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Abstract of the Dissertation

Typed Self-Applicable Meta-Programming

by

Matthew Scott Brown

Doctor of Philosophy in Computer Science

University of California, Los Angeles, 2017

Professor Jens Palsberg, Chair

Self-applicable meta-programming has its roots in the early days of computer science.

Two early examples were published in 1936: the universal Turing machine, and a self-

interpreter for the λ-calculus. These were major advances in computability theory, but

self-application has a long history of practical uses as well. Many languages have self-

interpreters or self-hosting compilers. Others support self-applicable meta-programming as

a general-purpose technique that enables elegant solutions to many problems. Until now,

these techniques have been incompatible with static type checking, which has many benefits

of its own. In this thesis I present techniques for practical self-applicable meta-programming

for statically typed languages.
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CHAPTER 1

Introduction

Self-applicable meta-programming has its roots in the early days of computer science. Two

early examples were published in 1936: the universal Turing machine [87], and a self-

interpreter for the λ-calculus [57]. A universal Turing machine can simulate any Turing

machine given a representation of that machine. In particular, it can simulate itself. A

self-interpreter for λ-calculus is similar: it can simulate any λ-term by interpreting its repre-

sentation. In particular, it can interpret its own representation. These were major advances

in the theory of computability and uncomputability, but self-application has a long history

of practical benefit as well.

In 1960, McCarthy published his famous Lisp self-interpreter [59]. Since then, self-

interpreters have been implemented for many other popular languages, including Haskell

[66], JavaScript [39], Python [73], Ruby [95], Scheme [5], and Standard ML [74]. A self-

interpreter enables the language designer to easily modify, extend, and grow the language,

and implement tools like debuggers and IDEs [71, 18]. Other well-known examples of self-

applicable meta-programs include self-hosting compilers and virtual machines.

Static type checking is a fundamental technique in the field of programming languages. It

makes software more reliable by eliminating a large class of errors and enforcing abstraction

and modularity. Compilers can use static type information in a variety of ways to optimize

programs. Static types can also help programmers understand their code, as a kind of checked

documentation that cannot go stale, and can enable powerful tools for programmers.

Self-applicable meta-programming promises the same benefits for statically typed lan-

guages that they already provide for dynamically typed ones. More than that, type checking

meta-programs themselves can make meta-programming safer, more efficient, and less error-
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prone. There are several techniques for type checking meta-programs and program represen-

tations. One option is to use a universal type like String or Exp for all representations. This

has been used to define the self-interpreters for Haskell [66] and Standard ML [74], both stat-

ically typed languages. There are several limitations to a universally typed representation.

First, the type system cannot guarantee that a representation represents a well-typed term.

As a result, an interpreter can introduce a type error into its input program, and the error

will go undetected by the type checker. Second, some meta-programs are not supported

by the universal-type approach. An important example is a self-recognizer, a kind of self-

interpreter that recovers a term from its representation. The result of the self-recognizer is

well-typed only if its input represents a well-typed term. Since the type checker can’t ensure

a representation encodes a well typed term, it can’t type check the self-recognizer itself.

Another approach, called typed representation, ensures that a representation encodes a

well-typed program of a particular type. Here, the type of a representation is parameterized

by the type of the term it represents. For example, if a term has a type T, then its repre-

sentation might have the type Exp T. Using a typed representation ensures that the result

of the self-recognizer will be well-typed. Due to the correspondence between the types of

programs and the types of their representations, a typed representation scheme can support

a self-recognizer. For example, a typed self-recognizer might have the type ∀T. Exp T → T.

The polymorphic type allows the self-recognizer to interpret any well-typed representation.

Another kind of self-interpreter, called a self-evaluator, maps the representation of a term

to a representation of its value. A self-evaluator for typed representations might have the

type ∀T. Exp T → Exp T. This type ensures that the evaluator always outputs a well-typed

representation, and that the input and output programs have the same type. Thus, typed

representation can guarantee strong correctness properties of meta-programs.

The challenge of combining self-application and typed representation was set forth in

1991 by Pfenning and Lee [69]. They studied whether System F could support a typed self-

interpreter, and concluded that it “seems to be impossible”. No further progress was made

until 2009, when Rendel, Ostermann and Hofer showed that a statically typed language can

support a typed self-recognizer [71]. In 2011, Jay and Palsberg presented a statically typed
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combinator calculus that supports a typed self-recognizer and a typed self-evaluator [52].

These seminal works demonstrated that typed self-application can be achieved.

The thesis of this dissertation is that self-applicable meta-programming is feasible and

useful for statically typed programming languages. My results show that the combination

of static type checking and self-applicable meta-programming provides greater benefits than

simply the sum of its parts. It not only enables for statically-typed languages the meta-

programming techniques that have long been a staple of dynamically typed languages; type

checking meta-programs themselves can ensure strong correctness guarantess that would

otherwise be difficult to ensure. The techniques developed herein include innovations in

language design, program representation, and meta-programming. To maximize practicality,

we consider only languages that are type-safe, that support decidable type checking, and that

include only well-known language constructs. All novelty with respect to language design

is in the variations and combination of these language constructs. Finally, our typed self-

representation schemes are designed to be general – expressive enough to program a variety

of useful meta-programs, including self-recognizers, self-evaluators, and more.

Chapter 2 presents a typed self-recognizer for System Fω, a well-known language with de-

cidable typechecking. Fω has been called “the workhorse of modern compilers” [65] due to its

foundational role in many typed functional programming languages. It is also strongly nor-

malizing, which informally means that all programs always terminate. That a self-interpreter

is even possible for a strongly normalizing language like Fω contradicted the prior conven-

tional wisdom, and is one of the most surprising results of this dissertation.

Are all self-interpreters for a single language equal? Are they equally useful? Are they

equally difficult to implement? Can any language that supports a self-recognizer also support

a self-evaluator? These are questions we pick up in Chapter 3, which focuses on typed self-

evaluation. We present a language Fµi
ω that supports both kinds of self-interpreter. This

is the second main result of this dissertation. Fωµi extends Fω with support for recursive

functions and a typed self-representation encoded as a Generalized Algebraic Data Type

(GADT). The results of Chapter 3 indicate that self-evaluation requires a more powerful

language than self-recognition; it remains an open question whether Fω – or any other

3



strongly normalizing language – can support self-evaluation. In exchange, self-evaluation

provides more power than self-recognition alone: a self-evaluator can implement a particular

evaluation strategy, while a self-recognizer inherits the strategy from the meta-level.

The control over evaluation enabled by self-evaluation leads to an important practical

application: a typed self-applicable partial evaluator for Fµi
ω . This is the third main result

of this dissertation, and is the focus of Chapter 4. A partial evaluator is related to Kleene’s

s-m-n theorem. Given a program that takes m+ n inputs, of which m are known statically,

a partial evaluator produces a version of the program specialized to the first m inputs.

When given the remaining n inputs, the specialized program will run more efficiently than

the original program. Partial evaluation has applications in compilation, optimization and

generation of programs [53]. Further, a self-applicable partial evaluator can be combined

with a self-interpreter to automatically generate compilers and compiler generators [41].

Despite the long history of self-applicable partial evaluation, achieving it for a statically

typed language has remained an open problem. Chapter 4 solves this problem by presenting

the first typed self-applicable partial evaluator, specifically for Fµi
ω . It can be used to au-

tomatically generate a compiler and compiler generator via the Futamura projections [41].

Further it is Jones-optimal, meaning that specialization can remove all the overhead of a

self-interpreter.

Chapter 2 is based on the paper “Breaking through the Normalization Barrier: A Self-

interpreter for F-omega” [20], and chapter 3 is based on the paper “Typed Self-Evaluation via

Intensional Type Functions”[21]. Proofs of the theorems stated in those chapters are included

in the full version of those papers, which are available from their web pages [1, 2]. Those

web pages also provide the software artifacts for the papers, which include implementations

of the languages and meta-programs, as well as many tests and examples.
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CHAPTER 2

Breaking through the Normalization Barrier: A

Self-Interpreter for Fω

2.1 Introduction

Barendregt’s notion of a self-interpreter is a program that recovers a program from its

representation and is implemented in the language itself [10]. Specifically for λ-calculus,

the challenge is to devise a quoter that maps each term e to a representation e, and a self-

interpreter u (for unquote) such that for every λ-term e we have (u e) ≡β e. The quoter

is an injective function from λ-terms to representations, which are λ-terms in normal form.

Barendregt used Church numerals as representations, while in general one can use any β-

normal terms as representations. For untyped λ-calculus, in 1936 Kleene presented the first

self-interpreter [57], and in 1992 Mogensen presented the first strong self-interpreter u that

satisfies the property (u e)−→∗
β e [63]. In 2009, Rendel, Ostermann, and Hofer [71] presented

the first self-interpreter for a typed λ-calculus (F∗
ω), and in previous work [19] we presented

the first self-interpreter for a typed λ-calculus with decidable type checking (Girard’s System

U). Those results are all for non-normalizing λ-calculi and they go about as far as one can

go before reaching what we call the normalization barrier.

The normalization barrier: According to conventional wisdom, a self-interpreter for a

strongly normalizing λ-calculus is impossible.

The normalization barrier stems from a theorem in computability theory that says that a

total universal function for the total computable functions is impossible. Several books, pa-

pers, and web pages have concluded that the theorem about total universal functions carries

5



F Fω F+
ω U

normalization barrier

[19]

[69] [69] [19]

Figure 2.1: Four typed λ-calculi: → denotes “represented in.”

over to self-interpreters for strongly normalizing languages. For example, Turner states that

“For any language in which all programs terminate, there are always terminating programs

which cannot be written in it - among these are the interpreter for the language itself” [88,

pg. 766]. Similarly, Stuart writes that “Total programming languages are still very pow-

erful and capable of expressing many useful computations, but one thing they can’t do is

interpret themselves” [80, pg. 264]. Additionally, the Wikipedia page on the Normalization

Property (accessed in May 2015) explains that a self-interpreter for a strongly normalizing

λ-calculus is impossible. That Wikipedia page cites three typed λ-calculi, namely simply

typed λ-calculus, System F, and the Calculus of Constructions, each of which is a member

of Barendregt’s cube of typed λ-calculi [11]. We can easily add examples to that list, partic-

ularly the other five corners of Barendregt’s λ-cube, including Fω. The normalization barrier

implies that a self-interpreter is impossible for every language in the list. In a seminal paper

in 1991 Pfenning and Lee [69] considered whether one can define a self-interpreter for System

F or Fω and found that the answer seemed to be “no”.

In this chapter we take up the challenge presented by the normalization barrier.

The challenge: Can we define a self-interpreter for a strongly normalizing λ-calculus?

Our result: Yes, we present a strong self-interpreter for the strongly normalizing λ-calculus

Fω; the program representation is deep and supports a variety of other operations. We also

present a much simpler self-interpreter that works for each of System F, Fω, and F+
ω ; the

program representation is shallow and supports no other operations.

Figure 2.1 illustrates how our result relates to other representations of typed λ-calculi with

6



decidable type checking. The normalization barrier separates the three strongly-normalizing

languages on the left from System U on the right, which is not strongly-normalizing. Pfenning

and Lee represented System F in Fω, and Fω in F+
ω . In previous work we showed that F+

ω

can be represented in System U, and that System U can represent itself. This chapter

contributes the unlabeled self-loops on F, Fω, and F+
ω , depicting the first self-representations

for strongly-normalizing languages.

Our result breaks through the normalization barrier. The conventional wisdom under-

lying the normalization barrier makes an implicit assumption that all representations will

behave like their counterpart in the computability theorem, and therefore the theorem must

apply to them as well. This assumption excludes other notions of representation, about

which the theorem says nothing. Thus, our result does not contradict the theorem, but

shows that the theorem is less far-reaching than previously thought.

Our result relies on three technical insights. First, we observe that the proof of the

classical theorem in computability theory relies on a diagonalization gadget, and that a

typed representation can ensure that the gadget fails to type check in Fω, so the proof

doesn’t necessarily carry over to Fω. Second, for our deep representation we use a novel

extensional approach to representing polymorphic terms. We use instantiation functions

that describe the relationship between a quantified type and one of its instance types. Each

instantiation function takes as input a term of a quantified type, and instantiates it with a

particular parameter type. Third, for our deep representation we use a novel representation

of types, which helps us type check a continuation-passing-style transformation.

We present five self-applicable operations on our deep representation, namely a strong

self-interpreter, a continuation-passing-style transformation, an intensional predicate for test-

ing whether a closed term is an abstraction or an application, a size measure, and a normal-

form checker. Our list of operations extends those of previous work [19].

Our deep self-representation of Fω could be useful for type-checking self-applicable meta-

programs, with potential for applications in typed macro systems, partial evaluators, com-

pilers, and theorem provers. In particular, Fω is a subset of the proof language of the Coq

7



proof assistant, and Morrisett has called Fω the workhorse of modern compilers [65].

Our deep representation is the most powerful self-representation of Fω that we have

identified: it supports all the five operations listed above. One can define several other

representations for Fω by using fewer of our insights. Ultimately, one can define a shallow

representation that supports only a self-interpreter and nothing else. As a stepping stone to-

wards explaining our main result, we will show a shallow representation and a self-interpreter

in Section 3.3. That representation and self-interpreter have the distinction of working for

System F, Fω and F+
ω . Thus, we have solved the two challenges left open by Pfenning and

Lee [69].

Rest of the chapter. In Section 2 we describe Fω, in Section 3 we analyze the normal-

ization barrier, in Section 4 we describe instantiation functions, in Section 5 we show how

to represent types, in Section 6 we show how to represent terms, in Section 7 we present

our operations on program representations, in Section 8 we discuss our implementation and

experiments, in Section 9 we discuss various aspects of our result, and in Section 10 we

compare with related work.

2.2 System Fω

System Fω is a typed λ-calculus within the λ-cube [11]. It combines two axes of the cube:

polymorphism and higher-order types (type-level functions). In this section we summarize

the key properties of System Fω used in this chapter. We refer readers interested in a complete

tutorial to other sources [11, 70]. We give a definition of Fω in Figure 2.2. It includes

a grammar, rules for type formation and equivalence, and rules for term formation and

reduction. The grammar defines the kinds, types, terms, and environments. As usual, types

classify terms, kinds classify types, and environments classify free term and type variables.

Every syntactically well-formed kind and environment is legal, so we do not include separate

formation rules for them. The type formation rules determine the legal types in a given

environment, and assigns a kind to each legal type. Similarly, the term formation rules

determine the legal terms in a given environment, and assigns a type to each legal term.
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(kinds) κ ::= ∗ | κ1 → κ2

(types) τ ::= α | τ1 → τ2 | ∀α:κ.τ | λα:κ.τ | τ1 τ2
(terms) e ::= x | λx:τ.e | e1 e2 | Λα:κ.e | e τ

(environments) Γ ::= ⟨⟩ | Γ,(x:τ) | Γ,(α:κ)
Grammar

(α:κ) ∈ Γ

Γ ⊢ α : κ

Γ ⊢ τ1 : ∗ Γ ⊢ τ2 : ∗
Γ ⊢ τ1 → τ2 : ∗

Γ,(α:κ) ⊢ τ : ∗
Γ ⊢ (∀α:κ.τ) : ∗

Γ,(α:κ1) ⊢ τ : κ2

Γ ⊢ (λα:κ1.τ) : κ1 → κ2

Γ ⊢ τ1 : κ2 → κ Γ ⊢ τ2 : κ2

Γ ⊢ τ1 τ2 : κ

Type Formation

τ ≡ τ
τ ≡ σ
σ ≡ τ

τ1 ≡ τ2 τ2 ≡ τ3
τ1 ≡ τ3

τ1 ≡ σ1 τ2 ≡ σ2

τ1 → τ2 ≡ σ1 → σ2

τ ≡ σ

(∀α:κ.τ) ≡ (∀α:κ.σ)
τ ≡ σ

(λα:κ.τ) ≡ (λα:κ.σ)
τ1 ≡ σ1 τ2 ≡ σ2

τ1 τ2 ≡ σ1 σ2

(λα:κ.τ) ≡ (λβ:κ.τ [α := β]) (λα:κ.τ) σ ≡ (τ [α := σ])

Type Equivalence

(x:τ) ∈ Γ

Γ ⊢ x : τ

Γ ⊢ τ1 : ∗ Γ,(x:τ1) ⊢ e : τ2
Γ ⊢ (λx:τ1.e) : τ1 → τ2

Γ ⊢ e1 : τ2 → τ Γ ⊢ e2 : τ2
Γ ⊢ e1 e2 : τ

Γ,(α:κ) ⊢ e : τ
Γ ⊢ (Λα:κ.e) : (∀α:κ.τ)

Γ ⊢ e : (∀α:κ.τ) Γ ⊢ σ : κ
Γ ⊢ e σ : τ[α:=σ]

Γ ⊢ e : τ τ ≡ σ Γ ⊢ σ : ∗
Γ ⊢ e : σ

Term Formation

(λx:τ.e) e1 −→ e[x := e1]
(Λα:κ.e) τ −→ e[α := τ]

e1 −→ e2
e1 e3 −→ e2 e3
e3 e1 −→ e3 e2
e1 τ −→ e2 τ

(λx:τ.e1)−→ (λx:τ.e2)
(Λα:κ.e1)−→ (Λα:κ.e2)

Reduction

Figure 2.2: Definition of System Fω

Our definition is similar to Pierce’s [70], with two differences: we use a slightly different

syntax, and our semantics is arbitrary β-reduction instead of call-by-value.

It is well known that type checking is decidable, and that types of Fω terms are unique

up to equivalence. We will write e ∈ Fω to mean “e is a well-typed term in Fω”. Any well-

typed term in System Fω is strongly normalizing, meaning there is no infinite sequence of

β-reductions starting from that term. If we β-reduce enough times, we will eventually reach

a term in β-normal form that cannot be reduced further. Formally, term e is β-normal if

there is no e′ such that e −→ e′. We require that representations of terms be data, which

for λ-calculus usually means a term in β-normal form.
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2.3 The Normalization Barrier

In this section, we explore the similarity of a universal computable function in computability

theory and a self-interpreter for a programming language. As we shall see, the exploration has

a scary beginning and a happy ending. At first, a classical theorem in computability theory

seems to imply that a self-interpreter for Fω is impossible. Fortunately, further analysis

reveals that the proof relies on an assumption that a diagonalization gadget can always be

defined for a language with a self-interpreter. We show this assumption to be false: by using

a typed representation, it is possible to define a self-interpreter such that the diagonalization

gadget cannot possibly type check. We conclude the section by demonstrating a simple typed

self-representation and a self-interpreter for Fω.

2.3.1 Functions from Numbers to Numbers

We recall a classical theorem in computability theory (Theorem 2.3.2). The proof of the

theorem is a diagonalization argument, which we divide into two steps: first we prove a key

property (Theorem 2.3.1) and then we proceed with the proof of Theorem 2.3.2.

Let Ndenote the set of natural numbers {0, 1, 2, . . .}. Let · be an injective function that

maps each total, computable function in N → N to an element of N.

We say that u ∈ (N×N) ⇀ N is a universal function for the total, computable functions

in N → N, if for every total, computable function f in N → N, we have ∀v ∈ N: u(f,v)

= f(v). The symbol ⇀ denotes that u may be a partial function. Indeed, Theorem 2.3.2

proves that u must be partial. We let Univ(N → N) denote the set of universal functions for

the total, computable functions in N → N.

Given a function u in (N× N) ⇀ N, we define the function pu in N → N, where pu(x) =

u(x,x) + 1.

Theorem 2.3.1. If u ∈ Univ(N → N), then pu isn’t total.

Proof. Suppose u ∈ Univ(N → N) and pu is total. Notice that pu is a total, computable

function in N → N so pu is defined. We calculate:
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pu(pu) = u(pu,pu) + 1 = pu(pu) + 1

Given that pu is total, we have that pu(pu) is defined; let us call the result v. From pu(pu) =

pu(pu) + 1, we get v = v + 1, which is impossible. So we have reached a contradiction, hence

our assumption (that u ∈ Univ(N → N) and pu is total) is wrong. We conclude that if u ∈

Univ(N → N), then pu isn’t total.

Theorem 2.3.2. If u ∈ Univ(N → N), then u isn’t total.

Proof. Suppose u ∈ Univ(N → N) and u is total. For every x ∈ N, we have that pu(x) =

u(x,x) + 1. Since u is total, u(x,x) + 1 is defined, and therefore pu(x) is also defined. Since

pu(x) is defined for every x ∈ N, pu is total. However, Theorem 2.3.1 states that pu is not

total. Thus we have reached a contradiction, so our assumption (that u ∈ Univ(N → N) and

u is total) is wrong. We conclude that if u ∈ Univ(N → N), then u isn’t total.

Intuitively, Theorem 2.3.2 says that if we write an interpreter for the total, computable

functions in N → N, then that interpreter must go into an infinite loop on some inputs.

2.3.2 Typed λ-Calculus: Fω

Does Theorem 2.3.2 imply that a self-interpreter for Fω is impossible? Recall that every

well-typed term in Fω is strongly normalizing. So, if we have a self-interpreter u for Fω

and we have (u e) ∈ Fω, then (u e) is strongly normalizing, which is intuitively expresses

that u is a total function. Thus, Theorem 2.3.2 seems to imply that a self-interpreter for

Fω is impossible. This is the normalization barrier. Let us examine this intuition via a

“translation” of Section 2.3.1 to Fω.

Let us recall the definition of a self-interpreter from Section 1, here for Fω. A quoter is

an injective function from terms in Fω to their representations, which are β-normal terms

in Fω. We write e to denote the representation of a term e. We say that u ∈ Fω is a self-

interpreter for Fω, if ∀e ∈ Fω: (u e) ≡β e. We allow (u e) to include type abstractions or

applications as necessary, and leave them implicit. We use SelfInt(Fω) to denote the set of

self-interpreters for Fω.
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Notice a subtle difference between the definition of a universal function in Section 2.3.1

and the definition of a self-interpreter. The difference is that a universal function takes both

its arguments at the same time, while, intuitively, a self-interpreter is curried and takes its

arguments one by one. This difference plays no role in our further analysis.

Notice also the following consequences of the two requirements of a quoter. The require-

ment that a quoter must produce terms in β-normal form rules out the identity function as a

quoter, because it maps reducible terms to reducible terms. The requirement that a quoter

must be injective rules out the function that maps each term to its normal form, because it

maps β-equivalent terms to the same β-normal form.

The proof of Theorem 2.3.1 relies on the diagonalization gadget (pu pu), where pu is a

cleverly defined function. The idea of the proof is to achieve the equality (pu pu) = (pu pu) +

1. For the Fω version of Theorem 2.3.1, our idea is to achieve the equality (pu pu) ≡β λy.(pu

pu), where y is fresh. Here, λy plays the role of “+1”. Given u ∈ Fω, we define pu = λx. λy.

((u x) x), where x,y are fresh, and where we omit suitable type annotations for x,y. We can

now state an Fω version of Theorem 2.3.1.

Theorem 2.3.3. If u ∈ SelfInt(Fω), then (pu pu) ̸∈ Fω.

Proof. Suppose u ∈ SelfInt(Fω) and (pu pu) ∈ Fω. We calculate:

pu pu

≡β λy. ((u pu) pu)

≡β λy. (pu pu)

From (pu pu) ∈ Fω we have that (pu pu) is strongly normalizing. From the Church-Rosser

property of Fω, we have that (pu pu) has a unique normal form; let us call it v. From (pu

pu) ≡β λy.(pu pu) we get v ≡β λy.v. Notice that v and λy.v are distinct yet β-equivalent

normal forms. Now the Church-Rosser property implies that β-equivalent terms must have

the same normal form. Thus v ≡β λy.v implies v ≡α λy.v, which is false. So we have

reached a contradiction, hence our assumption (that u ∈ SelfInt(Fω) and (pu pu) ∈ Fω) is

wrong. We conclude that if u ∈ SelfInt(Fω), then (pu pu) ̸∈ Fω.
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What is an Fω version of Theorem 2.3.2? Given that every term in Fω is “total” in

the sense described earlier, Theorem 2.3.2 suggests that we should expect SelfInt(Fω) =

∅. However this turns out to be wrong and indeed in this chapter we will define a self-

representation and self-interpreter for Fω. So, SelfInt(Fω) ̸= ∅.

We saw earlier that Theorem 2.3.1 helped prove Theorem 2.3.2. Why does Theorem 2.3.3

fail to lead the conclusion SelfInt(Fω) = ∅? Observe that in the proof of Theorem 2.3.2, the

key step was to notice that if u is total, also pu is total, which contradicts Theorem 2.3.1. In

contrast, the assumption u ∈ SelfInt(Fω) produces no useful conclusion like (pu pu) ∈ Fω

that would contradict Theorem 2.3.3. In particular, it is possible for u and pu to be typeable

in Fω, and yet for (pu pu) to be untypeable. So, the door is open for a self-interpreter for Fω.

2.3.3 A Self-Interpreter for Fω

Inspired by the optimism that emerged in Section 2.3.2, let us now define a quoter and a

self-interpreter for Fω. The quoter will support only the self-interpreter and nothing else.

The idea of the quoter is to use a designated variable id to block the reduction of every

application. The self-interpreter unblocks reduction by substituting the polymorphic identity

function for id. Below we define the representation e of a closed term e.

Γ ⊢ x : τ � x

Γ,(x:τ 1) ⊢ e : τ 2 � q
Γ ⊢ (λx:τ 1.e) : τ 1 → τ 2 � (λx:τ 1.q)

Γ ⊢ e1 : τ 2 → τ � q1 Γ ⊢ e2 : τ 2 � q2
Γ ⊢ e1 e2 : τ � id (τ 2 → τ) q1 q2

Γ,α:κ ⊢ e : τ � q
Γ ⊢ (Λα:κ.e) : (∀α:κ.τ) � (Λα:κ.q)

Γ ⊢ e : (∀α:κ.τ 1) � q Γ ⊢ τ 2 : κ
Γ ⊢ e τ 2 : (τ 1[α := τ 2]) � id (∀α:κ.τ 1) q τ 2

Γ ⊢ e : τ � q τ ≡ σ Γ ⊢ σ : ∗
Γ ⊢ e : σ � q
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⟨⟩ ⊢ e : τ � q
e = λid:(∀α:∗. α → α). q

Our representation is defined in two steps. First, the rules of the form Γ ⊢ e : τ � q

build a pre-representation q from the typing judgment of a term e. The types are needed to

instantiate each occurrence of the designated variable id. The representation e is defined by

abstracting over id in the pre-representation. Our self-interpreter takes a representation as

input and applies it to the polymorphic identity function:

unquote : ∀α:∗. ((∀β:∗.β → β) → α) → α

=Λα:∗. λq:(∀β:∗.β → β) → α.

q (Λβ:∗. λx:β. x)

Theorem 2.3.4.

