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Abstract

A tagging algorithm to identify jets that are significantly displaced from the proton-
proton (pp) collision region in the CMS detector at the LHC is presented. Displaced
jets can arise from the decays of long-lived particles (LLPs), which are predicted by
several theoretical extensions of the standard model. The tagger is a multiclass classi-
fier based on a deep neural network, which is parameterised according to the proper
decay length cτ0 of the LLP. A novel scheme is defined to reliably label jets from
LLP decays for supervised learning. Samples of pp collision data, recorded by the
CMS detector at a centre-of-mass energy of 13 TeV, and simulated events are used
to train the neural network. Domain adaptation by backward propagation is per-
formed to improve the simulation modelling of the jet class probability distributions
observed in pp collision data. The potential performance of the tagger is demon-
strated with a search for long-lived gluinos, a manifestation of split supersymmetric
models. The tagger provides a rejection factor of 10 000 for jets from standard model
processes, while maintaining an LLP jet tagging efficiency of 30–80% for gluinos with
1 mm ≤ cτ0 ≤ 10 m. The expected coverage of the parameter space for split super-
symmetry is presented.
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1 Introduction
Machine-learned algorithms are routinely deployed to perform event reconstruction, particle
identification, event classification, and other tasks [1] when analysing data samples recorded
by experiments at the CERN LHC. Machine learning techniques have been widely adopted to
classify a jet, a collimated spray of particles that originate from the hadronisation of a parton,
according to the underlying flavour of the initial parton [2]. For example, jets that originate
from the hadronisation of b quarks (b jets) exhibit characteristic experimental signatures that
can be exploited by dedicated algorithms to identify b jets, in a procedure known as b tagging.
The b hadrons, with proper lifetimes of O(10−12 s), typically travel distances of approximately
1–10 mm, depending on their momenta, before decaying. As a result, charged particle tracks
in jets can originate from one or more common vertices that may be displaced with respect
to the proton-proton (pp) collision region. Furthermore, the impact parameter of each track,
defined as the spatial distance between the originating pp collision and the track at its point
of closest approach, can have a significant nonzero value. The ATLAS [3] and CMS [4] Col-
laborations have developed numerous algorithms based on boosted decision trees or neural
networks to identify b jets [5, 6] using the aforementioned and other high-level engineered
features. The latest b tagging algorithm developed by the CMS Collaboration is the DeepJet
tagger [7, 8], which is a multiclass classifier that discriminates between jets originating from
the hadronisation of heavy- (b or c) or light-flavour (u, d, and s) quarks or gluons (g) with
unprecedented performance. The algorithm is based on a deep neural network (DNN) that
exploits particle-level information, as well as jet-level engineered features used in preceding b
tagging algorithms [5, 6].

Various theoretical extensions of the standard model (SM) [9–15] predict the existence of long-
lived particles (LLPs) with a proper lifetime τ0 that can be very different from those of known
SM particles. Consequently, the production and decay of LLPs at the LHC could give rise to
atypical experimental signatures. These possibilities have led to the development of a broad
search programme at the LHC, based around LLP simplified models [16, 17] and novel recon-
struction techniques. A comprehensive review of LLP searches at the LHC can be found in
Ref. [18].

In this paper, we present the novel application of a DNN to tag (i.e. identify) a jet originating
from the decay of an LLP (LLP jet), both in the presence or absence of a displaced vertex of
charged particle tracks. The DNN is trained and evaluated using a range of signal hypothe-
ses comprising simplified models of split supersymmetry (SUSY) [9, 10] with R parity [19]
conservation. These models assume the production of gluino (g̃) pairs. The gluino is a long-
lived state that decays to a quark-antiquark (qq) pair and a weakly interacting and massive
neutralino (χ̃0

1), which is the lightest SUSY particle and a dark matter candidate. Simplified
models of SUSY that yield LLPs are widely used as a benchmark for searches in final states
containing jets and an apparent imbalance in transverse momentum, ~pmiss

T [20–31]. The search
in Ref. [27] does not explicitly target LLPs, but its inclusive approach provides sensitivity over
a large range of lifetimes. This search is used later as a performance benchmark for the methods
presented in this paper.

The LLP jet tagger is inspired by the DeepJet approach, albeit with significant modifications.
The DNN extends the multiclass classification scheme of the DeepJet algorithm to accommo-
date the LLP jet class. A procedure to reliably label LLP jets using generator-level information
from the Monte Carlo (MC) programs is defined. The experimental signature for an LLP jet
depends strongly on the proper decay length cτ0. Hence, a parameterised approach [32] is
adopted by using cτ0 as an external parameter to the DNN, which permits hypothesis testing
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using a single network for models with values of cτ0 that span several orders of magnitude.
Furthermore, the jet momenta depend strongly on the masses mg̃ and m

χ̃0
1
, and particularly

the mass difference mg̃ −m
χ̃0

1
. The DNN training is performed with simulated event samples

drawn from the full mass parameter space of interest to ensure a broad generalisation and opti-
mal performance over a range of jet momenta. The performance of the tagger is also quantified
for simplified models of SUSY with gauge-mediated SUSY breaking (GMSB) [12] and weak
R-parity violation (RPV) [13, 33]. Domain adaptation by backward propagation of errors [34]
is incorporated into the network architecture to achieve similar classification performance in
simulation and pp collision data, thus mitigating differences between the two domains of sim-
ulation and data. Differences can arise because of, for example, the limited precision of the sim-
ulation. The pp collision data were recorded by the CMS detector at a centre-of-mass energy of
13 TeV. The sample, recorded in 2016, corresponds to an integrated luminosity of 35.9 fb−1.

This paper is organised as follows. Section 2 describes the CMS detector and event recon-
struction algorithms. Sections 3 and 4 describe, respectively, the event samples and simulation
software packages used in this study. Section 5 describes the LLP jet tagger. Sections 6 and 7
demonstrate, respectively, the validation of the tagger using control samples of pp collision
data and its performance based on simulated samples. Section 8 presents the expected perfor-
mance of the tagger in a search for long-lived gluinos, as well as an in situ determination of a
correction to the signal efficiency of the LLP jet tagger. Section 9 provides a summary of this
work.

2 The CMS detector and event reconstruction
The central feature of the CMS apparatus is a superconducting solenoid of 6 m internal diame-
ter, providing a magnetic field of 3.8 T. Within the solenoid volume are a silicon pixel and strip
tracker, a lead tungstate crystal electromagnetic calorimeter (ECAL), and a brass and scintilla-
tor hadron calorimeter (HCAL), each composed of a barrel and two endcap sections. Forward
calorimeters extend the pseudorapidity (η) coverage provided by the barrel and endcap detec-
tors. Muons are detected in gas-ionisation chambers embedded in the steel flux-return yoke
outside the solenoid. At η = 0, the outer radial dimension of the barrel section of the tracker,
ECAL, HCAL, and muon subdetector is 1.3, 1.8, 3.0, and 7.4 m, respectively. A more detailed
description of the CMS detector, together with a definition of the coordinate system used and
the relevant kinematic variables, can be found in Ref. [4].

The candidate vertex with the largest value of summed physics-object p2
T is taken to be the pri-

mary pp interaction vertex, where pT is the transverse momentum. Here, the physics objects
are the jets, clustered using the jet finding algorithm [35, 36] with the tracks assigned to candi-
date vertices as inputs, and the associated ~pmiss

T , taken as the negative vector pT sum of those
jets.

The particle-flow (PF) algorithm [37] aims to reconstruct and identify each particle (PF candi-
date) in an event, with an optimised combination of all subdetector information. In this pro-
cess, the identification of the particle type (photon, electron, muon, charged or neutral hadron)
plays an important role in the determination of the particle direction and energy. Photons [38]
are identified as ECAL energy clusters not linked to the extrapolation of any charged particle
trajectory to the ECAL. Electrons [39] are identified as a primary charged particle track and
potentially many ECAL energy clusters corresponding to the extrapolation of this track to the
ECAL and to possible bremsstrahlung photons emitted along the way through the tracker ma-
terial. Muons [40] are identified as tracks in the central tracker consistent with either a track or
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several hits in the muon system, and associated with calorimeter deposits compatible with the
muon hypothesis. Charged hadrons are identified as charged particle tracks neither identified
as electrons, nor as muons. Finally, neutral hadrons are identified as HCAL energy clusters
not linked to any charged hadron trajectory, or as a combined ECAL and HCAL energy excess
with respect to the expected charged hadron energy deposit. The inclusive vertex finding al-
gorithm [41] is used as the standard secondary vertex reconstruction algorithm, which uses all
reconstructed tracks in the event with pT > 0.8 GeV and a longitudinal impact parameter of
greater than 0.3 cm.

