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Don’t teach me 2 + 2 equals 4:
Knowledge of arithmetic operations hinders equation learning
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University of Wisconsin-Madison
Department of Psychology, 1202 W. Johnson Street
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Abstract

This study investigated whether children’s knowledge of
arithmetic operations hinders their ability to solve novel
equations after instruction. Second- and third-grade
children completed a timed arithmetic pretest as a means
for assessing their proficiency with arithmetic
operations. Next, they received lessons on the principle
of mathematical equivalence either in a context designed
to activate their knowledge of arithmetic operations (e.g.,
15 + 13 = 28), or in a context designed to not activate
their knowledge of arithmetic operations (e.g., 28 = 28).
Then, children completed an equation-solving posttest
(e.g.,3+9+5=06+_). After the posttest, children
switched lesson contexts and completed the posttest
again. Children solved more equations incorrectly after
receiving lessons in the operational context.
Additionally, the operational context led children who
were most proficient with arithmetic operations to solve
more equations using the typical addition strategy of
adding up all the numbers. Results highlight that the
activation of existing knowledge can interfere with the
acquisition of new information.

Some domains of knowledge are particularly difficult
for people to learn, even after significant amounts of
training or instruction. There are many examples of this
in our formal education system, including reading,
mathematics, science, and foreign language. Over the
past several years, a number of scientists (e.g., Flege,
Yeni Komshian, & Liu, 1999; Kuhl, 2000; McNeil &
Alibali, 2002; Schauble, 1990; Zevin & Seidenberg,
2002) have begun to consider how existing knowledge
may contribute to these difficulties. The general
theoretical view is that later learning is strongly
constrained by early learning (cf. Tolman, 1948). If this
is true, it obviously has implications in domains, like
second language learning, where people learn one thing
for many years (native language) before switching
gears and learning something new, but closely related
(second language).

The domain of mathematics is another domain in
which people learn one topic for many years before
switching gears and learning a new, but closely related,
topic. Specifically, in most American mathematics
classrooms, children learn arithmetic operations for
many years (i.e., grades K-6) before eventually
reaching algebra and being introduced formally to
equations and the principle of mathematical
equivalence. Mathematical equivalence is the principle
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that the two sides of an equation represent the same
quantity.

Elementary school children (ages 7-11) have
significant difficulties with equations and the principle
of mathematical equivalence (Carpenter & Levi, 2000;
Kieran, 1981; Baroody & Ginsburg, 1983). Their
difficulties are most apparent when they are presented
with equations that have operations on both sides of the
equal sign (e.g., 3 +4 +5=3+ ). In the absence of
instruction, approximately 80% of second- through
fifth-grade children solve these types of equations
incorrectly (Alibali & Goldin-Meadow, 1993; Alibali,
1999; McNeil & Alibali, 2000; NCISLA, 2000; Perry,
Church, & Goldin-Meadow, 1988; Rittle-Johnson &
Alibali, 1999).

Although there are many possible accounts of
children’s difficulties, including immature working
memory function (Adams & Hitch, 1997; Gathercole &
Pickering, 2000) or insufficient knowledge of necessary
prerequisite skills (Haverty, 1999), the change-
resistance account suggests that children’s equation-
learning difficulties are due, at least in part, to
children’s existing knowledge (McNeil, 2004). More
specifically, the account posits that children construct
knowledge on the basis of their early experiences with
arithmetic operations and that this knowledge
contributes to children’s difficulties with more complex
equations.

There are at least three knowledge structures that
children learn from their early experiences with
arithmetic operations that may ultimately hinder the
ability to learn complex equations (see McNeil &
Alibali, 2002). First, children may learn an operational
strategy for solving math problems—perform all the
given operations on all the given numbers. For
example, in a typical addition problem like 3 +4 + 5 +
3 =__, aproblem solver simply needs to add up all the
numbers and put the total in the blank. Second, children
may learn an operational perceptual pattern related to
the structure of math problems—the traditional
“operations = answer” problem structure. For example,
in the typical addition problem above, all of the
numbers and operations are on the left hand side of the
equation, and the answer blank is on the right side of
the equation (directly following the equal sign). Third,
children may learn an operational concept of the equal
sign—the equal sign means “the total.” Although these
three operational patterns facilitate fast and accurate



performance on typical addition problems, they do not
map onto more complex equations. For example, when
presented with the equation “3 + 4 + 5=3+ ” a
problem solver cannot just add up all the numbers. He
or she cannot assume that the equation will conform to
the traditional “operations = answer” problem structure.
And, he or she needs to understand that the equal sign
denotes an equivalence relationship between the two
sides of the equation in order to generate a correct
solution.

