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ABSTRACT

In this paper we present and validate the galaxy sample used for the analysis of the Baryon
Acoustic Oscillation signal (BAO) in the Dark Energy Survey (DES) Y3 data. The definition
is based on a colour and redshift-dependent magnitude cut optimized to select galaxies at
redshifts higher than 0.5, while ensuring a high quality determination. The sample covers
∼ 4100 square degrees to a depth of 𝑖 = 22.3 (𝐴𝐵) at 10𝜎. It contains 7,031,993 galaxies
in the redshift range from 𝑧= 0.6 to 1.1, with a mean effective redshift of 0.835. Redshifts
are estimated with the machine learning algorithm DNF, and are validated using the VIPERS
PDR2 sample. We find a mean redshift bias of 𝑧bias∼ 0.01 and a mean uncertainty, in units
of 1 + 𝑧, of 𝜎68∼ 0.03. We evaluate the galaxy population of the sample, showing it is mostly
built upon Elliptical to Sbc types. Furthermore, we find a low level of stellar contamination
of . 4%. We present the method used to mitigate the effect of spurious clustering coming
from observing conditions and other large-scale systematics. We apply it to the BAO sample
and calculate weights that are used to get a robust estimate of the galaxy clustering signal.
This paper is one of a series dedicated to the analysis of the BAO signal in DES Y3. In the
companion papers we present the galaxy mock catalogues used to calibrate the analysis and
the angular diameter distance constraints obtained through the fitting to the BAO scale.

Key words: cosmology: observations - (cosmology:) large-scale structure of Universe -
catalogues - surveys
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1 INTRODUCTION

Baryon Acoustic Oscillations (BAO) is one of the most remarkable
predictions of the formation of structures in the Universe (Pee-
bles & Yu 1970; Sunyaev & Zeldovich 1970; Bond & Efstathiou
1984, 1987). Since its confirmation in the distribution of galaxies
in 2005 (Eisenstein et al. 2005), BAO measurement has been one of
the main scientific drivers in the design and construction of galaxy
surveys.

BAO has already been detected several times in spectro-
scopic (Cole et al. 2005; Percival et al. 2007; Gaztañaga et al.
2009; Percival et al. 2010; Beutler et al. 2011; Blake et al. 2011;
Ross et al. 2015; Alam et al. 2017) and photometric (Padmanabhan
et al. 2007; Estrada et al. 2009; Hütsi 2010; Crocce et al. 2011;
Carnero et al. 2012; Abbott et al. 2019) data-sets, for galaxies, but
also in the distribution of QSOs (Ata et al. 2018) and Lyman-alpha
absorbers (Bautista et al. 2017), in a wide variety of redshifts, from
𝑧 = 0.2 to 𝑧 < 3. Estimates of the evolution of the BAO scale with
time is a direct measurement of the expansion of the Universe and
therefore, an excellent cosmology observable. All these measure-
ments are compatible with the ΛCDM cosmological model and the
existence of Dark Energy.

In this context, the Dark Energy Survey (DES: Flaugher 2005;
DES Collaboration 2016) set as one of its main objectives to mea-
sure the BAO scale in the distribution of galaxies. In a previous
release, in DES Year 1 (Abbott et al. 2019) we measured the BAO
scale at an effective redshift of 0.81. This sample covered approx.
1400 square degrees; given the limited area, this detection had a low
significance. In DES Year 3 (Y3), the data-set analysed here, the
nominal footprint of approx. 5000 square degrees for the complete
survey is covered, and we expect to reach a sensitivity to BAO of
the same order as concurrent spectroscopic and photometric sur-
veys. Furthermore, this measurement will be combined with the
other DES cosmological observables to estimate the most precise
measurements on Dark Energy by combination of BAO with Weak
Lensing, Supernova Ia and Galaxy Clusters number counts.

One of the main difficulties in detecting BAO in photometric
surveys is the smearing in the signal produced by the poor redshift
determination. In this context, it is necessary to select a galaxy popu-
lation that presents a prominent spectral feature that can be captured
with broadband filters. Generally, the best practice is to select old,
well-evolved galaxies with a significant Balmer break (Eisenstein
et al. 2001; Vakili et al. 2019; Crocce et al. 2019; Zhou et al. 2020).
This feature makes galaxies look very red, and they usually drive
the target selection in galaxy surveys.

In Crocce et al. (2019), we developed a colour selection to
select galaxies in the DES Y1 sample, calibrated through a set of
synthetic SED distributions, optimized for redshifts 𝑧 > 0.5. In this
new release, we apply the same colour selection, but put the focus
in the improvement of ameliorating spurious clustering due to ob-
serving conditions. Since the sample now covers more than 4000
square degrees, with observations taken during three different years,
variations on conditions like seeing, airmass, sky brightness, stellar
density, or galactic extinction are expected to leave significant im-
prints in the galaxy clustering and therefore, robust corrections are
needed. In DES Y3 we compute weights to correct for these effects,
following the procedure developed in Elvin-Poole et al. (2018) for
the DES Y1 lens sample, but to the DES Y3 BAO sample. Similar
methods have also been applied to BOSS (Ross et al. 2011, 2017),
eBOSS (Ross et al. 2020; Laurent et al. 2017) and DESI (Kitanidis
et al. 2020) targets.

The structure of the paper is as follows: In Section 2 we present

the parent DES Y3 data and next, in Section 3 we describe the
BAO sample selection. In Section 4 we present the selection of the
footprint. In Section 5 we present the photometric redshift (photo-𝑧)
definition and validation. In Section 6 we validate the sample. In
Section 7 we summarize the blinding procedure, which is largely
shared with other DES analyses. In Section 8 we present the analysis
of mitigation of observational systematic effects and in Section 9
we show the 2-pt clustering signal in real space after the unblinding
of the sample. Finally, we show our conclusions in Section 10. The
BAO sample will be eventually released at https://des.ncsa.
illinois.edu/releases together with all the DES Y3 products.

This paper accompanies a series of papers focused on the
analysis of BAO distance in DES Y3 analysis. In Ferrero et al.
(2021) we construct precise galaxy mocks for the BAO sample, that
are used to validate and optimise the analysis. Finally, in Abbott et al.
(2021) we measure the BAO scale as a function of redshift, both in
real and in harmonic space and determine the best fit cosmological
parameters for the BAO sample.

It is worth noting that the study of the largest scales in galaxy
clustering (through the angular correlation function and the angular
power spectrum), not only allows the determination of the BAO
scale, but the same observables can be used to study, for example,
primordial non-gaussianities and neutrino mass, which will be the
focus of future analyses.

2 DES Y3 DATA

The Dark Energy Survey operations ended in 2019, after six years.
DES used the Blanco 4m telescope at Cerro Tololo Inter-American
Observatory (CTIO) in Chile, and observed ∼ 5000 deg2 of the
southern sky in five broadband filters, 𝑔𝑟𝑖𝑧𝑌 , ranging from∼ 400 nm
to ∼ 1060 nm (Li et al. 2016a; Burke et al. 2018), using the DE-
Cam (Flaugher et al. 2015) camera. Finally, images are processed
at DES Data Management in NCSA (Morganson et al. 2018).

The BAO sample was selected based on the Y3 GOLD cata-
logue (Sevilla-Noarbe et al. 2021), an improved version of the pub-
lic DR1 data (DES Collaboration 2018)1. It includes observations
from the first three years of operations. In comparison with the DR1
public release, Y3 GOLD includes improved photometric zero-point
corrections, several observing condition maps, more advanced pho-
tometry extraction, morphological star/galaxy separation, and extra
quality flags not included in DR1. For details in the construction of
the Y3 GOLD catalogue, we refer to Sevilla-Noarbe et al. (2021). In
this section, we briefly detail those quantities that are of importance
to the selection of the BAO sample.