The PF algorithm is able to reconstruct reliably particle candidates with large displacements. In
the inner tracker volume, charged particles are identified through the presence of an associated
track. The later iterations of an iterative tracking procedure [42] explicitly target the most dis-
placed tracks. At larger displacements, beyond the tracking volume, the energy and direction
of displaced particles are solely determined from measurements in the calorimeter systems. In
the case that an LLP decay occurs in the muon systems, a collimated spray of muon-track stubs
is reconstructed. These stubs are ignored by the PF algorithm, as they cannot be reliably distin-
guished from hadronic showers that are not completely contained in the calorimeters (so-called
hadronic punch-through).

Jets are clustered from PF candidates using the anti-kT algorithm [35, 36] with a distance pa-
rameter of 0.4. Additional pp interactions within the same or nearby bunch crossings (pileup)
can contribute additional tracks and calorimetric energy depositions to the jet momentum. To
mitigate this effect, charged particles identified to be originating from pileup vertices are dis-
carded [43] and an offset correction [44] is applied to correct for remaining contributions. In
this study, jets are required to satisfy pT > 30 GeV and |η| < 2.4, and are subject to a set of loose
identification criteria [45] to reject anomalous activity from instrumental sources, such as de-
tector noise. These criteria ensure that each jet contains at least two PF candidates and at least
one charged particle track, the energy fraction attributed to charged- and neutral-hadron PF
candidates is nonzero, and the fraction of energy deposited in the ECAL attributed to charged
and neutral PF candidates is less than unity.

The most accurate estimator of ~pmiss
T is computed as the negative vector pT sum of all the PF

candidates in an event, and its magnitude is denoted as pmiss
T [46]. The ~pmiss

T is modified to
account for corrections to the energy scale [44] of the reconstructed jets in the event. Anomalous
high-pmiss

T events can be due to a variety of reconstruction failures, detector malfunctions, or
noncollision backgrounds. Such events are rejected by event filters that are designed to identify
more than 85–90% of the spurious high-pmiss

T events with a mistagging rate of less than 0.1%
for genuine events [46].

Events of interest are selected using a two-tiered trigger system [47]. The first level, composed
of custom hardware processors, uses information from the calorimeters and muon detectors
alone, whereas a version of the full event reconstruction software optimised for fast processing
is performed at the second level, which runs on a farm of processors.

3 Event selection and sample composition
Split SUSY, as characterised by the simplified models discussed in this paper, would reveal it-
self in events containing jets, significant pmiss

T from undetected neutralinos, and an absence of
photons and leptons. Candidate signal events are required to satisfy a set of selection require-
ments that define a signal region (SR). Conversely, event samples that are enriched in the same
background processes that populate the SR, while being depleted in contributions from SUSY
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processes, are identified as control regions (CRs).

In this analysis, CRs are used to assess the residual differences in tagger performance between
data and simulation. The CRs are chosen to have an SM background composition similar to that
of the SR. This permits a validation that the simulated event samples can accurately predict the
SM background yields without significant systematic bias.

Candidate signal events in the SR are required to satisfy the following set of selection require-
ments. Events are required to contain at least three jets, as defined in Section 2. Events are
vetoed if they contain at least one electron (muon), isolated from other activity in the event,
that satisfies pT > 15 (10)GeV, |η| < 2.4, and loose identification criteria [39, 48]. The mass
scale of each event is estimated from the scalar pT sum of the jets, HT = ∑

jets
i pi

T, which is re-
quired to be larger than 300 GeV. An estimator for pmiss

T is given by the magnitude of the vector
pT sum of the jets, Hmiss

T = |∑jets
i ~pi

T|, which is required to be larger than 300 GeV. Events in the
SR can be efficiently recorded with a trigger condition that requires the presence of a single jet
with pT > 80 GeV, Hmiss

T > 120 GeV, and pmiss
T > 120 GeV.

Following these selections, the dominant contribution to the SM background comprises mul-
tijet events produced via the strong interaction, a manifestation of quantum chromodynamics
(QCD). The multijet contribution is reduced to a negligible level using the following three cri-
teria. Events containing at least one jet that satisfies pT > 50 GeV and 2.4 < |η| < 5 are vetoed
to ensure an adequate resolution performance for the Hmiss

T variable. Events are required to
satisfy Hmiss

T /pmiss
T < 1.25, which mitigates the rare circumstance in which several jets with

pT below the aforementioned 30 GeV threshold and collinear in φ lead to large values of Hmiss
T

relative to pmiss
T . The minimum azimuthal separation between each jet and the vector pT sum

of all other jets in the event, denoted ∆φ?
min [49], is required to be greater than 0.2 radians.

The remaining background events in the SR are dominated by contributions from processes
that involve the production of high-pT neutrinos in the final state, such as the associated pro-
duction of jets and a Z boson that decays to νν . A further significant background contribu-
tion arises from events that contain a W boson that undergoes a leptonic decay, W(→`ν)+jets,
where the charged lepton (` ≡ e, µ or τ) is outside the experimental acceptance, or is not iden-
tified, or is not isolated. Hence, a substantial contribution is also expected from the production
of single top quarks and top quark-antiquark pairs (tt), both of which can lead to a final state
containing one leptonically decaying W boson and at least one b jet. Residual contributions
from rare SM processes, such as diboson production or the associated production of tt and a
vector or scalar boson, are not considered in this study.

Two CRs are used to assess differences in the performance of the tagger when using simu-
lated events or pp collision data. The CRs are defined in terms of leptons and jets that satisfy
|η| < 2.4 and the pT requirements defined below. The single muon (µ+jets) CR is required
to contain exactly one muon satisfying pT > 26 GeV. The dimuon (µµ+jets) CR is required
to contain a second muon that satisfies pT > 15 GeV. The muons are required to be isolated
from other activity in the event and satisfy identification criteria [48]. Events containing addi-
tional electrons (muons) with pT > 15(10)GeV and satisfying looser identification criteria, are
vetoed. Both CRs must contain at least two jets satisfying pT > 30 GeV. Events in the µ+jets
and µµ+jets CRs are required, respectively, to satisfy pmiss

T > 150 GeV and pT(µµ) > 100 GeV,
where the latter variable is the magnitude of the vector pT sum of the two muons. The µ+jets
CR comprises, in approximately equal measure, events from the associated production of jets
and a W boson, and single top quark and tt production. The µµ+jets CR contains Drell–Yan
(qq → Z/γ∗ → µ±µ∓) events with subdominant contributions from tt and Wt-channel single
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top quark production. Events in both CRs are efficiently recorded with a trigger condition that
requires the presence of a single isolated muon that satisfies pT > 24 GeV.

4 Monte Carlo simulation
The DNN is trained to predict the jet class using supervised learning, which relies on generator-
level information from MC programs. Various simulated event samples are also used during
the evaluation of the DNN to benchmark the performance of the tagger.

Split SUSY predicts the unification of the gauge couplings at high energy [50–52] and a candi-
date dark matter particle, the neutralino. Apart from a low mass scalar Higgs boson, assumed
in this model to be the state observed at 125 GeV [53, 54], only the fermionic SUSY particles may
be kinematically accessible at the LHC. All other SUSY particles are assumed to be ultraheavy.
The gluino is only able to decay through the highly virtual squark states. Hence, the gluino
hadronises and forms a bound state with SM particles called an R hadron. The R hadron can
travel a significant distance before the gluino undergoes a three-body decay to qq χ̃0

1, depend-
ing on cτ0.

