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Learning to Act: Acquisition and Optimization of Procedural Skill

Frank J. Lee
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Abstract

People become highly reactive when performing dynamic,
real-time tasks like driving a car, playing a video game, or
controlling air traffic. However, people also go through
more deliberate stages in which they spend time reasoning
about constraints and actions. In this paper, we argue that
these are the end points on a learning continuum, and we
discuss one potential mechanism for bridging these
endpoints within the ACT-R (Anderson, 1993) framework.

Keywords: Procedural skill optimization, Learning in
dynamic task environments, Cognitive models of problem
solving.

Introduction

Performing dynamic tasks requires quick reaction to an ever-
changing, dynamic environment. While drving a car, for
instance, we have neither the time nor the luxury to perform
deep-level planning and problem solving when another car
suddenly veers into our lane. Because of the narrow slice of
time within which people must perceive their situation and
act, some researchers (e.g. Agre & Chapman, 1988) have
argued against deliberative problem solving methods like
means-ends analysis (Newell & Simon, 1972) in dynamic
task domains. They claim that the time required for classical
planning methods like means-ends analysis is simply too
long for dynamic tasks, in which one must react quickly.
Yet it is also the case that when people are learning to
perform novel tasks, they use deliberative problem solving
methods like means-ends planning (Anderson, 1982; Newell
& Simon, 1972). This raises the following question: How
does this transition from deliberative to reactive problem
solving occur?

We propose a potential mechanism that underlie this
transition within the ACT-R (Anderson, 1993) framework
using the Kanfer-Ackerman Air-Traffic Controller®! (ATC)
Task. The Kanfer-Ackerman ATC Task is useful, because
Ackerman (1994) has collected data from over 3500 subjects
on the Kanfer-Ackerman ATC Task and has made them
available on a CD-ROM (Ackerman & Kanfer, 1994) to the
Office of Naval Research (ONR).

IKanfer-Ackerman Air Traffic Controller Task© program is
copyrighted software by Ruth Kanfer, Phillip L. Ackerman, and
Kim A. Pearson, University of Minnesota.
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In this paper, we first outline a process by which task
instructions (encoded as declarative knowledge) are used
along with deliberative means-ends planning methods to
derive an initial suboptimal procedure for performing the
task.  In subsequent problem solving episodes, the
declarative trace of past problem solutions are then used to
develop procedures that are more optimal for rapidly reacting
to the environment. We compare the predictions of our
model with the behavior of Ackerman’s (1988)2.

The Kanfer-Ackerman ATC Task

Description of the Task

Although the Kanfer-Ackerman ATC Task is described in
detail in other places (e.g. Ackerman, 1988; Ackerman &
Kanfer, 1994), we bricfly go over the task here. The Kanfer-
Ackerman ATC 1ask display consists of the following
display elements (see Figure 1): (a) twelve hold pattemn
positions, (b) four runways, (c) feedback information on
current score and penalty, conditions of the runways, wind
direction and speed, (d) a queue stack with planes waiting to
enter the hold pattern, and (e) two message windows (one for
notification of weather changes, shown, and one for
providing feedback on errors, not shown). The twelve hold
pattern positions are divided into three levels corresponding
to altitude, with hold level three being the highest and hold
level one being the lowest.

Six rules govern this task: (1) Planes must land into the
wind, (2) Planes can only land from hold level one, (3)
Planes can only move one hold level at a time, but to any
open position on that level, (4) Ground conditions and wind
speed determine the runway length required by different plane
types (5) Planes with less than 3 minutes of fuel left must
be landed immediately, and (6) Only one plane at a time can
occupy a runway. A weather change occurs approximately
every 30 seconds, and planes enter into the queue
approximately every 7 seconds.