According to the change-resistance account, children
learn these operational patterns from their experience
with arithmetic operations. They store these operational
patterns in memory. Then, when they are presented
with a novel equation, their representations of the
operational patterns are activated. Once activated, the
representations guide attention and can hinder the
ability to encode and interpret novel equations that do
not directly map onto the patterns (cf. Bruner, 1957;
Luchins, 1942; Knoblich, Ohlsson, & Raney, 2001).

In accordance with the change-resistance account,
studies have shown that children do, indeed, rely on
their knowledge of arithmetic operations when
presented with complex equations. For example, when
asked to solve the equation “3 +4 +5=3+ ” most
students use their knowledge of the “perform all given
operations on all given numbers” strategy and just add
up all the numbers and put 15 in the blank (McNeil &
Alibali, 2000, 2002, in press b). When asked to
reconstruct the equation “3 + 4 + 5 =3 + ” after
viewing it briefly, many students use their knowledge
of the traditional “operations answer” problem
structure and write “3 +4 + 5+ 3 = (McNeil &
Alibali, 2002, in press b). When asked to define the
equal sign, many students use their knowledge of
operational symbols (e.g., +) and say that it means, “the
total” (McNeil & Alibali, in press a). Thus, children
rely on their knowledge of the operational patterns
when presented with complex equations.

McNeil and Alibali (2002) provided additional
evidence for the change-resistance account by showing
that children’s reliance on the operational patterns can
hinder the ability to learn about equations. In the study,
they documented a significant negative linear
relationship between children’s reliance on the
operational patterns on a pretest and the generation of
correct equation-solving strategies after a brief lesson
on equations. Children who were most reliant on the
operational patterns at pretest were the least likely to
generate correct equation-solving strategies following a
lesson, and children who did not rely on the operational
patterns at pretest were the most likely to generate
correct equation-solving strategies following a lesson.

Although the results of McNeil and Alibali (2002)
support the change-resistance account, they provide
only correlational evidence about the relationship
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between children’s knowledge of arithmetic operations
and equation-learning difficulties. The change-
resistance account argues that the activation of
children’s knowledge of arithmetic operations causes
equation-learning difficulties. Thus, in the present
study, the activation of children’s knowledge of
arithmetic operations is manipulated. Children are
given lessons about the principle of math equivalence
either in a context designed to activate their knowledge
of arithmetic operations (operational context), or in a
context designed to not activate their knowledge of
arithmetic operations (non-operational context). If the
activation of knowledge of arithmetic operations
contributes to difficulties with equations, then the
operational lesson context should be inferior to the non-
operational lesson context. That is, after receiving
lessons in the operational context, children should solve
more equations incorrectly, and they should solve more
equations with the strategy that is the most often used in
the absence of instruction (i.e., they should rely on their
knowledge of the operational strategy and just add up
all the numbers in the equations).

Additionally, if knowledge of arithmetic operations
contributes to difficulties with equation learning, then
children who are most proficient with arithmetic
operations should be least likely to benefit from the
lessons. This, of course, is assuming that children who
are most proficient with arithmetic operations have the
strongest representations of the operational patterns.
Children who are proficient with arithmetic operations
should solve more equations incorrectly, and they
should solve more equations by just adding up all the
numbers in the equations.

Continuing this rationale, the combination of the
operational lesson context and proficiency with
arithmetic operations should be a “double whammy.”
That is, proficient children who have just received
lessons in the operational context should solve more
equations incorrectly, and they should solve more
equations by just adding up all the numbers in the
equations.

Method

Participants

Ninety-three second- and third-grade children from a
public elementary school in Youngsville, North
Carolina participated. Eleven children were excluded
from the analysis because they were absent on one or
more days of the study. Two additional children were
excluded because their performance on the equations
was three standard deviations away from the mean. The
final sample contained eighty children (38 boys and 42
girls).