The split SUSY simplified models are defined by three parameters: cτ0 and the masses of the
gluino mg̃ and the neutralino m

χ̃0
1
. The following model parameter space is considered by

the search: 600 < mg̃ < 2400 GeV, mg̃ − m
χ̃0

1
> 100 GeV, and 10 µm < cτ0 < 10 m. The

lower and upper bounds of the cτ0 range are motivated by the O(10 µm) position resolution
of the tracker subdetector [42] and the physical dimensions of the CMS detector, respectively.
The tagger performance is also assessed using two split SUSY benchmark models that feature:
an “uncompressed” mass spectrum, with a large mass difference between the gluino and χ̃0

1,
(mg̃ , m

χ̃0
1
) = (2000, 0)GeV; or a “compressed” spectrum that is nearly degenerate in mass,

(1600, 1400)GeV. The value of cτ0 for both models is defined in the text on a case-by-case basis.

Two benchmark models of GMSB and RPV SUSY are also considered to demonstrate the gen-
eralisation of the DNN. A GMSB-inspired model assumes a long-lived gluino, with a mass of
2500 GeV and cτ0 = 1 mm or 1 m, that decays to a gluon and a light gravitino of mass 1 keV.
Again, all other SUSY particles are assumed to be ultraheavy and decoupled from the inter-
action. An RPV-inspired model assumes the production of top squark-antisquark pairs. The
decay of the long-lived top squark, with a mass of 1200 GeV and cτ0 = 1 mm or 1 m, to a bottom
quark and a charged lepton is suppressed through a small R parity violating coupling.

Samples of simulated events are produced with several MC generator programs. For the split
SUSY simplified models, the associated production of gluino pairs and up to two additional
partons are generated at leading-order (LO) precision in QCD with the MADGRAPH5 aMC@NLO

2.2.2 [55] program. The decay of the gluino is performed with the PYTHIA 8.205 [56] pro-
gram. The RHADRONS package within the PYTHIA program, steered according to the default
parameter settings, is used to describe the formation of R hadrons through the hadronisation of
gluinos [57–59]. A similar treatment is performed for the GMSB- and RPV-inspired benchmark
models.

The MADGRAPH5 aMC@NLO event generator is used to produce samples of W(→`ν)+jets,
Z(→νν)+jets, and Z/γ∗(→µµ)+jets events at next-to-leading-order (NLO) precision in QCD.
The samples of W(→`ν)+jets events are generated with up to two additional partons at the
matrix element level and are merged with jets from the subsequent PYTHIA parton shower
simulation using the FxFx scheme [60]. The POWHEG v2 [61–63] event generator is used to



6

simulate tt production [64] and the t-channel [65] and Wt-channel [66] production of single
top quarks at NLO accuracy. Multijet events are simulated at LO accuracy using PYTHIA.

The theoretical production cross sections for SM processes are calculated with NLO and next-
to-NLO precision [55, 65–69]. The production cross sections for gluino and top squark-antisquark
pairs are calculated with NLO plus next-to-leading-logarithmic precision [70].

The PYTHIA program with the CUETP8M1 tune [71] is used to describe parton showering and
hadronisation for all simulated samples except top quark-antiquark production, which used
the CUETP8M2T4 tune [72]. The NNPDF3.0 LO and NLO parton distribution functions [73]
are used with the LO and NLO event generators, respectively. Minimum bias events are over-
laid with the hard scattering event to simulate pileup interactions, with the multiplicity dis-
tribution matched to that observed in pp collision data. The resulting events undergo a full
detector simulation using the GEANT4 [74] package. The analysis described in Section 8 fo-
cuses on identifying the decay products of the LLP, characterised by tracks with large impact
parameters, calorimeter deposits, and secondary vertices. Interactions of R hadrons with the
detector material that can result in signatures with short tracks or anomalous energy loss are
therefore not considered in this study.

5 The LLP jet algorithm
In this section, the DNN architecture and its technical implementation are presented. The use of
a single parameterised DNN for hypothesis testing and the application of domain adaptation
(DA) to samples of pp collision data recorded by the CMS experiment are presented for the
first time.

5.1 Jet labelling

Generator-level information from MC programs is often used to label a jet according to its ini-
tiating parton for supervised learning. A standard procedure known as “ghost” labelling [43]
determines the jet flavour by clustering the reconstructed final-state particles and the generator-
level b and c hadrons into jets. Only the directional information of the four-momentum of the
generator-level (ghost) hadron is retained to prevent any modification to the four-momentum
of the corresponding reconstructed jet. Jets containing at least one ghost hadron are assigned
the corresponding flavour label, with b hadrons preferentially selected over c hadrons. Simi-
larly, labels are defined for jets originating from gluons (g) or light-flavour (uds) quarks.

The LLP jet tagger adopts the ghost labelling approach for jets originating from SM background
processes. However, a complication arises when applying ghost labelling to the jets originating
from g̃ decays. The quark and antiquark produced in the gluino decay can interact with each
other, potentially leading to one or more jets that do not point in the same direction as the
quarks. Two examples of g̃ → qq χ̃0

1 decays are shown in Fig. 1. For each example, the final-
state particles resulting from the hadronisation of one of the quarks are sufficiently diffuse that
they are clustered into multiple distinct jets. By definition, ghost tagging cannot account for
multiple jets originating from a single ghost particle, and it may even fail to associate the ghost
particle with any of the jets if the jets are sufficiently distanced in η–φ space.

An alternative labelling scheme is defined for jets originating from gluino decays, which can
be extended to other LLP decays. All stable SM particles are grouped according to their simu-
lated vertex position and linked to one of the quark daughters from the LLP decay. All stable
SM particles, except neutrinos, are clustered into generator-level jets using the anti-kT algo-
rithm [35, 36] with a distance parameter of 0.4. Given that constituent particles in a jet may
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Figure 1: Two example g̃ → qq χ̃0
1 decay chains, constructed from information provided by the

MADGRAPH5 aMC@NLO [55] and PYTHIA [56] programs. The positions of various particles in
the η–φ plane are shown: the LLP (g̃) and its daughter particles (qq χ̃0

1) are shown in the lower
and middle planes, respectively; the upper plane depicts the location of the stable particles after
hadronisation, with shaded ellipses overlaid to indicate the reconstructed jets. Each quark and
its decay is assigned a unique colour. The dotted lines indicate the links between parent and
daughter particles.

originate from different vertices, the momentum ~p of a given jet is shared between vertices ac-
cording to the vectorial momentum sum ∑i ~pi of the constituent particles i in a jet that share the
same generator-level vertex v. Per jet, the jet-vertex shared momentum fraction fv with respect
to vertex v is then defined as

fv =
(∑i ~pi| i ∈ v) · ~p

~p2 , fv ∈ [0; 1],
vertices

∑
v

fv = 1. (1)

Each jet is then associated to the vertex v from which the majority of its momentum originates,
i.e. v̂ = argmax( fv). This criterion prevents the coincidental association of jets containing
very few or very soft particles from a gluino decay to a vertex for which the majority of the
constituent particles stem from initial-state radiation or the underlying event. A reconstructed
jet is uniquely associated with a generator-level jet and they adopt the same label if their axes
are aligned within a cone ∆R =

√
(∆φ)2 + (∆η)2 = 0.4. The LLP label is prioritised over the

other jet labels to prevent ambiguities. Jets from the split SUSY samples that are not labelled
as LLP by this scheme can still comprise a nonnegligible fraction of displaced particles and are
thus discarded to prevent class contamination. Non-LLP jets for the DNN training are instead
taken from simulated samples of SM backgrounds. Applying an artificial 20% contamination
of the LLP jet class from pileup jets, to test the robustness of the labelling procedure, leads to
no discernible effect on the tagger performance given the statistical precision of the study.

5.2 Deep neural network architecture to predict the jet class

The architecture used to predict the jet class, inspired by the DeepJet algorithm, is shown in
Fig. 2. The DNN considers approximately 600 input features, which can be grouped into four
categories: up to 25 charged (neutral) PF candidates, each described by 17 (6) features and or-
dered by impact parameter significance (transverse momentum); up to four secondary vertices
(ordered by transverse displacement significance), each described by 12 features; and 14 global
features associated with the jet. The network also considers jets containing zero reconstructed
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secondary vertices. Zero padding is used to accommodate the variable numbers of PF candi-
dates and secondary vertices.

