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Integrating Grid Services into the Cray XT4 Environment 

Shreyas Cholia and Hwa-Chun Wendy Lin, 
National Energy Research Scientific Computing Center at 

Lawrence Berkeley National Laboratory 

ABSTRACT: The 38640 core Cray XT4 "Franklin" system at the National Energy 
Research Scientific Computing Center (NERSC) is a massively parallel resource 
available to Department of Energy researchers that also provides on-demand grid 
computing to the Open Science Grid. The integration of grid services on Franklin 
presented various challenges, including fundamental differences between the interactive 
and compute nodes, a stripped down compute-node operating system without dynamic 
library support, a shared-root environment and idiosyncratic application launching. In 
our work, we describe how we resolved these challenges on a running, general-purpose 
production system to provide on-demand compute, storage, accounting and monitoring 
services through generic grid interfaces that mask the underlying system-specific details 
for the end user. 

KEYWORDS: Cray, XT4, grid, Globus, distributed computing, OSG, science gateways, 
MPI, PBS 
 
 
 
 

 

1. Introduction 
High performance computing (HPC) is becoming 

increasingly parallel. With clock speeds flattening out, 
and power consumption playing a major role in CPU 
design, multi-core and many-core technologies are seen as 
the most efficient way to increase overall performance 
and scalabilty. While grid computing originally evolved 
from a serial model of computing, it has become 
increasingly important for grids to be able to take 
advantage of highly parallel resources in order to 
maximize resource utilization, while maintaining the 
benefits of a distributed, on-demand service. Because of 
its unique architecture, the Cray XT4 system presents a 
special set of challenges when it comes to integrating grid 
services and tools with the underlying environment. 
NERSC has successfully integrated on-demand grid 
services based on the Open Science Grid (OSG) software 
stack on its 38640 core (38128 compute cores) Cray XT4 
system. In this white-paper, we discuss the challenges 
presented by this environment and our solution for 

creating fully functional OSG compute and storage 
elements on this system. We pay special attention to 
security, job management, storage, accounting and 
reporting services for the grid, while using the principal of 
least privilege to set up the software stack. The end result 
is a parallel OSG computing platform that can be 
transparently accessed through generic grid software. This 
allows users to access the underlying HPC resources 
without needing detailed knowledge of the Cray XT4 
architecture, thus increasing overall usability through 
transparent, service-oriented, cross-platform interfaces. 

 
The NERSC Cray XT4 system, named Franklin, is a 

massively parallel compute system available for scientific 
research. The system is capable of providing 356 
TFlop/sec of computational power through its 9532 quad-
core 2.3 GHz AMD-Opteron processors. It also provides 
access to a 436TB Lustre parallel filesystem. Franklin is 
located at the NERSC supercomputing center at Lawrence 
Berkeley National Laboratory, and is available to 
scientific researchers under the umbrella of the Office of 
Science in the U.S. Department Of Energy.  
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2.  What is Grid Computing? 
Grid computing provides the ability to share and 

aggregate heterogeneous, distributed computational 
capabilities and deliver them as a service. According to 
Ian Foster, a grid is a system that “coordinates resources 
that are not subject to centralized control, using standard, 
open, general-purpose protocols and interfaces, to deliver 
nontrivial qualities of service”. This idea can be 
explained by the following principle: a uniform set of 
software interfaces to access non-uniform and physically 
distributed compute and storage resources. In practice, 
grid computing does not make any sense unless the 
underlying resources (compute systems, data storage 
systems) are integrated into a larger whole i.e. a working 
grid that coordinates resources and users.  