Photometric information is obtained through the multi-epoch,
multi-band fit to objects based on the ngmix software (Drlica-
Wagner et al. 2018). In DES Y3, we run in a simplified mode
that eliminates the multi-object light subtraction step. This speeds
the process as well as ensures fewer objects have fit failures. This
mode is called SOF (single-object-fitting), and it is the base for the
BAO sample. So far, SOF photometry was only calculated for 𝑔𝑟𝑖𝑧
but not the𝑌 band. Internal studies showed that the𝑌 band’s use did
not improve redshift estimations in Y3 and therefore the band is not
used for the BAO sample. Furthermore, using SOF morphological
information, a star/galaxy classification method is developed, by
grouping objects according to their similarity with a point-like or
extended source.

1 Available at https://des.ncsa.illinois.edu/releases/dr1
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Figure 1. Number density of galaxies found in Y1 GOLD (black) and Y3 GOLD

(red). The increase is mostly due to changes in the data reduction process.
This increased justified the extension of the galaxy sample to redshift 𝑧 =

1.1.

Several zero-point corrections are applied to the grey calibra-
tion presented in DR1: additional corrections based on observations
from up to Y4 observations and chromatic corrections, which are
spectral energy distribution (SED) dependent zero-point corrections
to correct for differences to the standard star used in calibration (Li
et al. 2016b). Furthermore, galactic reddening is also corrected as
a function of the SED of the source.

Photo-𝑧’s are calculated using 𝑔𝑟𝑖𝑧 SOF corrected fluxes,
trained on a large spectroscopic sample that includes public as
well as private spectral references (Gschwend et al. 2018). During
the creation of the BAO sample, we tried other photometric redshift
estimates using SourceExtractor AUTO fluxes for photo-𝑧, as well
as using different photo-𝑧 codes, but SOF based DNF gave the best
metrics in all cases, using an independent validation sample.

Finally, depth maps were also built for galaxies for SOF cor-
rected magnitudes, used along with several observing conditions
maps to select the effective area of DES Y3 analysis and for miti-
gation of spurious clustering due to observing conditions.

2.1 Changes with respect to DES Y1

Several changes have been applied to the DES Y3 data process-
ing pipeline improving over Y1 reduction. This leads to a greater
number density of galaxies in Y3 compared to Y1, and allows the
extension of the BAO sample to 𝑧 > 1.0. Even though the mean
number of exposures in each position is similar to Y1 (around four
exposures in 𝑔𝑟𝑖𝑧), the homogeneity is larger for Y3, resulting in a
slight increase in depth (∼ 0.02 mag in the bluest bands to∼ 0.2 mag
in the reddest at 𝑠𝑛𝑟 = 10). Also, modifications in SourceExtrac-
tor settings have altered the number of objects detected, reaching
lower signal-to-noise than in Y1.

As previously stated, these changes make Y3 galaxy samples
denser, as can be seen in Figure 1, with an increase of a factor ≈ 1.3
in galaxies per ℎ3𝑀𝑝𝑐−3.

3 SAMPLE SELECTION

The BAO sample has been selected following the same procedure as
that of DES Y1 BAO analysis. We first apply the following quality
cuts to Y3 GOLD data (Sevilla-Noarbe et al. 2021):

• FLAGS_GOLD: we remove, for all bands 𝑔𝑟𝑖𝑧, any source
with FLAGS_SOF ! = 0, with SourceExtractor FLAGS > 3, or
IMAFLAGS_ISO ! = 0. As well as any object defined as Bright
Blue artifact or Bright objects with nonphysical colors and possible
transients.

• FLAGS_FOOTPRINT. We require sources to be defined inside
the footprint and to have NITER_MODEL > 0 in all 𝑔𝑟𝑖𝑧 bands to
ensure that the object has been observed. The footprint is defined
as those regions with at least one exposure in all 𝑔𝑟𝑖𝑧 bands, with a
coincident effective coverage greater than 50% in all bands.

• We further impose sources to be within the angular mask,
defined in Section 4.

Once we apply the quality cuts defined above, we select secure
galaxies using the EXTENDED_CLASS_MASH_SOF classifier, which
classifies how much a source differs from a point-like morphol-
ogy (Sevilla-Noarbe et al. 2021). For photo-𝑧 estimates (see Sec-
tion 5) and for the galaxy colour selection, we use SOF magnitudes
corrected by SED-dependent extinction based on SFD98 (Schlegel
et al. 1998), chromatic corrections and Y3 GOLD zero-point correc-
tions.

We next apply the colour selection:

(𝑖 − 𝑧) + 2 × (𝑟 − 𝑖) > 1.7 , (1)

and also the flux-limit cut:

𝑖 < 19. + (3 × Z_MEAN) , (2)

in the magnitude range 17.5 < 𝑖 < 22.3. Finally we select galaxies
in the redshift range:

0.6 < Z_MEAN < 1.1 . (3)

The flux-limit cut, in the presence of large photo-𝑧 scatter,
could lead to unwanted correlations with other survey conditions
and to an amplification of systematic effects. In our case, the
BAO sample is, by definition, designed to avoid large photo-𝑧 scat-
ters and therefore, these correlations will be small. Likewise, this
effect should be corrected by the amelioration of survey conditions
correlations described in Section 8.

Comparing our selection algorithm with the one used for the
DES Y1 (see equation 3 in Crocce et al. 2019), we have increased
the depth limit up to 22.3 mag to reach redshifts 𝑧 ≤ 1.1 after
considering Equation 2. This, in turn, implies a reduction of an
area of 100 square degrees, in comparison with a sample with a
depth limit of 22 mag, reaching redshifts up to 𝑧 = 1. Based on
cosmological forecasts, adding this extra bin at 𝑧 < 1.1 at the
expense of losing 100 square degrees results in better constraining
power. We predict a gain of 10% in the precision of the BAO scale
and a higher mean redshift.

In Table 1, we list all the selections done in the Y3 GOLD

sample to select the BAO sample. In Table 2 we summarize the
main properties of the BAO sample for each tomographic redshift
bin. Redshift properties are explained in Section 5. The galaxy bias
estimates of this table have been obtained following the blinding
procedure explained in Section 7 and serve as initial values for
subsequent analyses.

MNRAS 000, 1–21 (2021)
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Table 1. Summary of the selection process. Starting from the Y3 GOLD catalogue, we apply the same colour selection as in Y1 GOLD, but we extend the analysis
to redshift 𝑧 = 1.1. We also need to extend the magnitude limit to 𝑖 < 22.3, ensuring completeness through the entire footprint.

Keyword Cut Description

Gold observations present in the Y3 GOLD catalogue Sevilla-Noarbe et al. (2021)
Quality FLAGS_GOLD Section 3

Footprint 4108.47 𝑑𝑒𝑔2 Section 4
Colour selection (𝑖 − 𝑧) + 2 × (𝑟 − 𝑖) > 1.7 Section 3
Flux Selection 17.5 < 𝑖 < 19. + 3. × Z_MEAN Section 3

Star-galaxy separation EXTENDED_CLASS_MASH_SOF = 3 Section 3
Photo-𝑧 range [0.6 − 1.1] Section 5

Table 2. Main properties of the BAO sample in each tomographic bin. Redshift properties are given for the VIPERS sample estimation, namely, the mean
redshift (�̄�), the width of the 𝑁 (𝑧) (𝑊68) and the dispersion on the photo-𝑧 error (𝜎68). Sample variance are estimated based on MICE simulation. The so-called
blind galaxy bias has been obtained following the collaboration’s blinding procedure and serve as initial values needed to mitigate systematic observational
effects.

Redshift limits �̄� 𝑊68 𝜎68 Number of galaxies blind galaxy bias

0.6 < z < 0.7 0.648 ± 0.003 0.0455 ± 0.003 0.021 ± 0.001 1,478,178 1.79 ± 0.09
0.7 < z < 0.8 0.742 ± 0.003 0.0522 ± 0.002 0.025 ± 0.002 1,632,805 1.83 ± 0.10
0.8 < z < 0.9 0.843 ± 0.003 0.0629 ± 0.003 0.029 ± 0.002 1,727,646 2.02 ± 0.12
0.9 < z < 1.0 0.932 ± 0.004 0.0633 ± 0.003 0.030 ± 0.003 1,315,604 2.09 ± 0.14
1.0 < z < 1.1 1.020 ± 0.006 0.0808 ± 0.006 0.040 ± 0.005 877,760 2.4 ± 0.08

4 ANGULAR MASK

Apart from the object-to-object selection of the BAO sample, we
need to define the effective area of the sample, ensuring we remove
areas of dubious quality and that are complete given the magnitude
limit of the BAO sample. In DES, the exact image footprint informa-
tion is delivered as mangle products (Swanson et al. 2008), which
are later transformed into HEALPix maps (Górski et al. 2005) of
resolution nside =4096. This translation facilitates merging sev-
eral information maps, which can then be combined to generate the
sample’s footprint.