Each charged PF candidate is described by the following features: the pT relative and perpen-
dicular to the jet axis, the ∆η with respect to the jet axis, the track quality, and the transverse
and three-dimensional impact parameters (and their significances) of the track. Each neutral
PF candidate is described by its energy, the fractions of its energy deposited within the ECAL
and HCAL subdetectors, the compatibility with the photon hypothesis, the compatibility with
the pileup hypothesis as determined by the PUPPI algorithm [75, 76]. Charged and neutral
PF candidates are also described by the collinearity with respect to the jet axis and the near-
est secondary vertex. The features that describe each reconstructed secondary vertex include
the three-dimensional displacement (and significance) with respect to the primary pp colli-
sion vertex, the number of associated tracks, and the following quantities determined from the
four-momenta of the associated tracks: pT, the ∆η with respect to the jet axis, and the invariant
mass. The global jet features comprise the jet momentum and pseudorapidity, the number of
constituent PF candidates, the number of reconstructed secondary vertices, and several high-
level engineered features used by the CSV b tagging algorithm [5].

Charged PF

candidates

(25 x 17)

Neutral PF

candidates

(25 x 6)

Secondary

vertices

(4 x 12)

Input features 1D convolutions

Predict jet

class 

(b, c, uds, 

 g, LLP)

Predict jet

domain

(simulation, 

 data)

6
4

 fil
te

rs

3
2

 fil
te

rs

3
2

 fil
te

rs

8
 fil

te
rs

3
2

 fil
te

rs

1
6

 fil
te

rs

1
6

 fil
te

rs

4
 fil

te
rs

3
2

 fil
te

rs

1
6

 fil
te

rs

1
6

 fil
te

rs

8
 fil

te
rs

F
la

tt
e

n

2
0

0
 n

o
d

e
s

G
ra

d
ie

n
t 

re
v

e
rs

a
l

1
0

0
 n

o
d

e
s

1
0

0
 n

o
d

e
s

5
0

 n
o

d
e

s

5
0

 n
o

d
e

s

Dense

Dense

Global (14)

LLP       (1)

Dense

Backward

propagation

Forward 

propagation

Feature

extraction

Label

prediction

Domain

prediction

D
o

m
a

in
-i
n

v
a

ri
a

n
t 
fe

a
tu

re
s

Figure 2: An overview of the DNN architecture, which comprises convolutional and dense lay-
ers; the numbers of filters and nodes are indicated. Dropout layers and activation functions
are not shown. The input features are grouped by object type and (m× n) indicates the max-
imum number of objects (m) and the number of features per object (n). The gradients of the
class (Lclass) and domain (Ldomain) losses with respect to the weights ~w, used during backward
propagation, are shown.

Four sequential layers of one-dimensional convolutions with a kernel size of one are used, with
each layer comprising 64, 32, 16, 8, or 4 filters depending on the group of input features. Per
particle candidate or vertex, each convolutional layer transforms the features from the pre-
ceding layer according to its filter size. By choosing a small filter size for the final layer, the
overall operation can be viewed as a compression. After each layer, a leaky rectified linear
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(LeakyReLU) [77] activation function is used. Dropout [78] layers are interleaved through-
out the network with a 10% dropout rate to mitigate overfitting. After the final convolutional
layer, the compressed feature vectors are flattened and concatenated along with the global jet
features. The input parameter cτ0 shown in Fig. 2 is described in Section 5.3.

The resulting feature vector is fed into a multilayer perceptron, a series of dense layers compris-
ing 200, 100, or 50 nodes. The softmax activation function is used in the last layer. Categorical
cross entropy is used for the loss function to predict the jet class probability. The DNN provides
an estimate of the probabilities for the following jet classes: LLP jet, b or c jet, uds (light-flavour
quarks) jet, and g jet. The latter two classes are frequently combined when evaluating the net-
work performance to give a light-flavour (udsg) jet class.

5.3 Network parameterisation according to cτ0

The experimental signature for a jet produced in a gluino decay depends strongly on cτ0. In-
formation from all CMS detector systems is available if the gluino decay occurs promptly, in
the vicinity of the pp collision region, while information can be limited if the decay occurs in
the outermost detector systems. Hence, cτ0 is introduced as an input parameter to the dense
network, as indicated in Fig. 2. This parameterised approach [32] allows for hypothesis testing
with a single network for values of cτ0 that span six orders of magnitude: 10 µm < cτ0 < 10 m.
During the network evaluation for jets from both signal and SM processes, the cτ0 value is
given by the signal hypothesis under test.

5.4 Domain adaptation by backward propagation

The simulated event samples are of limited accuracy and do not exhaustively reproduce all
features observed in the pp collision data. Hence, a neural network may produce different
identification efficiencies when evaluated on simulated samples and pp collision data if the
training of the neural network relies solely on simulation. Domain adaptation is a technique
that attempts to construct a feature representation that is invariant with respect to the domain
from which the features are obtained. In this study, the domain is either pp collision data or
simulation, and the domain-invariant representation is obtained from the output of the feature
extraction subnetwork, as indicated in Fig. 2. Hence, for the subsequent task of classifying jets,
a similar performance is expected for both simulated events and pp collision data [79].

In this paper, we use DA by backpropagation of errors [34]. To achieve this, an additional
branch is added after the first dense layer of 200 nodes. Binary cross entropy is used for
the loss function to predict the jet domain probability. During training, the combined loss
Lclass + λLdomain is minimised, where λ is a hyperparameter that controls the magnitude of the
jet domain loss. A gradient reversal layer is inserted in the domain branch directly after the
first dense layer. This special layer is only active during backward propagation and reverses
the gradients of the domain loss Ldomain with respect to the network weights ~w in the preced-
ing layers. This forces the feature extraction subnetwork to focus less on domain-dependent
features because its weights effectively minimise Lclass − λLdomain instead. Only features that
are common to both pp collision data and simulation are retained. For a full mathematical
description of the gradient reversal layer, see Ref. [34].

5.5 Deep neural network training

Supervised training of the DNN is performed to predict the jet class and domain. The Adam
optimiser [80] is used to minimise the loss function with respect to the network parameters.
The DNN training relies on simulated events of gluino production from split SUSY models,
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and multijet and tt production. Jets in these samples that have an uncorrected pT greater than
20 GeV and satisfy the loose requirements outlined in Section 2 are considered for the DNN
training. Approximately 20 million jets are used. Event samples of split SUSY models are
utilised over a wide range of (mg̃ , m

χ̃0
1
) hypotheses to ensure adequate generalisation of the

DNN over the model parameter space of interest. The models considered by the DNN training
have seven cτ0 values that differ by factors of ten and span the range 10 µm < cτ0 < 10 m. For
the jet domain prediction, 1.2 million jets are drawn from the pp collision data, as well as from
simulated W(→`ν)+jets and tt events that are weighted according to their respective SM cross
sections; all events are required to satisfy the µ+jets CR requirements.

The DNN training comprises a few tens of cycles over the full set of event samples (epochs).
Each epoch is batched into subsamples of 10 000 jets containing approximately 2000 jets from
each class: LLP, b, c, uds, and g. For each batch, the LLP jets are sampled randomly from
split SUSY events that are generated according to the full (mg̃ , m

χ̃0
1
, cτ0) parameter space of

interest. The jets from SM processes are drawn randomly (from a larger sample) to obtain the
same binned pT and η distributions available for the LLP jet class. This resampling technique is
done to ensure an adequate generalisation that is largely independent of kinematical features
related to the physics process. The cτ0 values assigned to the SM jets are generated randomly
according to the cτ0 distribution obtained per batch for the LLP jet class.

The training of the domain branch uses batches of 10 000 jets, drawn from samples of µ+jets
data and simulated W(→`ν)+jets and tt events. The DNN is trained using the class and do-
main batches simultaneously. Events in the domain batch are assigned the same cτ0 values as
used by the class batch. For the domain batch, only the six highest pT jets are used, and jets
may be reused multiple times per epoch.