If ⟨⟩ ⊢ e : τ , then ⟨⟩ ⊢ e : (∀α:∗. α → α) → τ and e is in β-normal form.

Theorem 2.3.5.

If ⟨⟩ ⊢ e : τ , then unquote τ e −→∗e.

This self-interpreter demonstrates that it is possible to break through the normalization

barrier. In fact, we can define a similar self-representation and self-interpreter for System F

and for System F+
ω . However, the representation supports no other operations than unquote:

parametricity implies that the polymorphic identity function is the only possible argument

to a representation e [91]. The situation is similar to the one faced by Pfenning and Lee who

observed that “evaluation is just about the only useful function definable” for their represen-

tation of Fω in F+
ω . We call a representation shallow if it supports only one operation, and we

call representation deep if it supports a variety of operations. While the representation above

is shallow, we have found it to be a good starting point for designing deep representations.

In Figure 2.3 we define a deep self-representation of Fω that supports multiple operations,

including a self-interpreter, a CPS-transformation, and a normal-form checker. The keys to

why this works are two novel techniques along with typed Higher-Order Abstract Syntax

(HOAS), all of which we will explain in the following sections. First, in Section 2.4 we present
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an extensional approach to representing polymorphism in Fω. Second, in Section 2.5 we

present a simple representation of types that is sufficient to support our CPS transformation.

Third, in Section 2.6 we present a typed HOAS representation based on Church encoding,

which supports operations that fold over the term. Finally, in Section 2.7 we define five

operations for our representation.

2.4 Representing Polymorphism

In this section, we discuss our extensional approach to representing polymorphic terms in

our type Higher-Order Abstract Syntax representation. Our approach allows us to define

our HOAS representation of Fω in Fω itself. Before presenting our extensional approach,

we will review the intensional approach used by previous work. As a running example, we

consider how to program an important piece of a self-interpreter for a HOAS representation.

Our HOAS representation, like those of Pfenning and Lee [69], Rendel et al. [71], and

our own previous work [19], is based on a typed Church encoding. Operations are defined

by cases functions, one for each of λ-abstraction, application, type abstraction, and type

application. Our representation differs from the previous work in how we type check the

case functions for type abstraction and type applications. Our running example will focus

just on the case function for type applications. To simplify further, we consider only the

case function for type applications in a self-interpreter.

2.4.1 The Intensional Approach

The approach of previous work [69, 71, 19] can be demonstrated by a polymorphic type-

application function, which can apply any polymorphic term to any type in its domain. The

function tapp+ defined below is a polymorphic type application function for System F+
ω .

System F+
ω extends Fω with kind abstractions and applications in terms (written Λκ.e and

e κ respectively), and kind-polymorphic types (written ∀+κ.τ):

tapp+ : (∀+κ.∀β:κ→∗.(∀α:κ. β α) → ∀γ:κ.β γ)
tapp+ = Λ+κ.Λβ:κ→∗.λe:(∀α:κ.β α). Λγ:κ.e γ
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The variables κ and β respectively range over the domain and codomain of an arbitrary

quantified type. The domain of (∀α1:κ1.τ 1) is the kind κ1, and the codomain is the type

function (λα1:κ1.τ 1) since τ 1 depends on a type parameter α1 of kind κ1. Since the body of

a quantified type must have kind ∗, the codomain function (λα1:κ1. τ 1) must have kind (κ1

→ ∗). A quantified type can be expressed in terms of its domain and codomain: (∀α1:κ1.τ 1)

≡ (∀α:κ1. (λα1:κ1.τ 1) α). Similarly, any instance of the quantified type can be expressed

as an application of the codomain to a parameter: (τ 1[α1:=τ 2]) ≡ (λα1:κ1.τ 1) τ 2. We use

these equivalences in the type of tapp+: the quantified type (∀α:κ. β α) is expressed in

terms of an arbitrary domain κ and codomain β, and the instantiation β γ is expressed as

an application of the codomain β to an arbitrary parameter γ.

We call this encoding intensional because it encodes the structure of a quantified type

by abstracting over its parts (its domain κ and codomain β). This ensures that e can only

have a quantified type, and that γ ranges over exactly the types to which e can be applied.

In other words, γ can be instantiated with τ 2 if and only if e τ 2 is well-typed.

Consider a type application e τ 2 with the derivation:

Γ ⊢ e : (∀α1:κ1.τ 1) Γ ⊢ τ 2 : κ1

Γ ⊢ e τ 2 : τ 1[α1:=τ 2]

We can encode e τ 2 in F+
ω as tapp+κ1 (λα1:κ1.τ 1) e τ 2. However, Fω does not support kind

polymorphism, so tapp+ is not definable in Fω. To represent Fω in itself, we need a new

approach.

2.4.2 An Extensional Approach

The approach we use in this chapter is extensional: rather than encoding the structure of a

quantified type, we encode the relationship between a quantified type and its instances. We

encode the relationship “(τ 1[α:=τ 2]) is an instance of (∀α1:κ1.τ 1)” with an instantiation

function of type (∀α1:κ1.τ 1) → (τ 1[α1:=τ 2]). An example of such an instantiation function

is λx:(∀α1:κ1.τ 1). x τ 2 that instantiates an input term of type (∀α1:κ1.τ 1) with the type

τ 2. For convenience, we define an abbreviation inst(τ,σ) = λx:τ. x σ, which is well-typed
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only when τ is a quantified type and σ is in the domain of τ .

The advantage of using instantiation functions is that all quantified types and all in-

stantiations of quantified types are types of kind ∗. Thus, we can encode the rule for type

applications in Fω by abstracting over the quantified type, the instance type, and the in-

stantiation function for them:

tapp : (∀α:∗. α → ∀β:∗. (α → β) → β)
tapp = Λα:∗. λe:α. Λβ:∗. λinst:α → β. inst e

Using tapp we can encode the type application e τ 2 above as

tapp (∀α1:κ1.τ 1) e (τ 1[α1:=τ 2]) inst((∀α1:κ1.τ1),τ2)

Unlike the intensional approach, the extensional approach provides no guarantee that e

will always have a quantified type. Furthermore, even if e does have a quantified type, inst

is not guaranteed to actually be an instantiation function. In short, the intensional approach

provides two Free Theorems [91] that we don’t get with our extensional approach. However,

the extensional approach has the key advantage of enabling a representation of Fω in itself.

2.5 Representing Types

We use type representations to type check term representations and operations on term

representations. Our type representation is shown as part of the representation of Fω in

Figure 2.3. The JτK syntax denotes the pre-representation of the type τ , and τ denotes

the representation. A pre-representation is defined using a designated variable F, and a

representation abstracts over F.

Our type representation is novel and designed to support three important properties:

first, it can represent all types (not just types of kind ∗); second, representation preserves

equivalence between types; third, it is expressive enough to typecheck all our benchmark

operations. The first and second properties and play an important part in our representation

of polymorphic terms.
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JαK = αJτ1 → τ2K = F Jτ1K → F Jτ2KJ∀α:κ.τK = ∀α:κ. F JτKJλα:κ.τK = λα:κ. JτKJτ1 τ2K = Jτ1K Jτ2K
Pre-Representation of Types

τ = λF:∗→ ∗. JτK
Representation of Types

U = (∗ → ∗) → ∗
Op = λF:∗ → ∗. λα:U. F (α F)

Strip = λF:∗ → ∗. λα:∗.
∀β:*.(∀γ:*. F γ → β) → α → β

Abs = λF:∗→∗.
∀α:∗.∀β:∗.(F α → F β) → F (F α → F β)

App = λF:∗→∗.
∀α:∗.∀β:∗.F (F α → F β) → F α → F β

TAbs = λF:∗→∗.
∀α:∗. Strip F α → α → F α

TApp = λF:∗→∗.
∀α:∗.F α → ∀β:∗.(α → F β) → F β

Exp = λα:U. ∀F:∗ → ∗.
Abs F → App F → TAbs F → TApp F →
Op F α

Kind and Type Definitions

inst(τ,σ) = λx:τ. x σ

Instantiation Functions

∗ � (∀α:∗.α)
κ � σ

κ1 → κ � λα:κ1.σ
Kind Inhabitants

κ � σ

strip(F,κ,τ) = Λα:∗. λf:(∀β:∗. F β → α).
λx:(∀γ:κ.F (τ γ)). f (τ σ) (x σ)

Strip Functions

(x:τ) ∈ Γ

Γ ⊢ x : τ � x

Γ ⊢ τ1 : ∗ Γ,(x:τ1) ⊢ e : τ2 � q

Γ ⊢ (λx:τ1.e) : τ1 → τ2 � abs Jτ1K Jτ2K (λx:F Jτ1K.q)
Γ ⊢ e1 : τ2 → τ � q1 Γ ⊢ e2 : τ2 � q2

Γ ⊢ e1 e2 : τ � app Jτ2K JτK q1 q2

Γ, α : κ ⊢ e : τ � q

Γ ⊢ (Λα:κ.e) : (∀α:κ.τ) � tabs J∀α:κ.τK
strip(F,κ,Jλα:κ.τK)
(Λα:κ.q)

Γ ⊢ e : (∀α:κ.τ) � q Γ ⊢ σ : κ

Γ ⊢ e σ : τ [α:=σ] � tapp J∀α:κ.τK q Jτ[α:=σ]K
inst(J∀α:κ.τK,JσK)

Γ ⊢ e : τ � q τ ≡ σ Γ ⊢ σ : ∗
Γ ⊢ e : σ � q

Pre-Representation of Terms

⟨⟩ ⊢ e : τ � q

e = ΛF:∗→ ∗.
λabs :Abs F. λapp :App F.
λtabs:TAbs F. λtapp:TApp F.
q

Representation of Terms

Figure 2.3: Representation of Fω
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Type representations support operations that iterate a type function R over the first-order

types – arrows and universal quantifiers. Each operation on representations produces results

of the form R (JτK[F := R]), which we call the “interpretation of τ under R”. For example,

the interpretation of (∀α:∗. α → α) under R is R (J∀α:∗. α → αK[F := R]) = R (∀α:∗. R

(R α → R α)).

As stated previously, type representations are used to typecheck representations of terms

and their operations. In particular, a term of type τ is represented by a term of type Exp τ ,

and each operation on term representation produces results with types that are interpreta-

tions under some R.

Let’s consider the outputs produced by unquote, size, and cps, when applied to a rep-

resentation of the polymorphic identity function, which has the type (∀α:∗. α → α). For

unquote, the type function R is the identity function Id = (λα:∗.α). Therefore, unquote

applied to the representation of the polymorphic identity function will produce an output

with the type Id (∀α:∗. Id (Id α → Id α)) ≡ (∀α:∗.α → α). For size, R is the constant

function KNat = (λα:*.Nat). Therefore, size applied to the representation of the polymor-

phic identity function will produce an output with the type KNat (∀α:∗. KNat (KNat α →

KNat α)) ≡ Nat. For cps, R is the function Ct = (λα:∗. ∀β:∗. (α → β) → β), such that

Ct α is the type of a continuation for values of type α. Therefore, cps applied to the rep-

resentation of the polymorphic identity function will produce an output with the type Ct

(∀α:∗. Ct (Ct α → Ct α)). This type suggests that every sub-term has been transformed

into continuation-passing style.

We also represent higher-order types, since arrows and quantifiers can occur within them.

Type variables, abstractions, and applications are represented meta-circularly. Intuitively,

the pre-representation of an abstraction is an abstraction over pre-representations . Since

pre-representations of κ-types (i.e. types of kind κ) are themselves κ-types, an abstrac-

tion over κ-types can also abstract over pre-representations of κ-types. In other words,

abstractions are represented as themselves. The story is the same for type variables and

applications.
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Examples. The representation of (∀α:∗. α → α) is:

∀α:∗. α → α

=λF:∗→∗. J∀α:∗. α → αK
=λF:∗→∗. ∀α:∗. F (F α → F α)

Our representation is defined so that the representations of two β-equivalent types are also

β-equivalent. In other words, representation of types preserves β-equivalence. In particular,

we can normalize a type before or after representation, with the same result. For example,

∀α:∗.(λγ:∗.γ → γ) α

= λF:∗→∗. J∀α:∗.(λγ:∗.γ → γ) αK
= λF:∗→∗. ∀α:∗. F ((λγ:∗.F γ → F γ) α)

≡β λF:∗→∗. ∀α:∗. F (F α → F α)

= ∀α:∗. α → α

Properties. We now discuss some properties of our type representation that are im-

portant for representing terms. First, we can pre-represent legal types of any kind and in

any environment. Since a representation abstracts over the designated type variable F in

a pre-representation , the representation of a κ-type is a type of kind (∗ → ∗) → κ. In

particular, base types (i.e. types of kind ∗) are represented by a type of kind (∗ → ∗) → ∗.

This kind will be important for representing terms, so in Figure 2.3 we define U = (∗ → ∗)

→ ∗.

Theorem 2.5.1. If Γ ⊢ τ : κ, then Γ ⊢ τ : (∗ → ∗) → κ.

Equivalence preservation relies on the following substitution theorem, which will also be

important for our representation of terms.

Theorem 2.5.2. For any types τ and σ, and any type variable α, we have JτK[α := JσK] =Jτ[α := σ]K.
We now formally state the equivalence preservation property of type pre-representation

and representation.

Theorem 2.5.3. τ ≡ σ if and only if τ ≡ σ.
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2.6 Representing Terms

In this section we describe our representation of Fω terms. Our representations are typed

to ensure that only well-typed terms can be represented. We typecheck representations of

terms using type representations. In particular, a term of type τ is represented by a term of

type Exp τ .

We use a typed Higher-Order Abstract Syntax (HOAS) representation based on Church

encodings, similar to those used in previous work [69, 71, 19]. As usual in Higher-Order

Abstract Syntax (HOAS), we represent variables and abstractions meta-circularly, that is,

using variables and abstractions. This avoids the need to implement capture-avoiding sub-

stitution on our operations – we inherit it from the host language implementation. As in

our previous work [19], our representation is also parametric (PHOAS) [92, 29]. In PHOAS

representations, the types of variables are parametric. In our case, they are parametric in

the type function F that defines an interpretation of types.

Our representation of Fω terms is shown in Figure 2.3. We define our representation

in two steps, as we did for types. The pre-representation of a term is defined using the

designated variables F, abs, app, tabs, and tapp. The representation abstracts over these

variables in the pre-representation .

While the pre-representation of types can be defined by the type alone, the pre-repre-

sentation of a term depends on its typing judgment. We call the function that maps typing

judgments to pre-representations the pre-quoter. We write Γ ⊢ e : τ � q to denote “given

an input judgment Γ ⊢ e : τ the pre-quoter outputs a pre-representation q”. The pre-repre-

sentation of a term is defined by a type function F that defines pre-representations of types,

and by four case functions that together define a fold over the structure of a term. The

types of each case function depends on the type function F. The case functions are named

abs, app, tabs, and tapp, and respectively represent λ-abstraction, function application,

type-abstraction, and type application.

The representation e of a closed term e is obtained by abstracting over the variables

F, abs, app, tabs, and tapp in the pre-representation of e. If e has type τ , its pre-repre-
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sentation has type F JτK, and its representation has type Exp τ . The choice of τ can be

arbitrary because typings are unique up to β-equivalence and type representation preserves

β-equivalence.

Stripping redundant quantifiers. In addition to the inst functions discussed in

Section 2.4, our quoter embeds a specialized variant of instantiation functions into repre-

sentations. These functions can strip redundant quantifiers, which would otherwise limit

the expressiveness of our HOAS representation. For example, our size operation will use

them to remove the redundant quantifier from intermediate values with types of the form

(∀α:κ.Nat). The type Nat is closed, so α does not occur free in Nat. This is why the

quantifier is said to be redundant. This problem of redundant quantifiers is well known, and

applies to other HOAS representations as well [71].

We can strip a redundant quantifier with a type application: if e has type (∀α:κ.Nat)

and σ is a type of kind κ, then e σ has the type Nat. We can also use the instantiation

function inst(∀α:κ.Nat),σ, which has type (∀α:κ.Nat) → Nat. The choice of σ is arbitrary – it

can be any type of kind κ. It happens that in Fω all kinds are inhabited, so we can always

find an appropriate σ to strip a redundant quantifier.

Our quoter generates a single strip function for each type abstraction in a term and

embeds it into the representation. At the time of quotation most quantifiers are not re-

dundant – redundant quantifiers are introduced by certain operations like size. Whether

a quantifier will become redundant depends on the result type function F for an operation.

In our operations, redundant quantifiers are introduced when F is a constant function. The

operation size has results typed using the constant Nat function KNat = (λα:∗.Nat). Each

strip function is general enough to work for multiple operations that introduce redundant

quantifiers, and to still allow operations like unquote that need the quantifier.

To provide this generality, the strip functions take some additional inputs that help es-

tablish that a quantifier is redundant before stripping it. Each strip function will have a type

of the form Strip F J∀α:κ.τK ≡ (∀β:∗. (∀γ:∗. F γ → β) → J∀α:κ.τK → β). The type F

is the type function defines an interpretation of types. The type J∀α:κ.τK is the quantified
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type with the redundant quantifier to be stripped. Recall that J∀α:κ.τK = (∀α:κ.F JτK).

The type term of type (∀γ:∗. F γ → β) shows that F is a constant function that always

returns β. The strip function uses it to turn the type (∀α:κ.F JτK) into the type (∀α:κ.β)

where α has become redundant. For size, we will have F = KNat = (λα:∗.Nat). We show

that KNat is the constant Nat function with an identity function (Λγ:∗.λx:KNat γ. x). The

type of this function is (∀γ:∗.KNat γ → KNat γ), which is equivalent to (∀γ:∗.KNat γ →

Nat).

Types of case functions. The types of the four case functions abs, app, tabs, and tapp

that define an interpretation, respectively Abs, App, TAbs, and TApp, are shown in Figure

2.3. The types of each function rely on invariants about pre-representations of types. For

example, the type App F uses the fact that the pre-representation of an arrow type Jτ 1 →

τ 2K is equal to F Jτ 1K → F Jτ 2K. In other words, App F abstracts over the types Jτ 1K andJτ 2K that can change, and makes explicit the structure F α → F β that is invariant. These

types allow the implementation of each case function to use this structure – it is part of the

“interface” of representations, and plays an important role in the implementation of each

operation.

Building representations. The first rule of pre-representation handles variables. As in

our type representation, variables are represented meta-circularly, that is, by other variables.

We will re-use the variable name, but change its type: a variable of type τ is represented by

a variable of type F JτK. This type is the same as the type of a pre-representation . In other

words, variables in a pre-representation range over pre-representations .

The second rule of pre-representation handles λ-abstractions. We recursively pre-quote

the body, in which a variable x can occur free. Since variables are represented meta-circularly,

x can occur free in the pre-representation q of the body. Therefore, we bind x in the pre-

representation . This is standard for Higher-Order Abstract Syntax representations. Again,

we change of the type of x from τ 1 to F Jτ 1K. It may be helpful to think of q as the “open

pre-representation of e”, in the sense that x can occur free, and to think of (λx:F Jτ 1K. q)

as the “closed pre-representation of e”. The open pre-representation of e has type F Jτ 2K in

an environment that assigns x the type F Jτ 1K. The closed pre-representation of e has type F
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Jτ 1K → F Jτ 2K. The pre-representation of (λx:τ 1. e) is built by applying the case function

abs to the types Jτ 1K and Jτ 2K and the closed pre-representation of e.

The third rule of pre-representation handles applications. We build the pre-representa-

tion of an application e1 e2 by applying the case function app to the types Jτ 2K and JτK and

the pre-representations of e1 and e2.

The fourth rule of pre-representation handles type abstractions. As for λ-abstractions, we

call q the open pre-representation of e, and abstract over α to get the closed pre-representa-

tion of e. Unlike for λ-abstractions, we do not pass the domain and codomain of the type to

the case function tabs, since that would require kind-polymorphism as discussed in Section

2.4. Instead, we pass to tabs the pre-representation of the quantified type directly. We also

pass to tabs a quantifier stripping function that enables tabs to remove the quantifier fromJ∀α:κ. F τK in case F is a constant function. Note that the strip function is always defined,

since J∀α:κ. F τK = ∀α:κ.F JτK.
The fifth rule of pre-quotation handles type applications. We build the pre-representa-

tion of a type application e σ by applying the case function tapp to the pre-representation

of the quantified type J∀α:κ.τK, the pre-representation of the term e, the pre-representation

of the instantiation type Jτ[α:=σ]K, and the instantiation function inst(J∀α:κ.τK,JσK), which

can apply any term of type J∀α:κ.τK to the type JσK. Since J∀α:κ.τK = (∀α:κ.F JτK), the

instantiation function has type J∀α:κ.τK → F Jτ[α:=σ]K.
The last rule of pre-quotation handles the type-conversion rule. Unsurprisingly, the pre-

representation of e is the same when e has type σ as when it has type τ . When e has type

τ , its pre-representation will have type F JτK. When e has type σ, its pre-representation will

have type F JσK. By Theorem 2.5.3, these two types are equivalent, so q can be given either

type.

Examples. We now give two example representations. Our first example is the repre-

sentation of the polymorphic identity function Λα:∗.λx:α.x:
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ΛF:∗ → ∗.
λabs:Abs F. λapp:App F.
λtabs:TAbs F. λtapp:TApp F.
tabs J∀α:∗. α → αK strip(F,∗,Jλα:∗.α→αK)
(Λα:∗. abs α α (λx:F α. x))

We begin by abstracting over the type function F that defines an interpretation of types,

and the four case functions that define an interpretation of terms. Then we build the pre-

representation of Λα:∗.λx:α.x. We represent the type abstraction using tabs, the term

abstraction using abs, and the variable x as another variable also named x.

Our second example is representation of (λx:(∀α:∗. α → α). x (∀α:∗. α → α) x),

which applies an input term to itself.

ΛF:∗ → ∗.
λabs:Abs F. λapp:App F.
λtabs:TAbs F. λtapp:TApp F.
abs J∀α:∗. α → αK J∀α:∗. α → αK
(λx: F J∀α:∗. α → αK.
app J∀α:∗. α → αK J∀α:∗. α → αK
(tapp J∀α:∗. α → αK xJ(∀α:∗. α → α) → (∀α:∗. α → α)K

inst(J∀α:∗.α→αK,J∀α:∗.α→αK))
x)

The overall structure is similar to above: we begin with the five abstractions that define

interpretations of types and terms. We then use the case functions to build the pre-rep-

resentation of the term. The instantiation function inst(J∀α:∗.α→αK,J∀α:∗.α→αK) has the typeJ∀α:∗. α → αK → F J(∀α:∗. α → α) → (∀α:∗. α → α)K. Here, the quantified type be-

ing instantiated is J∀α:∗. α → αK = ∀α:∗. F Jα → αK, the instantiation parameter is alsoJ∀α:∗. α → αK, and the instantiation type is F J(∀α:∗. α → α) → (∀α:∗. α → α)K. By

lemma 2.5.2, we have:

(F Jα → αK)[α := J∀α:∗. α → αK]
= F (Jα → αK[α := J∀α:∗. α → αK])
= F J(α → α)[α := ∀α:∗. α → α]K
= F J(∀α:∗. α → α) → (∀α:∗. α → α)K
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Properties. We typecheck pre-quotations under a modified environment that changes

the types of term variables and binds the variables F, abs, app, tabs, and tapp. The bindings

of type variables are unchanged.

The environment for pre-quotations of closed terms only contains bindings for F, abs,

app, tabs, and tapp. The representation of a closed term abstracts over these variables, and

so can be typed under an empty environment.

Theorem 2.6.1. If ⟨⟩ ⊢ e : τ , then ⟨⟩ ⊢ e : Exp τ .

Our representations are data, which for Fω means a β-normal form.

Theorem 2.6.2. If ⟨⟩ ⊢ e : τ , then e is β-normal.

Our quoter preserves equality of terms up to equivalence of types. That is, if two terms

are equal up to equivalence of types, then their representations are equal up to equivalence

of types as well. Our quoter is also injective up to equivalence of types, so the converse is

also true: if the representations of two terms are equal up to equivalence of types, then the

terms are themselves equal up to equivalence of types.

Definition 2.6.1 (Equality up to equivalence of types). We write e1 ∼ e2 to denote that

terms e1 and e2 are equal up to equivalence of types.

x ∼ x

τ ≡β τ ′ e ∼ e′

(λx:τ.e) ∼ (λx:τ ′.e′)

e1 ∼ e′1 e2 ∼ e′2
(e1 e2) ∼ (e′2 e′2)

e ∼ e′

(Λα:κ.e) ∼ (Λα:κ.e′)
e ∼ e′ τ ≡β τ ′

(e τ) ∼ (e′ τ ′)

Now we can formally state that our quoter is injective up to equivalence of types.