 
There are several flavors of grids, but, for the most 

part, scientific computing grids seem to have converged 
on a common interoperable infrastructure as seen in the 
OSG, TeraGrid, Earth Systems Grid and EGEE to name a 
few. Most of these grids use some flavor of the Globus 
middleware stack or equivalent to provide a common 
layer of services that expose the underlying resources 

 
Grid computing is well equipped to deal with serial 

and “embarrassingly parallel” tasks (computational jobs 
that can be broken up into parallel tasks that require little 
to no communication between these tasks). This model 
has been exploited by certain scientific applications, 
particularly in the high-energy physics community. There 
is little interaction between nodes running a subtask, and 
each task can run to completion, without consideration for 
other nodes in the system. However, there has been an 
increasing need for access to grid based parallel 
computers – systems that can be provisioned on-demand 
based on specific needs, while still providing the benefits 
of a highly parallel resource with a fast interconnect. This 
allows users to farm out a tightly coupled set of 
computational interactions to an appropriately tightly 
coupled system that matches the job requirements.  

 
Additionally, user data is often distributed across 

multiple centers and may need to be moved across the 
grid, to an appropriate storage resource that is local to the 
computational tasks. There needs to be a set of standard 
high-performance interfaces to access and transfer data 
from multiple locations. This points to a data-grid where 
users can move data across resources transparently.  

3. Open Science Grid 
The Open Science Grid (OSG) is a distributed 

computing infrastructure for large-scale scientific 
research, built and operated by a consortium of 
universities, national laboratories, scientific collaborations 
and software developers. Researchers from many fields, 
including astrophysics, bioinformatics, weather and 
climate modeling, computer science, medical imaging, 
nanotechnology and physics use the OSG infrastructure to 
advance their research.  

 
Sites can make their resources available to the OSG 

by installing a pre-defined service stack that is made 
available as part of the Virtual Data Toolkit (VDT). This 
includes the Globus software stack for the core 
computational and data grid functionality, and a set of 
supporting software for coordinating the resources in the 
grid. The Globus Toolkit includes services that support 
the following operations: 

1. GSI user and host authentication and 
authorization 

2. Globus Job submission and management through 
GRAM (GT2 and GT4) 

3. File storage and transfer through Globus 
GridFTP  

 
Additionally a site must be able to advertise resource 

descriptions and availability, and report on usage 
accounting information back to the central OSG 
infrastructure. In order to do this the site must run a set of 
services: 

1. CEMon for resource descriptions 
2. RSV probes for resource availability 
3. Gratia probes for accounting information 
 
As the OSG broadens in scope parallel computing 

becomes increasingly important as a means to achieve 
scalable performance. Newer science communities 
including ones in bioinformatics and climate science have 
a stake in the OSG, but also have parallel HPC 
requirements for their jobs. The NERSC Franklin system 
plays a key role in fulfilling the parallel computing needs 
of the OSG.  

 
Opening up the NERSC Cray XT4 system to the 

OSG allowed us to deliver the power and scale of a 
massively parallel HPC system to whole new set of 
scientists. This has created an opportunity to enable new 
science by allowing scientists from around the world to 
run their jobs in this manner through the OSG. 
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However, there are some peculiarities in the XT4 
architecture that make this quite a challenge. The key 
behind grid computing is the idea of a standard, uniform 
interface that can be used to access a wide variety of 
underlying platforms. This means that any system specific 
details must be hidden from the user. The user only needs 
to define the job or workflow or data transfer operation 
through a common interface, and to be able to query the 
resources or jobs.  The grid middleware must then 
abstract all system specific details, and should be able to 
interface with the underlying environment to be able to 
manage these requests.  

 
In the rest of this paper we describe how we set up 

and configured the OSG and Cray software to navigate 
the complexities of the XT4, so that the system could be 
available to grid users in a transparent fashion. This paper 
is primarily focused on OSG, but much of it applies to 
any Globus based grid  

4. Franklin Cray XT4 
The following table describes the current Franklin 

Cray XT4 system configuration and computing 
environment (Table 1.): 

 
Number of compute nodes  9,532 
Processor cores per node  4 
Number of compute 
processor cores  

38,128 

Processor Core type  Opteron 2.3 GHz Quad 
Core 

Physical memory per 
compute node  

8 GB 

Memory usable by 
applications per node  

7.38 GB 

Number of login nodes  10 
Switch Interconnect  SeaStar2 
Usable disk space  436 TB 
Batch system  PBS Torque/Moab 
Service Node Operating 
System  

SuSE SLES10 SP1 Linux 

Compute Node Operating 
System 

Compute Node Linux 

Communication Layer Portals 
Compute Node 
Application Launcher 

ALPS utility (aprun) 

Table 1. Franklin Configuration 
 
There are a few things worth noting about the above 

configuration: 
 

1. The system is partitioned into service nodes and 
compute nodes. The service nodes handle 
interactive user-logins, batch system 
management, and I/O. The compute nodes run 
user jobs. 

