
Lawrence Berkeley National Laboratory
Lawrence Berkeley National Laboratory

Title
Integrating Grid Services into the Cray XT4 Environment

Permalink
https://escholarship.org/uc/item/6rj9s5ds

Author
Cholia, Shreyas

Publication Date
2009-05-08

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rj9s5ds
https://escholarship.org
http://www.cdlib.org/

CUG 2009 Proceedings 1 of 9

Integrating Grid Services into the Cray XT4 Environment

Shreyas Cholia and Hwa-Chun Wendy Lin,
National Energy Research Scientific Computing Center at

Lawrence Berkeley National Laboratory

ABSTRACT: The 38640 core Cray XT4 "Franklin" system at the National Energy
Research Scientific Computing Center (NERSC) is a massively parallel resource
available to Department of Energy researchers that also provides on-demand grid
computing to the Open Science Grid. The integration of grid services on Franklin
presented various challenges, including fundamental differences between the interactive
and compute nodes, a stripped down compute-node operating system without dynamic
library support, a shared-root environment and idiosyncratic application launching. In
our work, we describe how we resolved these challenges on a running, general-purpose
production system to provide on-demand compute, storage, accounting and monitoring
services through generic grid interfaces that mask the underlying system-specific details
for the end user.

KEYWORDS: Cray, XT4, grid, Globus, distributed computing, OSG, science gateways,
MPI, PBS

1. Introduction
High performance computing (HPC) is becoming

increasingly parallel. With clock speeds flattening out,
and power consumption playing a major role in CPU
design, multi-core and many-core technologies are seen as
the most efficient way to increase overall performance
and scalabilty. While grid computing originally evolved
from a serial model of computing, it has become
increasingly important for grids to be able to take
advantage of highly parallel resources in order to
maximize resource utilization, while maintaining the
benefits of a distributed, on-demand service. Because of
its unique architecture, the Cray XT4 system presents a
special set of challenges when it comes to integrating grid
services and tools with the underlying environment.
NERSC has successfully integrated on-demand grid
services based on the Open Science Grid (OSG) software
stack on its 38640 core (38128 compute cores) Cray XT4
system. In this white-paper, we discuss the challenges
presented by this environment and our solution for

creating fully functional OSG compute and storage
elements on this system. We pay special attention to
security, job management, storage, accounting and
reporting services for the grid, while using the principal of
least privilege to set up the software stack. The end result
is a parallel OSG computing platform that can be
transparently accessed through generic grid software. This
allows users to access the underlying HPC resources
without needing detailed knowledge of the Cray XT4
architecture, thus increasing overall usability through
transparent, service-oriented, cross-platform interfaces.

The NERSC Cray XT4 system, named Franklin, is a

massively parallel compute system available for scientific
research. The system is capable of providing 356
TFlop/sec of computational power through its 9532 quad-
core 2.3 GHz AMD-Opteron processors. It also provides
access to a 436TB Lustre parallel filesystem. Franklin is
located at the NERSC supercomputing center at Lawrence
Berkeley National Laboratory, and is available to
scientific researchers under the umbrella of the Office of
Science in the U.S. Department Of Energy.

CUG 2009 Proceedings 2 of 9

2. What is Grid Computing?
Grid computing provides the ability to share and

aggregate heterogeneous, distributed computational
capabilities and deliver them as a service. According to
Ian Foster, a grid is a system that “coordinates resources
that are not subject to centralized control, using standard,
open, general-purpose protocols and interfaces, to deliver
nontrivial qualities of service”. This idea can be
explained by the following principle: a uniform set of
software interfaces to access non-uniform and physically
distributed compute and storage resources. In practice,
grid computing does not make any sense unless the
underlying resources (compute systems, data storage
systems) are integrated into a larger whole i.e. a working
grid that coordinates resources and users.