The BAO sample is only defined in the Wide Survey area,
excluding the Supernova Fields (see Sevilla-Noarbe et al. 2021
for details). To create the footprint mask, we impose the following
requirements in the input HEALPixmaps. For details about the maps
we refer to Sevilla-Noarbe et al. (2021):

• At least one exposure in each of the 𝑔𝑟𝑖𝑧 bands.
• The effective area of each pixel must be greater than 0.8 in

𝑔𝑟𝑖𝑧. This cut removes HEALPix pixels lying at the edge of the
survey area, or containing significantly masked area.

• Pixels must not be affected by foreground sources, like regions
around bright stars or extended galaxies.

• An extra cleaning is done in very obvious pixels affected by
scattered light and unmasked streaks.

• Pixel must have a SOF corrected 10𝜎 depth in 𝑔𝑟𝑖𝑧 greater
than 22, 22, 22.3, 21 mag, respectively.

• The depths in 𝑟 and 𝑧 bands must follow the condition, (2 ×
𝑟lim − 𝑧lim) > 24. This condition is to ensure that our sample
selection in Equation (1) remains complete and applicable following
the minimum depth cut in 𝑖-band (𝑖 > 22.3).

After combining all these conditions, we end up with the fi-
nal BAO sample mask, which covers 4108.47 square degrees. The
footprint and density distribution can be seen in Figure 2. Here, the
effective area of the pixels are considered. In this figure we also
show in red the W1 and W4 VIPERS regions, used for photo-𝑧
calibration in Section 5.1.

300306090120150 9060
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300306090
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Figure 2. BAO sample angular distribution, covering 4108.47 square de-
grees of the sky accessible at CTIO. In red squares, VIPERS W1 and W4
regions, used for photo-𝑧 validation.

5 PHOTOMETRIC REDSHIFTS

Photo-𝑧’s used for the BAO sample are derived using the Directional
Neighborhood Fitting (DNF) algorithm (De Vicente et al. 2016). We
use the photo-𝑧 estimates described in Y3 GOLD (Sevilla-Noarbe
et al. 2021). In summary, DNF was trained using the most updated
spectroscopic sample available for the collaboration by May 2018.
This sample contains public spectroscopic but also some DES
proprietary spectroscopic data, including the collection from the
OzDES collaboration (Lidman et al. 2020). From this sample, we
randomly selected half of the objects for training, while the rest was
left for general validation purposes. Furthermore, we also removed
the whole VIPERS spectroscopic sample from the training sample,
and we left it for validation purposes, as explained in the following
subsection. To estimate photo-𝑧’s, we used SOF corrected fluxes,
using 𝑔𝑟𝑖𝑧 bands.

In internal analyses, we also tested BPZ code (Benítez 2000)

MNRAS 000, 1–21 (2021)
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and Annz2 (Sadeh et al. 2015), but DNF always gave better photo-𝑧
bias and 𝜎68 metrics, and therefore, we use it to estimate redshifts
for our BAO sample.

In addition to the predicted best-value in the fitted hyper-plane
(Z_MEAN), DNF also returns the redshift of the nearest neighbour
(Z_MC). This quantity, stacked for all galaxies in a given tomographic
bin, has proven to give a fair description of the true 𝑁 (𝑧) (Crocce
et al. 2019). Likewise, DNF produces redshift probability distribu-
tions (PDF) for each source, that can also be used to estimate the
𝑁 (𝑧) of a given tomographic bin if we stack the PDF of all the se-
lected sources. Both estimates will be used to validate our fiducial
𝑁 (𝑧), based on the VIPERS spectroscopic survey.

To estimate the 𝑁 (𝑧) of the BAO sample we use the second
public data release (Scodeggio et al. 2018, PDR2) from the “VIMOS
Public Extragalactic Redshift Survey” (Guzzo et al. 2014, VIPERS).
Unlike with the DES Y1 analysis, where we used the COSMOS
sample (Laigle et al. 2016), we employ VIPERS, which is a larger
sample and, therefore, less affected by cosmic variance. Likewise,
VIPERS is complete up to 𝑖𝐴𝐵 ≈ 22.5 for redshifts above 0.5, where
the BAO sample is defined.

5.1 VIPERS Validation

The VIPERS sample consists of 91,507 sources, from which 86,775
are galaxies. VIPERS observed in two fields, named W1 and W4,
both overlapping DES. W1 is the largest area, centred at 𝛼2000 =

34.495◦ and 𝛿2000 = −5.076◦, and covers an effective area of 11.012
square degrees, while W4 is centred at 𝛼2000 = 332.7◦ and 𝛿2000 =

1.61◦, and covers 5.312 square degrees. The total overlap area is
16.324 square degrees (seen in Figure 2).

The sample was defined to be statistically complete above
redshift 0.5, at least up to 𝑖𝐴𝐵 < 22.5 (Scodeggio et al. 2018).
Considering that the BAO sample is defined above redshift 0.6 and
up to 𝑖𝐴𝐵 < 22.3 makes VIPERS an excellent reference sample for
the photo-𝑧 validation.

As recommended by Scodeggio et al. (2018), we apply the
following quality cuts on the VIPERS data2:

• 2 ≤ 𝑧 𝑓 𝑙𝑎𝑔 < 10: ensures a good quality spectroscopic red-
shift with more than 90% confidence and eliminates AGNs and
duplicated objects.

• The Target Sampling Rate (𝑡𝑠𝑟), the Spectroscopic Success
Rate (𝑠𝑠𝑟) and the Colour Sampling Rate (𝑐𝑠𝑟) must be greater than
zero.

• 𝑐𝑙𝑎𝑠𝑠𝐹𝑙𝑎𝑔 == 1: selects from the main catalog, galaxies with
colours compatible with 𝑧 > 0.5.

• 𝑝ℎ𝑜𝑡𝑜𝑀𝑎𝑠𝑘 == 1 ensures that galaxies fall within the photo-
metric mask.

These quality cuts are more than sufficient for our analysis,
since cosmological constraints coming from the BAO scale mea-
surement are robust against a small number of wrong redshifts in
the determination of the 𝑁 (𝑧).

After applying these cuts, we end up with 74,591 galaxies
available for photo-𝑧 validation and estimation of our 𝑁 (𝑧)’s. Fur-
thermore, VIPERS statistics must be weighted to account for the
various sampling rates. The galaxy weight for each VIPERS galaxy
is 𝑤 = 1./𝑠𝑠𝑟/𝑡𝑠𝑟/𝑐𝑠𝑟.

2 http://vipers.inaf.it/data/pdr2/catalogs/PDR2_SPECTRO_

TABLES.html

We then match the VIPERS sample to the BAO sample in sep-
arated redshift bins. In total, we have 8362 galaxies matched within
1 arcsec, divided into tomographic redshift bins the number of
galaxies available for calibration is 1934, 2107, 2167, 1416, 738
respectively. This represents ∼ 12% of the VIPERS galaxy sample.
The reduction of the sample comes mostly from the colour selec-
tion and the flux selection which by themselves eliminates 82%
of the VIPERS catalogue. Despite this reduction, the mean value
of 𝑠𝑠𝑟 × 𝑡𝑠𝑟 × 𝑐𝑠𝑟 in each redshift bin is 0.47, 0.47, 0.45, 0.42,
0.39 respectively, which reflect the completeness of the validation
sample with respect to the complete VIPERS sample. We further
confirmed the VIPERS sample covers the same colour-colour space
as the BAO sample (cf. Appendix A).