Theorem 2.6.3. If ⟨⟩ ⊢ e1 : τ , and ⟨⟩ ⊢ e2 : τ , then

e1 ∼ e2 if and only if e1 ∼ e2.
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Bool : * = ∀α:*. α → α → α
true : Bool = Λα:*. λt:α. λf:α. t
false : Bool = Λα:*. λt:α. λf:α. f
and : Bool → Bool → Bool =
λb1:Bool. λb2:Bool. Λα:*. λt:α. λf:α.
b1 α (b2 α t f) f

Bools : * = ∀α:*. (Bool → Bool → α) → α
bools : Bool → Bool → Bools =
λb1:Bool. λb2:Bool.
Λα:*. λf:Bool → Bool → α. f b1 b2

fst : Bools → Bool =
λbs:Bools. bs Bool (λb1:Bool. λb2:Bool. b1)

snd : Bools → Bool =
λbs:Bools. bs Bool (λb1:Bool. λb2:Bool. b2)

Nat : * = ∀α:*. α → (α → α) → α
zero : Nat = Λα:*. λz:α. λs:α → α. z
succ : Nat → Nat =
λn:Nat. Λα:*. λz:α. λs:α → α. s (n α z s)

plus : Nat → Nat → Nat =
λm:Nat. λn:Nat. m Nat n succ

Definitions and operations of Bool, Bools, and Nat.

foldExp : (∀F:∗ → ∗.
Abs F → App F → TAbs F → TApp F →
∀α:U. Exp α → Op F α) =

ΛF:∗ → ∗.
λabs : Abs F. λapp : App F.
λtabs : TAbs F. λtapp : TApp F.
Λα:U. λe:Exp α. e F abs app tabs tapp

Implementation of foldExp

Id : ∗ → ∗ = λα:∗.α

unAbs : Abs Id = Λα:∗.Λβ:∗.λf:α→β.f
unApp : App Id = Λα:∗.Λβ:∗.λf:α→β.λx:α.f x
unTAbs : TAbs Id = Λα:∗.λs:Strip Id α.λf:α.f
unTApp : TApp Id = Λα:∗.λf:α.Λβ:∗.λg:α→β.g f

unquote : (∀α:U. Exp α → Op Id α) =
foldExp Id unAbs unApp unTAbs unTApp

Implementation of unquote

KBool : ∗ → ∗ = λα:∗. Bool

isAbsAbs : Abs KBool =
Λα:∗. Λβ:∗. λf:Bool → Bool. true

isAbsApp : App KBool =
Λα:∗. Λβ:∗. λf:Bool. λx:Bool. false

isAbsTAbs : TAbs KBool =
Λα:∗. λstrip:Strip KBool α. λf:α. true

isAbsTApp : TApp KBool =
Λα:∗. λf:Bool. Λβ:∗. λinst:α → Bool. false

isAbs : (∀α:U. Exp α → Bool) =
foldExp KBool isAbsAbs isAbsApp

isAbsTAbs isAbsTApp

Implementation of isAbs.

KNat : ∗ → ∗ = λα:∗. Nat

sizeAbs : Abs KNat =
Λα:∗. Λβ:∗. λf:Nat → Nat. succ (f (succ zero))

sizeApp : App KNat =
Λα:∗. Λβ:∗. λf:Nat. λx:Nat. succ (plus f x)

sizeTAbs : TAbs KNat =
Λα:∗. λstrip:Strip KNat α. λf:α.
succ (strip Nat (Λα:∗. λx:Nat. x) f)

sizeTApp : TApp KNat =
Λα:∗. λf : Nat. Λβ:∗. λinst:α → Nat. succ f

size : (∀α:U. Exp α → Nat) =
foldExp KNat sizeAbs sizeApp sizeTAbs sizeTApp

Implementation of size.

KBools : ∗ → ∗ = λα:∗. Bools

nfAbs : Abs KBools =
Λα:∗. Λβ:∗. λf:Bools → Bools.
bools (fst (f (bools true true))) false

nfApp : App KBools =
Λα:∗. Λβ:∗. λf:Bools. λx:Bools.
bools (and (snd f) (fst x)) (and (snd f) (fst x))

nfTAbs : TAbs KBools =
Λα:∗. λstrip:Strip KBools α. λf:α.
bools (fst (strip Bools (Λα:∗.λx:Bools.x) f))

false
nfTApp : TApp KBools =
Λα:∗. λf:Bools. Λβ:∗. λinst:(α → Bools).
bools (snd f) (snd f)

nf : (∀α:U. Exp α → Bool) =
Λα:U. λe:Exp α.
fst (foldExp KBools nfAbs nfApp nfTAbs nfTApp e)

Implementation of nf.

Ct : ∗ → ∗ = λα:∗. ∀β:∗. (α → β) → β
CPS : U → ∗ = Op Ct

cpsAbs : Abs Ct =
Λα:∗. Λβ:∗. λf:(Ct α → Ct β).
ΛV:∗. λk : (Ct α → Ct β) → V.
k f

cpsApp : App Ct =
Λα:∗. Λβ:∗. λf:Ct (Ct α → Ct β). λx:Ct α.
ΛV:∗. λk:β → V.
f V (λg:Ct α → Ct β. g x V k)

cpsTAbs : TAbs Ct =
Λα:∗. λstrip:Strip Ct α. λf: α.
ΛV:∗. λk:α → V.
k f

cpsTApp : TApp Ct =
Λα:∗. λf: Ct α.
Λβ:∗. λinst:α → Ct β.
ΛV:∗. λk:β → V.
f V (λe:α. inst e V k)

cps : (∀α:U. Exp α → CPS α) =
foldExp Ct cpsAbs cpsApp cpsTAbs cpsTApp

Implementation of cps.

Figure 2.4: Five operations on representations of Fω terms.
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2.7 Operations

Our suite of operations is given in Figure 2.4. It consists of a self-interpreter unquote, a

simple intensional predicate isAbs, a size measure size, a normal-form checker nf, and a

continuation-passing-style transformation cps. Our suite extends those of each previous work

on typed self-representation[71, 19]. Rendel et al. define a self-interpreter and a size measure,

while in previous work we defined a self-interpreter, the intensional predicate isAbs, and a

CPS transformation. Our normal-form checker is the first for a typed self-representation.

Each operation is defined using a function foldExp for programming folds. We also define

encodings of booleans, pairs of booleans, and natural numbers that we use in our operations.

We use a declaration syntax for types and terms. For example, the term declaration x :

τ = e asserts that e has the type τ (i.e. ⟨⟩ ⊢ e : τ is derivable), and substitutes e for x

(essentially inlining x) in the subsequent declarations. We have machine checked the type of

each declaration.

We give formal semantic correctness proofs for four of our operations: unquote, isAbs,

size, and nf. The proofs demonstrate qualitatively that our representation is not only

expressive but also easy to reason with. In the remainder of this section we briefly discuss

the correctness theorems.

Each operation has a type of the form ∀α:U. Exp α → Op R α for some type function R.

When α is instantiated with a type representation τ , the result type Op R τ is an interpre-

tation under R:

Theorem 2.7.1. Op R τ ≡ R (JτK[F := R]).

Each operation is defined using the function foldExp that constructs a fold over term

representations. An interpretation of a term is obtained by substituting the designated

variables F, abs, app, tabs, and tapp with the case functions that define an operation.

The following theorem states that a fold constructed by foldExp maps representations to

interpretations:

Theorem 2.7.2. If f = foldExp R abs′ app′ tabs′ tapp′, and ⟨⟩ ⊢ e : τ � q, then f τ e.
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−→∗ (q[F:=R, abs:=abs′,

app:=app′, tabs:=tabs′, tapp:=tapp′]).

unquote. Our first operation on term representations is our self-interpreter unquote,

which recovers a term from its representation. Its results have types of the form Op Id τ .

The type function Id is the identity function, and the operation Op Id recovers a type from

its representation.

Theorem 2.7.3. If Γ ⊢ τ : ∗, then Op Id τ ≡ τ .

Notice that unquote has the polymorphic type (∀α:U. Exp α → Op Id α). The type

variable α ranges over representations of types, and the result type Op Id α recovers the

type α represents. Thus, when α is instantiated with a concrete type representation τ , we

get the type Exp τ → τ .

Theorem 2.7.4. If ⟨⟩ ⊢ e : τ , then unquote τ e −→∗ e.

isAbs. Our second operation isAbs is a simple intensional predicate that checks whether

its input represents an abstraction or an application. It returns a boolean on all inputs. Its

result types are interpretations under KBool, the constant Bool function. The interpretation

of any type under KBool is equivalent to Bool:

Theorem 2.7.5. If Γ ⊢ τ : ∗, then Op KBool τ ≡ Bool.

Theorem 2.7.6. Suppose ⟨⟩ ⊢ e : τ . If e is an abstraction then isAbs τ e −→∗true.

Otherwise e is an application and isAbs τ e −→∗false.

size. Our third operation size measures the size of its input representation. Its result

types are interpretations under KNat, the constant Nat function. The interpretation of any

type under KNat is equivalent to Nat:

Theorem 2.7.7. If Γ ⊢ τ : ∗, then Op KNat τ ≡ Nat.

The size of a term excludes the types. We formally define the size of a term in order to

state the correctness of size.
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Definition 2.7.1. The size of a term e, denoted |e|, is defined as:

|x| = 1

|λx:τ.e| = 1 + |e|

|e1 e2| = 1 + |e1| + |e2|

|Λα:κ.e|= 1 + |e|

|e τ| = 1 + |e|

The results of size are Church encodings of natural numbers. We define a type Nat

and a zero element and a successor function succ. We use the notation churchn to denote

the Church-encoding of the natural number n. For example, church0 = zero, church1 = succ

zero, church2 = succ (succ zero), and so on.

Theorem 2.7.8.

If ⟨⟩ ⊢ e : τ and |e|=n, then size τ e −→∗churchn

nf. Our fourth operation nf checks whether its input term is in β-normal form. Its

results have types that are interpretations under KBools, the constant Bools function, where

Bools is the type of pairs of boolean values.

Theorem 2.7.9. If Γ ⊢ τ : ∗, then Op KBools τ ≡ Bools.

We program nf in two steps: first, we compute a pair of booleans by folding over the

input term. Then we return the first component of the pair. The first boolean encodes

whether a term is β-normal. The second encodes whether a term is normal and neutral.

Intuitively, a neutral term is one that can be used in function position of an application

without introducing a redex. We provide a formal definition of normal and neutral in the

Appendix.

Theorem 2.7.10. Suppose ⟨⟩ ⊢ e : τ .

1. If e is β-normal, then nf τ e −→∗true.

2. If e is not β-normal, then nf τ e −→∗false.
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cps. Our fifth operation cps is a call-by-name continuation-passing-style transformation.

Its result types are interpretations under Ct. We have also implemented a call-by-value CPS

transformation, though we omit the details because it is rather similar to our call-by-name

CPS. We do not formally prove the correctness of our CPS transformation. However, being

defined in Fω it is guaranteed to terminate for all inputs, and the types of the case functions

provide some confidence in its correctness. Below, we show the result of applying cps to each

of the example representations from Section 2.6. To aid readability, we use JτKCt to denoteJτK[F := Ct].

The first example is the polymorphic identity function Λα:∗. λx:α. x:

cps ∀α:∗. α → α Λα:∗.λx:α.x

≡β cpsTAbs J∀α:∗. α → αKCt stripCt,J∀α:∗.α→αK
(Λα:∗. cpsAbs α α (λx:Ct α. x))

≡β Λβ₁ : ∗.
λk₁ : Ct (∀α:∗. Ct (Ct α → Ct α))→ β₁.
k₁ (Λα:∗. Λβ₂:∗.

λk₂ : (Ct α → Ct α) → β₂.
k₂ (λx : Ct α. x))

The second example applies a variable of type ∀α:∗.α → α to itself:
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cps (∀α:∗. α → α) → (∀α:∗. α → α)

λx:(∀α:∗. α → α).x (∀α:∗. α → α) x

≡β cpsAbs J∀α:∗. α → αKCt J∀α:∗. α → αKCt
(λx: Ct J∀α:∗. α → αKCt.
cpsApp J∀α:∗. α → αKCt J∀α:∗. α → αKCt
(cpsTApp J∀α:∗. α → αKCt xJ(∀α:∗. α → α) → (∀α:∗. α → α)KCt

instJ∀α:∗.α→αK,J∀α:∗.α→αK)
x)

≡β Λβ₁ : *.
λk₁ : (Ct (∀a:*. Ct (Ct a → Ct a)) →

Ct (∀a:*. Ct (Ct a → Ct a))) → β₁.
k₁ (
λx : Ct (∀a:*. Ct (Ct a → Ct a)).
Λβ₂ : *.
λk₂ : (∀a:*. Ct (Ct a → Ct a)) → β₂.
(x β₂ (λe : ∀a:*. Ct (Ct a → Ct a).

e (∀a:*. Ct (Ct a → Ct a)) β₂
(λg : Ct (∀a:*. Ct (Ct a → Ct a)) →

Ct (∀a:*. Ct (Ct a → Ct a)).
g x β₂ k₂))))

2.8 Experiments

We have validated our techniques using an implementation of Fω in Haskell, consisting of a

parser, type checker, evaluator, β-equivalence checker, and our quoter. Each operation has

been programmed, type checked, and tested. We have also confirmed that the representation

of each operation type checks with the expected type.

Each of our operations are self-applicable, meaning it can be applied to a representation

of itself. We have checked that the self-application of each operation type checks with the

expected type. Further, we have checked that the self-application of unquote is β-equivalent

to itself:

unquote (∀α:U. Exp α → Op Id α) unquote

≡β unquote

32



2.9 Discussion

Terminology. The question of whether any language (strongly normalizing or not) supports

self-interpretation depends fundamentally on how one defines “representation function” and

“interpreter”. There are two commonly used definitions of “interpreter”. The first is a

function that maps the representation of a term to the term’s value (i.e. the left-inverse of a

particular representation function), like eval in JavaScript and Lisp [59, 4, 10, 69, 13, 63, 22,

71, 30]. For clarity, we will sometimes refer to this as an unquoter, since the representation

function is often called a quoter. Our self-interpreter in particular is an unquoter. The other

possible definition is a function that maps a representation of a term to the representation of

its value. In other words, it implements evaluation on representations. For this reason, we

call this kind of interpreter an evaluator. Evaluators are sometimes simply called interpreters

[72, 66] but other names have been used to differentiate them from unquoters: Mogensen calls

them reducers [63], Berarducci and Böhm call them reductors [13], and Jay and Palsberg

call them enactors [52].

Some qualitative distinctions between interpreters can also be made, which might also af-

fect the possibility of self-interpretation. A notable example is whether an interpreter is meta-

circular. Unfortunately, the term “meta-circular” also has multiple meanings. Reynolds de-

fines a meta-circular interpreter to be one which “defines each feature of the defined language

by using the corresponding feature of the defining language” [72]. Abelson and Sussman state

“an evaluator that is written in the same language that it evaluates is said to be metacir-

cular” [4]. Here “evaluator” is used to mean an unquoter. Reynolds’ definition allows for

meta-circular interpreters that are not self-interpreters, and self-interpreters that are not

meta-circular. According to Abelson and Sussman, all self-interpreters are meta-circular

and vice versa. Our self-interpreter is meta-circular according to both definitions.

Many different representation schemes have been used to define interpreters. Terms can

be represented as numbers, S-expressions, Church-encodings, or some user-defined data type.

With respect to the treatment of variables, there is first-order, higher-order, and parametric

higher-order abstract syntax. For representations of statically typed languages, use of typed
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representation ensures that only well-typed terms can be represented. Typed representation

uses a family of types for representations, indexed by the type of the represented term, while

untyped representation uses a single type for all representations. We use a typed parametric

higher-order abstract syntax representation based on Church encoding. As far as we know,

all unquoters defined in statically typed meta-languages are based on typed representation.

Indeed, typed representation seems to be required to define an unquoter in a statically typed

meta-language.

There are some properties common to all of these representation schemes: the represen-

tation function must be total (all legal terms can be represented) and injective (two terms

are identical if and only if their representations are), and must produce data (e.g. normal

forms). These are the requirements we have used in this chapter. It is possible to strengthen

the definition further. For example, we might want to require that a representation be deep.

In such a case, only our deep representation would qualify as a representation.

Deep and Shallow Representation. We use the terms deep and shallow to differen-

tiate representations supporting multiple operations (interpretations) from those supporting

only one. This is analogous to deep versus shallow embeddings [43], but we emphasize a

key difference between representation and embedding: a representation is required to be a

normal form. This is generally not required of embeddings; indeed, shallow embeddings typ-

ically do not produce normal forms. A shallow embedding translates a term in one language

into its interpretation defined in another language. In summary, a shallow representation

supports one interpretation, while a shallow embedding is one interpretation.

Every language trivially supports shallow self-embedding, but the same is not true for

shallow self-representation. For example, a shallow self-embedding for the simply-typed

lambda calculus can simply map each term to itself. This is not a self-representation because

the result may not be a normal form. The shallow self-representation in Section 3.3 relies

on polymorphism, so it would not would work for simply typed lambda calculus.

Limitations. There are some limits to the operations we can define on our representa-

tion. For example, we cannot define our representation functions (Figure 3) in Fω itself. This
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is necessarily so because the representation functions are intensional and Fω is extensional.

Stump [81] showed that it is possible to define a self-representation function within a λ-

calculus extended with some intensional operations. There is a trade-off between extensional

and intensional calculi: intensionality can support more expressive meta-programming, but

extensionality is important for semantic properties like parametricity.

Another limitation is that representations need to be statically type checked, which limits

dynamic generation of representations. For example, it is unlikely we could implement a

”dynamic type checker” that maps an untyped representation to a typed representation.

Something similar may be possible using stages interleaved with type checking, where an

untyped representation in one stage becomes a typed representation in the next. Kiselyov

calls this “Metatypechecking” [56].

Universe Hierarchies. Our techniques can be used for self-representation of other

strongly-normalizing calculi more powerful than Fω. For example, we conjecture that using

kind-instantiation functions could enable a deep self-representation of F+
ω . We would only

need to use the extensional approach for representing kind polymorphism, since the kind

polymorphism of F+
ω would enable the intensional approach to representing type polymor-

phism. More generally, our techniques could be used to represent a language with a hierarchy

of n universes of types, with lowest universe being impredicative and the others predicative.

We could use the intensional approach for the lowest n − 1 universes, and tie the knot of

self-representation by using the extensional approach for the nth universe.

Type Equivalence. Our formalization of Fω supports type conversion based on β-

equivalence. In other words, two types are considered equivalent if they are beta-equivalent.

This is standard – Barendregt[11] and Pierce[70] each use β-equivalence as well. Our repre-

sentation would also work with a type conversion rule based on β, η-equivalence. Our key

theorems 2.6.1 and 2.6.2 would be unaffected, and Theorem 2.6.3 would also hold assuming

we update Definition 2.6.1 (equality of terms up to equivalence of types) accordingly.

Injective Representation Function. Intuitively, our result shows that our quoter is

injective because it has a left inverse unquote. In practice, we proved injectivity in Theorem
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6.3 before we went on to define unquote in Section 7. The reason is that we used injectivity

to prove the correctness of unquote. We leave to future work to first define and prove

correctness of unquote and then use that to prove that our quoter is injective.

2.10 Related Work

Typed Self-Interpretation. Pfenning and Lee [69] studied self-interpretation of Systems

F and Fω. They concluded that it seemed to be impossible for each language, and defined

representations and unquoters of System F in Fω and of Fω in F+
ω . They used the intensional

approach to representing polymorphism that discussed in Section 2.4.

Rendel, et al. [71] presented the first typed self-representation and self-interpreter. Their

language System F∗
ω extends Fω with a Type:Type rule that unifies the levels of types and

kinds. As a result, F∗
ω is not strongly-normalizing, and type checking is undecidable. Their

representation also used the intensional approach to representing polymorphism. They pre-

sented two operations, an unquoter and a size measure. Their implementation of size relied

on a special ⊥ type to strip redundant quantifiers. The type ⊥ inhabits every kind, but

is not used to type check terms. We strip redundant quantifiers using special instantiation

functions that are generated by the quoter.

Jay and Palsberg [52] presented a typed self-representation and self-interpreter for a

combinator calculus, with a λ-calculus surface syntax. Their calculus had undecidable type

checking and was not strongly normalizing.

In previous work [19] we presented a typed self-representation for System U, which is

not strongly normalizing but does have decidable type checking. This was the first self-

representation for a language with decidable type checking. The representation was similar

to those of Pfenning and Lee [69] and Rendel, et al. [71] and also used the intensional ap-

proach to representing polymorphism. We presented three operations on the representation

of System U terms – unquote, isAbs, and cps. Not all System U kinds are inhabited, so

redundant quantifiers couldn’t be stripped. This prevented operations like size or nf. We

also represented System U types of kind ∗, but did not have a substitution theorem like
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Theorem 2.5.2. As a result, the representation of a type application could have the wrong

type, which we corrected using a kind of coercion. Our representation of Fω types is designed

to avoid the need for such coercions, which simplifies our representation and the proofs of

our theorems.

Representation Technique. We mix standard representation techniques with a mini-

mal amount of novelty needed to tie the knot of self-representation. At the core is a typed

Higher-order Abstract Syntax (HOAS) based on Church encoding. Similar representations

were used in previous work on typed representation [69, 22, 71, 19].

Our previous work [19] showed self-representation is possible using only the intensional

approach to representing polymorphism requires and two impredicative universes (the types

and kinds of System U). Our extensional approach presented here allows us to use only a

single impredicative universe (the types of Fω).

The shallow representation of System F also requires impredicativity to block type appli-

cations. We leave the question whether self-representation is possible without any impred-

icativity for future work.

Typed Meta-Programming. Typed self-interpretation is a particular instance of

typed meta-programming, which involves a typed representation of one language in a pos-

sibly different language, and operations on that representation. Typed meta-programming

has been studied extensively, and continues to be an active research area. Chen and Xi

[24, 25] demonstrated that types can make meta-programming less error-prone.

Carette et al. [22] introduced tagless representations, which are more efficient than other

techniques and use simpler types. Our representation is also tagless, though we use ordinary

λ-abstractions to abstract over the case functions of an operation, while they use Haskell

type classes or OCaml modules. The object languages they represented did not include

polymorphism. Our extensional technique could be used to program tagless representations

of polymorphic languages in Haskell or OCaml.

MetaML [84] supports generative typed meta-programming for multi-stage programming.

It includes a built-in unquoter, while we program unquote as a typed Fω term.
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Trifonov et al. [86] define a language with fully reflexive intensional type analysis, which

supports type-safe run-time type introspection. Instead of building representations of types,

their language includes special operators to support iterating over types. They programmed

generic programs like marshalling values for transmission over a network. Generic program-

ming and meta-programming are different techniques: generic programs operate on programs

or program values, and meta-programs operate on representations of programs. These dif-

ferences mean that each technique is suited to some problems better than the other.

Dependently-Typed Representation. Some typed representations use dependent

types to ensure that only well-typed terms can be represented. For example, Harper and

Licata [49] represented simply-typed λ-calculus in LF, and Schürmann et al. [76] repre-

sented Fω in LF. Chapman [23] presented a meta-circular representation of a dependent

type theory in Agda. These representations are quite useful for mechanized meta-theory –

machine-checked proofs of the meta-theorems for the represented language. The demands

of mechanized metatheory appear to be rather different from those of self-interpretation.

It is an open question whether a dependently-typed self-representation can support a self-

interpreter.

Dependent Types. Dependent type theory is of particular interest among strongly-

normalizing languages, as it forms the basis of proof assistants like Coq and Agda. While

dependent type theory generally includes dependent sum and product types, modern variants

also support inductive definitions, an infinite hierarchy of universes, and universe polymor-

phism. A self-representation of such a language would need to represent all of these features,

each of which comes with its own set of challenges.

Altenkirch and Kaposi [7] formalize a simple dependent type theory in another type

theory (Agda extended with some postulates). They focus on the key problem of defining

a typed representation of dependent type theory: that the types, terms, type contexts, and

type equality are all mutually-dependent. Their solution relies on Quotient-Inductive Types

(QITs), a special case of Higher-Inductive Types from Homotopy Type Theory. Their work

is an important step towards a self-representation of dependently type theory. To achieve

full self-representation, one would need to represent QITs themselves, which the authors cite

38



as an open challenge.

Untyped Representation. The literature contains many examples of untyped repre-

sentations for typed languages, including for Coq [12] and Haskell [66]. Untyped represen-

tations generally use a single type like Exp to type check all representations, and permit

ill-typed terms to be represented. Template Haskell [78] uses an untyped representation and

supports user-defined operations on representations. Since representations are not guaran-

teed to be well-typed by construction, generated code needs to be type checked.

Coercions. Our instantiation functions are similar to coercions or retyping functions:

they change the type of a term without affecting its behavior. Cretin and Rémy [35] studied

erasable coercions for System Fη [61], including coercions that perform instantiations. We

conjecture that our self-representation technique would work for an extension of Fω with

erasable instantiation coercions, and that these coercions could replace instantiation func-

tions in our extensional approach to representing polymorphism. This could provide some

advantages over the instantiation functions used in this chapter. In particular, a weakness

of instantiation functions is that their types overlap with those of other terms. Therefore,

it is possible to use something other than instantiation function (e.g. a constant function)

where one is expected. As a result, we can write a closed term of type Exp τ (for some τ)

that is not the representation of any term. The types of Cretin and Rémy’s coercions do

not overlap with the types of terms, so replacing instantiation functions with instantiation

coercions could eliminate this problem.

2.11 Conclusion

We have solved two open problems posed by Pfenning and Lee. First, we have defined a

shallow self-representation technique that supports self-interpretation for each of System F

and System Fω. Second, we have defined a deep self-representation for System Fω that

supports a variety of operations including a self-interpreter.

Our result is consistent with the classical theorem that the universal function for the total

computable functions cannot be total. The reason is that the theorem assumes that terms
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are represented as numbers using Gödel numbering. We show that a typed representation

can ensure that the diagonalization gadget central to the proof fails to type check.

Our result opens the door to self-representations and self-interpreters for other strongly

normalizing languages. Our techniques create new opportunities for type-checking self-

applicable meta-programs, with potential applications in typed macro systems, partial eval-

uators, compilers, and theorem provers.

Some open questions include:

• Is a self-evaluator possible in a strongly normalizing language?

• Is it possible to define a self-interpreter or self-evaluator using a first-order representa-

tion (for example, based on SK combinators) in a strongly normalizing language?
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CHAPTER 3

Typed Self-Evaluation via Intensional Type Functions

3.1 Introduction

Many popular languages have a self-interpreter, that is, an interpreter for the language

written in itself; examples include Haskell [66], JavaScript [39], Python [73], Ruby [95],

Scheme [5], and Standard ML [74]. The use of itself as implementation language is cool,

demonstrates expressiveness, and has key advantages. In particular, a self-interpreter enables

the language designer to easily modify, extend, and grow the language [71], and do other

forms of meta-programming [18].

What is the type of an interpreter that can interpret a representation of itself? The

classical answer to such questions is to work with a single type for all program representations.

For example, the single type could be String or it could be Syntax Tree. The single-type

approach enables an interpreter to have type, say, (String → String), where the input string

represents a program and where the output string represents the result. However, this

approach ignores that the source program type checks, and gives no guarantee that the

interpreter preserves the type of its input.