The DNN is initially trained to predict only the jet class to determine the optimal scheduling of
the learning rate α, which decays from an initial value of 0.01 according to α = 0.01/(1 + κn)
where n is the epoch number and κ is the decay constant. The classifier performance is optimal
for κ = 0.1 and only weakly dependent on κ. The DNN is then trained to predict both the jet
class and domain, and the λ hyperparameter is increased according to λ = λ0[2/(1+ e−0.2n)−
1] with λ0 = 30, such that λ increases from 0 to 0.9λ0 after 15 epochs. The parameterisations
used to evolve the values of the α and λ hyperparameters during the DNN training were chosen
from several trials to ensure reproducible and optimal performance.

5.6 Workflow

The KERAS v2.1.5 [81] software package is used to implement the DNN architecture. The TEN-
SORFLOW v1.6 [82] queue system is used to read and preprocess files for the DNN training. A
schematic overview of the pipeline used to preprocess batches of jets for the class prediction is
given in Fig. 3, while a similar queue is also used for the domain prediction. At the beginning
of each epoch, a queue holding a randomised list of the input file names is initialised. File
names are dequeued asynchronously in multiple threads. For each thread, ROOT v6.18.00 [83]
trees contained in the files are read from disk to memory in batches using a TENSORFLOW op-
eration kernel, developed in the context of this paper. The resulting batches are resampled to
achieve the same distributions in pT and η for all jet classes and are enqueued asynchronously
into a second queue, which caches a list of tensors. The DNN training commences by dequeu-
ing a randomised batch of tensors and generating cτ0 values for all SM jets within the batch.
The advantages of this system lie in its flexibility to adapt to new input features or samples
on-the-fly. The reading of ROOT trees and the (pT, η) resampling for the SM jets proceeds asyn-
chronously in multiple threads, managed by TENSORFLOW, on the CPU while the network is
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Figure 3: A schematic of the input pipeline for training the DNN, which uses the TENSORFLOW

(TF) queue system with custom operation kernels for reading ROOT trees from disk, (pT, η)
resampling for SM jets, and generating random cτ0 values for jets from SM backgrounds and
data.

being trained. A demonstration of the workflow can be found at Ref. [84].

6 Validation with pp collision data
In the absence of DA, the LLP jet probability P(LLP|cτ0) obtained from the simulation of the rel-
evant SM backgrounds and the CR data can differ significantly, with deviations of up to 50% in
the binned counts of P(LLP|cτ0) distributions. A similar event-level variable is Pmax(LLP|cτ0),
which is defined as the maximum value of P(LLP|cτ0) obtained from all selected jets in a given
event. A comparison of the Pmax(LLP|cτ0) distributions obtained from pp collision data and
simulated events in both the µ+jets and µµ+jets CRs, using a DNN trained with and without
DA, is shown in Fig. 4. The use of DA in the network leads to a significant improvement in
the level of agreement in the binned counts of Pmax(LLP|cτ0) for the two domains of data and
simulation, with only small residual differences remaining. This improvement is expected for
the µ+jets CR, as the same events are used to train, evaluate, and optimise the domain branch
of the DNN. The µµ+jets CR, comprising a statistically independent event sample, validates
the method.

An estimate of the uncertainty in Pmax(LLP|cτ0) due to simulation mismodelling is determined
from jets in a statistically independent sample of µµ+jets events that satisfy pT(µµ) < 100 GeV.
The magnitude of the uncertainty is assessed by weighting up or down the simulated events by

the factor w± = ∏
jets
i

(
1±

(
ξi(LLP)− 1

))
, where ξi(LLP) is the ratio of counts from data and

simulation in bin i of the P(LLP|cτ0) distribution. The ratios of event counts binned according
to Pmax(LLP|cτ0) from pp collision data and simulation, as well as the corresponding uncer-
tainty estimates, are shown in the lower panels of Fig. 4. The ratios are closer to unity, with
reduced uncertainties, following the application of DA. The level of agreement between data
and simulation is further quantified by the Jensen–Shannon divergence (JSD) [85], a measure of
similarity between two probability distributions that is bound to [0, 1] and takes a value of zero
for identical distributions. The JSD is reduced by an order of magnitude following the appli-
cation of DA. The quoted uncertainties in JSD reflect the finite sizes of the data and simulated
samples.

The application of DA leads to significantly reduced biases and uncertainties in the modelling
of P(LLP|cτ0) and related variables in the signal-depleted CRs. This behaviour would translate
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Figure 4: Distributions of the maximum probability for the LLP jet class obtained from all
selected jets in a given event, Pmax(LLP|cτ0). The distributions from pp collision data (circular
marker) and simulated events (histograms) are compared in the µ+jets (upper row) and µµ+jets
(lower row) CRs, using a DNN trained without (left column) and with (right column) DA.
All probabilities are evaluated with cτ0 = 1 mm. The Jensen–Shannon divergence (JSD) is
introduced in the text. The lower subpanels show the ratios of the binned yields obtained from
data and Monte Carlo (MC) simulation. The statistical (hatched bands) and systematic (solid
bands) uncertainties due to the finite-size simulation samples and the simulation mismodelling
of the mistag rate, respectively, are also shown.

into an improved treatment for the estimation of SM backgrounds in the SR and the associated
experimental systematic uncertainties. However, only modest gains in sensitivity to new high-
mass particle states may be expected, as the dominant uncertainties arise from the finite-size
samples of pp collision data and simulated events.

7 Performance
The performance of the tagger is demonstrated using simulated event samples for split SUSY
benchmark models with an uncompressed mass spectrum, as defined in Section 4, and cτ0
values of 1 mm and 1 m. The two values of cτ0 give greater weight to the roles of the tracker
and calorimeter systems, respectively. Negligible SM background contributions are expected
for the 1 m scenario. An inclusive sample of tt events is used to provide both light-flavour
(udsg) jets, through initial-state radiation and hadronic decays of the W boson, and b jets, with
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pT > 30 GeV and |η| < 2.4.

The efficiency of the tagger to identify correctly the LLP jet class depends on the chosen work-
ing point, defined by a threshold requirement on the jet class probability. The mistag rates
for the remaining jet classes also depend on the same working point. The receiver operating
characteristic (ROC) curves that provide the LLP jet tagging efficiency and the mistag rate for
the udsg jet class as a function of the working point are shown in Fig. 5. The uncertainties
indicated by the shaded bands are determined from the standard deviation obtained from a
ten-fold cross validation. Given a mistag rate of 0.01%, equivalent to a background rejection
factor of 10 000, efficiencies of 40 and 70% are obtained for split SUSY models with cτ0 values
of 1 mm and 1 m, respectively. These efficiencies decrease by a factor ≈0.6 if the DNN relies
solely on the global jet features. Additional studies reveal that the tagger efficiency for the LLP
jet class falls to 25% in order to achieve the same mistag rate of 0.01% for the (SM) b jet class
when considering split SUSY models with cτ0 = 1 mm.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Efficiency (LLP)

4−10

3−10

2−10

1−10

1

M
is

ta
g 

ra
te

 (
ud

sg
)

Split SUSY
Split SUSY (no DA)
GMSB
RPV SUSY

mm 1 = 0τc
t SM background: t

CMS Simulation 13 TeV

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Efficiency (LLP)

4−10

3−10

2−10

1−10

1
M

is
ta

g 
ra

te
 (

ud
sg

)
Split SUSY
Split SUSY (no DA)
GMSB
RPV SUSY

m 1 = 0τc
t SM background: t

CMS Simulation 13 TeV

Figure 5: The ROC curves illustrating the tagger performance for the split (solid line), GMSB
(dashed line), and RPV (dot-dashed line) SUSY benchmark models, defined in Section 4, as-
suming cτ0 values of 1 mm (left) and 1 m (right). The thin line with hatched shading indicates
the performance obtained with a DNN training using split SUSY samples but without the DA.
The jet sample is defined in the text.