We estimate the BAO sample 𝑁 (𝑧) in each tomographic bin
by stacking the VIPERS redshifts for all the matches in the given
redshift bin, but before, we validate DNF photo-𝑧 point estimates
(used to assign galaxies to each tomographic bin) using the VIPERS
redshifts (see Section 5.3). The variance in the validation metrics
and in the 𝑁 (𝑧)’s are obtained based on ≈ 316 BAO sample photo-𝑧
realizations using the MICE simulation (Fosalba et al. 2015; Crocce
et al. 2015), as described in the following subsection.

5.2 Photo-𝑧 variance

To estimate the uncertainties of the photo-𝑧 metrics and of the
𝑁 (𝑧)’s, we rely on the MICE simulation to create several realizations
of the VIPERS-BAO sample. The MICE simulation covers ∼ 5150
square degrees. Based on the method of Lima et al. (2008), we create
a MICE catalogue with the same photometric properties as the Y3

GOLD. From here, we divide the MICE simulation in a total of 316
equal-area sub-samples of 16.3 square degrees, each consisting of
two independent regions of 11 and 5.3 square degrees. From here,
we select galaxies with the same cuts as in the BAO sample. In each
realization, we calculate the 𝑁 (𝑧) (316 𝑁 (𝑧) for each redshift bin).
Since MICE’s galaxy density is a little higher than VIPERS density,
in each of these sub-samples, we randomly pick as many objects
as the VIPERS catalogue has, independently for each tomographic
bin.

In Appendix A, we show a comparison of the properties of
the BAO sample and MICE simulation, confirming the simulation
reproduce the photometry of the VIPERS-BAO sample correctly
(Figures A.1 and A.2). Hence, we can use MICE to estimate errors
of the photo-𝑧 metrics and of the 𝑁 (𝑧)’s, as shown in Figures 3, 4, 5
and 6.

5.3 Photo-𝑧 validation

We assess the quality of the DNF point photo-𝑧 estimates by mea-
suring the photo-𝑧 bias and 𝜎68 in each tomographic bin. These
two quantities are the most important ones to estimate the correct
angular distance to the BAO. The outlier fraction, a standard met-
ric given when assessing photo-𝑧’s in generic studies, does have a
negligible effect on BAO measurements, for example.

We then calculate these two metrics for our photo-𝑧 choice,
based on VIPERS, and also for those estimates based on Z_MC.
Z_MC is estimated for each BAO sample source according to its
nearest neighbour in the training sample. But the training sample
is not constructed to represent the BAO sample and therefore, their
metrics are expected to be not as representatives as the VIPERS
estimates.

The photo-𝑧 bias is defined, averaged over all the available
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and Z_MC). 𝑧bias is defined as the average difference between Z_MEAN and
the given redshift. After finding a good agreement between independent
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Z_MC) as a function of �̄�spec. 𝜎68 is defined as the value where 68% of the
objects have |Z_MEAN − 𝑧spec |/(1 + 𝑧spec) < 𝜎68.

galaxies 𝑁 , as:

𝑧bias =
1
𝑁

𝑁∑︁
𝑖=1

(Z_MEAN𝑖 − 𝑧𝑖spec) (4)

and 𝜎68 is defined as the value such as 68% of the galaxies have
|Z_MEAN − 𝑧spec |/(1 + 𝑧spec) < 𝜎68.

In Figures 3 and 4 we show the evolution of 𝑧bias and 𝜎68 as a
function of 𝑧spec. Error bars are the sample variance calculated as the
standard deviation from the MICE realizations. The level of 𝜎68 is
below 0.1 and the mean bias is below 0.04 in all the redshift ranges,
confirming the good quality of the photo-𝑧 estimate, as expected by
design of the sample selection.

Once we confirm the quality of the DNF photo-𝑧 estimates, we
proceed to estimate the true 𝑁 (𝑧)’s in each bin. In Figure 5 we

present the 𝑁 (𝑧) for each tomographic bin estimated with VIPERS,
DNF Z_MC and DNF PDF. The variance is obtained based on the stan-
dard deviation estimated with MICE simulation. Finally, in Figure 6,
we present 𝑊68, defined as the width containing 68% of the 𝑁 (𝑧)
distribution, and the mean of 𝑁 (𝑧) as a function of redshift for each
calibration sample.

In general, DNF behaves well, confirming Z_MC is a good tracer
of the VIPERS redshifts. As already said, several internal tests
showed that the choice of one or another 𝑁 (𝑧) does not change our
results.

6 SAMPLE VALIDATION

In this section we validate the photometric properties of the
BAO sample and estimate the purity of the sample.

6.1 Photometry

The colour selection for the BAO sample was defined to select galax-
ies beyond 𝑧 = 0.5, following the SED for elliptical galaxies. De-
tails about the selection can be found in Figure 5 from Crocce
et al. (2019). There we estimated the colours of a set of SED tem-
plates as a function of redshift seen through the DES filter pass-
bands. To confirm that the colour selection is still valid for Y3, we
run the BAO sample through the SED template fitting code LeP-

hare (Arnouts & Ilbert 2011), with the same SED templates as in
Y1 (Benítez 2000) and using the most updated versions of the DES
filters passbands3.

We run LePharewith fixed redshifts to Z_MEAN (we also tested
allowing redshifts to vary freely, and results were the same). With the
best fitting model for each galaxy, we can examine the proportions
of the different spectral type populations within the BAO sample.
After running LePhare, we find that 44% of the sample are actually
elliptical galaxies, 34% Sbc types, and 22% other types of galaxies.
Furthermore, the colours reproduce well the expected locus for each
spectral type. This can be seen in Figure 7, where we show the colour
evolution of the Elliptical and Sbc galaxies in the BAO sample as a
function of redshift. We further show the Y3 GOLD stellar locus for
main-sequence stars. This highlights the possible colour confusion
between galaxies and stars in our sample in the first redshift bins.
Nonetheless, these regimes are where the morphological star/galaxy
separation quantity in DES will work better.

6.2 Star contamination

Several studies have shown that star contamination can significantly
affect the measurement of clustering of galaxies if not taken care of.
On the one hand, they can damp the signal-to-noise ratio of the BAO
signal (Carnero et al. 2012), but they can also introduce spurious
power at large scales (Ross et al. 2011), which could mimic the effect
of primordial non-gaussianities. However, the effect on the angular
position of the BAO is negligible. Therefore, some contamination
level is allowed, especially since residual stellar contamination in
the clustering is removed using the mitigation scheme presented in
Section 8.

In this work, as explained in Section 3, we use the
EXTENDED_CLASS_MASH_SOF classifier to select secure galaxies,

3 http://www.ctio.noao.edu/noao/content/

DECam-filter-information
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which should be a reliable star-galaxy separator in the range of
𝑖 = [19, 22.5], with expected contamination in these magnitude
ranges below 2% (Sevilla-Noarbe et al. 2021). Another effect is the
possible obscuration of galaxies due to stars in the foreground. This
effect is taken care of by the Y3 GOLD foreground mask, which is
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Figure 7. Median colour-colour distributions for the BAO sample, divided
into spectral types, as a function of Z_MEAN redshift, compared with the
expected colour-colour evolution of Elliptical and Sbc SEDs (solid lines).
In dashed line, the Y3 GOLD stellar locus. The white area defines the colour-
colour cut applied to select the BAO sample. Error bars are the colour
standard deviations of each sub-sample.

applied to the BAO sample and should account for the most ob-
scured regions around stars; nonetheless, we can always expect that
for low-brightness surface galaxies, this effect might be important,
especially as we go to higher redshifts.

We estimate the star contamination level by looking at the
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purity of the sample, defined as:

Purity [%] =
(
1 − nstars

(nstars + ngals)

)
× 100 (5)

where nstars
(nstars+ngals) is the contamination.

We start by applying the same algorithm as in Y1 (Crocce et al.
2019). There we measured the galaxy density in the BAO sample
as a function of stellar density and extrapolate the relation to where
stellar density = 0. This way, we can infer the sample purity by look-
ing at the sample density in the absence of stars with respect to the
mean density. We do this analysis separately for each tomographic
bin to assess the sample’s purity as a function of redshift. The result
of this analysis can be found in Figure 8.