How can we do better type checking of self-interpreters? First, suppose we have a better

representation scheme quote(·) and a type function Exp such that if e : T, then quote(e) :

Exp T. This enables us to consider two polymorphic types of self-interpreters:

(self-recognizer) unquote : ∀T. Exp T → T (1)

(self-evaluator) eval : ∀T. Exp T → Exp T (2)

The functionality of a self-recognizer unquote is to recover a program from its representation,

while the functionality of a self-evaluator eval is to evaluate the represented program and
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Figure 3.1: Self-recognizers and self-evaluators.

produce a representation of the result. The relationship between a self-recognizer and a

self-evaluator is illustrated in Figure 3.1. The meta-level function quote maps a term e to

its representation e. A meta-level evaluation function maps e to a value v. A self-recognizer

unquote inverts quote, while a self-evaluator eval implements evaluation on representations.

There can be multiple evaluation functions and self-evaluators for a particular language,

implementing different evaluation strategies. The thinner arrows indicate mappings up to

equivalence: the application of unquote to e is equivalent to e, but is not identical to e.

There are several examples of self-recognizers with type (1) in the literature. Specifically,

Rendel, Ostermann, and Hofer [71] presented the first self-recognizer with type (1) for the

typed λ-calculus F∗
ω. In previous work we presented self-recognizers with type (1) for System

U [19], a typed λ-calculus with decidable type checking, and for Fω [20], a strongly normalizing

language.

Implementing a self-evaluator with type (2) has remained an open problem until now.

Our goal is to identify a core calculus for which we can solve the problem.

The challenge: Can we define a self-evaluator with type (2) for a typed λ-calculus?

Our result: Yes, we present three self-evaluators for a typed λ-calculus with decidable type

checking. Our calculus, Fµi
ω , extends Fω with recursive types and intensional type functions.

Our starting point is an evaluator for simply-typed λ-calculus (STLC) written in Haskell.

The evaluator has type (2) and operates on a representation of STLC based on generalized

algebraic data types (GADTs). The gap between the meta-language (Haskell) and the object-

language (STLC) is large. To reduce this gap, we apply a series of translations to reduce
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our GADT-based evaluator of STLC to lower-level constructs: higher-order polymorphism,

recursive types, and a theory of type equality. We close the gap in Fµi
ω , which is designed to

support these constructs.

The key challenge of self-representation – “tying the knot” – is to balance the competing

needs for a single language to be simultaneously the object language and the meta-language.

A more powerful language can represent more, but also has more that needs to be repre-

sented. Previous work on self-representation has focused on tying the knot as it pertains to

polymorphism [71, 19, 20]. A similar challenge arises for type equality, and this is our main

focus in this chapter.

To tie the knot for a language with type equality, we need to consider two questions. First,

how expressive must a theory of type equality be in order to implement a typed evaluator for

a particular object language? Second, what meta-language features are needed to represent

and evaluate a particular theory of type equality? In Section 3.2 we show that to evaluate

STLC, type equality between arrow types should be decomposable. In particular, if we know

(A → B) = (S → T), then we also know A = S and B = T. What then is needed to represent

and evaluate decomposable type equalities? Haskell implements type equality using built-in

type equality coercions [82]. These support decomposition, but have complex typing rules

and evaluation semantics that make representation and evaluation difficult. On the other

hand, Leibniz equality proofs [68, 90, 9] can be encoded in λ-terms typeable in pure Fω. This

means that representing and evaluating Leibniz equality proofs is no harder than representing

and evaluating Fω. However, Leibniz equality proofs are not decomposable in Fω. Our goal

is to implement a theory of type equality that is decomposable like Haskell’s type equality

coercions, but that is also easily represented and evaluated, like Leibniz equality proofs.

We achieve our goal by implementing type equality in a new way, by combining Leibniz

equality proofs with intensional type functions that can depend on the intensional structure

of their inputs. The result is an expressive theory of type equality with a simple semantics.

This innovation is the key to defining our typed self-representation and self-evaluators.

Our intensional type functions are defined using a Typecase operator that is inspired by
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previous work on intensional type analysis (ITA) [50, 75, 31, 86, 94], but is simpler in three

ways:

• We support ITA at the type level only, while previous work supports ITA in types and

terms.

• Our Typecase operator is not recursive. Previous work used a recursive Typerec oper-

ator for type-level ITA.

• We support ITA of quantified types without using kind polymorphism.

We present a self-representation of Fµi
ω and three self-evaluators with type (2) that operate

upon it: one that evaluates terms to weak head normal form, one that performs a single

step of left-most reduction, and an implementation of Normalization by Evaluation (NbE)

that reduces to β-normal form. The first only reduces closed terms, while the others may

reduce under abstractions. We also implement a self-recognizer unquote with type (1), and

all the benchmark meta-programs from Chapter 2. We have proved that the weak head

self-evaluator is correct, and we have implemented and tested our other self-evaluators and

meta-programs.

STLC Fµi
ω

Sections 4.2, 5, and 6

Sections 3 and 4.1

Rest of the chapter. In Section 2 we show how type equality proofs can be used to

implement a typed evaluator for STLC in Haskell. In Section 3 we define our calculus Fµi
ω .

In Section 4 we first implement type equality proofs for simple types in Fµi
ω and use them

to program a typed STLC evaluator. Then we move beyond simple types and extend our

type equality proofs to work with quantified and recursive types. In Section 5 we define our

self-representation, in Section 6 we present our self-evaluators, in Section 7 we describe our

other benchmark meta-programs and our experiments, and in Section 8 we discuss related

work.
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data Exp t where
Abs :: (Exp t1→ Exp t2)→ Exp (t1→ t2)
App :: Exp (t1→ t2)→ Exp t1→ Exp t2

eval :: Exp t→ Exp t
eval (App e1 e2) =
let e1' = eval e1 in
case e1' of
Abs f→ eval (f e2)
_ → App e1' e2

eval e = e

Figure 3.2: A typed representation of STLC using Haskell GADTs

3.2 From GADTs to Type Equality Proofs

In this section, we will show a series of four evaluators for STLC, all written in Haskell.

The idea is for each version to use lower-level constructs than the previous ones, and to use

constructs with Fω types as much as possible. Along the way, we will highlight the techniques

needed to typecheck the evaluators.

GADTs. Figure 3.2 shows a representation of Simply-Typed λ-Calculus (STLC) terms in

Haskell using GADTs. The representation is Higher-Order Abstract Syntax (HOAS), which

means that STLC variables are represented as Haskell variables that range over represen-

tations, and we use Haskell functions to bind STLC variables. In the Abs constructor, the

function type (Exp t1 → Exp t2) corresponds to a STLC term of type Exp t2 that includes

a free variable of type Exp t1.

Also in Figure 3.2 is a meta-circular evaluator with type (2). That type guarantees that

eval preserves the type of its input – that the result has the same type. It is meta-circular

because it implements STLC features using the corresponding features in the meta-language

(Haskell). In particular, we use Haskell β-reduction (function application) to implement

STLC β-reduction.

The evaluator eval implements weak head-normal evaluation. This means that it reduces

the left-most β-redex, but does not evaluate under λ-abstractions or in the argument position

of applications. If e = Abs f, then e is already in weak head-normal form, and eval e = e.
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data Exp t =
forall t1 t2. (t1→ t2) ∼ t⇒ Abs (Exp t1→ Exp t2)

| forall t1. App (Exp (t1→ t)) (Exp t1)

eval :: Exp t→ Exp t
eval (App e1 e2) =
let e1' = eval e1 in
case e1' of
Abs f→ eval (f e2)
_ → App e1' e2

eval e = e

Figure 3.3: STLC using ADTs and equality coercions

If e = App e1 e2, we first recursively evaluate e1, letting e1' be value of e1. If e1' is an

abstraction Abs f, then App e1' e2 is a redex. We reduce it by applying f to e2, and then

we recursively evaluate the result. If e1' is not an abstraction, then we return App e1' e2.

We now consider how Haskell type checks eval. First, the type annotation on eval deter-

mines that App e1 e2 has type Exp t. According to the type of App, e1 has type Exp (t1 → t)

and e2 has type Exp t1, for some type t1. Since eval preserves the type of its argument,

e1' also has type Exp (t1 → t). If case analysis finds that e1' is of the form Abs f, then

the type of Abs tells us that f has the type Exp t1 → Exp t.

We can see that Haskell’s type checker does some nontrivial work to typecheck code with

GADTs. Pattern matching App e1 e2 introduced the existentially quantified type t1. When

pattern matching determined that e1' is of the form Abs f, the type checker aligned the

types of e1' and f so that f could be applied to e2.

ADTs and equality constraints. GADTs can be understood and implemented as a com-

bination of algebraic data types (ADTs) and equality between types. Figure 3.3 reimplements

STLC in this style, using ADTs and Haskell’s type equality constraints. In this version, the

result type of each constructor of Exp is implicitly Exp t, while in the GADT version the

result type of Abs is Exp (t1 → t2). The type equality constraint (t1 → t2) ∼ t makes up

this difference. Haskell implements GADTs using ADTs and equality constraints [82], so the

definitions of Exp t in Figures 3.2 and 3.3 are effectively the same. In particular, in both
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refl :: Eq t t
sym :: Eq t1 t2→ Eq t2 t1
trans :: Eq t1 t2→ Eq t2 t3→ Eq t1 t3
eqApp :: Eq t1 t2→ Eq (f t1) (f t2)
arrL :: Eq (t1→ t2) (s1→ s2)→ Eq t1 s1
arrR :: Eq (t1→ t2) (s1→ s2)→ Eq t2 s2

coerce :: Eq t1 t2→ t1→ t2

Figure 3.4: Interface of explicit type equality proofs

versions the constructors Abs and App have the same types, and the implementation of eval

is the same.

Haskell’s type equality coercions are reflexive, symmetric, and transitive, and support a

number of other rules for deriving equalities. The type checker automatically derives new

equalities based on existing ones and inserts coercions based on known equalities. This is

how it is able to typecheck eval. We refer the interested reader to Sulzmann et al. [82].

Explicit type equality proofs. Figure 3.4 defines an explicit theory of type equality

that allows us to derive type equalities and perform coercions manually. We can implement

the functions in Figure 3.4 using Haskell, as we show in the appendix, or we can implement

them in Fµi
ω , as we show in Section 3.4.

The basic properties of type equality, namely reflexivity, symmetry, and transitivity, are

encoded by refl, sym, and trans, respectively. The only way to introduce a new type equality

proof is by using refl. eqApp shows that equal types are equal in any context. For example,

given an equality proof of type Eq t1 t2, eqApp can derive a proof that Exp t1 is equal to

Exp t2 by instantiating f with Exp. The operators arrL and arrR allow type equality proofs

about arrow types to be decomposed into proofs about the domain and codomain types,

respectively. We have highlighted them to emphasize their importance in type checking eval

and in motivating the design of Fµi
ω . Given a proof of Eq t1 t2, coerce can change the type

of a term from t1 into t2.

Given a closed proof p of type Eq t1 t2, we expect (1) that it is true that t1 and t2 are

equal types, and (2) that coerce p e evaluates to e for all e. Open proofs include variables
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data Exp t =
forall t1 t2. Abs (Eq (t1→ t2) t) (Exp t1→ Exp t2)

| forall t1. App (Exp (t1→ t)) (Exp t1)

eval :: Exp t→ Exp t
eval (App e1 e2) =
let e1' = eval e1 in
case e1' of
Abs eq f→
let eqL = eqApp (sym (arrL eq))

eqR = eqApp (arrR eq)
f' = coerce eqR . f . coerce eqL

in eval (f' e2)
_ → App e1' e2

eval e = e

Figure 3.5: STLC using explicit type equality proofs

of equality proof type, which can be thought of as type equality hypotheses. Until these

hypothesis are discharged, coerce p e should not be reducible to e.

ADTs and explicit type equality proofs. Figure 3.5 shows a version of Exp t and an

evaluator that uses ADTs and explicit type equality proofs. The only difference between

this definition of Exp t and the one in Figure 3.3 is that we have replaced the type equality

constraint (t1 → t2) ∼ t with a type equality proof of type Eq (t1 → t2) t1, in order to

clarify the role of type equality in type checking eval.

As before, we know from the type of eval that its argument has type Exp t, and e1 has

type Exp (t1 → t) and e2 has type Exp t1, for some type t1. Since eval preserves type,

e1' also has type Exp (t1 → t).

The differences begin with the pattern match on e1'. If e1' is of the form Abs eq f, then

there exist types s1 and s2 such that eq has the type

Eq (s1 → s2) (t1 → t) and f has the type Exp s1 → Exp s2. We use arrL, sym, and eqApp

(with f instantiated with Exp) to derive eqL, which has the type Eq (Exp t1) (Exp s1). Sim-

ilarly, we use arrR and eqApp to derive eqR with the type Eq (Exp s2) (Exp t). Finally, we

use coercions based on eqL and eqR to cast f from the type Exp s1 → Exp s2 to the type
1Not to be confused with the type class Eq defined in Haskell’s Prelude
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newtype Exp t = Exp {
matchExp ::
forall r.
(forall a b. Eq t (a→ b)→ (Exp a→ Exp b)→ r)→
(forall s. Exp (s→ t)→ Exp s→ r)→
r

}

abs :: (Exp t1→ Exp t2)→ Exp (t1→ t2)
abs f = Exp (\fAbs fApp→ fAbs refl f)

app :: Exp (t1→ t2)→ Exp t1→ Exp t2
app e1 e2 = Exp (\fAbs fApp→ fApp e1 e2)

eval :: Exp t→ Exp t
eval e =
matchExp e
(\_ _→ e)
(\e1 e2→
let e1' = eval e1 in
matchExp e1'
(\eq f→
let eqL = eqApp (sym (arrL eq))

eqR = eqApp (arrR eq)
f' = coerce eqR . f . coerce eqL

in f' e2)
(\_ _→ app e1' e2))

Figure 3.6: Mogensen-Scott encoding of STLC

Exp t1 → Exp t. Thus, f' can be applied to e2, and its result has type Exp t, as required by

the type of eval.

Mogensen-Scott encoding. By using a typed Mogensen-Scott encoding [63], we can

represent STLC using only functions, type equality proofs, and Haskell’s newtype, a special

case of an ADT with only one constructor that has a single field. This version is shown

in Figure 3.6. The field of Exp t defines a simple pattern-matching interface for STLC

representations: given case functions for abstraction and application, each producing a result

of type r, we can produce an r. We manually define constructors abs and app for Exp

t by their pattern matching behavior. For example, the arguments to app are the two

subexpressions of an application node. Given case functions for abstraction and application,
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app calls the case function for application, and passes along its subexpressions. The abs

constructor is similar, except that it takes one argument, while the case function fAbs for

abstractions takes two. The first argument to fAbs is a type equality proof that abs supplies

itself.

The function matchExp maps representations to their pattern matching interface, and the

constructor Exp goes the opposite direction. These establish an isomorphism between Exp

t and its pattern matching interface. In particular, matchExp (Exp f) = f. The type Exp is

recursive because Exp occurs in the type of its field matchExp.

The Mogensen-Scott encoding of STLC uses higher order (Fω) types, recursive types,

and type equality proofs. In the next section we present Fµi
ω , which supports each of these

features. It extends Fω with iso-recursive types and intensional type functions that we

use to implement the type equality proof interface in Figure 3.4. In Section 4 we define a

representation and evaluator for STLC in Fµi
ω , which are similar to Figure 3.6. Then we go

beyond STLC and implement our self-representation and self-evaluator for Fµi
ω .

3.3 System Fµi
ω

System Fµi
ω is defined in Figure 3.7. It extends Fω with iso-recursive � types and a type

operator Typecase that is used to define intensional type functions. The kinds are the same

as in Fω. The kind ∗ classifies base types (the types of terms), and arrow kinds classify

type level functions. The types are those of Fω, plus � and Typecase. The rules of type

formation are those of Fω, plus axioms for � and Typecase. The terms are those of Fω, plus

fold and unfold that respectively contract or expand a recursive type. The rules of term

formation are those of Fω, plus rules for fold and unfold. Notably, there are no new terms

that are type checked by Typecase. This is different than in previous work on intensional

type analysis (ITA), where a type-level ITA operator is used to typecheck a term-level ITA

operator. Type equivalence is the same as for Fω, plus the three reduction rules for Typecase.

The semantics is full Fω β-reduction, plus a congruence rule for each of fold and unfold

and a reduction rule for unfold combined with fold. The normal form terms are those that
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(kinds) K ::= ∗ | K1 → K2
(types) T ::= X | T1 → T2 | ∀X:K.T | λX:K.T | T1 T2 | μ | Typecase
(terms) e ::= x | λx:T.e | e1 e2 | ΛX:K.e | e T | fold T1 T2 e | unfold T1 T2 e

(environments) Γ ::= ⟨⟩ | Γ,(x:T) | Γ,(X:K)

(normal form terms) v ::= n | (λx:T.v) | (ΛX:K.v) | fold T1 T2 v
(neutral terms) n ::= x | n v | n T | unfold T1 T2 n

Grammar

(X:K) ∈ Γ

Γ ⊢ X : K

Γ ⊢ T1 : ∗ Γ ⊢ T2 : ∗
Γ ⊢ T1 → T2 : ∗

Γ,(X:K) ⊢ T : ∗
Γ ⊢ (∀X:K.T) : ∗

Γ,(X:K1) ⊢ T : K2
Γ ⊢ (λX:K1.T) : K1 → K2

Γ ⊢ T1 : K2 → K Γ ⊢ T2 : K2
Γ ⊢ T1 T2 : K

Γ ⊢ μ : ((∗→ ∗)→∗→ ∗)→∗→ ∗

Γ ⊢ Typecase : (∗→ ∗→ ∗)→
(∗→ ∗)→ (∗→ ∗)→
(((∗→ ∗)→∗→ ∗)→∗→ ∗)→
∗

Type Formation

T≡ T T1≡ T2
T2≡ T1

T1≡ T2 T2≡ T3
T1≡ T3

T1≡ T1′ T2≡ T2′

T1→ T2≡ T1′ → T2′
T≡ T′

(∀X:K.T)≡ (∀X:K.T′)

T≡ T′

(λX:K.T)≡ (λX:K.T′)
T1≡ T1′ T2≡ T2′

T1 T2≡ T1′ T2′

(λX:K.T1) T2 ≡ (T1[X := T2])
(∀X:K.T2) ≡ (∀X′:K.T2[X := X′])
(λX:K.T) ≡ (λX′:K.T[X := X′])

Typecase F1 F2 F3 F4 (T1→ T2) ≡ F1 T1 T2
Typecase F1 F2 F3 F4 (μ T1 T2) ≡ F4 T1 T2

X ̸∈ FV(F3)

Typecase F1 F2 F3 F4 (∀X:K.T) ≡ F2 (∀X:K. F3 T)

Type Equivalence

(x:T) ∈ Γ

Γ ⊢ x : T

Γ ⊢ T1 : ∗ Γ,(x:T1) ⊢ e : T2
Γ ⊢ (λx:T1.e) : T1 → T2

Γ ⊢ e1 : T2 → T Γ ⊢ e2 : T2
Γ ⊢ e1 e2 : T

Γ,(X:K) ⊢ e : T
Γ ⊢ (ΛX:K.e) : (∀X:K.T)

Γ ⊢ e : (∀X:K.T1) Γ ⊢ T2 : K
Γ ⊢ e : T1[X:=T2]

Γ ⊢ F : (∗→ ∗)→∗→ ∗ Γ ⊢ T : ∗
Γ ⊢ e : F (μ F) T

Γ ⊢ fold F T e : μ F T

Γ ⊢ F : (∗→ ∗)→∗→ ∗ Γ ⊢ T : ∗
Γ ⊢ e : μ F T

Γ ⊢ unfold F T e : F (μ F) T

Γ ⊢ e : T1 T1 ≡ T2 Γ ⊢ T2 : ∗
Γ ⊢ e : T2

Term Formation

(λx:T.e) e1 −→ e[x := e1]
(ΛX:K.e) T−→ e[X := T]

unfold F T (fold F′ T′ e)−→ e

e1 −→ e2
e1 e3 −→ e2 e3
e3 e1 −→ e3 e2
e1 T−→ e2 T

(λx:T.e1)−→ (λx:T.e2)
(ΛX:K.e1)−→ (ΛX:K.e2)
fold F T e1 −→ fold F T e2

unfold F T e1 −→ unfold F T e2
Reduction

Figure 3.7: Definition of Fµi
ω

51



cannot be reduced. Following Girard et al. [44], we define normal forms simultaneously with

neutral terms, which are the normal forms other than abstractions or fold. Intuitively, a

neutral term can replace a variable in a normal form without introducing a redex.

Capital letters and capitalized words such as F, Exp, Bool range over types. We will often

use F for higher-kinded types (type functions), and A, B, S, T, X, Y for type variables of kind

∗. Lower case letters and uncapitalized words range over terms.

Recursive types can be used to define recursive functions and data types defined in terms

of themselves. For example, each of the three versions of Exp defined in Figures 3.2, 3.3,

and 3.6 is recursive. An iso-recursive type is not equal (or equivalent) to its definition, but

rather is isomorphic to it, and fold and unfold form the isomorphism: unfold maps a re-

cursive type to its definition, and fold is the inverse. Intuitively, fold generalizes the Exp

newtype constructor from Figure 3.6 to work for many data types. Similarly, unfold gener-

alizes matchExp. Using iso-recursive types is important for making type checking decidable.

For more information about iso-recursive � types, we refer the interested reader to Pierce’s

book[70].

To simplify the language and our self-representation, we only support recursive types of

kind ∗ → ∗ (type functions). This is sufficient for our needs, which are to encode recursive

data types in the style seen in the previous section, and to define recursive functions. We

can encode recursive base types (types of kind ∗) using a constant type function.

We will discuss Typecase in detail in Section 3.3.3.

3.3.1 Metatheory

System Fµi
ω is type safe and type checking is decidable. Proofs are included in the appendix.

For type safety, we use a standard Progress and Preservation proof [97]. For decidability of

type checking, we show that reduction of types is confluent and strongly normalizing [64].

Theorem 3.3.1. [Type Safety]

If ⟨⟩ ⊢ e : T, then either e is a normal form, or there exists an e′ such that ⟨⟩ ⊢ e′ : T and

e −→ e′.
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Theorem 3.3.2. Type checking is decidable.

3.3.2 Syntactic Sugar and Abbreviations

System Fµi
ω is a low-level calculus, more suitable for theory than for real-world programming.

We use the following syntactic sugar to make our code more readable. We highlight the

syntactic sugar to distinguish it from the core language.

• let x : T = e1 in e2 desugars to(λx:T.e2) e1, as usual.

• let rec x : T1 = e1 in e2 desugars to

let x : T1 = fix T1 (λx:T1. e1) in e2. Here fix is a standard fixpoint combinator of

type ∀T:*. (T → T) → T.

• decl X : K = T; defines a new type abbreviation. T is inlined at every subsequent

occurrence of X. Similarly, decl x : T = e; defines an inlined term abbreviation.

• decl rec x : T = e; declares a recursive term. It uses fix like let rec, and inlines like

decl.

For further brevity, we sometimes omit the type annotations on abstractions, let bindings

or declarations, when the type can be easily inferred from context. For example, we will

write (λx.e) instead of (λx:T.e). We use f ∘ g to denote the composition of (type or term)

functions f and g. This desugars to (λx. f (g x)), where x is fresh.

We use S × T for pair types, which can be easily encoded in System Fµi
ω . Intuitively, × is

an infix type function of kind ∗ → ∗ → ∗. We use (x,y) to construct the pair of x and y.

fst and snd project the first and second component from a pair, respectively.

3.3.3 Intensional Type Functions

Our Typecase operator allows us to define type functions that depend on the top-level struc-

ture of a base type. It is parameterized by four case functions, one for arrow types, two for

quantified types, and one for recursive types. When applied to an arrow type or a recursive
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decl ⊥ : * = (∀T:*. T);
decl ArrL : ∗ → ∗ =
Typecase (λA:∗. λB:∗. A) (λA:∗.⊥) (λA:∗.⊥)

(λF:(∗ → ∗) → ∗ → ∗. λA:∗. ⊥);
decl ArrR : ∗ → ∗ =
Typecase (λA:∗. λB:∗. B) (λA:∗.⊥) (λA:∗.⊥)

(λF:(∗ → ∗) → ∗ → ∗. λA:∗. ⊥);
decl All : (∗ → ∗) → (∗ → ∗) → ∗ → ∗ =
λOut:∗ → ∗. λIn:∗ → ∗.
Typecase (λA:∗. λB:∗. B) Out In

(λF:(∗ → ∗) → ∗ → ∗. λA:∗. ⊥);
decl Unfold : ∗ → ∗ =
Typecase (λA:∗. λB:∗. ⊥) (λA:∗.⊥) (λA:∗.⊥)

(λF:(∗ → ∗) → ∗ → ∗. λA:∗. F (μ F) A);

Figure 3.8: Intensional type functions

type, Typecase decomposes the input type and applies the corresponding case function to

the components. For example, when applied to an arrow type T1 → T2, Typecase applies

the case function for arrows to T1 and T2. When applied to a recursive type μ F T, Typecase

applies the case function for recursive types to F and T.

We have two functions for the case of quantified types because they cannot be easily

decomposed in Fµi
ω . Previous work on ITA for quantified types [86] would decompose a

quantified type ∀X:K.T into the kind K and a type function of kind K → ∗. The components

would then be passed as arguments to a case function for quantified types. This approach

requires kind polymorphism in types, which is outside of Fµi
ω . Our solution uses two functions

for quantified types. Typecase applies one function inside the quantified type (under the

quantifier), and the other outside.

For example, let F be an intensional type function defined by F = Typecase Arr Out In Mu.

Here, Arr and Mu are the case functions for arrow types and recursive types, respectively. Out

and In are the case functions for quantified types, with Out being applied outside the type,

and In inside the type. Then F (∀X:K.T) ≡ Out (∀X:K. In T). Note that to avoid variable

capture, we require that X not occur free in In (which can be ensured by renaming X).

Figure 3.8 defines four intensional type functions. Each expects its input type to be of

a particular form: ArrL and ArrR expect an arrow type, All expects a quantified type, and
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Unfold expects a recursive type. On types not of the expected form, each function returns

the type ⊥=(∀T:*.T), which we use to indicate an error. The type ⊥ is only inhabited by

non-normalizing terms.

ArrL and ArrR return the domain and codomain of an arrow type, respectively. More

precisely, the specification of ArrL is as follows (ArrR is similar):

ArrL T ≡

 T1 if T ≡ T1 → T2

⊥ otherwise

All takes two type functions Out and In, and applies them outside and inside a ∀ quantifier,

respectively.