The Kanfer-Ackerman ATC task is composed of three unit
tasks: (1) accept planes from the queue into a hold pattern,
(2) move planes within the three hold levels, and (3) land
planes on a runway. The Tand | keys move the cursor up
and down between the different hold positions and runways,
the F1 key accepts the planes from the queue into a holding

2This data set is indexed as study #2 in Ackerman's CD-ROM
(Ackerman & Kanfer, 1994)
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Figure 1. The Kanfer-Ackerman Air Traffic Controller© Task.

pattern, and the J key selects a plane in the hold, places the
selected plane into an empty hold position, or lands a plane
on the runway. Cumulative score is calculated as follows:
a) 50 points for landing a plane, b) minus 100 points for
crashing a plane, ¢) minus 10 points for violating one of the
six rules that govern the task.

Task Instructions

Subjects are given sixty-one pages of computer-based
instructions on the ATC task. The instructions consists of
four sections: (1) how to move a plane between the hold
levels, (2) how to land a plane, (3) how to accept a plane
from the queue, and (4) the rules that govern the ATC task.
The first three sections can be viewed as descriptions of the
three unit tasks that underlie the ATC task. In the
instructions for these three unit tasks, subjects are first
presented with a single instruction page listing the subgoals
required to complete that particular unit task. This page is
followed by a series of pages describing a step-by-step
example of performance on that unit task. For instance, the
instruction page in Figure 2 is presented followed by an
example of landing a plane. After introduction to each unit
task, subjects are presented with the six rules that govern the
ATC task (see Figure 3 for example).

ACT-R Representation of the ATC Task

Declarative Representation of the Task Instructions

We encoded the instructions for the three unit tasks as step-
by-step declarative instructions in ACT-R. For example,
instructions on how to land a plane is encoded as a set of six
steps: (1) find a plane you want to land, (2) move to that
plane, (3) select that plane, (4) find a runway to land, (5)
move to that runway, and (6) select the runway. We encoded

land a plane:

1) Press the T or | key until the arrow
on the screen points to the plane you
want to land.

2) Press the .J key to select the plane.

1) Press the T or 4 key until the arrow
on the screen points to the desired
runway .

4) Press the . key again to land the
plane.

PRESS <SPACE BAR> TO CONTINUE

Figure 2: An instruction page on how to land a plane

PLANES MUST LAND INTO THE WIND.
(That is, if the wind is from
the South, the plane must be
landed on a N-S runway.

RULE 1:

[DIRECTION]

RULE 2: PLANES CAN ONLY LAND FRCOM LEVEL
1 [LEVEL]

RULE 3: PLANES IN THE HOLD PATTERN CAN

ONLY MOVE 1 LEVEL AT A TIME.
BUT TO ANY AVAILABLE POSITION
IN THAT LEVEL [HOLD]

PRESS <SPACE BAR> TO CONTINUE

Figure 3: An instruction page on task rules 1 3.
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the knowledge of how to land a plane as six steps instead of
tour (as shown in Figure 2), because (two steps are implicit
in steps 1 and 3 in Figure 2. The first implicit step is
finding a desired object, e.g. plane and runway, and the
second implicit step is moving to that object. Furthermore,
we encoded the rules of the task as declarative knowledge
specifying constraint information.

Performing the Task Initially with Weak Methods

When our model first attempts to perform the ATC task, it
does not have any procedures that it can use. This situation
is analogous to that faced by a subject who must perform
the ATC task for the first time, having just completed
reading the instructions. The model begins by searching in
its declarative memory for knowledge of how to perform the
ATC task.

The model retrieves from memory a declarative encoding
of the goal of the ATC task (1.e. to land planes). Then, the
model searches for relevant declarative knowledge on landing
planes. The model retrieves the encoding of the step-by-step
instructions on how to land planes. The model uses the
analogy mechanism (a built-in weak problem solving
method in ACT-R) to proceduralize the declarative
knowledge for landing planes. This creates a production
rule? of the form given in Figure 4. Once this production
rule is created, the model can now apply it to the current
goal of landing a plane.

After the production rule fires, the model must satisfy
several subgoals. First, the model must find a suitable
plane to land. Once again, the model lacks a ready method
that can satisfy this subgoal directly. The model uses a set
of domain general means-ends planning production rules. An
example of a domain general planning production rule is
given in Figure 5. This production rule (and others
associated with it) encapsulates domain general knowledge to
which we assume people have access. The production rule
basically states that if the goal i1s to select an object in a
category and we know of an object that belongs to that
category, then check if it is OK to choose that object. For
example, if the goal is to select an object of the category
“plane”, and we know of an object of that category, e.g.
flight # 347, then set a subgoal to check if flight #347
satisfies all known constraints on planes. If flight #347
fails to satisfy a constraint, the production rule will continue
to try out different objects of the “plane” category until one
is found that satisfies all the constraints.