There are several flavors of grids, but, for the most

part, scientific computing grids seem to have converged
on a common interoperable infrastructure as seen in the
OSG, TeraGrid, Earth Systems Grid and EGEE to name a
few. Most of these grids use some flavor of the Globus
middleware stack or equivalent to provide a common
layer of services that expose the underlying resources

Grid computing is well equipped to deal with serial

and “embarrassingly parallel” tasks (computational jobs
that can be broken up into parallel tasks that require little
to no communication between these tasks). This model
has been exploited by certain scientific applications,
particularly in the high-energy physics community. There
is little interaction between nodes running a subtask, and
each task can run to completion, without consideration for
other nodes in the system. However, there has been an
increasing need for access to grid based parallel
computers – systems that can be provisioned on-demand
based on specific needs, while still providing the benefits
of a highly parallel resource with a fast interconnect. This
allows users to farm out a tightly coupled set of
computational interactions to an appropriately tightly
coupled system that matches the job requirements.

Additionally, user data is often distributed across

multiple centers and may need to be moved across the
grid, to an appropriate storage resource that is local to the
computational tasks. There needs to be a set of standard
high-performance interfaces to access and transfer data
from multiple locations. This points to a data-grid where
users can move data across resources transparently.

3. Open Science Grid
The Open Science Grid (OSG) is a distributed

computing infrastructure for large-scale scientific
research, built and operated by a consortium of
universities, national laboratories, scientific collaborations
and software developers. Researchers from many fields,
including astrophysics, bioinformatics, weather and
climate modeling, computer science, medical imaging,
nanotechnology and physics use the OSG infrastructure to
advance their research.

Sites can make their resources available to the OSG

by installing a pre-defined service stack that is made
available as part of the Virtual Data Toolkit (VDT). This
includes the Globus software stack for the core
computational and data grid functionality, and a set of
supporting software for coordinating the resources in the
grid. The Globus Toolkit includes services that support
the following operations:

1. GSI user and host authentication and
authorization

2. Globus Job submission and management through
GRAM (GT2 and GT4)

3. File storage and transfer through Globus
GridFTP

Additionally a site must be able to advertise resource

descriptions and availability, and report on usage
accounting information back to the central OSG
infrastructure. In order to do this the site must run a set of
services:

1. CEMon for resource descriptions
2. RSV probes for resource availability
3. Gratia probes for accounting information

As the OSG broadens in scope parallel computing

becomes increasingly important as a means to achieve
scalable performance. Newer science communities
including ones in bioinformatics and climate science have
a stake in the OSG, but also have parallel HPC
requirements for their jobs. The NERSC Franklin system
plays a key role in fulfilling the parallel computing needs
of the OSG.

Opening up the NERSC Cray XT4 system to the

OSG allowed us to deliver the power and scale of a
massively parallel HPC system to whole new set of
scientists. This has created an opportunity to enable new
science by allowing scientists from around the world to
run their jobs in this manner through the OSG.

CUG 2009 Proceedings 3 of 9

However, there are some peculiarities in the XT4
architecture that make this quite a challenge. The key
behind grid computing is the idea of a standard, uniform
interface that can be used to access a wide variety of
underlying platforms. This means that any system specific
details must be hidden from the user. The user only needs
to define the job or workflow or data transfer operation
through a common interface, and to be able to query the
resources or jobs. The grid middleware must then
abstract all system specific details, and should be able to
interface with the underlying environment to be able to
manage these requests.

In the rest of this paper we describe how we set up

and configured the OSG and Cray software to navigate
the complexities of the XT4, so that the system could be
available to grid users in a transparent fashion. This paper
is primarily focused on OSG, but much of it applies to
any Globus based grid

4. Franklin Cray XT4
The following table describes the current Franklin

Cray XT4 system configuration and computing
environment (Table 1.):

Number of compute nodes 9,532
Processor cores per node 4
Number of compute
processor cores

38,128

Processor Core type Opteron 2.3 GHz Quad
Core

Physical memory per
compute node

8 GB

Memory usable by
applications per node

7.38 GB

Number of login nodes 10
Switch Interconnect SeaStar2
Usable disk space 436 TB
Batch system PBS Torque/Moab
Service Node Operating
System

SuSE SLES10 SP1 Linux

Compute Node Operating
System

Compute Node Linux

Communication Layer Portals
Compute Node
Application Launcher

ALPS utility (aprun)

Table 1. Franklin Configuration

There are a few things worth noting about the above

configuration:

1. The system is partitioned into service nodes and
compute nodes. The service nodes handle
interactive user-logins, batch system
management, and I/O. The compute nodes run
user jobs.