Figure 5 also shows ROC curves when evaluating the DNN using simulated events from the
GMSB and RPV SUSY benchmark models, as defined in Section 4. The jets originate from uds
quarks (gluons) from the gluino decay in the case of split (GMSB) SUSY models, and b hadrons
from the top squark decay for RPV SUSY. A similar level of performance is observed for these
SUSY models, in which the LLP jets have a different underlying flavour. Furthermore, the
ROC curves indicated by the thick and thin solid curves illustrate the tagger performance when
the DNN is trained with or without DA, respectively, for the split SUSY benchmark models.
Studies demonstrate a comparable performance for split SUSY models with and without DA
for the region cτ0 ≤ 10 mm. For larger values of cτ0, the performance is overestimated in the
absence of DA, as indicated by the cτ0 = 1 m scenario shown in Fig. 5. This is because the DNN
is able to exploit patterns in the features obtained from simulation that are not representative
of those obtained from data.

The LLP jet tagging efficiency is shown in Fig. 6 as a function of the jet pT, η, and the number of
reconstructed secondary vertices within the jet (NSV) for a working point that yields a mistag
rate of 0.01% for the udsg jet class obtained from simulated tt events. Efficiencies are highest
for high-pT, centrally produced jets with NSV = 0. The latter observation demonstrates the
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Figure 6: The LLP jet tagging efficiency as a function of the jet pT, η, and NSV using a working
point that yields a mistag rate of 0.01% for the udsg jet class, as obtained from an inclusive
sample of simulated tt events. The efficiency curves are shown separately for the split (circular
marker), GMSB (triangle marker), and RPV (square marker) SUSY benchmark models, defined
in Section 4, assuming cτ0 values of 1 m (upper row) and 1 mm (lower row).

complementary performance of the tagger with respect to a more standard approach of relying
on reconstructed secondary vertices to identify displaced jets.
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Figure 7: The LLP jet tagging efficiency, using a working point that yields a mistag rate of 0.01%
for the udsg jet class obtained from an inclusive sample of simulated tt events, when (left) the
DNN is evaluated as a function of the model parameter value cτ0 for an uncompressed and
a compressed split SUSY model, and (right) the DNN is evaluated over a range of cτ0 values
for uncompressed split SUSY models generated with cτ0 = 1 mm and 1 m; the dashed vertical
lines indicate equality for the evaluated and generated values of cτ0 for each model. The fixed
model parameters are defined in the legends.

The performance of the DNN parameterisation according to cτ0 is shown in Figure 7. The left
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panel shows the LLP jet tagging efficiency, using a working point that yields a mistag rate of
0.01% for the udsg jet class, as a function of the generated cτ0 value, for both an uncompressed
and a compressed split SUSY model. Efficiencies in the range 40–80 (30–70)% are achieved for
uncompressed (compressed) scenarios with 1 mm ≤ cτ0 ≤ 10 m. The compressed scenarios are
characterised by low-pT jets, resulting in lower efficiencies as shown in Fig. 6.

The performance is further tested using two uncompressed split SUSY models with cτ0 = 1 mm
and 1 m. The LLP jet tagging efficiency is obtained by evaluating the DNN for each value of
cτ0 in the range 10 µm ≤ cτ0 ≤ 10 m. Again, the efficiency is determined using a working
point that is tuned for each evaluated cτ0 value to yield a mistag rate of 0.01% for the udsg
jet class. The efficiency as a function of the evaluated cτ0 value is shown in Fig. 7 (right).
The maximum efficiency is obtained when the evaluated value of cτ0 approximately matches
the parameter value of the split SUSY model. This behaviour may be used to characterise a
potential signal contribution in terms of the model parameter cτ0. Finally, studies demonstrate
that the parameterised approach does not significantly impact performance with respect to the
training of multiple DNNs, one per cτ0 value.

8 Application to a search for LLPs
The performance of the LLP jet tagger is demonstrated by applying it to the search for long-
lived gluinos with 10 µm ≤ cτ0 ≤ 10 m. Expected limits on the theoretical production cross
section for gluino pairs are determined. The search is performed using statistically independent
samples of simulated events to ensure an unbiased evaluation of the tagger.

8.1 Categorisation of events and uncertainties

Candidate events that satisfy the SR requirements defined in Section 3 are categorised accord-
ing to: the number of jets in the event, Njet; the number of jets for which P(LLP|cτ0) is above
a predefined threshold, Ntag; and HT. The resulting six categories are summarised in Table 1.
Models with an uncompressed mass spectrum, mg̃ −m

χ̃0
1
& 200 GeV, are characterised by high

values of HT. Models with a compressed mass spectrum, mg̃ − m
χ̃0

1
. 200 GeV, are charac-

terised by lower values of HT because of the limited kinematic phase space available to the jets
from the gluino decay and an increased reliance on associated jet production from initial-state
radiation. Events that satisfy Ntag < 2 are grouped into a single additional category, which
is used to constrain the normalisation of simulated background events during the statistical
evaluation.

The tagger is evaluated using simulated samples of all relevant SM backgrounds, described in
Section 4. The negligible background contribution from multijet events in the SR is not consid-
ered in this exploratory study. The predefined threshold on P(LLP|cτ0) is determined per cτ0
value such that the most sensitive event categories are nearly free of SM background contribu-
tions, while control over uncertainties due to the finite-size simulated samples is maintained.
The P(LLP|cτ0) thresholds fall in the range 30–50% and yield an LLP jet tagging efficiency of
about 30–90% for cτ0 ≥ 1 mm. Table 1 summarises the expected counts and uncertainties for
the contributions from SM backgrounds, in the various event categories, for cτ0 = 1 mm. The
statistical uncertainty arising from the finite size of the simulated samples is the dominant con-
tribution to the quoted uncertainties. Additional systematic contributions are described below.
The expected event counts from the uncompressed and compressed benchmark models of split
SUSY, defined in Section 4, are also provided.
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Table 1: The event counts and uncertainties for SM backgrounds and split SUSY models, as de-
termined from simulation, in categories defined by HT and (Njet, Ntag). The simulated samples
are normalised to an integrated luminosity of 35.9 fb−1. The uncompressed and compressed
split SUSY models are defined in Section 4. The value of cτ0 is assumed to be 1 mm. The uncer-
tainties include both statistical and systematic contributions. Expected counts for events that
satisfy Ntag < 2 are not shown.

HT (GeV) 300–800 300–800 300–800 >800 >800 >800

(Njet, Ntag) (3–4, ≥2) (5, ≥2) (≥6, ≥3) (3–4, ≥2) (5, ≥2) (≥6, ≥3)

Z(→νν)+jets 41± 39 6.5± 5.8 0.6± 0.4 3.3± 2.8 1.6± 1.2 0.1± 0.1

W(→`ν)+jets 56± 44 11.6± 5.1 1.5± 0.5 3.6± 2.5 1.2± 3.0 <0.1

tt 40± 36 18± 16 1.9± 1.1 2.1± 1.3 3.2± 2.4 3.0± 2.1

Single top quark 5.7± 5.2 2.6± 2.2 0.3± 0.2 0.6± 0.4 0.5± 0.3 0.4± 0.3

Total SM 142± 69 39± 18 4.3± 1.3 9.7± 4.0 6.5± 4.1 3.5± 2.5

Uncompressed <0.1 <0.1 <0.1 3.0± 2.9 3.8± 3.7 5.7± 5.5

Compressed 5.4± 5.0 4.2± 3.8 2.8± 2.5 1.1± 0.9 2.5± 2.2 4.5± 4.1

Several sources of systematic uncertainty in the SM background expectations are considered.
An uncertainty of ±20% is assumed in the normalisation of each dominant background pro-
cess, W(→`ν)+jets, Z(→νν)+jets, and single top quark and tt production, which is motivated
by theoretical uncertainties in the production cross sections and uncertainties in the experi-
mental acceptance for the final-state leptons [86]. The uncertainty in the mistag rate for jets
from SM processes is typically below 10%, determined by the procedure described in Section 6.
The jet energy is varied within its uncertainty and resolution [44], and the resulting shifts are
propagated to ~pmiss

T . The unclustered component of ~pmiss
T is varied within its uncertainties.

The uncertainty in the number of pileup interactions is determined by varying the inelastic pp
cross section within its uncertainty of±5% [87]. The renormalisation and factorisation scales of
the aforementioned four dominant SM backgrounds are varied independently per process by
factors of 0.5 and 2 [88] to estimate the migration of events between categories. An uncertainty
of ±2.5% in the integrated luminosity is assumed [89].

