiment 

sampling 𝑁 cells, we constructed a matrix of ADT counts, 

[

𝑐1,1 𝑐1,2 ⋯ 𝑐1,𝑚
𝑐2,1 𝑐2,2 ⋯ 𝑐2,𝑚
⋮ ⋮ ⋮

𝑐𝑁,1 𝑐𝑁,2 ⋯ 𝑐𝑁,𝑚

], 

with 𝑐𝑖,𝑗 denoting the count of the 𝑗-th antibody bound to the 𝑖-th cell. The sum 𝑠𝑖 of the 𝑖-th row was 

the total number of ADTs measured from the 𝑖-th cell, and dividing each row by its row sum thus 

yielded a probability vector of antigens detected on the cell surface. In CITE-seq, as in other 

single-cell techniques, sequencing depths would differ from cell to cell, and this variation is partly 

reflected in the range of different 𝑠𝑖’s. Moreover, some of the ADTs measured might come from 

nonspecific background binding, and calling true signals of antigen presence on a cell surface 

requires modeling the background distribution of ADT counts due to nonspecific binding. Similar 

to the published approach (Stoeckius et al., 2017), we used a low-level ‘spike-in’ control from 

another species to estimate this background distribution. More precisely, a small percentage 

(∼5%) of human HEK293 cells was added to each sample of mouse skin cells. The ADT 

sequencing of spiked-in cells from our six samples showed some systematic differences that also 

persisted in the mouse cells. To remove these batch effects, we transformed the probability 

vectors of antigens described above by standardizing the ADT distributions of spiked-in cells 

across the six samples. Our standardization approach utilized differential geometry on the 

probability manifold of antigen frequencies as follows: 

Taking data from the ADT assay, we represent a cell by a point on the (𝑚 − 1)-dimensional simplex  

∑𝑥𝑗

𝑚

𝑗=1

= 1, 𝑥𝑗 ≥ 0, 



where 𝑥𝑗 is the fraction of the 𝑗-th surface protein measured, calculated as 𝑐𝑖,𝑗/𝑠𝑖 for the 𝑖-th cell as 

previously described. The open probability simplex (i.e., the simplex minus its boundary), 

equipped with the coordinates (𝑥1, 𝑥2, ..., 𝑥𝑚) and the Fisher-Rao metric 𝑔𝑗𝑗ʹ = 𝛿𝑗𝑗ʹ/𝑥𝑗 , forms a 

Riemannian manifold. It is well known (Amari and Nagaoka, 2007) that the open simplex can be 

isometrically mapped to the positive orthant of an (𝑚 − 1)-dimensional hypersphere of radius 2 via the 

diffeomorphism  

𝑦𝑗 = 2√𝑥𝑗 , 𝑗 = 1, . . . , 𝑚, 

where the metric on the hypersphere is induced by the Euclidean metric on the ambient flat space. 

Principal component analysis (PCA) showed that the point clouds of spiked-in human cells were 

separated into batch clusters on the probability simplex, suggesting systematic differences in 

measurement among the samples. Similar patterns of batch effect were also observed for mouse 

cells. To standardize the data on probability simplex across samples, we first calculated the 

Riemannian mean (Riemannian center of mass) of the spiked-in human cells within each sample, 

using an iterative algorithm on the hypersphere (Åström et al., 2017). For each sample, we 

computed the geodesic path connecting its Riemannian mean to a fixed reference point and then 

“parallel transported” the point cloud of both human and mouse cells along the geodesic path 

towards the reference point. In our data, this reference point was computed as the Riemannian 

mean of pooled data from two samples of OXA-C and one sample of OXA that were most similar 

among the six samples. This standardization preserves the Fisher-Rao distance between cells 

and their respective Riemannian mean during the transport, thereby preserving the relative spatial 

distribution of point clouds on the probability simplex for each sample. Finally, we obtained the 

adjusted ADT counts by multiplying the standardized probabilities by the total number of ADT 

counts in each cell and rounding the products to integers. 

Analysis of ADT count data: modeling nonspecific binding and calling signals 

We modeled the background distribution of nonspecific ADTs using a zero-inflated negative 

binomial (ZINB) model for each surface protein separately, with the total ADT count 𝑠𝑖 entering as 

the size factor for the 𝑖-th cell accounting for the differences in sequencing depths, and 𝑐𝑖𝑗 being 

the geodesic-corrected count number for the 𝑗-th surface protein: 

𝑃(𝑐𝑖𝑗 ∣ 𝑠𝑖, 𝜋𝑗, 𝛼𝑗, 𝛽𝑗) = 𝜋𝑗 𝛿[𝑐𝑖𝑗] + (1 − 𝜋𝑗) NB(𝑐𝑖𝑗 ;  𝜇𝑖𝑗 = 𝑠𝑖  𝛼𝑗/𝛽𝑗, 𝛼𝑗)