IF the geal is to land a plane

THEN set a subgoal te find a suitable plane
set a subgoal to move to the plane
set a subgoal to select the plane
set a subgoal to find a suitable runway
set a subgoal to move to the runway
set a subgoal to select the runway

Figure 4: Initial production rule for landing a plane.

3ACT-R uses production rules to represent procedural skills.

IF the goal is to select an object of a
particular category
and there is an object of that category
and the object has not been tried before

THEN set a subgoal to check if the object
satisfies all the constraints

Figure 5: A general production rule for selecting an object.

After finding a suitable plane, the model subgoals to
move to that plane and select it. This process repeats to
search for a suitable runway. Different runways are tried
until one 1s found that satisfies all the constraints (such as
rule 6, which states that the runway must be empty). After
finding a suitable runway, the model subgoals to move to
that runway and selects it.

Optimizing Procedures With Declarative Memory
Trace of Past Problem Solving Episodes

A key assumption of our model is that subjects have access
to the declarative trace of their problem solving episodes. If
a subject just landed a plane, it seems reasonable that she
can recall from memory the steps used to satisfy the
subgoals for landing that plane.

Our model uses declarative trace of past problem solving
episodes to build more efficient procedures. Specifically,
optimization of production rules occurs through the process
of replacing subgoals on the action side of the production
rule with pattern matching on the condition side of the
production rule. Figure 6(a) lists an example of an
inefficient production rule, and figure 6(b) lists an example
of an optimized production rule.

IF the goal is to land a plane

THEN set a subgoal to find a suitable plane
set a subgoal to move to the plane
set a subgocal to select the plane
set a subgoal to find a suitable runway
set a subgoal to move to the runway
set a subgoal to select the runway

(a)

IF the goal is to land a plane
and there is a plane in hold one
and there is an open runway

THEN move to that plane
select that plane
move to that runway
select that runway

(b)

Figure 6: (a) An example of an inefficient rule, and (b) An
example of an optimized rule.
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Figure 7. ACT-R Model’s Latency Predictions for Landing a Plane.

Optimization is a process by which production rules
become task-specific through experience. It is similar in
spirit to Anderson’s (1982) knowledge compilation process,
but the scope of the our optimization process is much
smaller. The logic behind the optimization is that in the
process of landing the first plane, one must slowly reason
out what constitutes a “suitable” plane and runway.
However, after having reasoned this out the first time, one
should be able to capitalize on this knowledge to narrow
down the search space in choosing a plane and a runway in
subsequent plane landings. In particular, one should only
consider planes in hold one and runways that are open, along
with other constraints.

To reiterate, the model initially performs the ATC task by
using deliberative, domain general planning methods. Later,
the model capitalizes on the knowledge gained through
deliberative planning methods to develop more specialized,
task-specific production rules. As we will show, this
process of procedural skill learning that we are proposing
makes some specific predictions about the timing of plane
landing.

Predictions from the Model

When a trial begins, the arrow starts at the highest slot,
“3n”, in hold level three. The quickest way to land a plane
from this point 1s to move to a plane in hold level one,
select 1t, move to a runway, and then land. We can break up
the time to land the first plane into a sequence of six events.
First, the time between the beginning of the trial to the first
down arrow pressed, firstkey. Second, the mean time to
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press a down arrow key when moving to a plane in hold
level one, interkey-1. Third, the time between the last down
arrow key pressed in moving to the plane and the enter key
pressed o select the plane, preselecr. Fourth, the time
between the enter key pressed to select the plane to the first
down arrow key pressed 1o move to the runway, postselect.
Fifth, the mean time to press a down arrow key when
moving to the runway, interkey-2. And finally, sixth, the
time between the last down arrow key pressed in moving to
the runway and the enter key pressed to land the plane, land.