The contamination is small but somewhat larger than the aver-
age for Y3 GOLD. The highest contamination is found in the second
and third bin (photo−𝑧 = [0.7, 0.9]). This is confirmed in Figure 9.
Here we show the photo-𝑧 distribution if we assume that secure stars
are galaxies, given the same colour cut applied to the BAO sample.
We can clearly see the distribution peaks in this redshift range. This
is because of all stars will colours larger than 𝑟-𝑖 & 1.3, for which
the best photo-𝑧 will be that of the galaxies in the turn of the galaxy
colour locus (𝑟-𝑖 ≈ 1.3, 𝑖-𝑧 ≈ 0.5, cf. Figure 7). Consequently, for
those stars the likelihood of the photo-𝑧 fit worsen as they move
away of the turn.

The contamination is probably overestimated due to obscura-
tion effects in the borders of field stars. As already commented, this
effect might be important in the highest redshift bins, and we see this
effect in the last redshift bin (photo−𝑧 = [1.0, 1.1]). Here we expect
very little contamination, but different from the other bins, we see
a negative trend in galaxies’ density as a function of stellar density.
Internal studies ruled-out the possibility that an over-agressive star-
galaxy separation was causing this effect. This warns us that the
foreground mask developed for the Y3 GOLD might be insufficient
at the faint end and also, that purity might be over-estimated in the
second to last redshift bin. Nonetheless, we expect this effect to have
a negligible effect on the BAO measurement; likewise, we treat this
effect on the mitigation of observing conditions in Section 8.

To confirm our estimates, we further estimate the star contam-
ination by comparing the BAO sample with a different star/galaxy
separation scheme, done in a subsample that combines DES pho-
tometry with near-infrared (NIR) data. It has been shown in Sevilla-
Noarbe et al. (2018) that a combination of optical plus NIR data
is excellent to discriminate between stars and galaxies. Therefore
we match the BAO sample to the DR4 Vista Hemisphere Sur-
vey (McMahon et al. 2013, VHS). The overlap is ∼ 2000 square
degrees, and Our sample contains 987254 of their sources. Unfor-
tunately, VHS is only complete in DES up to 𝑖∼ 21 so that we can
expect some selection bias, especially at high redshifts. We estimate
the percentage of stars in the BAO sample following the colour sep-
aration seen in Figure 10 from Sevilla-Noarbe et al. (2021). There-
fore, we define as stars those sources with 𝐽−𝐾𝑠 < 0.2×(𝑔−𝑖)+0.55.
Applying this cut to each redshift bin in the BAO sample, we find the
following purity levels: 96.96%, 96.3%, 94.6%, 97.3%, and 98.3%.
They are very similar to the ones found with the previous method,
as can be seen in Figure 9. In this case, the incompleteness of VHS
at the fainter end is not important because it is here where less
contamination is expected.

7 ANALYSIS BLINDING PROCEDURE

To avoid confirmation bias, DES follows strict blinding procedures.
In general, we apply the same blinding guidelines for all the LSS
samples. Here, the main rule is to avoid the calculation and vi-
sual inspection of the angular correlation function, 𝜔(𝜃), or the
angular power spectrum before estimating the final cosmological
constraints. Clustering statistics are only allowed to be calculated
following these rules:

• Clustering measurements for any sample are allowed to be
produced for a 10% sub-sample of the area only, in up to 3 angular
bins.

• Bias values can be obtained for these measurements, only using
the halofit prediction of 𝜔(𝜃) for a fixed cosmology. These bias
measurements are only meant to inform either the production of
mocks or the forecast to optimized science analysis but not for
parameter estimations.

In addition, we apply the blinding rules applied in Y1:

• We cannot over-plot theory and data until the catalogues are
frozen and all blinding tests have been approved.

• No maximum likelihood values of any fits to data vectors will
be reported until the catalogues are finalized. The width of a con-
fidence interval may be, as well as the shape of the likelihood, as
long as it is always centred on a fiducial value.

7.1 Blind galaxy bias

Based on these guidelines, we estimate the galaxy bias for the
BAO sample. These values are needed to construct the log-normal
mocks used in the mitigation of observational systematic effects ex-
plained in Section 8.2.2. We measure 𝜔(𝜃) for 3 angular bins from
𝜃∼ 0.58 to 𝜃∼ 0.92 degrees in a 10% sub-sample, selecting a list of
consecutive HEALPix pixels, randomly selected within the footprint,
but with preliminary weights defined from the whole footprint. We
estimate a Gaussian+shot noise covariance matrix with input 𝐶ℓ
evaluated at MICE ΛCDM cosmology (Fosalba et al. 2015; Crocce
et al. 2015). First, we fit 𝜔(𝜃) with a covariance with galaxy bias
𝑏 = 1 in all redshift bins; then, we obtain the first set of temporary
galaxy biases that are used to estimate the final covariance matrix.
With this new covariance, we obtain the stated galaxy bias per red-
shift bin. In the process, we include the 𝑁 (𝑧)’s from Section 5 and
a first set of weights from the mitigation of systematics (using the
Y1 BAO sample bias as starting point). ‘Blind’ galaxy bias values
are given in Table 2.

In Figure 10 we compare the BAO sample 𝜔(𝜃) with the aver-
age clustering signal from the log-normal mocks (see Section 8.2.2)
and the theoretical model with the fitted galaxy biases.

8 MITIGATION OF OBSERVATIONAL SYSTEMATIC
EFFECTS

This paper is based on observations taken during three years of oper-
ations at the Blanco telescope in Chile. On average, each position on
the sky was observed four times (excluding the Supernova Fields),
although the scatter is large, with some regions observed once, with
other regions observed up to 10 times (cf. Figure 2 from DES Col-
laboration 2018). Even though we impose for the BAO sample that
we have observed at least once in each band, the heterogeneous
survey strategy implies fluctuations in seeing, exposure time, sky
brightness, photometric calibrations, and other survey conditions,
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agree well and also with the trend seen in the gray distribution.

that, if not treated correctly, can imprint non-cosmological cluster-
ing in the density field.

To correct these effects, we apply the iterative decontamination

method presented in Elvin-Poole et al. (2018), already applied to the
Y1 lensing samples. In Y3, we decided to apply the same method-
ology to all clustering catalogues, including the BAO sample, red-
MaGiC (Rozo et al. 2016) and MagLim (Porredon et al. 2021)
samples. We have called the method Iterative Systematic Decon-
tamination (ISD) method.

Details about the ISD method and results for the redMaGiC and
MagLim samples are given in Rodríguez-Monroy et al. (2021). In
this paper, we explain the methodology and document the results
for the BAO sample only.

8.1 ISD Method

The number density of galaxies is expected to fluctuate with the
survey’s imaging quality, both due to fluctuations in the noise and
due to limitations of the selection process. The method developed
in Elvin-Poole et al. (2018) consists of assessing how much the
galaxy density varies with respect to a given survey property, given
that the natural variations in number density do not correlate with
survey properties. When a significant relationship is found, for ex-
ample, when the galaxy density increases or decreases with seeing
or airmass, a weight is assigned to each galaxy as a function of the
observing condition’s value at its position to correct for this fluctua-
tion. In a real case, we have hundreds of survey conditions correlated
with each other and for several bands. For this reason, a robust and
automatic methodology is needed to correct for observing condition
fluctuations.

The ISD method is an iterative method. It starts by estimating
the significance of the galaxy density versus each survey property.
The method uses HEALPix maps for each survey property as well as
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to estimate galaxy densities, where we consider the effective area of
the pixels given by the Y3 GOLD FOOTPRINT map (Sevilla-Noarbe
et al. 2021).

To measure the significance, we start by minimizing 𝜒2
model for

each ith survey property map (SP map), where the model is:

𝑛𝑖

〈𝑛〉 = 𝑚 · 𝑠𝑖 + 𝑐 , (6)

with 𝑛𝑖 the number of galaxies as a function of the SP map and
〈𝑛〉 the average. Finally we estimate a Δ𝜒2 as:

Δ𝜒2 = 𝜒2
𝑛𝑢𝑙𝑙

− 𝜒2
𝑚𝑜𝑑𝑒𝑙

, (7)

between the best-fit linear parameters and a null test with 𝑛𝑖
〈𝑛〉 = 1.