All Out In T ≡

 Out (∀X :K. In T) if T ≡ ∀X :K. T

⊥ otherwise

Unfold returns the result of unfolding a recursive type one time:

Unfold T ≡

 F (μ F) A if T ≡ μ F A

⊥ otherwise

In the next section, we will use these intensional type functions to define type equality

proofs that are useful for defining GADT-style typed representations and polymorphically-

typed self evaluators.

3.4 Type Equality Proofs in Fµi
ω

In Section 3.4.1 we implement decomposable type equality proofs in Fµi
ω and use them to

represent and evaluate STLC. Then in Section 3.4.2 we go beyond simple types to quantified

and recursive types in preparation for our Fµi
ω self-representation and self-evaluators.
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decl Eq : ∗ → ∗ =
λA:∗. λB:∗. ∀F:∗ → ∗. F A → F B;

decl refl : (∀A:∗. Eq A A) =
ΛA:∗. ΛF:∗ → ∗. λx : F A. x;

decl sym : (∀A:∗. ∀B:∗. Eq A B → Eq B A) =
ΛA:∗. ΛB:∗. λeq : Eq A B.
let p : Eq A A = refl A in
eq (ΛT:∗. Eq T A) p;

decl trans : (∀A:∗. ∀B:∗. ∀C:∗.
Eq A B → Eq B C → Eq A C) =

ΛA:∗. ΛB:∗. ΛC:∗. λeqAB:Eq A B. λeqBC:Eq B C.
ΛF:∗ → ∗. λx:F A. eqBC F (eqAB F x);

decl eqApp : (∀A:∗. ∀B:∗. ∀F:∗ → ∗.
Eq A B → Eq (F A) (F B)) =

ΛA:∗. ΛB:∗. ΛF:∗ → ∗. λeq : Eq A B.
let p : Eq (F A) (F A) = refl (F A) in
eq (λT:∗. Eq (F A) (F T)) p;

decl arrL : (∀A1:∗. ∀A2:∗. ∀B1:∗. ∀B2:∗.
Eq (A1 → A2) (B1 → B2) →
Eq A1 B1) =

ΛA1 A2 B1 B2. eqApp (A1→A2) (B1→B2) ArrL;

decl arrR : (∀A1:∗. ∀A2:∗. ∀B1:∗. ∀B2:∗.
Eq (A1 → A2) (B1 → B2) →
Eq A2 B2) =

ΛA1 A2 B1 B2. eqApp (A1→A2) (B1→B2) ArrR;

decl coerce : (∀A:∗. ∀B:∗. Eq A B → A → B) =
ΛA:∗. ΛB:∗. λeq:Eq A B. eq Id;

Figure 3.9: Implementation of type equality proofs in Fµi
ω .
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3.4.1 Equality Proofs for Simple Types

Figure 3.9 shows the Fµi
ω implementation of the type equality proofs from Figure 3.4. The

foundation of our encoding is Leibniz equality, which encodes that two types are indistin-

guishable in all contexts. This is a standard technique for encoding type equality in Fω

[68, 90, 9]. The type Eq A B is defined as ∀F:∗ → ∗. F A → F B. Intuitively, the type func-

tion F ranges over type contexts, and a Leibniz equality proof can replace the type A with B

in any context F.

The only way to introduce a new type equality proof is by refl, which constructs an

identity function to witness that a type is equal to itself. Symmetry is encoded by sym,

which uses an equality proof of type Eq A B to coerce another proof of type Eq A A, replacing

the first A with B and resulting in the type Eq B A. Transitivity is encoded by trans, which

uses function composition to combine two coercions. A proof of type Eq A B is effectively a

coercion – it can coerce any term of type F A to F B. Thus, coerce simply instantiates the

proof with the identity function on types. For brevity we will sometimes omit coerce and

use equality proofs as coercions directly.

Each of Eq, refl, sym, trans, eqApp, and coerce are definable in the pure Fω subset of

Fµi
ω . The addition of intensional type functions allows Fµi

ω to decompose Leibniz equality

proofs. The key is that eqApp is stronger in Fµi
ω than in Fω because the type function F can

be intensional. In particular, arrL and arrR are defined using eqApp with the intensional

type functions ArrL and ArrR, respectively.

Figure 3.10 shows the STLC representation and evaluator in Fµi
ω . It uses a Mogensen-

Scott encoding similar to the one in Figure 3.6, with a few notable differences. The type ExpF

is a stratified version of Exp. In particular, it uses a λ-abstraction to untie the recursive knot.

Exp is defined as μ ExpF, which re-ties the knot. Now Exp T and ExpF Exp T are isomorphic,

with unfold ExpF T converting from Exp T to ExpF Exp T, and fold ExpF T converting from

ExpF Exp T back to Exp T. We define matchExp as a convenience and to align with Figure 3.6,

but we could as well use unfold ExpF T instead of matchExp T. This version of eval is similar

to the previous version. The main difference is in the increased amount of type annotations.
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decl ExpF : (∗ → ∗) → ∗ → ∗ =
λExp : ∗ → ∗. λT : ∗. ∀R : ∗.
(∀A:∗.∀B:∗. Eq (A→B) T → (Exp A → Exp B) → R) →
(∀S:∗. Exp (S → T) → Exp S → R) →
R;

decl Exp : ∗ → ∗ = μ ExpF;

decl abs:(∀A:∗.∀B:∗. (Exp A → Exp B) → Exp (A→B)) =
ΛA:∗. ΛB:∗. λf:Exp A → Exp B.
fold ExpF (A → B)
(ΛR. λfAbs. λfApp. fAbs A B (refl (A → B)) f);

decl app:(∀A:∗.∀B:∗. Exp (A→B) → Exp A → Exp B) =
ΛA:∗. ΛB:∗. λe1 : Exp (A → B). λe2 : Exp A.
fold ExpF B (ΛR. λfAbs. λfApp. fApp A e1 e2);

decl matchExp : (∀T:∗. Exp T → ExpF Exp T) =
ΛT : ∗. λe : Exp T. unfold ExpF T e;

decl rec eval : (∀T:∗. Exp T → Exp T) =
ΛT:∗. λe : Exp T.
matchExp T e (Exp T)
(ΛT1 T2. λeq f. e)
(ΛS:∗. λe1 : Exp (S → T). λe2 : Exp S.
let e1':Exp (S → T) = eval (S → T) e1 in
matchExp (S → T) e1' (Exp T)
(ΛA B. λeq:Eq (A→B) (S→T). λf:Exp A → Exp B.
let eqL:Eq (Exp S) (Exp A) =
eqApp S A Exp (sym A S (arrL A B S T eq)) in
let eqR:Eq (Exp B) (Exp T) =
eqApp B T Exp (arrR A B S T eq) in
let f':Exp S → Exp T = λx : Exp S.
let x' : Exp A = coerce (Exp S) (Exp A) eqL x in
coerce (Exp B) (Exp T) eqR (f x')
in
eval T (f' e2))
(ΛT2. λe3 e4. app S T e1' e2));

Figure 3.10: Encoding and evaluation of STLC in Fµi
ω

58



decl TcAll : ∗ → ∗ =
λT.∀Arr.∀Out.∀In.∀Mu.
Eq (Typecase Arr Out In Mu T) (All Out In T);
decl UnAll : ∗ → ∗ =
λT.∀Out. Eq (All Out (λA:∗.A) T) (Out T);

decl IsAll : ∗ → ∗ = λT. (TcAll T × UnAll T);

tcAllX,K,T = ΛArr.ΛOut.ΛIn.ΛMu.refl (Out(∀X:K.In T))
unAllX,K,T = ΛOut.refl (Out (∀X:K.T))
isAllX,K,T = (tcAllX,K,T, unAllX,K,T)

Figure 3.11: IsAll proofs.

3.4.2 Beyond Simple Types

In this section, we move beyond STLC in preparation for our self-representation of Fµi
ω . We

will focus on the question: How can we establish that an unknown type is a quantified or

recursive type?

In Figure 3.10, we establish that a type T is an arrow type by abstracting over types T1

and T2 of kind ∗ and a proof of type Eq (T1 → T2) T. This will work for any arrow type

because T1 and T2 must have kind ∗ in order for T1 → T2 to kind check. The case for

recursive types is similar. In Fµi
ω , a recursive type μ F A kind checks only if F has kind (∗ →

∗) → ∗ → ∗ and A has kind ∗. Therefore, we can establish that some type T is a recursive

type by abstracting over F and A and a proof of type Eq (μ F A) T. Given a proof that one

recursive type μ F1 A1 is equal to another μ F2 A2, we know that their unfoldings are equal

as well. This can be proved using eqApp and the intensional type function Unfold:

decl eqUnfold : (∀F1:(∗ → ∗) → ∗ → ∗. ∀A1:∗.
∀F2:(∗ → ∗) → ∗ → ∗. ∀A2:∗.
Eq (μ F1 A1) (μ F2 A2) →
Eq (F1 (μ F1) A1) (F2 (μ F2) A2) =

ΛF1 A1 F2 A2. eqApp (μ F1 A1) (μ F2 A2) Unfold;

We establish that a type is a quantified type in a different way, by proving equalities

about the behavior of Typecase on that type. We do this because unlike arrow types and

recursive types, we can’t abstract over the components of an arbitrary quantified type in

Fµi
ω , as was discussed earlier in Section 3.3.3. Figure 3.11 defines our IsAll proofs that a

type is a quantified type. A proof of type IsAll T consists of a pair of polymorphic equality
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proofs about Typecase. The first is of type TcAll T and proves that because T is a quantified

type, Typecase Arr Out In Mu T is equal to All Out In T. The proof is polymorphic because

it proves the equality for any Arr and Mu. In other words, Arr and Mu are irrelevant: since

T is a quantified type, they can be replaced by the constant ⊥ functions used by All. The

second polymorphic equality proof, of type UnAll T, shows that All Out (λA:∗.A) T is equal

to Out T for any Out. This is true because applying the identity function under the quantifier

has no effect. These proofs are orthogonal to each other, and each is useful for some of our

operations, as we discuss in Section 3.7.

We define IsAll proofs using indexed abbreviations tcAllX,K,T,

unAllX,K,T, and isAllX,K,T. These are meta-level abbreviations, not part of Fµi
ω . The type

of tcAllX,K,T is TcAll (∀X:K.T), the type of unAllX,K,T is UnAll (∀X:K.T), and the type of

isAllX,K,T is IsAll (∀X:K.T). Note that tcAllX,K,T and unAllX,K,T use refl to create the

equality proof. In the case of unAllX,K,T, the proof refl (Out (∀X:K.T) has type Eq (Out

(∀X:K.T)) (Out (∀X:K.T)), which is equivalent to the type Eq (All Out (λA:∗.A) (∀X:K.T))

(Out (∀X:K.T)).

Impossible Cases. It is sometimes impossible to establish that a type is of a particular

form, in particular, if it is already known to be of a different form. This sometimes happens

when pattern matching on a GADT. For example, suppose we added integers to our Haskell

representation of STLC. When matching on a representation of type Exp Int, the Abs case

would provide a proof that Int is equal to an arrow type t1 → t2, which is impossible.

Haskell’s type checker can detect that such cases are unreachable, and therefore those cases

need not be covered in order for a pattern match expression to be exhaustive.

Our equality proofs support similar reasoning about impossible cases, which we use in

some of our meta-programs. In particular, given an impossible type equality proof (which

must be hypothetical), we can derive a (strongly normalizing) term of type ⊥:
eqArrMu : ∀A B F T. Eq (A → B) (μ F T) → ⊥
arrIsAll : ∀A B. IsAll (A → B) → ⊥
muIsAll : ∀F T. IsAll (μ F T) → ⊥

There are three kinds of contradictory equality proofs in Fµi
ω : a proof that an arrow type is
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equal to a recursive type (eqArrMu), that an arrow type is a quantified type (arrIsAll), or

that a recursive type is a quantified type(muIsAll). Definitions of eqArrMu, arrIsAll, and

muIsAll are provided in the appendix.

3.5 Our Representation Scheme

The self-representation of System Fµi
ω is shown in Figure 3.12. Like the STLC represen-

tation in Figure 3.10, we use a typed Mogensen-Scott encoding, though there are several

important differences. Following previous work on typed self-representation [71, 19, 20], we

use Parametric Higher-Order Abstract Syntax (PHOAS) [29, 92] to give our representation

more expressiveness. The type PExp is parametric in V, which determines the type of free

variables in a representation. Intuitively, PExp can be understood as the type of represen-

tations that may contain free variables. The type Exp quantifies over V, which ensures that

the representation is closed. Our quoter assumes that the designated variable V is globally

fresh.

Our quotation procedure is similar to previous work on typed self-representation [71, 19,

20]. The quotation function · is defined only on closed terms, and depends on a pre-quotation

function � from type derivations to terms. In the judgment Γ ⊢ e : T ▷ q, the input is the

type derivation Γ ⊢ e : T, and the output is a term q. We call q the pre-representation of e.

We represent variables meta-circularly, that is, by other variables. In particular, a variable

of type T is represented by a variable of the same name with type PExp V T. The cases for

quoting λ-abstraction, application, fold and unfold are similar. In each case, we recursively

quote the subterm and apply the corresponding constructor. The constructors for these cases

create the necessary type equality proofs.

To represent type abstraction and application, the quoter generates IsAll proofs itself,

since they depend on the kind of the type (which cannot be passed as an argument to the

constructors in Fµi
ω ). The quoter also generates utility functions stripAllK, underAllX,K,T,

and instX,K,T,S that are useful to meta-programs for operating on type abstractions and ap-

plications. These utility functions comprise an extensional representation of polymorphism
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that is similar to one we developed for Fω in previous work [20]. The purpose of the exten-

sional representation is to represent polymorphic terms in languages like Fω and Fµi
ω that do

not include kind polymorphism.

The function stripAllK has the type StripAll (∀X:K.T), as long as (∀X:K.T) is well-

typed. For any type A in which X does not occur free, stripAllK can map All Id (λB:∗.A)

(∀X:K.T) ≡ (∀X:K.A) to A. Note that the quantification of X is redundant, since it does not

occur free in the type A. Therefore, any instantiation of X will result in A. We use the fact

that all kinds in Fµi
ω are inhabited to define stripAllK. It uses the kind inhabitant TK for the

instantiation. For each kind K, TK is a closed type of kind K.

The function underAllX,K,T has the type UnderAll (∀X:K.T). It can apply a function under

the quantifier of a type All Id F1 (∀X:K.T) ≡ (∀X:K. F1 T) to produce a result of type All

Id F2 (∀X:K.T) ≡ (∀X:K. F2 T). In particular, our evaluators use

underAllX,K,T to make recursive calls on the body of a type abstraction. The representation

of a type abstraction (ΛX:K.e) of type (∀X:K.T) contains the term (ΛX:K.q). Here, q is the

representation of e, in which the type variable X can occur free. The type of (ΛX:K.q) is

All Id (PExp V) (∀X:K.T) ≡ (∀X:K. PExp V T).

We can use underAllX,K,T and stripAllK together in operations that always produce results

of a particular type. For example, our measure of the size of a representation always returns

a Nat. We use underAllX,K,T to make the recursive call to size under the quantifier. The

result of underAllX,K,T has the type All Id (λY:*. Nat) (∀X:K.T) ≡ (∀X:K.Nat) where the

quantification of X is redundant. We can then use stripK to strip away the redundant

quantifier, enabling us to access the Nat underneath.

An instantiation function instX,K,T,S has the type Inst (∀X:K.T) (T[X:=S]). It can be

used to instantiate types of the form (∀X:K. F T), producing instantiations of the form F

(T[X:=S]).

The combination of IsAll proofs and the utility functions

stripAllK, underAllX,K,T, and instX,K,T,S allows us to represent higher-kinded polymorphism

without kind polymorphism. Notice that in the types of tabs and tapp (shown in Figure
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3.12), the type variables A range over arbitrary quantified types. The IsAll proofs and

utility functions witness that A is a quantified type and provide an interface for working on

quantified types that is expressive enough to support a variety of meta-programs.

Properties. Every closed and well-typed term has a unique representation that is also

closed and well-typed.

Theorem 3.5.1. If ⟨⟩ ⊢ e : T, then ⟨⟩ ⊢ e : Exp T.

The proof is by induction on the derivation of the typing judgment ⟨⟩ ⊢ e : T. It relies

on the fact that we can always produce the proof terms and utility functions needed for each

constructor.

All representations are strongly normalizing, even those that represent non-normalizing

terms.

Theorem 3.5.2. If ⟨⟩ ⊢ e : T, then e is strongly normalizing.

3.6 Our Self-Evaluators

In this section we discuss our three self-evaluators, which implement weak head normal form

evaluation, single-step left-most β-reduction, and normalization by evaluation (NbE).

Weak head-normal evaluation. Figure 3.13 shows our first evaluator, which reduces

terms to their weak head-normal form. The closed and well-typed weak head-normal forms of

Fµi
ω are λ and Λ abstractions, and fold expressions. There is no evaluation under abstractions

or fold expressions, and function arguments are not evaluated before β-reduction.

The function eval evaluates closed representations, which have Exp types. The main

evaluator is evalV, which operates on PExp types. If the input is a variable, a λ or Λ

abstraction, or a fold expression, it is already a weak head-normal form. We use constant

case functions constVar, constAbs, etc. to return the input in these cases. The case for

application is similar to that for STLC from Figure 3.10, except for the use of the utility
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T∗ = (∀X:∗.X) TK1→K2 = λX:K1.TK2

Kind Inhabitants

decl Id : ∗ → ∗ = λA:∗. A;

decl UnderAll : ∗ → ∗ =
λT:∗. ∀F1:∗ → ∗. ∀F2:∗ → ∗.
(∀A:∗. F1 A → F2 A) →
All Id F1 A → All Id F2 A;
decl StripAll : ∗ → ∗ =
λT:∗. ∀A:∗. All Id (λB:∗. A) T → A;

decl Inst : ∗ → ∗ → ∗ =
λA:∗. λB:∗. ∀F:∗→∗. All Id F A → F B;

underAllX,K,T =
ΛF1. ΛF2. λf : (∀A:∗. F1 A → F2 A).
λe : (∀X:K. F1 T). ΛX:K. f T (e X)

stripAllK = ΛA. λe:(∀X:K.A). e TK
instX,K,T,S = ΛF.λf:(∀X:K.F T).f S

Operators on quantified types.

decl PExpF : (∗ → ∗) → (∗ → ∗) → ∗ → ∗ =
λV:∗ → ∗. λPExpV:∗ → ∗. λA:∗. ∀R:∗.
(V A → R) →
(∀S T. Eq (S→T) A→ (PExp V S → PExp V T)→ R) →
(∀B. PExp V (B → A) → PExp V B → R) →
(IsAll A→ StripAll A→ UnderAll A→
All Id (PExp V) A→ R) →
(∀B:∗. IsAll B→ Inst B A→ PExp V B→ R) →
(∀F B. Eq (μ F B) A → PExp V (F (μ F) B) → R) →
(∀F B. Eq (F (μ F) B) A → PExp V (μ F B) → R) →
R;

decl PExp : (∗→∗)→∗→∗ = λV:∗→∗. μ (PExpF V);
decl Exp : ∗ → ∗ = λA:∗. ∀V:∗ → ∗. PExp V A;

Definitions of PExp and Exp

decl var:(∀V A. V A→ PExp V A) =
ΛV A. λx:V A. fold (PExpF V) A (
λR.λvar.λabs.λapp.λtabs.λtapp.λfld.λunfld.
var x);
decl abs:(∀V A B. (PExp V A→ PExp V B)→ PExp V (A→ B)) =
ΛV A B.λf:(PExp V A→ PExp V B). fold (PExpF V) (A→ B) (
λR.λvar.λabs.λapp.λtabs.λtapp.λfld.λunfld.
abs A B (refl (A→ B)) f);
decl app:(∀V A B. PExp V (B→A)→ PExp V B→ PExp V A) =
ΛV A B.λf:PExp V (B→A).λx:PExp V B. fold (PExpF V) A (
λR.λvar.λabs.λapp.λtabs.λtapp.λfld.λunfld.
app B f x);
decl tabs:(∀V A. IsAll A→ StripAll A→ UnderAll A→

All Id (PExp V) A→ PExp V A) =
ΛV A. λp:IsAll A. λs:StripAll A. λu:UnderAll A.
λe:All Id (PExp V) A. fold (PExpF V) A (
λR.λvar.λabs.λapp.λtabs.λtapp.λfld.λunfld.
tabs p s u e);
decl tapp:(∀V A B.IsAll A→Inst A B→PExp V A→PExp V B)=
ΛV A B. λp:IsAll A. λi:Inst A B. λe:PExp V A.
fold (PExpF V) B (
λR.λvar.λabs.λapp.λtabs.λtapp.λfld.λunfld.
tapp A p i e);

decl fld:(∀V F A. PExp V (F (μ F) A)→ PExp V (μ F A)) =
ΛV F A. λe:PExp V (F (μ F) A). fold (PExpF V) (μ F A) (
λR.λvar.λabs.λapp.λtabs.λtapp.λfld.λunfld.
fld F A (refl (μ F A)) e);

decl unfld:(∀V F A. PExp V (μ F A)→ PExp V (F (μ F) A)) =
ΛV F A. λe : PExp V (μ F A). fold (PExpF V) (F (μ F) A) (
λR.λvar.λabs.λapp.λtabs.λtapp.λfld.λunfld.
unfld F A (refl (F (μ F) A)) e);

decl matchExp : (∀V A. PExp V A→ PExpF (PExp V) A) =
ΛV:∗→∗.ΛA:∗.λe:PExp V A. unfold (PExpF V) A e;

Constructors and match for PExp

(x : T) ∈ Γ

Γ ⊢ x : T ▷ x

Γ ⊢ T1 : ∗ Γ,(x:T1) ⊢ e : T2 ▷ q
Γ ⊢ (λx:T1.e) : T1→ T2 ▷ abs V T1 T2 (λx:PExp V T1. q)

Γ ⊢ e1 : T2 → T ▷ q1 Γ ⊢ e2 : T2 ▷ q2
Γ ⊢ e1 e2 : T ▷ app V T2 T q1 q2

Γ,(X:K) ⊢ e : T ▷ q

isAllX,K,T = p
stripAllK = s
underAllX,K,T = u

Γ ⊢ (ΛX:K.e) : (∀X:K.T) ▷ tabs V (∀X:K.T) p s u (ΛX:K.q)

Γ ⊢ e : (∀X:K.T) ▷ q
Γ ⊢ A : K

isAllX,K,T = p
instX,K,T,A = i

Γ ⊢ e A : T[X:=A] ▷ tapp V (∀X:K.T) (T[X:=A]) p i

Γ ⊢ F : (∗→ ∗)→∗→ ∗
Γ ⊢ T : ∗ Γ ⊢ e : F (μ F) T ▷ q

Γ ⊢ fold F T e : μ F T ▷ fld V F T q

Γ ⊢ F : (∗→ ∗)→∗→ ∗
Γ ⊢ T : ∗ Γ ⊢ e : μ F T ▷ q

Γ ⊢ unfold F T e : F (μ F) T ▷ unfld V F T q

⟨⟩ ⊢ e : T ▷ q

e = ΛV:∗→ ∗. q

Quotation and pre-quotation

Figure 3.12: Self-representation of Fµi
ω .

64



decl rec evalV : (∀V:∗→∗.∀A:∗. PExp V A → PExp V A) =
ΛV:∗ → ∗. ΛA:∗. λe:PExp V A.
matchExp V A e (PExp V A)
(constVar V A (PExp V A) e)
(constAbs V A (PExp V A) e)
(ΛB:∗. λf : PExp V (B → A). λx : PExp V B.
let f1 : PExp V (B → A) = evalV V (B → A) f in
let def : PExp V A = app V B A f1 x in
matchAbs V (B → A) (PExp V A) f1 def
(ΛB1:∗. ΛA1:∗. λeq : Eq (B1 → A1) (B → A).
λf : PExp V B1 → PExp V A1.
let eqL : Eq B B1 = sym B1 B (arrL B1 A1 B A eq) in
let eqR : Eq A1 A = arrR B1 A1 B A eq in
let f' : PExp V B → PExp V A =
eqR (PExp V) ◦ f ◦ eqL (PExp V)

in evalV V A (f' x)))
(constTAbs V A (PExp V A) e)
(ΛB : ∗. λp : IsAll B. λi : Inst B A. λe1 : PExp V B.
let e2 : PExp V B = evalV V B e1 in
let def : PExp V A = tapp V B A p i e2 in
matchTAbs V B (PExp V A) e2 def
(λp : IsAll B. λs : StripAll B. λu : UnderAll B.
λe3 : All Id (PExp V) B. evalV V A (i (PExp V) e3)))

(constFold V A (PExp V A) e)
(ΛF : (∗ → ∗) → ∗ → ∗. ΛB : ∗.
λeq : Eq (F (μ F) B) A. λe1 : PExp V (μ F B).
let e2 : PExp V (μ F B) = evalV V (μ F B) e1 in
let def:PExp V A = eq (PExp V) (unfld V F B e2) in
matchFold V (μ F B) (PExp V A) e2 def
(ΛF1 : (∗ → ∗) → ∗ → ∗. ΛB1 : ∗.
λeq1 : Eq (μ F1 B1) (μ F B).
λe3 : PExp V (F1 (μ F1) B1).
let eq2 : Eq (F1 (μ F1) B1) A =
trans (F1 (μ F1) B1) (F (μ F) B) A
(eqUnfold F1 B1 F B eq1) eq

in evalV V A (eq2 (PExp V) e3)));

decl eval : (∀A:∗. Exp A → Exp A) =
ΛA:∗. λe:Exp A. ΛV:∗→∗. evalV V A (e V);

Figure 3.13: Weak head normal self-evaluator for Fµi
ω
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function matchAbs. This is a specialized version of matchExp that takes a only one case

function, for λ-abstractions, and a default value that is returned in all other cases. The types

and definitions of the constant case functions and specialized match functions are given in

the appendix. We now turn to the interesting new cases, for reducing type applications and

unfold/fold expressions.

When the input represents a type application, we get a proof that A is an instance of some

quantified type B, and the head position subexpression e1 has type PExp V B. If e1 evaluates

to a type abstraction, we get e3 of type All Id (PExp V) B, where B is some quantified type.