The first time the model attempts to land a plane, it uses
the deliberative production rule described in Figure 4. To
land a second plane, the model uses the optimized production
rule described in Figure 6. Figure 7 plots the predicted
latency for the six events, for the deliberative production rule
used for first landing and the optimized production rule used
for second landing. As shown in the figure, the model
predicts that the deliberative production rule will take longer
for firstkey, where the deliberation for choosing a plane
takes place, and postselect, where the deliberation for
choosing a runway takes place. This 1s because the model
must reason out what are “'suitable™ planes and runways for
the first landing of a plane. However, for the second landing
of a plane, the model uses the constraint knowledge gained
from the first landing of the plane to construct a more task-
specific production rule that has the constraint information
built into the pattern matching side of the new rule and
thereby eliminating the need to perform the deliberate
problem solving.
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Figure 8: Latency data of subjects from Ackerman (1988).

In addition, shown in Figure 7, the model also predicts
that acceleration in learning will be concentrated at the two
points where long deliberation takes place during initial
problem solving. This is because in subsequent landings,
the model is able to build more task-specific production
rules with constraint information on the pattern matching
side of the production rule, thus eliminating the need to
perform deliberative planning. In particular, while
attempting to identify what are "suitable” plane and runway,
the model realizes, for example, that all planes must be in
hold one before one can land it. The model uses this
knowledge to develop a new production rule in which this
knowledge is built into the pattern-matching side of the
production rule. Hence, the constraint knowledge gained
through long deliberation during the first problem solving
episode is used to build a production rule that automatically
selects planes in hold level one.

Analysis of Subject Data

We used data from 58 of Ackerman's (1988) 64 subjects in
our analysis. We excluded data from 5 subjects who did not
complete at least eighteen (10-minute) trials, and also data
from 2 subjects due to an error during their decompression
from the Kanfer-Ackerman CD-ROM (Ackerman & Kanfer,
1994).

Figure 8 plots the mean latency for the six key events for
those subjects who were able to successfully land the first
plane at the beginning of each tnal with only a two key
deviations from the shortest key sequence necessary for the

landing (e.g. up-arrow key). The number enclosed in
parentheses next to the trial number shows the total number
of subjects meeting this criterion.

As shown in Figure 8, the latency profile for the six
events in trial 1 is similar to that predicted by the first
landing latency profile in our model (Figure 7). The only
difference is that our model predicts a larger contrast between
latency time for preselect and postselect, whereas in the
subject data, these two events show a similar latency profile.
A reasonable explanation for this is that within our model,
the entire burden of deliberation for choosing a runway is
placed in the postselect event. In reality, however, it is
more likely that some subjects are choosing a runway before
they press the “enter” key. Since the data plotted for trial 1
in Figure 8 is aggregated over 20 subjects, this may reflect
an aggregation of two types of subjects: (1) subjects who
look for a runway before they press the “enter” key, and (2)
subjects who take the time to look for a runway after they
press the “enter” key. Hence, if we average over preselect
and postselect latency time, the model predicts a little less
than six seconds of latency, which is consistent with the
subject data.

In addition, the prediction of our model that acceleration
in learning will be concentrated at the points of deliberation
is also borne in the subject data shown in Figure 8. As can
be seen, the acceleration in learning is occurring precisely at
the firstkey event, where the deliberation for finding a plane
takes place, and at the preselect and postselect events, where
the deliberation for finding a runway takes place.
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However, while it is clear that the first landing of the
model is comparable to the first landing of subjects in trial
1, the model is less capable of predicting second landing. In
particular we forced the model to use the optimized
production to land the second plane, in order to examine the
implications of the procedure optimization process that we
have posited. As for the subject data in Figure B, which
indicates a gradual learning process, we hypothesize at least
two types of processes at work. First, while the production
may be learned, it may not necessarily fire the next time.
Instead, it may take time for the procedure to gain enough
strength to fire. The second, the aggregation over subject
data may hide the differential rate at which subjects are
learning and using the optimal production rule. Individual
differences in the rate at which subjects acquire and use the
efficient production rule likely vary among different people.
The purpose of our modeling effort was to describe a
procedural optimization process which can account for the
qualitative acceleration in learning in dynamic tasks like the
ATC trask.