2. The compute nodes do not have the same
environment as the interactive or service nodes.
While the interactive nodes have a full-featured
derivative of SuSE Linux, the compute nodes run
a stripped down operating system called
Compute Node Linux (CNL). This allows for
increased scalability and performance on the
compute nodes, but also means that any
executables that are staged on the service nodes,
must be precompiled as static binaries, since
there is no formal support for dynamically
loaded libraries.

3. We use a version of OpenPBS called Torque,
along with the Moab job scheduler, to manage
the batch system. From the standpoint of the grid
software, this is equivalent to any standard PBS
system, and we will simply refer to it as PBS in
the rest of this paper. The PBS batch system runs
on a separate set of service nodes called the
MOM nodes that handle job processing.

4. Service nodes run diskless and make use of an
NFS filesystem exported from the System
Database node for non-root common files.

5. Application launching is done through a special
utility called “aprun” instead of the more
common mpirun/mpiexec tools because of the
unique nature of the compute nodes.

5. NERSC Franklin Grid Configuration
Because of the idiosyncrasies described in the

previous section, configuring grid software on a running
production system, takes on additional complexity. In this
section we describe the overall approach to configuring
grid software on Franklin.

Designated Grid Node
We designate one of the interactive nodes as the grid

node. All grid services run on this node. Control
connections for grid traffic go through this grid node. We
install the OSG Compute and Storage Element software
on the grid node. This is the point of contact for the OSG
with respect to routing jobs/data and collection of site
information. We also ensure that xinetd is installed on the
node for service startup.

DNS Aliasing
We use a DNS alias for the grid node in the OSG

software configuration. This allows us to transparently
switch to an alternate node in case of failure, by simply

CUG 2009 Proceedings 4 of 9

pointing the DNS alias to a new, pre-configured backup
grid node. For example, the Franklin grid node is referred
to by its DNS Alias (franklingrid.nersc.gov) by any OSG
consumers. This is currently mapped to a specific node
(nid00256-eth0.nersc.gov) in DNS. In case of a failure,
we simply change the DNS mapping for
franklingrid.nersc.gov to the failover node, but since the
grid clients only use the generic alias, this change is
essentially transparent.

Note: All GSI host certificates need to be issued for

the actual DNS hostname (not the generic alias).
However, this should be transparent to the clients who
will only to connect to the alias.

Install on Shared NFS Filesystem
Service nodes run diskless with a preconfigured boot

image and a shared root filesystem, which makes it non-
trivial to make configuration changes. Configurations are
defined for different classes of nodes (login node,
network node, dvs node etc.) with a specific login node
set up as the grid node.

We avoid installing software on the shared-root
filesystem as much as possible. Instead we install it on the
common filesystem called /usr/common, which is NFS
imported from the sdb (system database) node. When
necessary, we create symbolic links in the shared-root
pointing to /usr/common for the software installation and
configuration. For node specific configuration, we create
per node links in the common filesystem. In practice this
means:
• installing grid software in a common filesystem as a

non-root administrative user
eg. /globus

• setting up per-node directories in the common
filesystem for node-specific files
eg./globus/gridsecurity/nid1234/hostcert.pem

• creating symbolic links for the grid node to point to
appropriate locations
eg. /etc/grid-security→/globus/grid-security-nid1234,
/etc/grid-security/certificates→/globus/certificates

• The only exception for this is service software that
needs to be run out of init or xinetd.