Measures

Timed Arithmetic Pretest The timed arithmetic
pretest was used to assess children’s proficiency with
arithmetic operations. Participants were given 30
seconds to solve as many arithmetic problems (out of
20) as possible. The problems involved only addition
and subtraction (no multiplication or division).

Equation-solving Posttest Participants were given
unlimited time to solve twelve equations with
operations on both sides of the equal sign (e.g., 5 +4 +
7=5+_ ,6+4+8=_+3).

Procedure

The study was conducted over a two-week period in
children’s regular mathematics classrooms. Children’s
mathematics teachers collected the measures and
administered the lessons in the classroom setting.
Children first completed the timed arithmetic pretest.
Then, teachers taught a set of lessons about the
principle of mathematical equivalence. The following is
an excerpt from the spoken lesson script: “The correct
answer is 28! That’s because whatever is on one side of
the equal sign has to be the same amount as [teachers
were told to stress words in bold] whatever is on the
other side of the equal sign.”

Because the lessons were scripted, all children
received the same spoken lessons. Children were
randomly assigned to lesson contexts through the use of
individual booklets. The booklets enabled children to
follow along with the spoken lessons. Children received
lessons in one of two contexts. In the operational
context, booklets contained problems designed to
activate children’s knowledge of arithmetic operations
(e.g., 15 + 13 = 28). In the non-operational context,
booklets contained problems designed to nof activate
children’s knowledge of arithmetic operations (e.g., 28
28). Children received two days of lessons
(approximately 15 minutes per day) before they
completed the first equation-solving posttest. After the
first posttest, children received lessons in the other
context (e.g., children who had already received lessons
in the operational context now received lessons in the
non-operational context). Finally, children once again
completed the equation-solving posttest.

Coding

Proficiency with Arithmetic Operations Children
were categorized as proficient on the timed arithmetic
test if they both solved three (median) or more
arithmetic problems correctly, and solved one (median)
or fewer arithmetic problems incorrectly. This coding
system led to approximately equal numbers in the
proficient (N = 37) and not proficient (N = 43) groups.
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Equation-solving Performance Children’s strategies
were coded using a system developed by Perry, Church
and Goldin-Meadow (1988). Strategies were assigned
based on the solutions that children wrote in the answer
blank. Examples are presented in Table 1. Solutions
were coded as reflecting a particular strategy as long as
they were within =1 of the solution that would be
achieved with that particular strategy. Again, we were
especially interested in children’s use of the add-all
strategy (see Table 1) because it is the most commonly
used strategy in the absence of instruction.

Table 1: Example solutions and corresponding
strategy codes for the given equation.

5+4+7=5+__
Solution Strategy
11 Correct
21 Add all
16 Add to equal sign
4 Carry
1 Idiosyncratic

Results

Number of Incorrect Solutions

Overall, performance on the equation-solving posttest
was abysmal. Children solved 11.27 (SD = 0.98)
equations incorrectly (out of 12). We performed a 2
(proficiency with arithmetic operations: proficient or
not proficient) x 2 (lesson context: operational context
or non-operational context) ANOVA with repeated
measures on lesson context and number incorrect on the
equation-solving posttest (out of 12) as the dependent
measure. As expected, the analysis revealed a
significant main effect of lesson context, F(1, 78) =
5.24, p = .025. Children solved more equations
incorrectly after receiving lessons in the operational
context (M = 11.44, SD = 0.90) than after receiving
lessons in the non-operational context (M = 11.11, SD
= 1.03). Neither the main effect of proficiency nor the
interaction of proficiency and lesson context was
significant. Although, as mentioned, children’s
performance was very poor overall, so there was not a
great deal of variability on the dependent measure to
predict.

Number of Add-all Solutions

Consistent with prior work, the add-all strategy was the
most popular strategy. On average, children solved 5.29
(SD = 3.67) equations (out of 12) by just adding up all
the numbers in the equations. We performed a 2



(proficiency with arithmetic operations: proficient or
not proficient) x 2 (lesson context: operational context
or non-operational context) ANOVA with repeated
measures on lesson context and number of equations
solved with the add-all strategy (out of 12) as the
dependent measure. As expected, the analysis revealed
a significant interaction of proficiency and lesson
context, F(1, 78) = 4.90, p = .03. As shown in Figure 1,
the children who solved the most equations using the
add-all strategy were the ones who were proficient with
arithmetic operations and had just received lessons in
the operational context (M = 6.11, SD = 3.60).
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Figure 1: Mean number of equations solved with the
add-all strategy (out of 12) as a function of arithmetic
proficiency and lesson context. Error bars represent the
pooled standard error.