The LLP jet tagging efficiency determined from simulated events of split SUSY models, εMC,
may require the application of corrections to account for sources of potential mismodelling.
The corrections are applied by reweighting simulated events as follows:

w =

(
1− εdata

1− εMC

)(NLLP−Ntag
LLP)

(
εdata

εMC

)Ntag
LLP

=

(
1− SF εMC

1− εMC

)(NLLP−Ntag
LLP)

SFNtag
LLP , (2)

where NLLP denotes the number of LLP jets and Ntag
LLP the number of LLP jets that are also

tagged per event. The scale factor SF = εdata/εMC denotes a correction to εMC, and the product
of εMC and the SF is bound to [0, 1].

8.2 Signal hypothesis testing

A likelihood model is used to test for the presence of new-physics signals in the SR. The ob-
served event count in each event category is modelled as a Poisson-distributed variable around
the sum of the SM expectation and a potential signal contribution. The expected event counts
from SM backgrounds are obtained from the simulated samples. The uncertainties resulting
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from the finite simulated samples are modelled using the Barlow–Beeston method [90]. The
systematic uncertainties in the SM background estimates are accommodated in the likelihood
model as nuisance parameters.

Hypothesis testing is performed using an Asimov data set [91] to provide expected constraints
on simplified models of split SUSY. A modified frequentist approach is used to determine the
expected upper limits at 95% confidence level (CL) on the theoretical gluino pair production
cross section as a function of mg̃ , m

χ̃0
1
, and cτ0. The signal strength parameter, rUL, expresses

the upper limit on the production cross section relative to the theoretical value. Alternatively,
expected lower limits at 95% CL on mg̃ can be determined as a function of cτ0. The approach
is based on the profile likelihood ratio as the test statistic [92], the CLs criterion [93, 94], and
the asymptotic formulae [91] to approximate the distributions of the test statistic under the
background-only and signal-plus-background hypotheses.

8.3 Interpretations
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Figure 8: The negative log-likelihood of a maximum likelihood fit to the Asimov data set as
a function of the signal efficiency scale factor and r/rUL for a (left) uncompressed and (right)
compressed scenario. The black solid (dashed) line indicate the 68 (95)% CL interval, while for
r = rUL (white dotted line) the white solid and dashed lines indicate the SF constraints at 68%
and 95% CL, respectively. The product of the LLP jet tagger efficiency and the SF is bound to
[0, 1].

Figure 8 shows the negative log-likelihood from a maximum likelihood fit to the Asimov
data as a function of both the SF and r/rUL, where the signal strength parameter r repre-
sents the injected gluino pair production cross section relative to the theoretical value, for two
split SUSY benchmark scenarios with an uncompressed and compressed mass spectrum, and
cτ0 = 10 mm. The model assumptions are indicated in the figure legends. The SF is constrained
to >0.6 (>0.3) at 68% CL for r/rUL = 1 for the uncompressed (compressed) model, and it is
bound to .1.2 by the condition SF εMC ∈ [0, 1]. The figure demonstrates that the likelihood
is not degenerate with respect to the scale factor and signal strength. Instead, the (Njet, Ntag)
categorisation scheme allows the SF to be constrained in situ in the signal-plus-background fit
when adding the SF as a nuisance parameter to the likelihood model, described in Section 8.1.

Figure 9 summarises the expected lower limit on mg̃ (95% CL) as a function of cτ0 for simpli-
fied models of split SUSY that assume the production of gluino pairs. The model assumptions
are indicated by the legend in each panel. The left (right) panel presents the expected mass
exclusions for models with an uncompressed (compressed) mass spectrum. A lower limit on
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the gluino mass in excess of 2.1 (1.5) TeV is obtained for models with an uncompressed (com-
pressed) mass spectrum. The mass exclusions are determined by assuming an integrated lu-
minosity of 35.9 fb−1. This permits a comparison with the exclusions reported by an inclusive
search for SUSY [27] in final states containing jets and pmiss

T , over the same range in cτ0 val-
ues. Significant gains in excluded values of mg̃ , of up to approximately 500 GeV, are expected
for cτ0 & 1 mm. The coverage is also competitive with respect to a dedicated reconstruction
technique that is reported in Ref. [23]. For the region cτ0 < 1 mm, the tagger performance
degrades because of a limited ability to tag an LLP jet in the vicinity of the primary pp interac-
tion vertex, while the reference search is able to exploit the distinguishing kinematical features
of split SUSY events through a finer categorisation of candidate signal events. For the region
cτ0 > 1 m, the LLPs frequently decay outside the experimental acceptance, which leads to an
increased reliance on the presence of initial-state radiation.
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Figure 9: Expected 95% CL lower limits on mg̃ as a function of cτ0 for split SUSY models with an
uncompressed (left) and a very compressed (right) mass spectrum. The shaded bands indicate
the total uncertainty from both statistical and systematic sources. The model assumptions are
indicated by the legends. The results are compared to the expected limits obtained in Ref. [27],
indicated by the dashed lines.
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9 Summary
Many models of new physics beyond the standard model predict the production of long-lived
particles (LLPs) in proton-proton (pp) collisions at the LHC. Jets arising from the decay of LLPs
(LLP jets) can be appreciably displaced from the pp collisions. A novel tagger to identify LLP
jets is presented. The tagger employs a deep neutral network (DNN) using an architecture
inspired by the CMS DeepJet algorithm. Simplified models of split supersymmetry (SUSY),
which yield neutralinos and LLP jets from the decay of long-lived gluinos, are used to train the
DNN and demonstrate its performance.

The application of various techniques related to the tagger are reported. A custom labelling
scheme for LLP jets based on generator-level information from Monte Carlo programs is de-
fined. The proper decay length cτ0 of the gluino is used as an external parameter to the DNN,
which allows hypothesis testing over several orders of magnitude in cτ0 with a single DNN.
The DNN is trained using samples of both simulated events and pp collision data. The appli-
cation of domain adaptation by backward propagation significantly improves the agreement
of the DNN output for simulation and data, by an order of magnitude according to the Jensen–
Shannon divergence, when compared to training the DNN with simulation only. The method
is validated using signal-depleted control samples of pp collisions at a centre-of-mass energy
of 13 TeV. The samples were recorded by the CMS experiment and correspond to an integrated
luminosity of 35.9 fb−1. Training the DNN with pp collision data does not significantly de-
grade the tagger performance. The tagger rejects 99.99% of light-flavour jets from standard
model processes, as measured in an inclusive tt sample, while retaining approximately 30–
80% of LLP jets for split SUSY models with 1 mm ≤ cτ0 ≤ 10 m and a gluino-neutralino mass
difference of at least 200 GeV.

Finally, the potential performance of the tagger is demonstrated in the framework of a search
for split SUSY in final states containing jets and significant missing transverse momentum.
Simulated event samples provide the expected contributions from standard model background
processes. Candidate signal events were categorised according to the scalar sum of jet mo-
menta, the number of jets, and the number of tagged LLP jets. Expected lower limits on the
gluino mass at 95% confidence level are determined with a binned likelihood fit as a function of
cτ0 in the range from 10 µm to 10 m. A procedure to constrain a correction to the LLP jet tagger
efficiency in the likelihood fit is introduced. Competitive limits are demonstrated: models with
a long-lived gluino of mass &2 TeV, a neutralino mass of 100 GeV, and a proper decay length in
the range 1 mm ≤ cτ0 ≤ 1 m are expected to be excluded by this search.
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R. Frühwirth1, M. Jeitler1, N. Krammer, I. Krätschmer, D. Liko, T. Madlener, I. Mikulec, N. Rad,
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Universidad de Antioquia, Medellin, Colombia
J. Mejia Guisao, J.D. Ruiz Alvarez, C.A. Salazar González, N. Vanegas Arbelaez
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D. Giljanović, N. Godinovic, D. Lelas, I. Puljak, T. Sculac