Install as non-root user
We try to install most of the OSG software as a non-

root administrative user (such as “globus”). This allows
us to maintain a clear privilege separation. This will
prevent us from running the automated startup installers
for xinetd and init. These must be configured manually,
by copying the appropriate files from the OSG software
bundle. Where possible, servers and cron jobs are run as a
non-root user.

Before we discuss how we set up specific
components of the grid infrastructure, it may be helpful to
go over the usage model for grid software.

6. Usage Model
From a user’s standpoint the grid infrastructure could

allow her to submit a job or move data to multiple
locations, each with very different underlying
architectures, while using the same front-end interface.
Alternately, the user could query the grid for a list of
resources and select her target resources based on the job
and data characteristics.

In our model (Figure 1.) we envision that users will

access grid resources through gateway portals where they
can define jobs and select target resources through web
interfaces. This is then translated into the appropriate
Globus job specification by the web portal and sent to the
target site. At the target site the job then gets translated
through the local job manager to the batch system.

Figure 1. Submitting a job through a web portal

Alternately, more experienced users, may wish to use

a grid job management framework like Condor-G to write
their own generic job descriptions which can be submitted
to target resources. Example 1. shows a simple Condor-G
job description for a 4 way MPI job.

Universe = grid
Executable = test_dir/test_application
transfer_executable = false
grid_resource=gt2 franklingrid.nersc.gov/jobmanager-pbs

CUG 2009 Proceedings 5 of 9

globus_rsl = (jobType=mpi) (count=4)
output = test.out
error = test.err
log = test.log
Queue

Example 1. Condor-G job example

The Condor-G client will convert this into Globus
RSL before submission to the jobmanager. A simplified
version of the RSL is shown in Example 2.

& (count=4)
(jobtype=mpi)
(directory=test_dir)
(executable=test_dir/test_application)
(stdout=x-gass-
cache://$(GLOBUS_GRAM_JOB_CONTACT)stdout
anExtraTag)
(stderr=x-gass-
cache://$(GLOBUS_GRAM_JOB_CONTACT)stderr
anExtraTag)

Example 2. Globus RSL example

Condor-G also handles the complexities of staging
files in and out, as well as dealing with intermediate files
and caches. Simple jobs can also be submitted directly
through the Globus RSL, but since this becomes unwieldy
for more complex jobs, Condor-G is the preferred
interface for job submission on the OSG.

So, in order to run a 1000-way parallel job on another
grid resource, the user would run an ldap query for a
resource with the appropriate backend hardware, and
submit the job to the given resource. All they would have
to change in the above example would be the target
resource and the level of parallelism.

Compare this with a specification for the same job on

Franklin’s local PBS batch system (Example 3.).

#PBS -l mppwidth=4
#PBS -l mppnppn=4
#PBS -e test.err
#PBS –o test.out
cd $PBS_O_WORKDIR
aprun -n 4 -N 4 ./a.out

Example 3. PBS job description

There are several system specific details that would

ideally be hidden from the end user. Many of these details
such as processor count or job launcher syntax are
generally constant for a given system and are best left for
the system administrators to determine. Moreover

different parallel machines may be configured with very
different underlying batch processing systems.
Respecifying the above job to run on a loadleveler or SGE
queue would require a completely different set of
directives that essentially accomplish the same task. By
using a single grid job specification, you can now run the
same parallel job on multiple systems, without having to
rewrite the job for each system.