We also know that A is an instance of B, witnessed by the instantiation function i of type

Inst B A. We use i to reduce the redex, instantiating e3 to PExp V A. Then, as before, we

continue evaluating the result.

If the input term of type A is an unfold, then the head position subexpression e1 has the

recursive type μ F B, and we get a proof that A is equal to the unfolding of μ F B. If e1 evaluates

to a fold, then we are given proofs that it has a recursive type, which we already knew in

this case, and a subexpression e3 of the unfolded type. The unfold expression reduces to e3,

and we use transitivity to construct a proof to cast e3 to PExp V A, and continue evaluation.

Single-step left-most reduction. Left-most reduction is a restriction of the reduction

rules shown in Figure 3.7. It never evaluates under a λ abstraction, a Λ abstraction, or a

fold in a redex, and only evaluates the argument of an application if the function is a normal

form and the application is not a redex.

Our implementation of left-most reduction has the same type as our weak head evaluator,

but differs in that it reduces at most one redex, possibly under abstractions. The top-level

function step operates only on closed terms. It has the same type as eval, (∀T:∗. Exp T

→ Exp T). The main driver is stepV, which has the type (∀V:∗ → ∗. ∀T:∗. PExp (PExp V)

T → PExp V T). Its input is a representation of type PExp (PExp V) T, which can contain free

variables of PExp V types. In other words, free variables are themselves representations. This

is a key to evaluating under abstractions. When going under an abstraction, we use the var

constructor to tag the variables, so stepV can detect them. As stepV walks back out of the
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PNeExp : (∗ → ∗) → ∗ → ∗
PNfExp : (∗ → ∗) → ∗ → ∗

Sem : (∗ → ∗) → ∗ → ∗

decl NfExp : ∗ → ∗ = λT:∗. ∀V:∗ → ∗. PNfExp V T;

sem : (∀V:∗→∗. ∀T:∗. Exp T → Sem V T)
reify : (∀V:∗→∗. ∀T:∗. Sem V T → PNfExp V T)

decl nbe : (∀T:∗. Exp T → NfExp T) =
ΛT:∗. λe:Exp T. ΛV:∗ → ∗.
reify V T (sem V T e);

unNf : (∀T:∗. NfExp T → Exp T)

decl norm : (∀T:∗. Exp T → Exp T) =
ΛT:∗. λe:Exp T. unNf T (nbe T e);

Figure 3.14: Highlights of our NbE implementation.

representation, it removes the var tags.

When evaluating an application, there are three possibilities: either the head subexpres-

sion is a λ-abstraction, in which case stepV reduces the β-redex, or the head subexpression

can take a step, or the head expression is normal, in which case stepV steps the argument.

stepV relies on a normal-form checker to decide whether to step the head or the argument

subexpression.

Normalization by evaluation. We can use step and a normal-form checker to define a

normalizer, by repeatedly stepping a representation until a normal form is reached. This is

quite inefficient, though, so we also implement an efficient normalizer using the technique of

Normalization by Evaluation (NbE). The implementation of NbE is outlined in Figure 3.14.

The top-level function norm has the same type (∀T:∗. Exp T → Exp T) as eval and step. The

main driver is nbe, which maps closed terms to closed normal forms of type NfExp T. The

type NfExp is a PHOAS representation similar to Exp, except that it only represents normal

form terms. The type PNfExp is defined by mutual recursion with PNeExp, which represents

normal and neutral terms – normal form terms that can be used in head position without
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introducing a redex. For example, if f : A → B is normal and neutral, and x is normal, then

f x is normal and neutral. See Figure 3.7 for a grammar of normal and neutral terms.

We also define a semantic domain Sem V T and a function sem that nbe uses to map

representations into the semantic domain. The semantic domain has the property that,

if e1 ≡ e2, and q1 and q2 are pre-representations of e1 and e2 respectively, then sem V

T q1 ≡ sem V T q2. The function reify maps semantic terms of type Sem V T to normal

form representations of type PNfExp V T. Since normal forms are a subset of expressions, the

function unNf can convert normal form representations of type NfExp T to representations of

type Exp T.

The type of nbe ensures that it maps normalizing terms to their normal form and preserves

types. Our nbe is not type directed, so it does not produce �-long normal forms. This is

sometimes called “untyped normalization by evaluation” [40, 6], though this conflicts with

our nomenclature of calling a meta-program typed or untyped to indicate whether it operates

on typed or untyped abstract syntax. We call our NbE typed, but not type-directed.

3.7 Benchmarks and Experiments

In this section we discuss our benchmark meta-programs, our implementation, and our ex-

periments.

To evaluate the expressive power of our language and representation, we reimplemented

the meta-programs from our previous work [20] in Fµi
ω . We type check and test our evaluators

and benchmark meta-programs using an implementation of Fµi
ω in Haskell. The implemen-

tation includes a parser, type checker, evaluator, and equivalence checker. In particular, we

tested that our self-evaluators are self-applicable – they can be applied to themselves.

Benchmark meta-programs. In previous work [20], we implemented a suite of self-

applicable meta-programs for Fω, including a self-interpreter and a continuation-passing-style

transformation. We reimplemented all of their meta-programs for Fµi
ω . They are defined as

folds over the representation, so in order to align our reimplementation as closely as possible
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foldExp :
∀R : ∗ → ∗.
(∀A:∗. ∀B:∗. (R A → R B) → R (A → B)) →
(∀A:∗. ∀B:∗. R (A → B) → R A → R B) →
(∀A:∗. IsAll A → StripAll A → UnderAll A →
All Id R A → R A) →
(∀A:∗. ∀B:∗. IsAll A → Inst A B → R A → R B) →
(∀F:(∗→∗)→∗→∗.∀A:∗. R (F (μ F) A) → R (μ F A)) →
(∀F:(∗→∗)→∗→∗.∀A:∗. R (μ F A) → R (F (μ F) A)) →
∀A:∗. Exp A → R A

Figure 3.15: Interface for defining folds over representations.

to the originals, we also implemented a general fold function for our representation.

Figure 3.15 shows the type of our general purpose foldExp function. It is a recursive

function that takes six fold functions, one for each form of expression other than variables,

which are applied uniformly throughout the representation. The type R determines the result

type of the fold. We also instantiate V to R, so we can use var to embed partial results of

the fold into the representation.

The type of foldExp is reminiscent of the Exp type used in our previous work [20], which

is defined by its fold. Notable differences are the addition of fold functions for fold and

unfold, and our improved treatment of polymorphic types using Typecase.

We implemented a self-recognizer unquote that recovers a term from its representation.

It has the type ∀A:∗. Exp A → A, and is defined by a fold with R=Id, the identity function on

types. unquote uses IsAll proofs in a way we haven’t seen so far. The fold function for type

abstractions gets a term of type All Id Id A. When A is a concrete quantified type ∀X:K.T,

this is equivalent to A. However, the fold function is defined for an abstract quantified type

A. It uses the UnAll A component of an IsAll A proof to convert All Id Id A to A.

A continuation-passing-style (CPS) transformation makes evaluation order explicit and

gives a name to each intermediate value in the computation. It also transforms the type of

the term in a nontrivial way – the result type is expressed as a recursive function on the

input type. The type of our typed call-by-name CPS transformation is shown in Figure

3.16. Previous implementations of typed CPS transformation [71, 19, 20] use type-level
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representations of types in order to express this relationship. The type representations

were designed to support the kind of function needed to typecheck CPS. A challenge of this

approach is that the encoded types should have the same equivalences as regular types. That

is, if two types A and B are equivalent, then their encodings should be as well. In previous

work, we used a nonstandard encoding of types to ensure this [20].

In this work, we do not encode types. Instead we combine recursive types and Typecase in

a new way to express the type of our CPS transformation. Intuitively, CPS is an iso-recursive

intensional type function. The specification for the type CPS is given below, and its definition

in Fµi
ω is shown in Figure 3.16. T1 ∼= T2 denotes that the types T1 and T2 are isomorphic,

witnessed by unfold and fold. A value of type Ct T is function that takes a continuation

and calls that continuation with an argument of type T.

CPS (A → B) ∼= Ct (CPS A → CPS B)

CPS (∀X:K.T)∼= Ct (∀X:K. CPS T)

CPS (μ F A) ∼= Ct (CPS (F (μ F) A))

Like unquote, cps uses IsAll proofs in an interesting new way. It is defined as a fold,

and the case function for type abstractions is given an All Id CPS A, which it needs to cast

to CPS1F CPS1 A, the unfolding of CPS1 A. All Id CPS A and CPS1F CPS1 A are both Typecase

types, and while their cases for quantified types are the same, the cases for arrow types

and recursive types are different. This is where the TcAll A component of the IsAll A proof

is useful. Since we know A is a quantified types, the Typecase cases for arrow types and

recursive types are irrelevant. The function eqCPSAll uses TcAll A to prove CPS1F CPS1 A

and All Id CPS A are equal.
decl eqCPSAll : (∀A:∗. IsAll A →

Eq (CPS1F CPS1 A) (All Id CPS A)) =
ΛA:∗. λp : IsAll A.
fst p (λA1:∗.λA2:∗. CPS A1 → CPS A2)

Id CPS
(λF:(∗→∗)→∗→∗.λB:∗. CPS (F (μ F) B));

We also implement the other meta-programs from our previous work: a size measure, a

normal form checker, and a top-level syntactic form checker. The complete code for all our
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decl Ct : ∗ → ∗ = λA:∗. ∀B:∗. (A → B) → B;
decl CPS1 : ∗ → ∗ =
μ (λCPS1:∗ → ∗. λT:∗.

Typecase
(λA:∗. λB:∗. Ct (CPS1 A) → Ct (CPS1 B))
Id (λT:∗. Ct (CPS1 T))
(λF:(∗→∗)→∗→∗. λT:∗. Ct (CPS1 (F (μ F) T)))
T);

decl CPS : ∗ → ∗ = λT:∗. Ct (CPS1 T);

cps : (∀T:∗. Exp T → CPS T)

Figure 3.16: Type of our CPS transformation

meta-programs is provided in the appendix. The size measure demonstrates the use of our

strip functions to remove redundant quantifiers. Below is the fold function given to foldExp

for type abstractions:
decl sizeTAbs : FoldTAbs (λT:∗. Nat) =
ΛA:*. λp:IsAll A. λs:StripAll A.
λu:UnderAll A. λf:All Id (λT:∗.Nat) A.
succ (s Nat f);

Here, A is some unknown quantified type, and f holds the result of the recursive call to

size on the body of the type abstraction. The size of the type abstraction is one more than

the size of its body, so sizeTAbs needs to apply the successor function to the result of the

recursive call. However, its type All Id (λT:∗.Nat) A is different than Nat. For example, if A

= (∀X:K.A′), then All Id (λT:∗.Nat) A ≡ (∀X:K.Nat). The quantifier on X is redundant, and

blocks sizeTAbs from accessing the result of the recursive call. By removing the redundant

quantifier, the strip function s is instrumental in programming size on representations of

polymorphic terms.

Implementation. We have implemented System Fµi
ω in Haskell. The implementation in-

cludes a parser, type checker, quoter, evaluator (which does the evaluation in Figure 3.1),

and an equivalence checker. Our evaluator is based on NbE similar to Figure 3.14, except

that it operates on untyped first-order abstract syntax based on DeBruijn indices. Our self-

evaluators and other meta-programs have been implemented, type checked and tested. Our

parser includes special syntax for building quotations and normalizing terms, which is useful
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for testing. We use [e] to denote the representation of e, and <e> to denote the normal form

of e. The normalization of <e> expressions occurs after type checking, but before quotation.

Thus [<e>] denotes the representation of the normal form of e.

We test our meta-programs using functions on natural numbers, which use all the fea-

tures of the language: recursive types, recursive functions, and polymorphism. We encode

natural numbers using a typed Scott encoding [3, 96] that is similar to our encoding of

Fµi
ω terms. Compared to other encodings, Scott-encoded natural numbers support natural

implementations of functions like predecessor, equality, and factorial.

We use our equivalence checker to test our meta-programs. It works by normalizing the

two terms, and checking the results for syntactic equality up to renaming. For example,

we test that our implementation of NbE normalizes the representation [fact five] to the

representation of its normal form, [<fact five>]:
norm Nat [fact five] ≡ [<fact five>]

Self-application. Each of our evaluators is self-applicable, meaning that it can be applied

to its own representation. In particular, the self-application of eval is written eval (∀T:∗.

Exp T → Exp T) [eval]. We have self-applied each of our evaluators, and tested the result.

Here is an example, specifically for our weak head normal form evaluator:
decl eval' = unquote (∀T:∗. Exp T → Exp T)

(eval (∀T:∗. Exp T → Exp T) [eval]);

eval' Nat [fact five] ≡ eval Nat [fact five]

We define eval' by applying eval to its representation [eval], and then unquoting the

result. In terms of Figure 3.1, we start with eval at the bottom-left corner, then move up

to its representation [eval], then right to the representation of its value (weak head normal

form in this case) (eval (∀T:∗. Exp T → Exp T) [eval]), and unquote recovers the value

from its representation. Finally test that eval' and eval have the same behavior by testing

that they map equal inputs to equal outputs.
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3.8 Related Work

Typed self-representation. Pfenning and Lee [69] considered whether System F could

support a useful notion of a self-interpreter, and concluded that the answer seemed to be

“no”. They presented a series of typed representations, of System F in Fω, and of Fω

in F+
ω , which extends Fω with kind polymorphism. Whether typed self-representation is

possible remained an open question until 2009, when Rendel, Ostermann and Hofer [71]

presented the first typed-self representation. Their language was a typed λ-calculus F∗
ω that

has undecidable type checking. They implemented a self-recognizer, but not a self-evaluator.

Jay and Palsberg [52] presented a typed self-representation for a combinator calculus that

also has undecidable type checking. Their representation supports a self-recognizer and a

self-evaluator, but not with the types described in Section 1. In their representation scheme,

terms have the same type as their representations, and both their interpreters have the

type ∀T. T → T. In previous work we presented self-representations for System U [19], the

first for a language with decidable type checking, and for Fω [20], the first for a strongly

normalizing language. Each of these supported self-recognizers and CPS transformations,

but not self-evaluators.

There is some evidence that the problem of implementing a typed self-evaluator is more

difficult than that of implementing a typed self-recognizer. For example, self-recognizers have

been implemented in simpler languages than Fµi
ω , and based on simpler representation tech-

niques. A self-recognizer implemented as a fold relies entirely on meta-level evaluation. The

fact that meta-level evaluation is guaranteed to be type-preserving simplifies the implemen-

tation of a typed self-recognizer, but the evaluation strategy can only be what the meta-level

implements. On the other hand, self-evaluators can control the evaluation strategy, but this

requires more work to convince the type checker that the evaluation is type-preserving (e.g.

by deriving type equality proofs).

Typed self-evaluation is an important step in the area of typed self-representation. It

lays the foundation for other verifiably type-preserving program transformations, like partial

evaluators or program optimizers. Our representation techniques can be used to explore for
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other applications such as typed Domain Specific Languages (DSLs), typed reflection, or

multi-stage programming.

It remains an open problem to implement a self-evaluator for a strongly normalizing

language without recursion. We use recursion in two ways in our evaluators: first, we use a

recursive type for our representation, which has a negative occurrence in its abs constructor.

Second, we use the fixpoint combinator to control the order of evaluation. This allows our

evaluators to select a particular redex in a term to reduce. Previous work on typed-self

representation only supported folds, which treat all parts of a representation uniformly.

Intensional type analysis. Intensional type analysis (ITA) was pioneered by Harper

and Morrisett [50] for efficient implementation of ad-hoc polymorphism. Previous work on

intensional type analysis has included an ITA operator in terms as well as types. Term-

level ITA enables runtime type introspection (RTTI), and the primary role of type-level ITA

has traditionally been to typecheck RTTI. RTTI is useful for dynamic typing [93], typed

compilation[64, 33], garbage collection [86], and marshalling data [38]. ITA has been shown

to support type-erasure semantics [33, 34], user-defined types [89], and a kind of parametricity

theorem [67].

Early work on ITA was restricted to monotypes – base types, arrows, and products[50].

Subsequently, it was extended to handle polymorphic types [33], higher-order types [94], and

recursive types [31]. Trifonov et al. presented λQ
i [86], which supports fully-reflexive ITA –

analysis of all types of kind ∗, including quantified and recursive types.

The most notable difference between Fµi
ω and previous languages with ITA is that Fµi

ω does

not include a term-level ITA operator, and thus does not support runtime type introspection.

Our type-level Typecase operator is fully-reflexive, but we restrict the analysis on quantified

types to avoid kind-polymorphism, which was used in λQ
i . Unlike our Typecase operator,

the type-level ITA operator in λQ
i is recursive, which requires more complex machinery to

keep type checking decidable.

Our Typecase operator is simpler than those from previous work on intensional type

analysis. Also, by omitting the term-level ITA operator, we retain a simple semantics of Fµi
ω .
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In particular, the reduction of terms does not depend on types. This in turn simplifies our

presentation, our self-evaluators and the proofs of our meta-theorems.

GADTs. Generalized algebraic data types (GADTs) were introduced independently by

Cheney and Hinze [28] and Xi, Chen and Chen [98]. They applications include intensional

type analysis [28, 98, 90] and typed meta-programming [48]. Traditional formulations of

GADTs are designed to support efficient encodings, pattern matching, type inference, and/or

type erasure semantics [98, 82]. In this work our focus has been to identify a core calculus and

representation techniques that can support typed self-evaluation. While our representation

is conceptually similar to a GADT, it is meta-theoretically much simpler than a traditional

GADT. More work is needed to achieve self-representation and self-evaluation for a full

language that includes efficient implementations of GADTs. One important question that

needs to be answered is how to represent and evaluate programs that involve user-defined

GADTs. For example, if we used a GADT for our self-representation, how would we represent

the self-evaluators that operate on it?

Type equality. Type equality has been used to encode GADTs [60, 28, 98, 82], and for

generic programming [99, 27], dynamic typing [9, 27, 93], typed meta-programming [79, 68],

and simulating dependent types [26]. Some formulations of type equality are built-into the

language in order to support type-erasure semantics [82] and type inference [98, 82, 79]. This

comes at a cost of a larger and more complex language, which makes self-interpretation more

difficult.

The use of polymorphism to encode Leibniz equality [9, 93, 27] is perhaps the simplest

encoding technique, though it lacks support for erasure (leading to some runtime overhead)

and type inference. Furthermore, without intensional type functions Leibniz equality is

not expressive enough for defining typed evaluators, a limitation we have addressed in this

chapter. Our formulation of type equality has essentially no impact on the semantics, because

the heavy lifting is done at the type level by Typecase.
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3.9 Conclusion

We have presented Fµi
ω , a typed λ-calculus with decidable type checking, and the first lan-

guage known to support typed self-evaluation. We use intensional type functions to imple-

ment type equality proofs, which we then use to define a typed self-representation in the

style of Generalized Algebraic Data Types (GADTs). Our three polymorphically-typed self-

evaluators implement weak head normal form evaluation, single-step left-most β-reduction,

and normalization by evaluation (NbE). Our self-representation also supports all the bench-

mark meta-programs from previous work on typed self-representation.

We leave for future work the question of whether typed self-evaluation is possible for a

language with support for efficient user-defined types.
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CHAPTER 4

Typed Self-Applicable Partial Evaluation

4.1 Introduction

A partial evaluator is a meta-program that specializes another program to some of its inputs.

When given the remaining inputs, the specialized program will compute the same result as

running the original program on all its inputs. Kleene’s s-m-n theorem established that such

a specialization process is possible, and since then partial evaluation has been established as

a practical technique for program optimization and automatic program generation.

We will define partial evaluation as the specialization of a two-input function to its first

input (corresponding to the s-1-1 instance of s-m-n).

Definition 4.1.1 (Partial Evaluation). mix is a partial evaluator if for every program p and

input x, there exists a specialized program px such that:

1. If mix p x has a normal form, that normal form is px

2. ∀y. px y ≡β p x y

The first condition states that the partial evaluator may not be total: specialization may

not terminate. When it does terminate, however, it outputs a specialized program px. The

second condition states that the specialized program px is correct: it has the same behavior

as p x on all inputs y. The definition naturally extends to other numbers of inputs. The

inputs to which the program is specialized are often called “static” and the remaining inputs

“dynamic”.

A partial evaluators is self-applicable if it can specialize itself. Futamura showed that

self-applicable partial evaluation relates compilation and interpretation, and can automati-

77



Description Definition Correctness Specification
1. Compile S-program to T mix int s ≡β t ∀x. t x ≡β int s x
2. Generate an S-to-T compiler mix mix int ≡β comp ∀s. comp s ≡β mix int s
3. Generate a compiler-generator mix mix mix ≡β cogen ∀int. cogen int ≡β mix mix int
4. Self-generation of cogen cogen mix ≡β cogen

Figure 4.1: The four Futamura projections.

cally generate compilers and compiler-generators from interpreters[41]. The four Futamura

projections are shown in Figure 4.1. For each projection we list a correctness specification

implied by the correctness of mix.

The first Futamura projection compiles programs from a source language S to a target lan-

guage T by specializing an S-interpreter programmed in T . Given any input to the program,

the target program gives the same result as interpreting the source program. The second

projection generates a compiler from S-programs to T -programs by specializing the partial

evaluator mix to the interpreter. Given any program, the compiler gives the same result as

the first projection. The third projection generates a compiler-generator by specializing mix

to itself. Given any interpreter, the compiler-generator gives the same result as the second

projection. Futamura only discussed these three Futamura projections. Subsequently Glück

[46] showed that there are more. In particular, the fourth projection demonstates that the

compiler-generator cogen can generate itself when applied to mix. This is sometimes called

the “mixpoint”.

Until now we’ve left unsaid the purpose for specialization: to make programs run more

efficiently. If px runs no faster than p x, we may as well skip specialization and use p x itself.

In fact, a trivial partial evaluator could simply define px to be p x. How can we determine

that a partial evaluator is non-trivial – that it provides some benefit to efficiency? Jones,

Gomard and Sestoft [54] offer a criterion, widely known as Jones-optimality, that is based

on the first Futamura projection. Intuitively, the idea is that specialization should remove

all the “interpretative overhead” of a self-interpreter. Compilation by using first Futamura

projection with a self-interpreter allows us to directly compare the performance of the source

and target programs, since the source and target languages are the same. Jones-optimality

states that no target program should be less efficient than its source program – on any input.
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This has become the gold standard for non-trivial partial evaluation.

In this chapter, we present the first typed self-applicable partial evaluator. It is Jones-

optimal and can be used to generate the four Futamura projections. Our starting point

is Mogensen’s self-applicable partial evaluator for the untyped λ-calculus [62]. Mogensen

showed that a self-evaluator that evaluates to β-normal form can be used as the basis for

a self-applicable partial evaluator – a technique we call “specialization by normalization”.

We use our typed self-evaluator nbe from Chapter 4 to implement a typed version of Mo-

gensen’s partial evaluator in Fµi
ω . The result is self-applicable and generates the Futamura

projections, but is not Jones-optimal. Worse, specialization by normalization sometimes

generates specialized code that is slower than the original. To solve this, we present some

simple modifications that guarantee our partial evaluator never causes a slowdown and make

it Jones-optimal.

In section 2 we discuss the possible types of self-applicable partial evaluators and the

Futamura projections, in section 3 we present our typed version of Mogensen’s partial evalu-

ator, in section 4 we discuss why Mogensen’s partial evaluator is not Jones-optimal and how

to achieve optimality, in section 5 we present the changes we make to the self-representation

of Fµi
ω , in section 6 we present the details of our partial evaluator, in section 7 we discuss

our experimental results, in section 8 we compare with related work, and in section 9 we

conclude.

4.2 The Type of a Self-Applicable Partial Evaluator

What is the type of a self-applicable partial evaluator? Jones, Gomard and Sestoft [54,

Section 16.2] proposed the type:

∀A:∗. ∀B:∗. Exp (A → B) → A → Exp B (†)

They showed that a partial evaluator with this type can be self-applied and used to derive the

Futamura projections. However, the realization of a typed self-applicable partial evaluator

with this type has remained an open problem. There is a limitation to this type: the second
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Description Definition Correctness Specification
1. Compile S-program to T mix int s ≡β t ∀x. t x ≡β int s x
2. Generate an S-to-T compiler mix mix int ≡β comp ∀s. comp s ≡β mix int s
3. Generate a compiler-generator mix mix mix ≡β cogen ∀int. cogen int ≡β mix mix int
4. Self-generation of cogen cogen mix ≡β cogen

Figure 4.2: The Futamura projections for a Mogensen-style mix.

input to the partial evaluator has a completely abstracted type. In a typed language without

reflection, the partial evaluator can make no assumptions about the input, and cannot inspect

or manipulate it.

The type (†) is also inconsistent with the types of representations in our system. To

demonstrate, let’s consider an example application of Mogensen’s partial evaluator. The

application mix ackermann zero specializes the Ackermann function to the Church numeral

0. If ackermann has the type Nat → Nat → Nat and zero has the type Nat, then under a typed

representation scheme the representation ackermann would have the type Exp (Nat → Nat →

Nat) and the representation zero would have the type Exp Nat. There is no instantiation of

the type (†) that can accept inputs of those types.

We adopt the following type, which has been used before as the type of a partial evaluator

[22] and is consistent with the types of our representations:

∀A:∗. ∀B:∗. Exp (A → B) → Exp A → Exp B (‡)

This type allows the partial evaluator to rely on its second argument being a representation.

This is important because the second argument (or a part of it) could end up in the residual

code returned by the partial evaluator, in which case it must be converted to a representation.

This would not be possible in general if the second argument could be any term.

A consequence of this type is that the Futamura projections involve double-representation:

representations of representations. This is shown in Figure 4.2. For example, the first Fu-

tamura projection specializes an interpreter of type (Exp T → T) to an input of type Exp

T. If we instantiate the type (‡) with A := Exp T and B := T, we get (Exp (Exp T) → T) →

Exp (Exp T) → Exp T. The type Exp (Exp T) is the type of a double-representation. Double-

representation can lead to nontrivial overheads that threaten to dominate the benefits of
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self-application. However, a sufficiently powerful partial evaluator can potentially eliminate

that overhead. For example, the generated compiler comp produces the same output as

the first Futamura projection, but operates on ordinary representations instead of double-

representations.