= 𝜋𝑗 𝛿[𝑐𝑖𝑗] + (1 − 𝜋𝑗)  ∫ d
∞

0

𝜆𝑖𝑗 Γ (𝜆𝑖𝑗 ;  𝛼𝑗, 𝛽𝑗)  Po(𝑐𝑖𝑗 ;  𝜆𝑖𝑗 𝑠𝑖),
 



where 𝜋𝑗∈[0,1] is the parameter for zero inflation, and the pair (𝛼𝑗, 𝛽𝑗) parameterizes the negative 

binomial (NB) component, which could be thought of as an infinite mixture of Poisson distributions 

Po with mean 𝜆𝑖𝑗 𝑠𝑖, with the mixing distribution being the Gamma distribution Γ parametrized by 𝛼𝑗 

and 𝛽𝑗 (see, for example, (Zhou et al., 2012)). 

We fitted these ZINB null models on the combined human spiked-in cells after batch correction, 

obtaining a set of parameters {𝜋𝑗, 𝛼𝑗, 𝛽𝑗} for each antigen. For each mouse cell, we then calculated 

the 𝑝-value for every corrected ADT count using the ZINB null models. We used the Benjamini–

Hochberg (BH) procedure to adjust for multiple hypothesis testing and computed the false 

discovery rate (FDR) (Benjamini and Hochberg, 1995) using the function p.adjust from the ‘stats’ 

package in R(R Core Team, 2013). We chose the FDR threshold of 𝑞=0.01 to call the presence 

of an antigen(Zhang et al., 2020). 

Flow cytometry analysis 

Flow cytometry analysis was performed on ear skin single cell suspensions from imiquimod or 

vanicream control treated mice. The single cell tissue suspension was stimulated ex vivo for 4 

hours at 37℃ in DMEM supplemented with 10% FCS, 2 mM L-glutamine, 1 mm sodium pyruvate, 

20 nM phorbol 12-myristate 13-acetate (PMA; Sigma), 1 uM ionomycin (Sigma) and 5 ug/ml 

brefeldin A (Sigma). For flow cytometry, cells were stained with eFluor-780 fixable viability dye 

(Invitrogen) and the following antibodies to cell surface antigens were used (anti-CD11b (1:200, 

M1/70, Biolegend), anti-CD11c (1:100, HL3, Thermofisher), anti-CD3epsilon (1:50, 145-2C11, 

Biolegend), anti-CD301b (1:25, URA-1, Biolegend), anti-CD4 (1:100, GK1.5, Biolegend), anti-

CD45 (1:100, 30-F11, Biolegend), anti-CD8α (1:100, 53-6.7, Biolegend), anti-F4/80 (1:25, BM8, 

Biolegend), anti-γδTCR (1:100, GL3, Biolegend), and anti-I-A/I-E (1:100, M5/114, BD 

bioscience)), then fixed, permeabilized, and stained for intracellular antigens with anti-CCL5 

(1:100, 2E9/CCL5, Biolegend), anti-IL-17A (1:50, eBio17B7, eBioscience), anti-IL-22 (1:100, 

Poly5164, Biolegend), and anti-Foxp3 (1:50, FJK-16s, eBioscience). Data were acquired on an 

LSRFortessa Flow Cytometer (BD) and analyzed using FlowJo 10.0 software (Tree Star). 

Slingshot for trajectory and pseudotime 

In order to assess for a common tissue migration trajectory in the mast/basophils cluster, we 

subsetted the mast/basophil cluster and utilized the Slingshot bioconductor package. After 

retaining robustly expressed genes with a minimum cluster size > 10 cells (geneFilter), we 

employed full quantile normalization followed by dimensionality reduction with PCA. After the 



identification of clusters using k-means by k  = 2 to avoid spurious branching events, we inferred 

the lineage with points colored by pseudotime. Genes associated with the course of development 

were applied to a general additive model to regress each gene on the pseudotime variable. The 

top 100 genes were chosen based on p-val and their expression over development was visualized 

via the plotheatmap function. 

DiVNCE global transcriptional response analysis 

The top 50 nearest neighbors to each treatment cell were calculated based on the Euclidean 

distance of the scaled and centered harmonized expression data generated by the integration 

procedure in Seurat (Stuart et al., 2019). If any control cell was found in this set of neighbors, the 

DiVNCE profile is the difference between the non-harmonized expression of 1,000 variable genes 

from the treatment cell and the nearest control cell. The 1,000 variable genes were selected based 

on dispersion of log-normalized counts per ten thousand across both the OXA and IMQ datasets. 

Expression values used to calculate the DiVNCE profiles are log-normalized counts per ten 

thousand that are then centered and scaled across all cells in both OXA and IMQ datasets. 

DiVNCE clusters were calculated separately for IMQ and OXA using the top 20 principal 

components of the DiVNCE profile data and the Louvain algorithm with resolution = 0.3. Adjusted 

rand index was calculated using the CrossClustering R package (Tellaroli et al., 2016). 
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