Life Cycle of a Grid Job
The following describes the lifecycle of a grid job in

the Condor-G/Globus framework on Franklin:
1. User defines job in condor or Globus RSL on

client
2. Authenticate to Globus gatekeeper on Franklin

grid node
3. Upon successful authentication, stage in files if

needed
a. Authenticate to Franklin gridFTP server
b. Use globus-url-copy to stage files from

client to gridFTP server
4. Upon successful stage-in, submit job to PBS job

manager
5. Jobmanager converts Globus RSL into PBS job

submission script
6. Jobmanager issues qsub

a. Submit job to PBS
b. Get PBS Job ID to keep track of job

7. Return a Globus endpoint URL for the client to
query

8. Client will query endpoint
a. Server listens on endpoint
b. Returns Job status

9. Server periodically queries PBS for job status
10. Upon job completion server will change status to

DONE
11. Client will pull any files that need to be staged

out

7. OSG Software Configuration
This section describes how we configure the OSG CE

software stack for the Cray XT4. While we provide some
basic background information, it is assumed that the
reader will have some familiarity with the Globus toolkit
and the VDT/OSG service stack. More details on how to
configure an OSG compute element can be found here:
https://twiki.grid.iu.edu/bin/view/ReleaseDocumentation/
WebHome
We cover the following software components here:

1. Overall Installation
2. GSI Authentication and Authorization
3. Globus Job Submission
4. File transfer through GridFTP

CUG 2009 Proceedings 6 of 9

5. Site Monitoring and Availability through
CEMon and RSV

6. Job Usage Accounting with Gratia

7.1 Overall Installation
The OSG software is installed from the VDT toolkit

using an installation management tool called “pacman”.
The basic installation works as follows:

1. Download and install latest OSG release (SLES
Compute Element and PBS components) from
VDT using pacman

2. Run osg configuration script (configure-osg.py)
for site specific details.

3. Run vdt-control tool to install specific services
We go through the default installation procedure, but

must run step 3 manually because of the root separation
constraints described earlier. Steps 1 and 2 are run as a
non-root administrative user and will create a complete
software installation in the desired location. We manually
copy the OSG services, init and xinetd entries as the root
user into the grid node configuration.

7.2 Authentication and Authorization:
The OSG grid infrastructure at NERSC uses a model

based on PKI X.509 grid certificates and the Grid
Security Interface (GSI) to handle authentication and
authorization functions. This enables a single sign-on
(SSO) type system, where the user is in possession of a
single identity certificate, and can authenticate to multiple
sites using the same certificate. SSO technology is crucial
for access to multiple sites since managing multiple
credentials for each resource does not scale well on the
grid. This model assumes the presence of certain
dynamically generated files to provide authorization and
authentication information.

Authentication:
A set of trusted certificate authorities (CAs) and their

associated certificate revocation lists are downloaded
periodically from a central repository at NERSC (the
contents of which are updated from their authoritative
sources as determined by the OSG). The NERSC grid
infrastructure will trust a user that presents a certificate
issued by one of these trusted CAs. A user is
authenticated if he/she presents a valid (signed, unrevoked
and unexpired) certificate from a trusted CA.

Authorization:
An authorization map file (grid-mapfile), containing

mappings from certificate subject Distinguished Names to
local accounts is updated periodically from an LDAP
database at NERSC. Once a user has been authenticated
(has a valid certificate) they need to have a valid mapping
in this file to be authorized to use the resource as a
specific user. If no valid mapping exists, the request to
access the resource is denied.

Both these steps rely on a set of files that are being

constantly repopulated with current information. The grid
infrastructure expects these files to be in a specific
location on the root filesystem. However, since it is not
practical to update files in the root filesystem, and since
these files will be shared across nodes, we create a
symbolic link pointing to a shared writable filesystem.
This allows us to keep these files updated, and enables
sharing these files across the entire system.

Note: The OSG software also has support for a more

dynamic authentication and authorization service in the
form of GUMS. While we do not use this service at
NERSC because of incompatibilities with our site account
management infrastructure, it significantly simplifies the
above process by replacing these files with an external
service that provides authentication and authorization
assertions.

7.3 Globus Gatekeeper and Jobmanager:
Globus jobs are described using a generic job

specification language called the Resource Specification
Language (RSL). A job specified in Globus RSL can be
submitted to any Globus GRAM gatekeeper, irrespective
of the backend compute platform or batch system.

The Globus jobmanager is the interface between the

generic Globus RSL and the underlying batch system. It
will translate RSL directives into batch system specific
directives. The jobmanager also supports running fork
commands directly on the grid node.