University of Split, Faculty of Science, Split, Croatia
Z. Antunovic, M. Kovac

Institute Rudjer Boskovic, Zagreb, Croatia
V. Brigljevic, D. Ferencek, K. Kadija, B. Mesic, M. Roguljic, A. Starodumov9, T. Susa

University of Cyprus, Nicosia, Cyprus
M.W. Ather, A. Attikis, E. Erodotou, A. Ioannou, M. Kolosova, S. Konstantinou,
G. Mavromanolakis, J. Mousa, C. Nicolaou, F. Ptochos, P.A. Razis, H. Rykaczewski, H. Saka,
D. Tsiakkouri

Charles University, Prague, Czech Republic
M. Finger10, M. Finger Jr.10, A. Kveton, J. Tomsa

Escuela Politecnica Nacional, Quito, Ecuador
E. Ayala

Universidad San Francisco de Quito, Quito, Ecuador
E. Carrera Jarrin

Academy of Scientific Research and Technology of the Arab Republic of Egypt, Egyptian
Network of High Energy Physics, Cairo, Egypt
Y. Assran11,12, S. Elgammal12

National Institute of Chemical Physics and Biophysics, Tallinn, Estonia
S. Bhowmik, A. Carvalho Antunes De Oliveira, R.K. Dewanjee, K. Ehataht, M. Kadastik,
M. Raidal, C. Veelken

Department of Physics, University of Helsinki, Helsinki, Finland
P. Eerola, L. Forthomme, H. Kirschenmann, K. Osterberg, M. Voutilainen



31

Helsinki Institute of Physics, Helsinki, Finland
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C. Garbers, E. Garutti, D. Gonzalez, P. Gunnellini, J. Haller, A. Hinzmann, A. Karavdina,
G. Kasieczka, R. Klanner, R. Kogler, N. Kovalchuk, S. Kurz, V. Kutzner, J. Lange, T. Lange,
A. Malara, J. Multhaup, C.E.N. Niemeyer, A. Reimers, O. Rieger, P. Schleper, S. Schumann,
J. Schwandt, J. Sonneveld, H. Stadie, G. Steinbrück, B. Vormwald, I. Zoi

Karlsruher Institut fuer Technologie, Karlsruhe, Germany
M. Akbiyik, M. Baselga, S. Baur, T. Berger, E. Butz, R. Caspart, T. Chwalek, W. De Boer,
A. Dierlamm, K. El Morabit, N. Faltermann, M. Giffels, A. Gottmann, F. Hartmann16,
C. Heidecker, U. Husemann, M.A. Iqbal, S. Kudella, S. Maier, S. Mitra, M.U. Mozer, D. Müller,
Th. Müller, M. Musich, A. Nürnberg, G. Quast, K. Rabbertz, D. Schäfer, M. Schröder,
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INFN Sezione di Napoli a, Università di Napoli ’Federico II’ b, Napoli, Italy, Università della
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C. Schäfer, C. Schwick, M. Selvaggi, A. Sharma, P. Silva, W. Snoeys, P. Sphicas47, J. Steggemann,
S. Summers, V.R. Tavolaro, D. Treille, A. Tsirou, G.P. Van Onsem, A. Vartak, M. Verzetti,
K.A. Wozniak, W.D. Zeuner

Paul Scherrer Institut, Villigen, Switzerland
L. Caminada48, K. Deiters, W. Erdmann, R. Horisberger, Q. Ingram, H.C. Kaestli, D. Kotlinski,
U. Langenegger, T. Rohe

ETH Zurich - Institute for Particle Physics and Astrophysics (IPA), Zurich, Switzerland
M. Backhaus, P. Berger, N. Chernyavskaya, G. Dissertori, M. Dittmar, M. Donegà, C. Dorfer,
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The University of Kansas, Lawrence, USA
C. Baldenegro Barrera, P. Baringer, A. Bean, S. Boren, A. Bylinkin, T. Isidori, S. Khalil, J. King,
G. Krintiras, A. Kropivnitskaya, C. Lindsey, D. Majumder, W. Mcbrayer, N. Minafra, M. Murray,
C. Rogan, C. Royon, S. Sanders, E. Schmitz, J.D. Tapia Takaki, Q. Wang, J. Williams, G. Wilson

Kansas State University, Manhattan, USA
S. Duric, A. Ivanov, K. Kaadze, D. Kim, Y. Maravin, D.R. Mendis, T. Mitchell, A. Modak,
A. Mohammadi

Lawrence Livermore National Laboratory, Livermore, USA
F. Rebassoo, D. Wright

University of Maryland, College Park, USA
A. Baden, O. Baron, A. Belloni, S.C. Eno, Y. Feng, N.J. Hadley, S. Jabeen, G.Y. Jeng, R.G. Kellogg,
A.C. Mignerey, S. Nabili, M. Seidel, Y.H. Shin, A. Skuja, S.C. Tonwar, L. Wang, K. Wong



42

Massachusetts Institute of Technology, Cambridge, USA
D. Abercrombie, B. Allen, R. Bi, S. Brandt, W. Busza, I.A. Cali, M. D’Alfonso,
G. Gomez Ceballos, M. Goncharov, P. Harris, D. Hsu, M. Hu, M. Klute, D. Kovalskyi, Y.-J. Lee,
P.D. Luckey, B. Maier, A.C. Marini, C. Mcginn, C. Mironov, S. Narayanan, X. Niu, C. Paus,
D. Rankin, C. Roland, G. Roland, Z. Shi, G.S.F. Stephans, K. Sumorok, K. Tatar, D. Velicanu,
J. Wang, T.W. Wang, B. Wyslouch

University of Minnesota, Minneapolis, USA
R.M. Chatterjee, A. Evans, S. Guts†, P. Hansen, J. Hiltbrand, Sh. Jain, Y. Kubota, Z. Lesko,
J. Mans, M. Revering, R. Rusack, R. Saradhy, N. Schroeder, N. Strobbe, M.A. Wadud

University of Mississippi, Oxford, USA
J.G. Acosta, S. Oliveros

University of Nebraska-Lincoln, Lincoln, USA
K. Bloom, S. Chauhan, D.R. Claes, C. Fangmeier, L. Finco, F. Golf, R. Kamalieddin,
I. Kravchenko, J.E. Siado, G.R. Snow†, B. Stieger, W. Tabb

State University of New York at Buffalo, Buffalo, USA
G. Agarwal, C. Harrington, I. Iashvili, A. Kharchilava, C. McLean, D. Nguyen, A. Parker,
J. Pekkanen, S. Rappoccio, B. Roozbahani

Northeastern University, Boston, USA
G. Alverson, E. Barberis, C. Freer, Y. Haddad, A. Hortiangtham, G. Madigan, B. Marzocchi,
D.M. Morse, V. Nguyen, T. Orimoto, L. Skinnari, A. Tishelman-Charny, T. Wamorkar, B. Wang,
A. Wisecarver, D. Wood

Northwestern University, Evanston, USA
S. Bhattacharya, J. Bueghly, G. Fedi, A. Gilbert, T. Gunter, K.A. Hahn, N. Odell, M.H. Schmitt,
K. Sung, M. Velasco

University of Notre Dame, Notre Dame, USA
R. Bucci, N. Dev, R. Goldouzian, M. Hildreth, K. Hurtado Anampa, C. Jessop, D.J. Karmgard,
K. Lannon, W. Li, N. Loukas, N. Marinelli, I. Mcalister, F. Meng, Y. Musienko36, R. Ruchti,
P. Siddireddy, G. Smith, S. Taroni, M. Wayne, A. Wightman, M. Wolf

The Ohio State University, Columbus, USA
J. Alimena, B. Bylsma, B. Cardwell, L.S. Durkin, B. Francis, C. Hill, W. Ji, A. Lefeld, T.Y. Ling,
B.L. Winer

Princeton University, Princeton, USA
G. Dezoort, P. Elmer, J. Hardenbrook, N. Haubrich, S. Higginbotham, A. Kalogeropoulos,
S. Kwan, D. Lange, M.T. Lucchini, J. Luo, D. Marlow, K. Mei, I. Ojalvo, J. Olsen, C. Palmer,
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2: Also at Université Libre de Bruxelles, Bruxelles, Belgium
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