The covariance used to calculate these 𝜒2 values is given by the
dispersion of the same galaxy density - SP map relation measured
on the uncontaminated log-normal mocks (see Section 8.2.2).

If Δ𝜒2 is actually significant or not, will depend on the noise
properties of the sample. Therefore, in order to assess the degree of
significance of each SP map, we compare theΔ𝜒2 obtained from the
data with the probability distribution of Δ𝜒2 obtained from a set of
galaxy mocks, representing the same numbers, areas, and redshift
distributions as the data. From the mocks probability distribution
we define Δ𝜒2 (68) as the impact degree below which 68% of the
Δ𝜒2 from the mocks are. Finally, we define the significance of each
map SP map as:

𝑆1𝐷 =
Δ𝜒2

Δ𝜒2 (68)
. (8)

The second step is to remove the galaxy density vs survey property

relation for a given map by weighting galaxies according to the
inverse of the linear relation fit for that map. At each iteration we
use the SP map with the highest significance, 𝑆1𝐷 , for this step.
Finally, we move to the next iteration, once galaxies have been
weighted (corrected).

The method ends when all the 𝑆1𝐷 are below a given, user
pre-defined threshold, 𝑇1𝐷 . The choice of 𝑇1𝐷 should balance the
levels of residual contamination and of over-correction. The final
weight is defined as the multiplication of all the weights computed
in each iteration and is normalized such that 〈𝑤〉 = 1 (average over
footprint).

In general, it is not necessarily true that the map to weight
for at a given iteration j will be the map with j-th highest 𝑆1𝐷 at
iteration 0, because the existing correlations between SP maps make
weighting for a given map to have an effect on others’ significance.
This correlation is dealt naturally by the ISD method.

Each iteration step of the ISD method is summarized in Fig-
ure 11, given the results for the first redshift bin in the first iteration.
On the left, we see the galaxy density as a function of sky-brightness
in the 𝑖-band; as we go to higher sky-brightness regions, the den-
sity of galaxies decreases. To assess if this is significant or not, we
compare Δ𝜒2 from the data to that from 1000 mocks (right-hand
side plot). In this case, this relation is the most significant of all the
SP maps, and therefore, we will correct the galaxy density by this
survey property first and continue to the second iteration.

Recently, other methods have been proposed for the correc-
tion of observational systematics in DES Y3 data (Weaverdyck &
Huterer 2021; Rezaie et al. 2020; Wagoner et al. 2021). Moreover,
ISD has also been used with alternative configurations, such as
using a PCA of the SP maps. A comparison of some of these meth-
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Figure 11. Summary of one iteration in the ISD method. First, we calculate the minimum 𝜒2 value given a linear polynomial fit, and also, by a constant relation.
We estimate Δ𝜒2 between both and compare it with the probability distribution of Δ𝜒2 in a set of mocks. If Δ𝜒2

Δ𝜒2 (68) is above a given threshold (𝑇1𝐷) and it is
the largest from the list of SP maps available, we will use it to create weights following the linear relation found. We repeat this procedure for the remaining
maps until all are below 𝑇1𝐷 . In the case of the BAO sample, we chose a 𝑇1𝐷 = 4, equivalent to a confidence level ≥ 99%.

ods and configurations applied to the REDMAGIC sample is shown
in Rodríguez-Monroy et al. (2021). For the BAO sample, none of
these methods were available by the time of the freeze of the sam-
ple that followed the blinding procedure. The differences between
these methods, though small, mostly affect the clustering amplitude
but they have a marginal impact on the position of the BAO peak.
We checked this impact by comparing the results from our fidu-
cial weights with those from PCA (Rodríguez-Monroy et al. 2021),
observing negligible differences.

8.2 Input ingredients

Before running the ISD method, we need to define several inputs.
For example, we need to define the threshold 𝑇1𝐷 below which we
demand all SP maps to be below at end of the run. Furthermore,
we have assumed a linear fit to model the galaxy density vs. SP
map relationship, but nothing prevent us from using higher-order
functions. Nonetheless, internal tests have shown that a linear fit
is more than sufficient to cope with galaxy density variations for
all survey conditions, at least for the level of precision we need for
galaxy clustering in the BAO sample. Moreover, higher order fits
could lead to over-fitting.

8.2.1 Observing condition maps

DES produces hundreds of observing condition maps for each
band in HEALPix format. The definition of these maps are detailed
in Sevilla-Noarbe et al. (2021). For convenience, since several of
these maps are correlated, we reduce the list to a set of 32 maps (8 in
each 𝑔𝑟𝑖𝑧 band). Details about the SP maps list reduction is given in
Appendix B. Besides, we also create a stellar density map (based on
DES morphological classification) and include a galactic extinction
map, in this case, the SFD98 map of (Schlegel et al. 1998). De-
tails about the creation of these maps are given in Sevilla-Noarbe
et al. (2021). Finally, the list of SP maps used for the BAO sample
is (weighted quantities use inverse-variance weights of the single-
epoch photometric errors):

• AIRMASS (𝑔𝑟𝑖𝑧): weighted mean airmass from all exposures.
• SKYBRITE (𝑔𝑟𝑖𝑧): weigthed mean sky brightness from all ex-

posures.

• SKYVAR_UNCERT (𝑔𝑟𝑖𝑧): weighted Sky variance with flux
scaled by zero point.

• FWHM_FLUXRAD (𝑔𝑟𝑖𝑧): Twice the average half-light radius
from the sources used for determining the PSF.

• FGCM_GRY calibration (𝑔𝑟𝑖𝑧): residual ‘grey’ correction to the
zero-point.

• SOF_DEPTH (𝑔𝑟𝑖𝑧): galaxy depth at 10𝜎 for SOF, corrected for
zero-points and galactic extinction.

• SIGMA_MAG_ZERO (𝑔𝑟𝑖𝑧): Quadrature sum of zero-point un-
certainties.

• T_EFF_EXPTIME (𝑔𝑟𝑖𝑧): exposure time weighted by the effec-
tive time of observation.

• STELLAR_DENS: density of stars.
• SFD98: extinction map from Schlegel et al. (1998).

8.2.2 Galaxy mocks

To assess if the density relations in the ISD method are significant
or not, we rely on a set of mocks. Given the method’s flexibility, we
rely on the log-normal formalism of Coles & Jones (1991) to create
a set of 1000 mocks for our analysis. We checked that 1000 mocks
were sufficient.

The method is the following: the first step is to log-normalize
the real-space𝐶ℓ ’s (see equation 21 in Xavier et al. 2016). After this
transformation, 𝐶ℓ ’s can be used to create gaussian fields for the
matter overdensities. The generated log-normal overdensity maps
are then masked and normalized to the input number of galaxies,
so the total density is equal to the sample’s density. Finally, we
draw random galaxies following a Poissonian distribution to mock
the shot-noise on our galaxy sample in the survey masks. The final
products of these mocks are HEALPix density maps. We can produce
maps in any given resolution. Tests showed that an nside =512 was
sufficient without degrading the results.

In our analysis, we run the method twice: first to get a pre-
liminary set of weights that we use to estimate the blind galaxy
bias explained in Section 7.1. Using these results, we are able to
compute theoretical 𝐶ℓ ’s matching the clustering amplitude, that
are used both to feed the log-normal mocks and also the COLA
mocks in Ferrero et al. (2021). Finally, using the new theoretical
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𝐶ℓ ’s, we compute 1000 log-normal mocks to feed the mitigation of
observational systematics.

Several internal tests showed that changing the fiducial cos-
mology, 𝑁 (𝑧), or galaxy biases did not affect the mitigation of
systematic effects. This is expected since the general form of the
clustering is not important here.

Later in Section 8.4 we will validate the weights over a set
of “contaminated” mocks, contaminated with the same observa-
tional effects seen in the data. To do so, we will vary the number
density according to the BAO sample weights from the same Pois-
son noise distribution as the “non-contaminated” mocks, therefore,
drawing non-contaminated and contaminated mocks from the same
random distribution. This is slightly different from the method ap-
plied in Rodríguez-Monroy et al. (2021) to the other LSS samples
where the “contaminated” mocks are drawn from independent Pois-
son noise realizations.