Franklin uses PBS to manage its job queues. Any

batch job that comes in as Globus RSL must be translated
into a PBS job script. The default Globus PBS
jobmanager is designed to work with a very simple PBS
installation, but does not handle the specifics of the Cray
XT4 very well. We had to make the following
modifications to the pbs.pm jobmanager file to get this to
work on Franklin:

1. Replace MPI launcher comands (mpirun /
mpiexec) with Cray’s aprun.

2. Default to MPI jobs.
3. Modify nodefile semantics, so that node

selection is automatically handled by PBS.
4. Change “cluster” variable for single jobs, to

differentiate from MPI jobs.
5. Support for mppwidth and mppnppn directives in

PBS job file.
6. Identify the job executable and launch this

directly through aprun, instead of wrapping this
in a job script.

CUG 2009 Proceedings 7 of 9

Additionally the system administrators have the
ability to include default environment variables and PBS
settings by making minor modifications to the pbs.pm
file. For example, one may wish to redirect grid jobs to a
specific queue, or adjust the number of processors that are
available to a job on a given node.

For fork jobs (simple jobs that run immediately on

the grid node), we simply use the default Globus Fork
jobmanager. Globus also supports other batch systems –
LSF, Loadleveler, Condor, SGE. Similar modifications
would be required if these were managing the batch
queue.

7.4 GridFTP:
GridFTP provides a high performance file transfer

layer for moving data in and out of Franklin. In order to
take full advantage of GridFTP, we need to be able to
tune buffer sizes and set up striped transfers. GridFTP
needs to be able to make both incoming and outgoing
connections to work optimally, particularly when
performing striped transfers.

To do this we create a hole in the network firewall

and reserve a range of ports for GridFTP to be able to
make and accept connections in both directions. We
configure the GridFTP server to use this port range
through an environment variable.

GLOBUS_TCP_PORT_RANGE=<START>,<END>

Here <START> and <END> define the beginning

and end of the open port range. We then rely on more
sophisticated network monitoring techniques, such as the
BRO intrusion detection system, to ensure that the open
ports are not being abused by malicious entities.

Additionally we configure GridFTP to use the

generic DNS alias for the host, so that users have a
standard endpoint to connect to, irrespective of underlying
node changes

GLOBUS_HOSTNAME=franklingrid.nersc.gov

In the context of grid jobs, the Franklin GridFTP

server provides an interface to stage-in input data and
stage-out the results and output files back to the client.
Stage-In and Stage-Out are handled directly by a GridFTP
server on the interactive grid node, and are not typically
managed by the batch system.

7.5 Monitoring and Availability Reporting:
In order for a system to integrate well with the grid, it

must advertise details about its system configuration and
availability. This allows users to make queries based on

desired system characteristics and to schedule jobs on
appropriate resources. For example a user may be
interested in a parallel resource with a certain number of
cores or a particular flavor of MPI. Monitoring and
availability software plays a key role in matching users
and jobs with the appropriate resources, thus optimizing
grid usage.

In the OSG CEMon provides this functionality.

CEMon runs as a Java web service in an Apache Tomcat
container that queries the local resources and reports back
to a central OSG collector in two formats - ReSS (for
condor matchmaking services) and BDII (for WLCG
compatibility). The CEMon information is based on the
Generic Information Provider GLUE schema which
includes several attributes considered important to grid
users when trying to select resources.

In order to support MPI and parallel jobs we need to

extend the GLUE schema to publish additional attributes
that are necessary to describe a parallel platform.
Specifically, we publish the following extended attributes:

• MPIInterconnect
• MPIVendor
• MPICompilerLocation

We update the Glue Schema template file

(gip/etc/GlueCluster.template) with these attributes to
make sure they get published.

CEMon is expected to run on the main interactive

grid node for the cluster. By default CEMon will query
this node for system characteristics and report back to the
OSG CEMon collector.