Discussion

Consistent with the change-resistance account of
children’s equation-learning difficulties, results of the
present study suggest that children’s knowledge of
arithmetic operations hinders their ability to learn about
more complex equations. Children solved the fewest
equations correctly after receiving lessons in contexts
designed to activate their knowledge of arithmetic
operations. Moreover, children who were most
proficient with arithmetic operations and had just
received lessons in the operational context solved the
most problems by just adding up all the numbers, which
is the most common strategy used by children who have
not received any instruction at all.

Results suggest that it is vital to consider the state of
children’s existing knowledge when theorizing about
children’s learning difficulties. Thus, prevailing
theories that focus on children’s immature working
memory system or their lack of prerequisite knowledge
are missing a layer of complexity. More generally,
results contribute to a growing body of work that
suggests that knowledge can be detrimental to learning
in some cases (Adelson, 1984; Flege et al., 1999; Kuhl,
2000; Schauble, 1990). Because knowledge typically
facilitates learning, cases like these in which knowledge
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hinders learning can provide a unique window onto
how the mind works (cf. Luchins, 1942).

Although the present study suggests that knowledge
of arithmetic operations hinders equation learning. The
results are not definitive. Performance on the equations
with operations on both sides of the equal sign was
abysmal, even after four, fifteen-minute classroom-
based lessons. Thus, most children in the study had
difficulties learning from the lessons on the principle of
math equivalence. However, this is not surprising when
viewed from the perspective of the change-resistance
account. Children in the study are learning math on a
day-to-day basis from a traditional, skills-based
mathematics curricula. Thus, they are deeply
entrenched in the operational patterns that are predicted
to hinder learning. It is not that surprising that the brief
lessons in the present study were not able to override
this deeply entrenched way of thinking.

In terms of educational implications, results conflict
with both intuition, and traditional mathematics
practices. Intuition suggests that the children who are
best at one topic in math should be best at another topic
in math. And indeed, most schools assign, or track,
children to algebra based on their performance in
elementary school with arithmetic operations. This
policy certainly makes sense if children need to be
highly proficient with arithmetic operations before they
are able to learn algebraic equations. However, it makes
less sense if arithmetic proficiency hinders equation
learning. Thus, our schools may be holding back
children who would thrive in an early algebra course.

Equally important, American schools often
implement spiral curricula in which old information is
reintroduced year after year. The idea is that old
information provides a framework within which new
material can be introduced. In relation to mathematics
instruction, this means that basic arithmetic operations
are reintroduced year after year. Indeed, data from the
Third International Mathematics and Science Study
(Beaton et al., 1996) show that, unlike students from
higher-achieving countries, students in American
mathematics classrooms spend substantial amounts of
class time practicing and reviewing basic arithmetic
skills throughout the elementary and middle school
years, when they should be concentrating on more
advanced topics.

This type of spiral, review-based instruction has
received some support from the scientific community.
For example, Nathan et al. (2004) argue that the most
effective instructions are the ones that “bridge” from
children’s existing knowledge to the new material.
However, results of the present study suggest that
teachers need to be careful about what they are trying to
build bridges between. In some case, to-be-learned
information does not map well onto existing
knowledge, and in these cases, bridging might not be
the most effective instructional strategy.



Instead of reintroducing basic arithmetic facts year
after year, mathematics educators may wish to develop
creative ways to integrate more algebraic ways of
thinking into the math curricula as early as possible.
One recommended strategy for integrating algebraic
thinking into the earlier grades is to focus on equality
and the equal sign (e.g., Carpenter, Franke, & Levi,
2003). For example, instead of simply reviewing and
practicing basic arithmetic “facts” such as “3 + 4 = 7”
year after year, young students can learn “3 + 4 = 7,” “7
=3+4”“3+4=5+2"and “7 = 7.” Instructional
strategies such as this may prevent the entrenchment of
operational patterns and facilitate the notoriously
difficult transition from arithmetic to algebra.
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