Figure 4.3 shows typed versions of the Futamura projections in the concrete syntax of

F µi
ω . Quotations are denoted using square brackets [-] rather than overlines. The first

projection compiles the factorial function fact by specializing the self-interpreter unquote

to it. The second projection generates a compiler by specializing mix to unquote. The third

projection generates a compiler-generator by specializing mix to itself. The fourth projection

generates the self-generating compiler-generator. It is also obtained by specializing mix to

itself, but at different types.

4.3 Typed Specialization by Normalization

Mogensen implemented the first self-applicable partial evaluator for (untyped) λ-calculus.

He recognized that a self-evaluator that evaluates to β-normal form can used as the basis

for a partial evaluator. We call this approach “specialization by normalization”. With

this approach, specializing a program f to an input x with such a partial evaluator with

result in the normal form of f x. One problem with specialization by normalization is that

not all terms have a normal form, which leads to non-termination of the partial evaluator:

if f x has no normal form, then specializing f to x will not terminate. In particular, if

the self-interpreter unquote and the partial evaluator mix do not have normal forms, then

the Futamura projections will not terminate. Mogensen solves this problem by using a

representation based on Church-encoding, for which unquote and mix do have normal forms.

The partial evaluator is self-applicable and the Futamura projections terminate.

To summarize, Mogensen made three key insights: 1) a self-evaluator that evaluates to

normal form can be used as the basis for a partial evaluator (specialization by normalization),

2) specialization by normalization supports the Futamura projections if the self-interpreter

and partial evaluator themselves are strongly normalizing, and 3) a representation based
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decl fact_compiled : Exp (Nat → Nat) =
mix (Exp (Nat → Nat)) (Nat → Nat)
[unquote (Nat → Nat)]
[[fact]]

decl compile : ∀A:∗. Exp (Exp (Exp A) → Exp A) =
ΛA:∗.
mix (Exp (Exp A → A)) (Exp (Exp A) → Exp A)
[mix (Exp A) A]
[[unquote A]]

decl cogen : (∀A:∗. ∀B:∗. Exp (Exp (Exp (A → B)) →
Exp (Exp A → Exp B))) =

ΛA:∗. ΛB:∗.
mix (Exp (Exp (A → B) → Exp A → Exp B))

(Exp (Exp (A → B)) → Exp (Exp A → Exp B))
[mix (Exp (A → B)) (Exp A → Exp B)]
[[mix A B]]

decl selfgen : (∀A:∗. ∀B:∗.
Exp (Exp (Exp (Exp (A → B) → Exp A → Exp B)) →

Exp (Exp (Exp (A → B)) →
Exp (Exp A → Exp B)))) =

ΛA:∗. ΛB:∗.
mix (Exp (Exp (Exp (A → B) → Exp A → Exp B) →

Exp (Exp (A → B)) →
Exp (Exp A → Exp B)))
(Exp (Exp (Exp (A → B) → Exp A → Exp B)) →
Exp (Exp (Exp (A → B)) → Exp (Exp A → Exp B)))

[mix (Exp (Exp (A → B) → Exp A → Exp B))
(Exp (Exp (A → B)) → Exp (Exp A → Exp B))]

[[mix (Exp (A → B)) (Exp A → Exp B)]]

Figure 4.3: The four typed Futamura projections
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decl mix : (∀A:*. ∀B:*. Exp (A → B) → Exp A → Exp B) =
ΛA:*. ΛB:*. λe1 : Exp (A → B). λe2 : Exp A.
nbe B (ΛV:* → *. app V A B (e1 V) (e2 V))

Figure 4.4: A typed specialization-by-normalization partial evaluator

on Church-encoding supports a strongly normalizing self-interpreter and specialization by

normalization partial evaluator.

In this section, we present a typed specialization by normalization partial evaluator for

Fµi
ω . To support the Futamura projections, we follow Mogensen’s approach and move to

a typed self-representation of Fµi
ω based on Church-encoding (also called a tagless-final or

Böhm-Berarducci encoding) similar to the representation of Fω described in Chapter 2.

After porting our self-interpreter and normalizing self-evaluator to this representation, they

are both strongly normalizing.

Our typed, self-applicable partial evaluator for Fµi
ω based on Mogensen’s specialization

by normalization approach is shown in Figure 4.4. Given representations of a program f

and an input x, the computes the specialization of f to x by normalizing the representation

of the application f x. This version of mix has the type (‡) discussed in Section 4.2. The

four Futamura projections have the types and definitions shown in Figure 4.1, and they all

normalize and meet their specifications.

We compared the speedups obtained from our typed version of Mogensen’s partial eval-

uator with the original untyped version, by counting the number of reductions to normalize

unspecialized and specialized versions of a number of Mogensen’s benchmark programs. To

facilitate a direct comparison, we first erase Fµi
ω terms to untyped λ-calculus. This corre-

sponds to a type-erasure semantics, as is used in many practical statically-typed languages.
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Program Specializer Baseline Steps Specialized Steps Speedup

Ackermann 0 3
untyped 7 3 2.33
typed 7 3 2.33

Ackermann 1 3
untyped 19 13 1.46
typed 19 13 1.46

Ackermann 2 3
untyped 76 65 1.17
typed 76 65 1.17

Ackermann 3 3
untyped 3685 3621 1.02
typed 3685 3621 1.02

unquote Ackermann 0 3
untyped 21 7 3
typed 58 7 8.29

unquote Ackermann 1 3
untyped 53 19 2.79
typed 175 19 9.21

unquote Ackermann 2 3
untyped 208 76 2.74
typed 749 76 9.86

unquote Ackermann 3 3
untyped 9866 3685 2.68
typed 36027 3685 9.78

mix unquote Ackermann
untyped 382 337 1.13
typed 3439 1562 2.20

mix mix unquote
untyped 1539 334 4.61
untyped 377029 113546 3.32

mix mix mix
untyped 268481 115931 2.32
typed 18762389 5423355 3.46

Table 4.1: Speedup from typed vs untyped specialization by normalization
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Definition 4.3.1 (Type erasure). The type erasure of a term e is defined recursively as

follows:
1. erase(x)= x

2. erase(λx:T. e)= λx. erase(e)

3. erase(e1 e2)= erase(e1) erase(e2)

4. erase(ΛX:K.e)= erase(e)

5. erase(e T)= erase(e)

6. erase(fold T1 T2 e)= erase(e)

7. erase(unfold T1 T2 e)= erase(e)

We measure the time to evaluate an erased term by counting the number of β-reduction

steps required to reach a β-normal form. This number (and whether a normal form is reached

at all) will depend on the evaluation strategy used. In this section our purpose is to compare

with Mogensen, so we use lazy or call-by-need evaluation, the same strategy he used. In

Section 4.7 we also consider call-by-value and call-by-name evaluation.

The results are shown in Table 4.1. The first four rows show speedups obtained by spe-

cializing Ackermann’s function to its first input. For these, our speedups match Mogensen’s

exactly. In fact, our Ackermann function erases exactly to Mogensen’s, and each of our spe-

cialization of it erases to Mogensen’s corresponding specialization. The next four rows show

the overhead of interpreting Ackermann’s function on the same inputs, and how much of

that overhead can be removed by specialization. The interpretational overhead is larger for

our typed version, because our language is larger – there is more syntax in Fµi
ω , and therefore

more cases in its self-representation and interpreter than in those for untyped λ-calculus.

The extra cases lead to larger representations and extra interpretational work that is not

removed by type erasure. However, we can specialize away all the extra interpretational

overhead: the Ackermann function has the same performance whether compiled by either

the untyped or typed version of mix. The next (ninth) line compares the cost of compiling the

Ackermann function. The baseline version compiles via the first Futamura projection, and

the specialized version uses the compiler generated by the second Futamura projection. The

results show that the typed version is slower, but yields greater speedups from the second

85



Futamura projection. The tenth line compares the cost of generating a compiler for untyped

λ-calculus versus Fµi
ω . The baseline version generates via the second Futamura projection,

and the specialized version uses the compiler-generator from the third Futamura projection.

This time, the untyped version is faster and has greater speedups. The last line compares

the cost of generating a compiler generator for untyped λ-calculus versus Fµi
ω . The base-

line version generates via the third Futamura projeciton, and the specialized version uses

the self-generating compiler-generating from the fourth Futamura projection. As usual the

untyped version is faster, and this time the typed version yields a greater speedup.

The core of the partial evaluator in Figure 4.4 is the self-evaluator nbe. This design is

modular: we can implement more partial evaluators by replacing nbe with other evaluators.

In this view, specialization by normalization is an instance of a more general approach we

could call specialization by evaluation. Each partial evaluator defined in this way will be

self-applicable if the evaluator is a self-evaluator. This more general approach was used by

Carette et al. [22] to implement a typed partial evaluator for a simply-typed language in

MetaOCaml. We can implement more self-applicable partial evaluators for Fµi
ω by replacing

nbe with a different self-evaluator. This establishes a spectrum of specializers, with spe-

cialization by normalization at one end. At the other end is the trival evaluator that does

nothing – in effect, the identity function on representations. This results in a trivial special-

izer that does nothing other than remember the specialized input: the specialization of f to

x is just the application f x.

The trivial partial evaluator is not particularly useful – since its evaluator does no eval-

uation, it provides no speedup and is not Jones-optimal. One the other hand, specialization

by normalization is not Jones optimal either. As we will see in Section 4.5, nbe does too

much evaluation. As a result, specialization sometimes causes a slowdown. The reason is

that not all β-redexes should be reduced at specialization time, because they might cause the

specialized code to run slower than the original. In Section 4.5 we present a self-evaluator

that only reduces those redexes that will not produce slower specialized code. The partial

evaluator derived from it lies between the two extremes of the specialization by evaluation

spectrum. It is Jones-optimal and never causes a slowdown.
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4.4 Representation

In this section, we discuss changes we made to the self-representation of Fµi
ω , the quoter, and

the self-interpreter unquote to support self-applicable partial evaluation and the generation

of the Futamura projections. The result is a combination of representation techniques from

Chapters 2 and Chapter 3: We use a Böhm-Berarducci or tagless-final encoding similar to

the one for Fω in Chapter 2, and we the use type equality proofs from Chapter 3. As usual,

the representation is an instance of Parametric Higher-Order Abstract Syntax (PHOAS)

[29]. The new representation and quotation procedure are defined in Figure 4.5.

The type PExp to typecheck pre-quotations, and Exp is used to typecheck quotations.

The types Abs, App, TAbs, TApp, Fold and Unfold are the types of the case functions used to

construct pre-quotations.

Our pre-quoter Γ ⊢ e : T ▷ q maps a typing judgement Γ ⊢ e : T to a pre-quotation q.

As usual, a variable is represented by another variable with the same name but with a differ-

ent type. Each other syntactic form of terms is represented by recursively pre-quoting and

applying a case function for that form. To represent type abstractions and applications, we

use the familiar utility functions that constitute our extensional representation technique for

polymorphic terms: instantiation functions that instantiate a polymorphic term, strip func-

tions that remove a redundant quantifier, and under functions that apply can apply functions

under a quantifier. Quotation is defined by first pre-quoting the term, then abstracting over

the case functions and the type parameter V that determines the type of variables.

The tagless-final representation technique encodes a fold over the term. This eliminates

the need to implement folds using general recursion as we did in Chapter 3 with the foldExp

function. However, not all operations are naturally expressed or easily type-checked as a fold.

For these, we can convert back from the tagless-final representation to the Mogensen-Scott

representation used in Chapter 3.

The self-interpreter unquote for the tagless-final representation is shown in Figure 4.6. It

is similar to the self-interpreter for Fω defined in Chapter 2 and the one for the Mogensen-

Scott representation of Fµi
ω discussed in Chapter 3. We compare with the Fω version from
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decl PExp : (∗ → ∗) → ∗ → ∗ =
λV : ∗ → ∗. λA:∗.
(∀S:∗. ∀T:∗. (V S → V T) → V (S → T)) →
(∀A:∗. ∀B:∗. V (A → B) → V A → V B) →
(∀A:∗. IsAll A → StripAll A → UnderAll A → All Id V A → V A) →
(∀A:∗. ∀B:∗. IsAll A → Inst A B → V A → V B) →
(∀F : (∗ → ∗) → ∗ → ∗. ∀B : ∗. V (F (μ F) B) → V (μ F B)) →
(∀F : (∗ → ∗) → ∗ → ∗. ∀B : ∗. V (μ F B) → V (F (μ F) B)) →
V A

decl Exp : ∗ → ∗ = λA:∗. ∀V:∗ → ∗. PExp V A

decl Abs V = ∀A1:∗. ∀A2:∗. (V A1 → V A2) → V (A1 → A2)
decl App V = ∀A:∗. ∀B:∗. V (A → B) → V A → V B
decl TAbs V =
∀A:∗. IsAll A → StripAll A → UnderAll A → All Id V A → V A

decl TApp V = ∀A:∗. ∀B:∗. IsAll A → Inst A B → V A → V B
decl Fold V =
∀F : (∗→∗) → ∗ → ∗. ∀B:∗. V (F (μ F) B) → V (μ F B)

decl Unfold V =
∀F : (∗→∗) → ∗ → ∗. ∀B : ∗. V (μ F B) → V (F (μ F) B)

Definitions of PExp and Exp

(x : T) ∈ Γ

Γ ⊢ x : T ▷ x

Γ ⊢ T1 : ∗ Γ,(x:T1) ⊢ e : T2 ▷ q
Γ ⊢ (λx:T1.e) : T1→ T2 ▷ abs T1 T2 (λx:V T1. q)

Γ ⊢ e1 : T2 → T ▷ q1 Γ ⊢ e2 : T2 ▷ q2
Γ ⊢ e1 e2 : T ▷ app T2 T q1 q2

Γ,(X:K) ⊢ e : T ▷ q

isAllX,K,T = p
stripAllK = s
underAllX,K,T = u

Γ ⊢ (ΛX:K.e) : (∀X:K.T) ▷ tabs (∀X:K.T) p s u (ΛX:K.q)

Γ ⊢ e : (∀X:K.T) ▷ q
Γ ⊢ A : K

isAllX,K,T = p
instX,K,T,A = i

Γ ⊢ e A : T[X:=A] ▷ tapp (∀X:K.T) (T[X:=A]) p i

Γ ⊢ F : (∗→ ∗)→∗→ ∗
Γ ⊢ T : ∗ Γ ⊢ e : F (μ F) T ▷ q

Γ ⊢ fold F T e : μ F T ▷ fld F T q

Γ ⊢ F : (∗→ ∗)→∗→ ∗
Γ ⊢ T : ∗ Γ ⊢ e : μ F T ▷ q

Γ ⊢ unfold F T e : F (μ F) T ▷ unfld F T q

⟨⟩ ⊢ e : T ▷ q

e = ΛV:∗→ ∗.
λabs : Abs V. λapp : App V.
λtabs : TAbs V. λtapp : TApp V.
λfld : Fold V. λunfld : Unfold V.
q

Quotation and pre-quotation

Figure 4.5: Tagless-final self-representation of Fµi
ω .
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decl Id : * → * = λA:*. A;

decl unAbs : Abs Id =
ΛA:*. ΛB:*. λf : A → B. f;

decl unApp : App Id =
ΛA:*. ΛB:*. λf : A → B. f;

decl unTAbs : TAbs Id =
ΛA:*. λp:IsAll A. λs:StripAll A. λu:UnderAll A. λe:All Id Id A.
unAll A p Id Id e

decl unTApp : TApp Id =
ΛA:*. ΛB:*. λp : IsAll A. λi : Inst A B. λx : A.
i Id (sym (All Id Id A) A (unAll A p Id) Id x)

decl unFold : Fold Id =
ΛF: (* → *) → * → *. ΛA:*. λx : F (μ F) A. fold F A x;

decl unUnfold : Unfold Id =
ΛF: (* → *) → * → *. ΛA:*. λx : μ F A. unfold F A x;

decl unquote : (∀A:*. Exp A → A) =
ΛA:*. λe:Exp A.
e Id unAbs unApp unTAbs unTApp unFold unUnfold

Figure 4.6: The self-interpreter unquote.

Figure 2.4. The case function unAbs for λ-abstractions is unchanged. The case function un-

App for applications is an η-contracted version of the one for Fω. As we will discuss in Section

4.5, this helps achieve Jones-optimality. The case function unTAbs for type abstractions is

different, due to the switch from type representations used in Chapter 2 to intensional type

functions from Chapter 3. In this version, the term e has a type All Id Id A, which unAll

coerces to A. It can do this because p proves that A is a quantified type of the form ∀X:K.T.

Then All Id Id A = All Id Id (∀X:K.T) ≡ Id (∀X:K. Id T) ≡ (∀X:K.T) = A. The case func-

tion unTApp is conceptually the same: we interpret a type application using the instantiation

function embedded into its representation. The difference is in how we typecheck instanti-

ation functions: in this version instantiation functions are polymorphic. Here, i Id has the

type All Id Id A → B, so we coerce x from the type A to All Id Id A. The case functions

unFold and unUnfold are new, because Fω does not include fold and unfold operators. We

interpret them meta-circularly – i.e., they implement themselves.
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4.5 Jones-optimality

A partial evaluator is Jones-optimal if it can specialize away all the computational overhead

caused by self-interpretation. More precisely, specializing a self-interpreter to a program

should generate a compiled program that is no slower than the original program – on any

input.

The canonical definition is from Jones, Gomard and Sestoft [53, pg. 139]. We restate it

for out context of λ-calculus and using our notation:

Definition 4.5.1 (Jones-optimality). A partial evaluator mix is Jones-optimal with respect

to time(−) if for any terms p : A → B and d : A and for some self-interpreter unquote,

time(p′ d) ≤ time(p d), where mix unquote p ≡β p′.

In terms of the Futamura projections, an optimal partial evaluator should generate a

compiler that never causes a slowdown.

It is important to note that in the definition of Jones optimality, both time(−) and

unquote are existentially quantified. This provides important flexibility in the definition,

because different notions of time(−) may be most appropriate for different settings, and

because there may be multiple different implementations of unquote (and multiple self-

representation schemes) for a single language. If mix were required to be able to specialize

away the overhead of any self-interpreter, it would be very difficult to establish optimality.

However, this flexibility can be abused. A partial evaluator can cheat by checking if its first

input (the program being specialized) is a particular self-interpreter. If so, it can simply

return its second input. Our partial evaluator is honest; it plays no such tricks.

A definition of time(−) should reflect the time complexity of running a program in a

real-world environment. Definitions that meet this criterion include measuring reduction

steps, or measuring seconds of interpreted or compiled code. The definition we use measures

β-reduction steps to normal form under lazy evaluation (i.e., normal-order reduction with

memoization). This has several advantages over measuring seconds: it enables a direct

comparison with Mogensen’s work, it is deterministic and independent of the computer used
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for benchmarking, and it corresponds to how functional programming languages are actually

implemented.

Specialization by normalization is not optimal for this definition of time(−). For instance,

compilation causes a slowdown for the factorial function for Church numerals. Not only

compilation, but specialization in general can cause slowdown. This can be demonstrated

by the power function for Church-numerals: evaluating power three five is faster than first

normalizing power three and then applying the result to five.

The reason for these slowdowns is that lazy evaluation has a notion of sharing, which

makes computation more efficient. Normalization can prevent sharing, which causes a slow-

down. Consider a redex (λx.a) b. The bound variable x can occur zero or more times in

a. How many times will b be evaluated? This depends on the evaluation strategy. Under

call-by-name, the redex is evaluated by reducing (λx.a) b to a[x:=b] and then evaluating

the reduct. This may involve evaluating b multiple times, depending on where and how

many times x occurs in a. Under call-by-value, we first evaluate b to its value v, then we re-

duce (λx.a) v and continue evaluating. In this case, b is evaluated exactly once, not matter

where or how many times x occurs in a. Each occurrence shares the value of b. Under lazy

or call-by-need evaluation, we get the same sharing behavior as in call-by-value, but without

having to evaluate b up front. Instead, we only evaluate b if we need to. Then we remember

its value in case it’s needed again later. Thus, under lazy evaluation b is evaluated at most

once.

Reducing a redex (λx.a) b to a[x:=b] at specialization time may cause b to be evaluated

multiple times at runtime, if we hadn’t reduced it we’d evaluate b at most once. If b can

be reduced to a value at specialization time, then we can reduce the redex without without

risk of slowdown, since evaluating a value is zero-cost. However, since specialization occurs

under λ-abstractions, b can contain free variables. Thus, it may be impossible to reduce it

to a value at specialization time. In this case, reducing the redex can cause a slowdown at

runtime. This is why specialization by normalization is not optimal: it blindly reduces every

redex, potentially losing the sharing benefits provided by the evaluation strategy.
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Our solution is for the partial evaluator to analyze which redexes can be safely reduced at

specialization time without losing sharing at runtime. We call such redexes “specialization-

safe” because they do not risk causing a slowdown in the residual code.

We now make the notion of a specialization-safe β-redex precise. We use substitutions

to quantify over possible instantiations of free variables at runtime. We characterize these

instantiations using substitutions that map variables to values to model sharing behavior,

particularly for free variables.

Definition 4.5.2. A value substitution is a substitution that maps variables to values.

Definition 4.5.3. A β-redex (λx.a) b is specialization-safe iff time(θ(a[x:=b])) ≤

time(θ((λx.a) b)) for any value substitution θ.

Specialization-safety is a local property. It only considers one step of β-reduction at

a given position in the term. It could be generalized to longer sequences of β-reductions,

possible in different positions. It could also be generalized to other kinds of transformations.

However, this definition is sufficient for achieving Jones-optimality. We simplify a bit further

by using a conservative condition that implies specialization safety.

Theorem 4.5.1. A β-redex (λx.a) b is specialization-safe if either of the following is true:

1. erase(b) is not an application.

2. x occurs at most once in a, and does not occur under a nested λ-abstraction.

Proof. Sketch: For (1), erase(b) must be a variable or a λ-abstraction, and so can be safely

inlined. In each case, erase(θ(b)) is a value so its evaluation is zero-cost. For (2), the value

of erase(θ(b)) is needed at most once, so sharing is not needed.

These conditions are conservative: there are specialization-safe redexes for which neither

(1) or (2) is true. However, we show that these conditions are sufficient for a Jones-optimal

partial evaluator. This partial evaluator is also based on specialization by evaluation, using

a new self-evaluator opt that reduces all specialization-safe redexes and no others. The
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result is the first typed, self-applicable partial evaluator that is Jones-optimal, never causes

slowdown, and can generate the Futamura projections. The partial evaluator has the type

(‡) discussed in section 4.2. The Futamura projections have the types listed in Figure 4.1

and all normalize and meet their specifications.

In general, opt will make programs run faster, and is guaranteed to never cause a slow-

down. It is the first typed self-applicable self-optimizer, and can be useful for applications

outside of partial evaluation.

We prove that our specialization-safe partial-evaluator is Jones-optimal for the version of

unquote in Figure 4.6. Intuitively, this is true because all β-redexes related to interpretation

are specialization-safe. If there are no other specialization-safe β-redexes, then mix unquote e

≡β e. If there are some more specialization-safe β-redexes, then specialization-safety implies

that reducing them will not cause a slowdown.

Lemma 4.5.1. For any prequotation Γ ⊢ e : T ▷ q, q [abs:=unAbs, app:=unApp, tabs:=unTAbs,

tapp:=unTApp, fld:=unFold, unfld:=unUnfold] reduces to e by reducing only specialization-

safe redexes.

Proof. By induction on the derivation of Γ ⊢ e : T ▷ q.

Define θ(q) = q [abs:=unAbs, app:=unApp, tabs:=unTAbs, tapp:=unTApp,

fld:=unFold, unfld:=unUnfold].

If e is a variable x, then θ(q) = x = e, and the result follows with 0 reduction steps.

If e is a λ-abstraction λx:T1.e1, then q = abs T1 T2 (λx: T1. q1) and Γ,(x:T1) ⊢ e1 :

T2 ▷ q1. By induction, θ(q1) safely reduces to e1. Now θ(q) = unAbs T1 T2 (λx:T1. θ(q1)),

which safely reduces to unAbs T1 T2 (λx:T1. e1). The abstraction over f in unAbs is safe, so

unAbs T1 T2 (λx:T1. e1) safely reduces to (λx:T1. e1) = e.

If e is an application e1 e2, then q = app T2 T q1 q2 and Γ ⊢ e1 : T2 → T ▷ q1 and Γ

⊢ e2 : T2 ▷ q2. By induction, θ(q1) safely reduces to e1 and θ(q2) safely reduces to e2.

Now θ(q) = unApp T2 T θ(q1) θ(q2), which safely reduces to unApp T2 T e1 e2. Since the

abstraction over f in unApp is safe, unApp T2 T e1 e2 safely reduces to e1 e2 = e.
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If e is a type abstraction (ΛX:K.e), then T = (∀X:K. T1) and q = tabs (∀X:K.T1) isAllX,K,T1

stripAllK underAllX,K,T1 (ΛX:K.q1), and Γ,(X:K) ⊢ e1 : T1 ▷ q1. By induction, θ(q1) safely

reduces to e1. Now θ(q) = unTAbs (∀X:K.T1) isAllX,K,T1 stripAllK underAllX,K,T1 (ΛX:K.θ(q1)),

which safely reduces to unTAbs (∀X:K.T1) isAllX,K,T1 stripAllK underAllX,K,T1 (ΛX:K.e1).

Since isAllX,K,T1, stripAllK, and underAllX,K,T1 are values, and the abstraction over e in

unTAbs is safe, unTAbs (∀X:K.T1) isAllX,K,T1 stripAllK underAllX,K,T1 (ΛX:K.e1) safely re-

duces in a few steps to unAll (∀X:K.T1) isAllX,K,T1 Id Id (ΛX:K.e1), which safely reduces

to unAllX,K,T1 Id Id (ΛX:K.e1), and then to refl (∀X:K.T1) Id (ΛX:K.e1), and then to

(ΛX:K.e1) = e.

The case for type applications is similar to the previous case.

If e is a fold expression fold F A e1, then T = μ F A and q = fld F A q1, and Γ ⊢ e1 : F

(μ F) A ▷ q1. Now θ(q) = unFold F A θ(q1), which safely reduces to unFold F A e1. Since

the abstraction over x in unFold is safe, unFold F A e1 safely reduces to fold F A e1 = e.

The case for unfold is similar to the previous case.

Lemma 4.5.2. For any ⟨⟩ ⊢ e : T, unquote T e reduces to e by reducing only specialization-

safe redexes.