However, on the Franklin system, much of this

information will be inaccurate for the compute node
where the user’s job is expected to run. For example the
interactive node runs a version of SLES 10 Linux, while
the compute node runs a very different operating system -
CNL – with a stripped down Linux kernel and much more
restrictive functionality.

CEMon provides a mechanism to override this

information, and to publish additional attributes in the
form of two files:

• add-attributres.conf – publish additional attributes

(See example 4.)
• alter-attributes.conf – modify values for existing

attributes (See example 5.)
•

CUG 2009 Proceedings 8 of 9

Cray MPICH2
dn: GlueSoftwareLocalID=MPICH2-pgi_2.1.4HD,
GlueSubClusterUniqueID=franklingrid.nersc.gov,
GlueClusterUniqueID=franklingrid.nersc.gov,mds-vo-
name=local,o=grid
objectClass: GlueClusterTop
objectClass: GlueSoftware
objectClass: GlueKey
objectClass: GlueSchemaVersion
GlueHostApplicationSoftwareRunTimeEnvironment:
pgi_2.1.41HD
GlueSoftwareLocalID: MPICH2-pgi_2.1.41HD
GlueSoftwareName: Cray MPICH2 PGI

GlueSoftwareVersion: 2.1.41HD
GlueSoftwareInstalledRoot: /opt/cray/xt-asyncpe/2.0
GlueSoftwareModuleName: PrgEnv-pgi
GlueSoftwareEnvironmentSetup: module load PrgEnv-
pgi
GlueChunkKey:
GlueSubClusterUniqueID=franklingrid.nersc.gov
GlueSchemaVersionMajor: 1
GlueSchemaVersionMinor: 3

Example 4. Add-attributes.conf for Franklin

dn: GlueSubClusterUniqueID=franklingrid.nersc.gov,
GlueClusterUniqueID=franklingrid.nersc.gov,mds-vo-
name=local,o=grid
GlueHostApplicationSoftwareRunTimeEnvironment:
pgi_2.1.41HD
MPIVendor: MPICH2
MPIInterconnect: CStar
MPICompilerLocation: /opt/cray/xt-asyncpe/2.0/bin/cc

Example 5. Alter-attributes.conf for Franklin

Use of the above files, allows us to accurately

describe the underlying system architecture in the
published CEMon records.

7.6 Accounting:
While the PBS accounting records provide a

comprehensive view of all jobs run, we need to be able to
separate any grid jobs from the local jobs. The grid jobs
need to be reported back to the centralized grid
accounting collector (Gratia), so that usage can be tracked
for a given user or Virtual Organization (VO) on the grid.

The Gratia probe is a python script that runs

periodically (as a cron job) on the CE node, collecting this
PBS accounting information and reporting it back to the
OSG. However, since PBS is configured to run on a
separate service node, we need to periodically move the
accounting information back to the grid node. For our
purposes we found that a nightly copy of the accounting
records from the PBS node to the grid node, was

sufficient. This also gets around a couple of additional
difficulties:

1. Timing issues of dealing with live records that
may be in the process of being written – this is
addressed by only reporting on the previous
day’s file.

2. Permissions problems with the accounting
records (typically only readable by root) - we
copy the accounting file over so that it is
accessible to the Gratia administrative user (such
as “globus”)

We need to parse through the PBS records and then

filter them based on
1. Designated OSG users
2. Gatekeeper logs for grid specific jobs

In order to filter on designated OSG users we look

for a file called “osg-user-vo-map.txt”. This file will
contain a list of current OSG users and the VOs to which
they belong. This allows us to limit reporting to OSG
users.

The OSG software stack makes some minor

modifications to the Globus Gatekeeper, to keep track of
grid jobs for Gratia reporting. Before sending information
back to the Gratia collector, job information is reconciled
with the gatekeeper logs so that we only report on jobs
submitted via the grid interfaces (and not locally
submitted jobs).