8.2.3 Choice of threshold

Unlike the other LSS samples, for the BAO sample, we use a
𝑇1𝐷 = 4, equivalent to a confidence level ≥ 99%. Our forecasts
showed the choice of a strict or loose 𝑇1𝐷 has almost a negligible
effect on BAO measurement (cf. Figure C.1). Therefore, to avoid
over-corrections and uncertainties propagation’s in cosmological
estimates, we selected a 𝑇1𝐷 = 4 as our choice. More details are
given in Section 8.4 and Appendix C. Likewise, the mitigation cor-
rections are, at first approximation, flat. Therefore, any remaining
systematic not corrected for will be absorbed by the galaxy bias. In
the case of BAO measurement, it means that it will have a negligible
effect in cosmology, independently of how much we correct. How-
ever, some caution must be taken in the case of studying primordial
non-gaussianities or other large-scale observables.

8.3 Results for systematic mitigation

We run the ISD method on the BAO sample, with 𝑇1𝐷 = 4. In
Table 3 we present the maps that we need to correct for in each
redshift bin. We find that in most redshift bins, we need to correct
by seeing and sky-variance uncertainty, and in some cases, by stellar
density. In Figure 12, Figures 13 and 14 we show the ordered list
of maps before starting the iterative process, in decreasing order of
significance. Also, in these figures, we show the significance level
for all SP maps once we stop the process.

Once we calculate the weights (see Figure 15), we evaluate
the impact on 𝜔(𝜃) by measuring the difference before and after
applying weights, showed in Figure 15. This comparison follows the
blinding procedure described in Section 7. As we move to higher
redshifts the correction increases, reaching a level which is several
times the statistical error. At the start, this was a puzzling result,
and an intense analysis was devoted to optimize the galaxy mask in
order to reduce these levels. Still, after eliminating regions with the
highest levels of variations in observing conditions, we did not find
a significant reduction to propose a decrease in the survey area. In
these tests, we concluded it was naturally occurring due to the broad
area of the survey and to the larger list of observing conditions with
respect to Y1.

At this point is worth noting what happens if we do not correct
at all by these effects in cosmological forecasts. In Appendix C we
apply the template-based method used by DES (Abbott et al. 2021)
to recover the BAO scale, for both contaminated and uncontami-
nated log-normal mocks. We find that the template-based method

is insensitive to these effects and we recover the true BAO scale in
both cases. Therefore, the method is robust against the amplitude of
the weights. In any case, since the 2-pt statistics (angular correla-
tion function and power spectrum) can be used beyond the estimate
of the BAO scale, it is worth applying the weights to measure the
unbiased estimates.

Finally, after passing all the validation tests presented in the
next section, we conclude the effect is well-characterized and, there-
fore, not prone to systematic errors beyond the𝜔(𝜃) statistical error.

8.4 ISD method validation

We have performed several validation tests on the ISD method,
designed to estimate the bias we are introducing in 𝜔(𝜃) after the
de-contamination process. More details about the methodology are
described in Rodríguez-Monroy et al. (2021). There we validate
the methodology for the other LSS samples, using a different list
of SP maps (based on principal components). Here we present the
results for the BAO sample, using the list of 34 SP maps presented
in Section 8.2.1. It is worth noting that we tested the use of the
principal components SP maps after unblinding but we did not find
any major difference.

These validation tests are run over the mock realizations (the
log-normal mocks presented in Section 8.2.2). A negative bias value
will mean that we are “over-correcting” 𝜔(𝜃), a positive value that
we are not correcting completely. Here we summarize our findings:

• False correction bias: this effect measures the level of bias
in 𝜔(𝜃) that we introduce when a chance correlation of a given
realization of a SP map correlates with the cosmological structure.
For this reason, we run the ISD method on uncontaminated mocks
to evaluate how often this occurs, and it depends on the threshold
used. A very strict threshold might imply that we will end correcting
a spurious correlation. In Figure 16 we show the result for 𝑇1𝐷 = 4
and 𝑇1𝐷 = 2. In the case of 𝑇1𝐷 = 2, we find a bias that for some
cases is∼ 10% the statistical error, while for the case of𝑇1𝐷 = 4, the
false correction bias is negligible, justifying the choice of 𝑇1𝐷 = 4.
These tests are done by applying the ISD method over the “true”
un-contaminated mocks.

• Method bias: this effect measures the bias we introduce in
𝜔(𝜃) after correcting for the SP maps defined in the BAO sample,
compared to the “true” 𝜔(𝜃). It starts by contaminating the mocks
with the same weight found in the data, and then apply the ISD
method in each mock, recovering a de-contaminated set of mocks.
It is defined as the mean difference between the de-contaminated
and the “true” 𝜔(𝜃) from all mocks. We find the method bias to be
. 10% the statistical error at all scales and redshifts (cf. Figure 17).
• Residual bias: in the method bias, we fixed the list of SP maps

used to those found in the data. In the residual bias test, we apply
the same method, but this time, without fixing the list of SP maps,
i.e.: each mock is free and independent with respect to the SP maps
needed. As seen in Figure 18, the bias amplitude reaches ∼ 20% the
statistical error in the highest redshift bin, and it is below 10% for
the others.

The low level of bias found in all these tests validate the good-
ness of the method and, even if the correction level is high (as seen
in Figure 15) we have demonstrated that the error introduced by the
method is always below the statistical one. We conclude that the
high correction introduced by observing conditions is due simply to
the wide area of the survey, but that there are no pathological issues
in the sample.
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BAO sample

photo-𝑧 bin SP maps used to estimate the systematic weights given a tolerance in the method of 𝑇1𝐷 = 4

0.6 < 𝑧 < 0.7 skybrite-i

0.7 < 𝑧 < 0.8 fwhm_fluxrad-r, fwhm_fluxrad-i, stellar_dens, skyvar_uncert-i

0.8 < 𝑧 < 0.9 stellar_dens, fwhm_fluxrad-r, fwhm_fluxrad-g,
fwhm_fluxrad-z, sof_depth-i

0.9 < 𝑧 < 1.0 skyvar_uncert-r, sfd98, fwhm_fluxrad-g, fwhm_fluxrad-r, airmass-z,
sof_depth-r, fwhm_fluxrad-z

1.0 < 𝑧 < 1.1 skyvar_uncert-r, fwhm_fluxrad-i, fwhm_fluxrad-g, stellar_dens,
fwhm_fluxrad-r, fwhm_fluxrad-z, skyvar_uncert-g, sfd98, airmass_z, t_eff_exptime-z

Table 3. List of SP maps found to have impact on the BAO sample sample at each redshift bin. The rows should be read from left to right in order of importance.

9 UNBLINDING 𝜔(𝜃)

At this point in the analysis, once we validated the systematic
weights and characterized the photo-𝑧 distributions, we freeze the
BAO sample and prepare for the unblinding of the 2-pt clustering
measurements. To do so, we require the BAO sample to pass a series
of robustness tests (see Abbott et al. 2021). If all tests are passed,
we are ready to unblind the sample and measure the BAO scale. The
sample presented in this paper passed all the robustness tests and
therefore, it is the base for the BAO distance measurement in DES
Y3.

We present the angular correlation function𝜔(𝜃), split into five
redshift bins in Figure 19. These measurements have been obtained
using the standard Landy-Szalay estimator (Landy & Szalay 1993)
with CUTE4 (Alonso 2012). Errors in these figures are estimated
using the COLA mocks (Ferrero et al. 2021).

In Abbott et al. (2021), the BAO sample is used to estimate the
BAO scale at a mean effective redshift of 0.835, both in real and
in configuration space, and we calculate the best-fit cosmology to
it. Eventually, the BAO scale measurement will also be combined
with other DES Y3 cosmological probes to obtain the most precise
cosmological constraints from the combination of galaxy clustering
and weak lensing.