Conclusion

The ideas elaborated in our model are consistent with past
research in acquisition of procedural skill from instructions.
Catrambone (1990, 1995) has examined how procedural
skills are acquired from instructional text. In particular, he
differentiates between specific and general knowledge. He
argued that general knowledge is more important, because it
transfers better to novel tasks. However, specific knowledge
is faster than general knowledge in its application
(Catrambone, 1990). Since speed is critical in performing
dynamic, time-constrained tasks (Agre & Chapman, 1987),
it is precisely the acquisition of such task-specific procedural
skills that becomes critical in dynamic tasks.

In addition, our use of a memory trace for past problem
solutions is also consistent with other research efforts like
Hammond's (1990) case-based planning. Hammond (1990)
has argued that people retrieve past plans and modify it to
solve the current problem. However, our process differs
from case-based planning, because we use the declarative
trace of past problem solutions to develop more efficient
procedures. Learning in case-based planning is fairly
limited, for example, to accumulation of plans in memory.

In the ATC task and other dynamic tasks, people become
highly reactive just as the situated theorists have argued.
However, we have shown that people actually go through a
more deliberative stage in which they spend considerable
time reasoning about constraints.  Indeed, these two
situations are not mutually exclusive. They may instead
define two endpoints of a learning continuum in dynamic
tasks.

Our purpose, therefore, has been to try to provide a bridge
between deliberative problem solving methods (e.g. Newell
& Simon, 1972) that are necessary in initially performing in
a novel task domain, and the need to react quickly to the

environment, as posited by theory of situated activity (e.g.
Agre & Chapman, 1987). ACT-R is a model that is
capable of producing this transition from deliberation to
reaction (see John & Bauer, 1995 for an alternative model
within the Soar architecture for skill learning in dynamic
task). It does so by learning from declarative traces of its
initial problem solving efforts. Moreover, it is capable of
making predictions about landing times and their speed-up
which are approximately in the ball park of the observed
times.

Acknowledgments

The research reported in this paper was supported by the
Office of Naval Research, Cognitive Science Program, under
Contract Number N00OO14-95-1-0223 to Lynne M. Reder and
John R. Anderson. We would like to thank Kevin Gluck
and Doug Thompson for comments on earlier drafts of this
paper.

All correspondences should be addressed to Frank J. Lee at
the Department of Psychology, Carnegie Mellon University,
Pittsburgh, PA 15213-3890.

References

Ackerman, P. L. (1988). Determinants of individual
differences during skill acquisition: Cognitive abilities and
information  processing. Jowrnal of Experimental
Psychology: General, 117, 288-318.

Ackerman, P. L., & Kanfer, R. (1994). Kanfer-Ackerman
Air Traffic Controller Task© CD-ROM Database, Data
Collection Program, and Playback Program. Office of
Naval Research, Cognitive Science Program.

Agre, P. E., & Chapman, D. (1987). Pengi: An
implementation of a theory of activity. In Proceedings of
the Sixth National Conference on Artificial Intelligence,
268 - 272.

Anderson, I. R. (1982). Acquisition of cognitive skill.
Psychological Review, 89, 369-406.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ:
Lawrence Erlbaum Associates.

Catrambone, R. (1990). Specific versus general procedures
in instructions. Human Computer Interaction, 5, 49-93.
Catrambone, R. (1995). Following instructions: Effects of
principles and examples. Journal of Experimenial

Psychology: Applied, 1, 227-244.

Hammond, K. (1980). Case-Based Planning: Viewing
Planning as a memory Task. New York, NY: Academic
Press.

John, B. E. & Bauer, M. L (1995). Modeling Time-
Constrained Learning in a Highly Interactive Task. In
Conference on Human Factors in Computing Systems
(CHI'95), 19-26.

Newell, A., & Simon, H. A. (1972). Human Problem
Solving. Englewood Cliffs, NJ: Prentice Hall.

423



	cogsci_1997_418-423