The above configuration changes, provide a high-

level description of the changes needed to create a
production OSG compute/storage element on the Franklin
Cray XT4. Readers are encouraged to contact the authors
of this paper for additional configuration and setup
details.

8. Open Issues and Future Work
We have identified the following as open issues and

areas for future work in our grid access model:
• Static Binaries – user jobs must directly invoke

the application binary because the compute
nodes only support statically compiled binaries.
These binaries must be precompiled with static
library linking. This also implies that compute
node jobs cannot be wrapped in a script. We
expect that dynamic library support would
address this issue.

• Support for grid portals – we are currently
creating science gateway portals that will
encapsulate grid job submission, thus hiding
most of the Globus RSL details from the user.

CUG 2009 Proceedings 9 of 9

• Insufficient MPI support in OSG – MPI
extensions are not a standard part of the GLUE
schema. These attributes will need to be made
permanent so that MPI support is part of the
standard OSG configuration.

• Support for external login node – create an
external Franklin login node for grid access. This
will simplify the root node configuration, and
make the system more manageable.

• Shared project accounts – investigating the
feasibility of grid VO based project accounts to
share jobs and data, while maintaining individual
traceability.

Conclusion
Using the Open Science Grid interfaces we have

successfully created transparent user-friendly interfaces
into the NERSC Franklin Cray XT4 system. This has
allowed scientists from a wide range of fields to run
parallel HPC jobs across multiple OSG sites, without
having to deal with the complexities of the individual
system. For instance, this has enabled the Franklin system
to be used for grid-based weather forecasting models and
fusion research simulations. Along with the advent of web
gateways, we expect this model to become increasingly
common as a user-friendly method to access HPC
resources.

Acknowledgments
This work was supported by the Director, Office of

Science, Office of Advanced Scientific Computing
Research of the U.S. Department of Energy under
Contract No. DE-AC02-05CH11231.

About the Authors
Shreyas Cholia is a software engineer at the NERSC.

He is primarily responsible for managing the grid
infrastructure at NERSC, in conjunction with the Open
Science Grid. He has been involved with various grid
projects since 2002. Prior to his work at NERSC, Shreyas
was a developer and consultant for IBM with the HPSS
project. Email: scholia@lbl.gov

Hwa-Chun Wendy Lin is a Systems Engineer at
NERSC and the Backup Analyst of Franklin. She also
helps with the system side of the grid work. Before
joining NERSC, Wendy worked for Purdue University.
She was a member of the Purdue TeraGrid team, made
the IBM SP resource available to TeraGrid users, and
helped build the nanoHUB science gateway. E-mail:
hclin@lbl.gov.

The Authors can be reached at Lawrence Berkeley
National Laboratory, 1 Cyclotron Road, MS 943-256,
Berkeley 94720, USA.

References
[1] “What is the Grid? A Three Point Checklist”. Ian Foster. Argonne

National Laboratory & University of Chicago. July 20, 2002
[2] “About Franklin”. From
 http://www.nersc.gov/nusers/systems/franklin/about.php
[3] “Notes for Networks and Parallel Processing”. Aaron Harwood.

Melbourne School of Engineering. 2004. From
 http://www.cs.mu.oz.au/498/notes/node40.html
[4] “Introduction to Parallel Computing”. Blaise Barney, Lawrence

Livermore National Laboratory. From
 https://computing.llnl.gov/tutorials/parallel_comp/
[5] “Open Science Grid Admin Setup MPI”. From
 https://twiki.grid.iu.edu/bin/view/Sandbox/AdminSetupMPI
[6] “Generic Information Providers”. From
 https://twiki.grid.iu.edu/bin/view/ReleaseDocumentation/GenericInf

ormationProviders
[7] “Open Science Grid 1.0.0 Release Documentation”. From
 https://twiki.grid.iu.edu/bin/view/ReleaseDocumentation/
[8] “BRO Intrusion Detection System”. From http://www.bro-ids.org/
[9] “Pacman 3”. From http://atlas.bu.edu/~youssef/pacman/