10 CONCLUSIONS

In this paper we describe the data used in DES Y3 for cosmological
constraints from the BAO distance scale. Unlike Y1, and thanks
to improvements of Y3 data, we have a larger density of galaxies
that allows the extension of the analysis to redshift 1.1, increasing
the effective redshift of the sample from 0.81 to 0.835. The sample
covers 4100 square degrees to a depth of 𝑖𝐴𝐵 ≤ 22.3 for galaxies
with signal-to-noise greater than 10𝜎. The galaxy selection is done
based on the same colour scheme applied in Y1. This selection en-
sures a good photo-𝑧 estimate, as attested by our photo-𝑧 validation
for galaxies with photo-𝑧 > 0.5. Also, good quality photo-𝑧’s ensure
the 𝑁 (𝑧) of the samples are well characterized. In the Y3 sample,
we mitigate spurious clustering that arises from observing condi-
tions with the same methodology used in the Y1 lensing samples.
These weights are later applied to the BAO sample in order to obtain
un-biased angular correlation functions and power spectra. Cosmo-

4 https://github.com/damonge/CUTE

logical implications of these results are later discussed in Abbott
et al. (2021).
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to the significance threshold. The bold labels on the x-axis list the SP maps that have effectively being used to create the final weights.
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Figure 13. Significance of each SP map with respect to the BAO sample for the third and forth redshift bin. Figures show the significance of each SP map
before starting the method (in red circles) and also, after the method ends once all SP maps are under 𝑇1𝐷 = 4 (blue squares). The horizontal dashed line
correspond to the significance threshold. The bold labels on the x-axis list the SP maps that have effectively being used to create the final weights.
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Figure 16. False correction bias for 𝑇1𝐷 = 4 (top panel) and 𝑇1𝐷 = 2 (bot-
tom panel). It measures the level of bias in 𝜔 (𝜃) that might be introduced
when we mistake statistical variations in the mocks by a true correlation
with the SP maps. We also show the amplitude of the bias with respect to the
statistical error. The comparison between different thresholds is one of the
arguments used to define 𝑇1𝐷 = 4 (equivalent to a confidence level ≥ 99%)
for the BAO sample. The dashed horizontal line marks the 10% level.
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APPENDIX A: MICE PHOTOMETRIC VALIDATION

In Section 5.2 we measured the standard deviation of our 𝑁 (𝑧)’s
by comparing the BAO sample-VIPERS distribution to that from
several realizations of the MICE simulation. To do so, we must
be certain that the photometric properties of the MICE simulation
match those from VIPERS and the BAO sample.

In this Appendix we show the photometric comparisons be-
tween the BAO sample and the MICE mocks. In Figure A.1 we show
the magnitude distribution of the samples in 𝑔𝑟𝑖𝑧. In Figure A.2 we
show the comparison in colour-colour space.

The photometric properties of MICE, BAO sample and
VIPERS are very similar, hence, we can use this simulation to
estimate errors in our 𝑁 (𝑧)’s.

APPENDIX B: SELECTION OF REPRESENTATIVE SP
MAPS

As explained in Section 8, ISD is an iterative process that eval-
uates the significance of each SP map at each redshift bin of the
BAO sample. Moreover, the 1D relations are calculated on a set of
1000 log-normal mocks, also at each redshift bin. This leads to a
huge amount of computing time. For this reason, in order to opti-
mize the iterative process that we applied to decontaminate the data,
we reduce the number of SP maps that the pipeline has to run over.
For this purpose, we look at their Pearson’s correlation coefficients
and set a lower limit 𝑟𝑙 for them. This way, we identify groups of
highly correlated SP maps by looking at those maps with |𝑟𝑃 | ≥ 𝑟𝑙
(cf. Figure B.1).

To check the stability of these groups with respect to the se-
lection of 𝑟𝑙 , we evaluate the correlation matrix ranging the value
of 𝑟𝑙 from 0.5 to 0.9. Below 𝑟𝑙 = 0.5 many SP maps are considered
correlated (in the extreme case of a very low 𝑟𝑙 the whole matrix is
considered a single group, so in that case an alternative would be to
perform a PCA of the SP maps), while above 𝑟𝑙 = 0.9 most of the
maps are considered independent (there are almost no off-diagonal
elements), not allowing us to reduce the number of maps, as desired.
We observe a stable group structure between 𝑟𝑙 = 0.5 and 0.7, fi-
nally taking the highest value as our limit. Once we identify the SP
map groups from the correlation matrix, we select a representative
map from each of them. The representative SP maps chosen are
listed in Section 8.2.1.

We use the weighted average SP maps in all cases with the
exception of the zero point residues, for which we use the total SP
maps. To further ensure the stability of our results under the choice
of these representative maps, we run ISD with slightly different
lists of representative maps using different statistics within each
SP map group. Since the number of maps needed to weight for is
similar in all cases, we conclude that our results are stable under
this choice. Furthermore, we apply this process for each photometric
band separately, and we check that the same list of representative
SP maps works for the four of them.

In Figure B.2 we show the correlation matrix for the final
representative SP maps in 𝑖-band and the correlation of these sets
of maps in the four bands that we work with, respectively. The
remaining correlations at the same photometric band or among
them are finally dealt by the correction pipeline.

APPENDIX C: EFFECT OF WEIGHTING IN BAO
MEASUREMENT

We run forecasts on BAO measurement using the log-normal mocks,
applying a template-based method to recover the BAO scale (Seo
et al. 2012; Xu et al. 2012; Anderson et al. 2014; Ross et al. 2017).
This method estimates how different the BAO position is with re-
spect to an assumed template cosmology. The difference is encoded
in the parameter 𝛼, which re-scales the separation between the BAO
scale position in the theory and observation.

We run it for uncontaminated mocks (without any systematic
effect), in contaminated mocks with weights obtained at 𝑇1𝐷 = 2,
and also, for de-contaminated mocks after applying the ISD scheme
with 𝑇1𝐷 = 4 on the previous mocks, i.e., with a more relaxed
threshold than the input contamination. The summary of this test can
be found in Figure C.1. Interestingly, we find the measurement works
very well independent of whether we correct or not for observational
systematics, as well as for the decontaminated mocks. In Table C.1
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Figure A.1. Normalized distribution of the magnitudes in the different bands (top left: 𝑔, top right: 𝑟 , bottom left: 𝑖, bottom right: 𝑧). Blue histogram: MICE
data, orange points: DES data, green points: VIPERS data.
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Figure A.2. Color-color distribution 𝑔 − 𝑟 vs 𝑟 − 𝑖 for MICE (top left panel), BAO sample (middle left panel) and VIPERS (bottom left panel). Color-color
distribution 𝑟 − 𝑖 vs 𝑖 − 𝑧 for MICE (top right panel), BAO sample (middle right panel) and VIPERS (bottom right panel).

we show the recovered 𝛼 in each case. This result is due to the fact
that the contamination in the 𝜔(𝜃) is flat and does not affect the
BAO scale. This finding is another argument to select the 𝑇1𝐷 = 4
in the analysis, instead of 𝑇1𝐷 = 2.

This paper has been typeset from a TEX/LATEX file prepared by the author.
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Figure B.1. Pearson’s correlation matrix for the 𝑖-band SP maps. Red (blue) cells correspond to the SP map pairs with correlation coefficient higher (lower)
than 𝑟𝑙 = 0.7. This helps us not only to identify SP map groups formed by the different statistics of the same observing condition, but also correlations among
maps out of these groups, as for example the expected correlation between depth and exposure time.

Figure B.2. Correlation matrix for the representative SP maps in all photometric bands. The structures are similar equivalent to those seen in the case of
individual photometric bands.

Table C.1. Mean 𝛼 value and standard deviation from 1000 mocks. We recover the true cosmology in all cases and with the same precision. 𝛼 encodes the
BAO scale position difference between observations and theory.

uncontaminated contaminated decontaminated

�̄� ± 𝑠𝑡𝑑 1.01 ± 0.02 1.01 ± 0.02 1.01 ± 0.02
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Figure C.1. Difference in 𝛼 found in three sets of mocks: uncontam are
uncontaminated mocks, with no systematic effects. contam are the same
mocks, contaminated with weights obtained at 𝑇1𝐷 = 2 and decontam are
the same contaminated mocks, after applying the ISD method at 𝑇1𝐷 = 4.
The differences are compatible, confirming that the effect of weighting is
small in BAO measurement.
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