Proof. First, the abstraction over e in unquote is safe, so unquote T e safely reduces to e

Id unAbs unApp unTAbs unTApp unFold unUnfold. Next, each of the case functions unAbs, un-

App, etc. are values, so e Id unAbs unApp unTAbs unTApp unFold unUnfold safely reduces to q

[abs:=unAbs, app:=unApp, tabs:=unTAbs, tapp:=unTApp, fld:=unFold, unfld:=unUnfold] where

⟨⟩ ⊢ e : T � q. By Lemma 4.5.1, q [abs:=unAbs, app:=unApp, tabs:=unTAbs, tapp:=unTApp,

fld:=unFold, unfld:=unUnfold] safely reduces to e.

Theorem 4.5.2. mix is Jones-optimal.

Proof. Follows from Lemma 4.5.2.

We mentioned in Section 4.4 that the case function unApp in Figure 4.6 is an η-contracted

version of the one from the Fω self-interpreter in Figure 2.4. Suppose we defined unApp to be
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the η-expanded version, unApp = ΛA:*. ΛB:*. λf : A → B. λx : A. f x. Since the variable

f is referenced from within the λ-abstraction over x, unApp T1 T2 e1 e2 would not be safely

reducible e1 e2. Then our partial-evaluator would not be Jones-optimal. This highlights

the sensitivity of Jones-optimality to the choice of self-interpreter. Jones-optimality is also

sensitive to the definition of time(−), which includes which evaluation strategy is used at

runtime. Specialization by normalization is optimal for call-by-name, since it provides no

sharing. Our specialization-safe partial evaluator is optimal for call-by-name, call-by-value,

and call-by-need evaluation.

4.6 Implementation

Figure 4.7 shows the highlights of our Jones-optimal partial evaluator. At its core is the self-

evaluator opt, which is a modification of the normalization-by-evaluation algorithm that only

reduces specialization-safe redexes. The name opt underscores that it optimizes its input

program, and never causes slowdown. The function sem is a fold that converts an Exp A to a

semantic object of type Sem V A, and reify extracts a representation of the evaluated term

from the semantic object. The partial evaluator mix is similar to the one shown in Figure 4.4:

it optimizes rather than normalizes the application of its two inputs. A notable difference

is the use of forceExp. This is an important optimization for self-application, specifically

when specializing mix to a single input. It checks that both arguments are available before

optimizing, thereby preventing a blow up in the output code size from many copies of opt’s

traversal functions being residualized thoughout f.

The type Sem of semantic objects is shown in Figure 4.8. It is a recursive intensional type

function like the type CPS from Figure 3.16. The type Sem V A is equivalent to μ (SemF V) A

and isomorphic (via (un)folding the recursion) to SemF (Sem V) A. SemF defines the pattern-

matching interface for semantic objects.

There are two variants of semantic object: neutral objects that do not form redexes

(statically-safe or otherwise) when in head-position, and non-neutral objects that do. Neutral

objects contain a boolean and a representation. The representation is used to reify the
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semantic object. The boolean is true if that representation is of a term that erases to a

variable. If so, then any redex in which this term is in argument position is statically-safe.

Active objects form redexes when in head-position. Their first two components are similar

to those of neutral objects. The boolean is true is the representation erases to a contain a

boolean. The third component is used to compute the reduct of redexes with this object in

head-position. These have types of the form SemF1 (Sem V) A. SemF1 is an intensional type

function that depends on the structure of A.

SemF1 (Sem V) (A → B)≡ Pair Bool (Sem V A → Sem V B)

SemF1 (Sem V) (∀X:K.T)≡ ∀X:K. Sem V T

SemF1 (Sem V) (μ F A)≡ Sem V (F (μ F) A)

A non-neutral semantic object of arrow type is a λ-abstraction. For these, the third

component is a pair of boolean and function from semantic objects to semantic objects. The

function computes semantic objects for reducts of this abstraction. The boolean indicates

whether the λ-abstraction is statically safe according to condition 2 of 4.5.1.

If a non-neutral semantic object has a quantified type, then it is a Λ-abstraction. For

these, the third component is a polymorphic semantic object. If it has a recursive type, it is

for a fold term fold F A e, and the third component is the semantic object of the unfolded

term e.

Figure 4.9 shows the key functions used by sem to reduce function applications. Given

semantic objects for a function f and an argument x, semApp first does case analysis on f. If

it’s neutral, then the application is not a redex and is residualized. Otherwise, the appication

is a redex. To check if it’s statically safe, we test whether either condition 1 or 2 of Theorem

4.5.1 are true. We reduce if so, and otherwise we residualize. Whenever we residualize, we

use semNe to construct a semantic object for the residual term. The argument false to semNe

indicates that result is an application.
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sem : (∀V:* → *. ∀A : *. Exp A → Sem V A)
reify : (∀V:* → *. ∀A : *. Sem V A → PExp V A)
forceExp : (∀T:*. Exp T → (∀A:*. A → A))

decl opt : (∀A : *. Exp A → Exp A) =
ΛA:*. λe : Exp A. ΛV:* → *.
reify V A (sem V A e);

decl mix : (∀A : *. ∀B : *. Exp (A → B) → Exp A → Exp B) =
ΛA:*.ΛB:*. λf:Exp (A → B). λx:Exp A.
let e : Exp B = (ΛV:* → *. app V A B (f V) (x V)) in
opt B (forceExp A x (Exp B) e);

Figure 4.7: Highlights of our Jones-optimal mix

decl SemF1 : (∗ → ∗) → ∗ → ∗ =
λSem : ∗ → ∗. λA:∗.
Typecase
(λA1:∗. λA2:∗. Pair Bool (Sem A1 → Sem A2))
Id Sem
(λF : (∗ → ∗) → ∗ → ∗. λB : ∗.
Sem (F (μ F) B))
A

decl SemF : (∗ → ∗) → (∗ → ∗) → ∗ → ∗ =
λV : ∗ → ∗. λSem : ∗ → ∗. λA : ∗.
∀R:∗.
(Bool → PExp V A → R) → -- Neutral
(Bool → PExp V A → SemF1 Sem A → R) → -- Non-neutral
R

decl Sem : (∗ → ∗) → ∗ → ∗ = λV : ∗ → ∗. μ (SemF V)

Figure 4.8: Types of our Jones-optimal partial evaluator.
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decl semApp:(∀V:∗→∗. ∀B:∗. ∀A:∗. Sem V (B→A) → Sem V B → Sem V A) =
ΛV:∗ → ∗. ΛB:∗. ΛA:∗. λf:Sem V (B → A). λx:Sem V B.
unfold (SemF V) (B → A) f
(Sem V A)
-- Neutral
(λ:Bool. λf: (PExp V (B → A)).
semNe V A false (app V B A f (reify V B x)))
-- Non-neutral
(λ:Bool. λrep_f:PExp V (B → A). λp:Pair Bool (Sem V B → Sem V A).
let cond1:Bool = notApp V B x in
let cond2:Bool = fst Bool (Sem V B → Sem V A) p in
or cond1 cond2
(Sem V A)
-- safe: reduce
(snd Bool (Sem V B → Sem V A) p x)
-- not safe: residualize
(semNe V A false (app V B A rep_f (reify V B x))))

Figure 4.9: A key function from sem.

4.7 Experiments

We measured speedups from our partial evaluators using a modified version of Haskell im-

plementation of Fµi
ω that was discussed in Section 3.7. Modifications include changes to the

quoter to produce Böhm-Berarducci encoded representations, and changes to the evaluator

to count reduction steps. We verified that the self-interpreter, partial-evaluators, and four

Futamura projections all type check in Fµi
ω .

We conducted two kinds of experiment: first, we use our β-equivalence checker to ver-

ify that the four Futamura projections satisfy their correctness specification (Figure 4.2).

Second, we use measure the speedups obtained by our partial evaluators.

Following Mogensen, we measure the number of β-reduction steps needed to normalize a

term using “strong” lazy evaluation. Ordinary lazy evaluation is weak – it does not reduce

under λ-abstractions. Therefore, it does not always evaluate to a β-normal form. “Strong”

lazy evaluation is like normal-order reduction in that it reduces to normal form, and like

ordinary lazy evaluation in that it memoizes the values of variables.

Table 4.2 shows the speedups obtained by specializing a variety of subject programs. Each
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subject program consists of a function applied to two or more inputs. The Baseline Steps is

the number of β-reduction steps to reduce that program to normal form. The Specialized

Steps is the number of steps for the same program after the function has been specialized

to its first input. The power function tests shows that specialization by normalization can

cause slowdown, and the slowdown gets worse with larger exponents. The measurements

show that our safe specializer is more conservative than specialization by normalization – it

often gives less significant speedups, but never causes slowdown.

Table 4.3 empirically test Jones-optimality. It reports the speedups obtained by compi-

lation via the first Futamura projection. Each subject program consists of a function applied

to one or more inputs. The Baseline Steps is the number of β-reduction steps to reduce

that program to normal form. The Compiled Steps is the number of steps for same program

after the function has been compiled using the first Futamura projection. We see exact 1.0

compilation speedups for the Ackermann function, which indicate the original and compiled

versions have the same performance for those inputs. This is because Ackermann as writ-

ten is a normal form, so it compiles to itself. The cube and fact functions demonstrate

non-optimality of specialization by normalization. Compilation causes a slowdown of each

program for inputs greater than 3. The slowdowns get progressively worse with larger num-

bers. Specialization by optimization is Jones-optimal: compilation never causes a slowdown.

The worst case is a 1.00 speedup – which means no speedup. For large inputs to cube and

fact, the speedup tends to 1.00.

Specialization by optimization is also Jones-optimal for call-by-value, and specialization

by normalization is not. For call-by-name, both are Jones-optimal but specialization by

normalization provides better speedups; all redexes are specialization safe for call-by-name.

Measurements for call-by-value and call-by-need are shown in Tables 4.4–4.7. Of the three

evaluation strategies, call-by-name is the least efficient and least widely used. As an extreme

example, computing the third Futamura projection for our specialization by optimization

partial evaluator takes ≈ 106 steps under lazy evaluation, ≈ 107 steps under call-by-value,

and ≈ 10555 steps under call-by-name. In fact, due to this inefficiency we were only able to

make these measurements using a modified version lazy evaluation, in which we memoized
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Program Specializer Baseline Steps Specialized Steps Speedup

Ackermann 0 3
normalize 7 3 2.33
optimize 7 3 2.33

Ackermann 1 3
normalize 19 13 1.46
optimize 19 14 1.36

Ackermann 2 3
normalize 76 65 1.17
optimize 76 69 1.10

Ackermann 3 3
normalize 3685 3621 1.02
optimize 3685 3673 1.00

unquote Ackermann 0 3
normalize 58 7 8.29
optimize 58 7 8.29

unquote Ackermann 1 3
normalize 175 19 9.21
optimize 175 19 9.21

unquote Ackermann 2 3
normalize 749 76 9.86
optimize 749 76 9.86

unquote Ackermann 3 3
normalize 36027 3685 9.78
optimize 36027 3685 9.78

mix unquote Ackermann
normalize 3439 1562 2.20
optimize 32934 26073 1.26

mix mix unquote
normalize 377029 113546 3.32
optimize 377187 317752 1.19

mix mix mix
normalize 18762389 5423355 3.46
optimize 931715 739797 1.26

power 2 2
normalize 145 81 1.79
optimize 145 82 1.77

power 3 2
normalize 251 217 1.16
optimize 251 153 1.64

power 4 2
normalize 413 533 0.77
optimize 413 272 1.52

power 5 2
normalize 687 1253 0.55
optimize 687 487 1.41

power 6 2
normalize 1185 2869 0.41
optimize 1185 894 1.33

power 7 2
normalize 2131 6453 0.33
optimize 2131 1685 1.26

Table 4.2: Speedups from our two partial evaluators under lazy evaluation
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Program Compiler Baseline Steps Compiled Steps Speedup

Ackermann 0 3
normalize 7 7 1.00
optimize 7 7 1.00

Ackermann 1 3
normalize 19 19 1.00
optimize 19 19 1.00

Ackermann 2 3
normalize 76 76 1.00
optimize 76 76 1.00

Ackermann 3 3
normalize 3685 3685 1.00
optimize 3685 3685 1.00

cube 1
normalize 56 31 1.81
optimize 56 33 1.70

cube 2
normalize 135 135 1.00
optimize 135 103 1.31

cube 3
normalize 290 369 0.79
optimize 290 249 1.16

cube 4
normalize 551 787 0.70
optimize 551 501 1.10

cube 5
normalize 948 1443 0.66
optimize 948 889 1.07

fact 1
normalize 42 20 2.10
optimize 42 27 1.56

fact 2
normalize 90 67 1.34
optimize 90 64 1.41

fact 3
normalize 192 263 0.73
optimize 192 153 1.25

fact 4
normalize 522 1261 0.41
optimize 522 468 1.12

fact 5
normalize 2064 7295 0.28
optimize 2064 1993 1.04

Table 4.3: Speedups from our generated compilers under lazy evaluation
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Program Specializer Baseline Steps Specialized Steps Speedup

Ackermann 0 3
normalize 7 3 2.33
optimize 7 3 2.33

Ackermann 1 3
normalize 19 13 1.46
optimize 19 14 1.36

Ackermann 2 3
normalize 76 65 1.17
optimize 76 69 1.10

Ackermann 3 3
normalize 3685 3621 1.02
optimize 3685 3673 1.00

unquote Ackermann 0 3
normalize 59 7 8.43
optimize 59 7 8.43

unquote Ackermann 1 3
normalize 175 19 9.21
optimize 175 19 9.21

unquote Ackermann 2 3
normalize 749 76 9.86
optimize 749 76 9.86

unquote Ackermann 3 3
normalize 36027 3685 9.78
optimize 36027 3685 9.78

mix unquote Ackermann
normalize 5527 1705 3.24
optimize 56976 42473 1.34

mix mix unquote
normalize 551602 124648 4.43
optimize 1045746 860095 1.22

mix mix mix
normalize 27989802 5792957 4.83
optimize 8717337 6990449 1.25

power 2 2
normalize 174 139 1.25
optimize 174 98 1.78

power 3 2
normalize 292 588 0.50
optimize 292 177 1.65

power 4 2
normalize 466 2315 0.20
optimize 466 304 1.53

power 5 2
normalize 752 8862 0.08
optimize 752 527 1.43

power 6 2
normalize 1262 33499 0.04
optimize 1262 942 1.34

power 7 2
normalize 2220 125852 0.02
optimize 2220 1741 1.28

Table 4.4: Speedups from our two partial evaluators under call-by-value
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Program Compiler Baseline Steps Compiled Steps Speedup

Ackermann 0 3
normalize 7 7 1.00
optimize 7 7 1.00

Ackermann 1 3
normalize 19 19 1.00
optimize 19 19 1.00

Ackermann 2 3
normalize 76 76 1.00
optimize 76 76 1.00

Ackermann 3 3
normalize 3685 3685 1.00
optimize 3685 3685 1.00

cube 1
normalize 56 31 1.81
optimize 56 33 1.70

cube 2
normalize 135 135 1.00
optimize 135 103 1.31

cube 3
normalize 290 369 0.79
optimize 290 249 1.16

cube 4
normalize 551 787 0.70
optimize 551 501 1.10

cube 5
normalize 948 1443 0.66
optimize 948 889 1.07

fact 1
normalize 42 20 2.10
optimize 42 27 1.56

fact 2
normalize 90 78 1.15
optimize 90 64 1.41

fact 3
normalize 192 369 0.52
optimize 192 153 1.25

fact 4
normalize 522 2088 0.25
optimize 522 468 1.12

fact 5
normalize 2064 13783 0.15
optimize 2064 1993 1.04

Table 4.5: Speedups from our generated compilers under call-by-value
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Program Specializer Baseline Steps Specialized Steps Speedup

Ackermann 0 3
normalize 7 3 2.33
optimize 7 3 2.33

Ackermann 1 3
normalize 19 13 1.46
optimize 19 14 1.36

Ackermann 2 3
normalize 79 65 1.22
optimize 79 69 1.14

Ackermann 3 3
normalize 3739 3621 1.03
optimize 3739 3673 1.02

unquote Ackermann 0 3
normalize 58 7 8.29
optimize 58 7 8.29

unquote Ackermann 1 3
normalize 178 19 9.37
optimize 178 19 9.37

unquote Ackermann 2 3
normalize 778 79 9.85
optimize 778 79 9.85

unquote Ackermann 3 3
normalize 37378 3739 10.00
optimize 37378 3739 10.00

mix unquote Ackermann
normalize 4057 1562 2.60
optimize 2.36× 1016 1.74× 1016 1.35

mix mix unquote
normalize 470270 125285 3.75
optimize 4.14× 1034 3.02× 1034 1.37

mix mix mix
normalize 23946795 6045551 3.96
optimize 2.01× 10555 1.50× 10555 1.35

power 2 2
normalize 256 81 3.16
optimize 256 116 2.21

power 3 2
normalize 724 240 3.02
optimize 724 336 2.15

power 4 2
normalize 1899 659 2.88
optimize 1899 905 2.10

power 5 2
normalize 4833 1744 2.77
optimize 4833 2359 2.05

power 6 2
normalize 12108 4509 2.69
optimize 12108 6028 2.01

power 7 2
normalize 30056 11476 2.62
optimize 30056 15204 1.98

Table 4.6: Speedups from our two partial evaluators under call-by-name
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Program Compiler Baseline Steps Compiled Steps Speedup

Ackermann 0 3
normalize 7 7 1.00
optimize 7 7 1.00

Ackermann 1 3
normalize 19 19 1.00
optimize 19 19 1.00

Ackermann 2 3
normalize 79 79 1.00
optimize 79 79 1.00

Ackermann 3 3
normalize 3739 3739 1.00
optimize 3739 3739 1.00

cube 1
normalize 58 31 1.87
optimize 58 33 1.76

cube 2
normalize 235 135 1.74
optimize 235 141 1.67

cube 3
normalize 638 369 1.73
optimize 638 381 1.67

cube 4
normalize 1363 787 1.73
optimize 1363 807 1.69

cube 5
normalize 2506 1443 1.74
optimize 2506 1473 1.70

fact 1
normalize 44 20 2.20
optimize 44 27 1.63

fact 2
normalize 142 69 2.06
optimize 142 94 1.51

fact 3
normalize 526 275 1.91
optimize 526 365 1.44

fact 4
normalize 2364 1321 1.79
optimize 2364 1700 1.39

fact 5
normalize 12876 7615 1.69
optimize 12876 9533 1.35

Table 4.7: Speedups from our generated compilers under call-by-name
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the cost of evaluating each variable in addition to its value.

4.8 Related Work

The following table compares our results with previous work in three dimensions: whether

the partial evaluator operates on a typed representation, whether it is self-applicable and

generates the Futamura projections, and whether it is Jones-optimal.

Typed Futamura Jones

representation projections optimal

Original mix [55]
√

Lambda-mix [47]
√

Similix [15]
√ √

Schism [32]
√

Untyped SbN [62]
√

TDPE [36]
√

Carette et al. [22]
√

Typed SbN
√ √

Typed SbO
√ √ √

Typed representation. Typed representation and typed meta-programming guarantee

strong correctness properties: they prevent type errors in generated code, and ensure that

meta-programs have the intended effect on the type of a program. Carette et al. [22]

implemented a typed partial evaluator that operated on a typed tagless-final representation.

Their object language was the simply-typed λ-calculus extended with integers, booleans,

and a fixpoint operator, and their meta-languages was MetaOCaml. Their partial evaluator

could not generate the Futamura projections and was not Jones-optimal.

Untyped and simply-typed Futamura Projections. A variety of partial evaluators

for untyped languages have enabled the three classical Futamura projections including the
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original mix [55], Lambda-mix [47], Similix [15], Schism [32], and Mogensen’s untyped spe-

cialization by normalization [62]. Gluck [46, 45] popularized the fourth Futamura projection

and showed how to achieve it.

The classical approach to meta-programming in statically-typed languages is to use an

untyped representation, which assigns a single type to all program representations. Launch-

bury [58] described a simply-typed partial evaluator for LML, which enables the first and

second Futamura projections.

Danvy [36] presented type-directed partial evaluation for a simply-typed language and

showed how it enables the first and second Futamura projections.

Our partial evaluator is polymorphically-typed and enables all the Futamura projections.

Our work differs from previous work in that the polymorphic type of our partial evaluator

lets type checking rule out a larger class of bugs.

Jones Optimality. Similix [15] achieved Jones optimality for untyped language, and work

by Taha, Makholm, and Hughes [83], and by Danvy and Lopez [37], achieved Jones optimality

for simply-typed languages. Gade and Glück [42] presented the first mathematical proof of

Jones optimality.

Our proof of Jones-optimality is different from that of Gade and Glück. They separate

out the definition of time(−) in two steps: first they show that the optimizations performed

by the partial evaluator monotonically decrease time(−). Then they define a set of programs

that cannot be “more optimized” by the specializer. To prove a specializer is Jones-optimal,

they show that compilation via the first Futamura projection is the identity on programs in

that set. We could use a similar approach for our proof of Jones-optimality. The set would

consist of the outputs of opt – that is, terms that have no statically-safe β-redexes, and no

redexes formed by type-abstraction and type-application or by fold and unfold.

Terminating Partial Evaluation. Asai et al. [8] proved various correctness properties

of a partial evaluator, including termination. The partial evaluator is implemented in a lan-

guage that is more expressive that the language being partially evaluated, so self-application
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is impossible. Our partial evaluator does not always terminate, though our experiments

demonstrate termination for important cases.

Other Related Work. Bondorf and Dussart [16], Birkedal and Welinder [14], and Thie-

mann [85] have shown how to write strikingly simple compiler generators by hand for untyped

or simply-typed languages. This is a major alternative to the use of a partial evaluator to

produce a compiler generator via the third Futamura projection. However, the task to write

a polymorphically-typed compiler generator by hand is significantly harder. Open question:

can one write a polymorphically-typed compiler generator by hand that is simpler than the

one we have generated automatically?

Techniques have been developed to prove semantic correctness of partial evaluation, in-

cluding a recent paper by Hirota and Asai [51]. We experimentally validate correctness of

our partial evaluators and leave a formal correctness proof for future work.

Shali and Cook [77] and Brady and Hammond [17] implemented partial evaluators for

Java and for a dependently typed language, respectively. Each supports the first Futamura

projection only. It is an open question whether those approaches can be extended to support

all four Futamura projections.

4.9 Conclusion

The typed, self-applicable, Jones-optimal partial evaluator developed in this chapter demon-

strates the practicality of typed self-applicable meta-programming. We answers several long-

standing open questions: whether it’s possible to program a self-applicable partial evaluator

that operates on typed representations, whether such a partial evaluator can be Jones-

optimal, and whether it can generate the four Futamura projections.

The key to achieving Jones-optimality and preventing slowdown from specialization is

our notion of specialization-safe β-redexes. This notion can be easily generalized to other

kinds of redex and other languages with term-rewriting operational semantics. Whether a

simple syntactic check like ours will exist in other settings will depend on the particulars of
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each setting.

Our results open new challenges for future work. One limitation of our partial evaluator

is that specialization doesn’t always terminate. Is it possible to ensure a typed self-applicable

and Jones-optimal partial evaluator terminates on all inputs? Also, that our partial evaluator

is Jones-optimal does not imply that its speedups are maximal. What new techniques can

be used to define a typed self-applicable and Jones-optimal partial evaluator with greater

speedups than ours?
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CHAPTER 5

Conclusion

This dissertation demonstrates the feasibility and usefulness of typed self-applicable meta-

programming. It includes several key contributions. Chapter 2 shows that typed represen-

tation makes self-interpretation possible even for strongly normalizing languages. Potential

applications for proof assistants, which are based on sound logics that correspond to strongly

normalizing languages via the Curry-Howard correspondence. Typed self-representation in

such a setting can be used to facilitate proofs by reflection, a powerful general-purpose proof

automation technique. Within the field of mechanized meta-theory, there is a line of work

that aims to formalize such logics in themselves. There are some similarities, for example,

typed representation is a core technique of both typed meta-programming and mechanized

meta-theory. However, the latter is more interested in proving deep meta-linguistic properties

than with self-application. Indeed, Gödel’s second incompleteness theorem states that one

important meta-linguistic property, namely consistency of the language, cannot be proved

in the language itself. Rather, the current focus is to formalize a core fragment of a logic in

itself.

Chapters 3 and 4 present the first statically-typed language that supports both kinds of

self-interpreter and a self-applicable partial evaluator. That the language Fµi
ω extends Fω

indicates that self-evaluation seems to be fundamentally more difficult than self-recognition.

In particular, self-evaluation seems to need some kind of recursion, and a notion of type

equality such that is often used to encode GADTs. While the self-evaluators nbe and opt

defined in Chapter 4 for the Böhm-Berarducci self-representation defined there do not use

the fixpoint combinator, they both require recursive types, specifically recursive intensional

type functions.
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The self-representations of Fµi
ω used in Chapter 3 Chapter 4 are isomorphic to each other,

and functions to convert between them can be defined in Fµi
ω itself. Each representation

has its own tradeoffs. The Mogensen-Scott encoding of Chapter 3 supports non-primitive-

recursive functions more easily than the Böhm-Berarducci encoding of Chapter 4. On the

other hand, primitive-recursive functions (folds) are more efficient on the Böhm-Berarducci

encoding, and do not require a fixpoint combinator. If we want to support self-applicable

partial evluation and all the self-evaluators from Chapter 3, all with a single canonical rep-

resentation and quoter, the Böhm-Berarducci representation is the better choice. The self-

evaluators that use the Mogensen-Scott representation can be easily adapted for the Böhm-

Berarducci representation by composition with the conversion functions between them. On

the other hand, our partial evaluators cannot be adapted for Mogensen-Scott encoding with-

out using a fixpoint combinator, which would make the Futamura projections no longer

terminate.

The techniques developed here are applicable to statically typed functional languages

like Haskell or OCaml that include GADTs and type-level computation. They may also

be applicable in Scala, which has a built-in notion of type equality. However, more work

is required to achieve typed self-applicable meta-programming in those languages. Our

techniques can be used to define new high-level languages that support typed self-applicable

meta-programming. For example, such a language could desugar to Fµi
ω or an extension of

it. This dissertation has solved the foundational problems of practical typed self-applicable

meta-programming. Our techniques would be compatible with extensions to Fωµi including

sum and product types, integers, booleans, and side effects.
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