2. The compute nodes do not have the same 
environment as the interactive or service nodes. 
While the interactive nodes have a full-featured 
derivative of SuSE Linux, the compute nodes run 
a stripped down operating system called 
Compute Node Linux (CNL). This allows for 
increased scalability and performance on the 
compute nodes, but also means that any 
executables that are staged on the service nodes, 
must be precompiled as static binaries, since 
there is no formal support for dynamically 
loaded libraries.  

3. We use a version of OpenPBS called Torque, 
along with the Moab job scheduler, to manage 
the batch system. From the standpoint of the grid 
software, this is equivalent to any standard PBS 
system, and we will simply refer to it as PBS in 
the rest of this paper. The PBS batch system runs 
on a separate set of service nodes called the 
MOM nodes that handle job processing. 

4. Service nodes run diskless and make use of an 
NFS filesystem exported from the System 
Database node for non-root common files. 

5. Application launching is done through a special 
utility called “aprun” instead of the more 
common mpirun/mpiexec tools because of the 
unique nature of the compute nodes. 

5. NERSC Franklin Grid Configuration 
Because of the idiosyncrasies described in the 

previous section, configuring grid software on a running 
production system, takes on additional complexity. In this 
section we describe the overall approach to configuring 
grid software on Franklin.   

Designated Grid Node 
We designate one of the interactive nodes as the grid 

node. All grid services run on this node. Control 
connections for grid traffic go through this grid node. We 
install the OSG Compute and Storage Element software 
on the grid node. This is the point of contact for the OSG 
with respect to routing jobs/data and collection of site 
information. We also ensure that xinetd is installed on the 
node for service startup. 

DNS Aliasing 
We use a DNS alias for the grid node in the OSG 

software configuration. This allows us to transparently 
switch to an alternate node in case of failure, by simply 
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pointing the DNS alias to a new, pre-configured backup 
grid node. For example, the Franklin grid node is referred 
to by its DNS Alias (franklingrid.nersc.gov) by any OSG 
consumers. This is currently mapped to a specific node 
(nid00256-eth0.nersc.gov) in DNS. In case of a failure, 
we simply change the DNS mapping for 
franklingrid.nersc.gov to the failover node, but since the 
grid clients only use the generic alias, this change is 
essentially transparent.  

 
Note: All GSI host certificates need to be issued for 

the actual DNS hostname (not the generic alias). 
However, this should be transparent to the clients who 
will only to connect to the alias.  

Install on Shared NFS Filesystem 
Service nodes run diskless with a preconfigured boot 

image and a shared root filesystem, which makes it non-
trivial to make configuration changes. Configurations are 
defined for different classes of nodes (login node, 
network node, dvs node etc.) with a specific login node 
set up as the grid node. 

We avoid installing software on the shared-root 
filesystem as much as possible. Instead we install it on the 
common filesystem called /usr/common, which is NFS 
imported from the sdb (system database) node. When 
necessary, we create symbolic links in the shared-root 
pointing to /usr/common for the software installation and 
configuration. For node specific configuration, we create 
per node links in the common filesystem. In practice this 
means: 
• installing grid software in a common filesystem as a 

non-root administrative user     
eg. /globus 

• setting up per-node directories in the common 
filesystem for node-specific files       
eg./globus/gridsecurity/nid1234/hostcert.pem 

• creating symbolic links for the grid node to point to 
appropriate locations                  
eg. /etc/grid-security→/globus/grid-security-nid1234,                
/etc/grid-security/certificates→/globus/certificates  

• The only exception for this is service software that 
needs to be run out of init or xinetd. 

Install as non-root user 
We try to install most of the OSG software as a non-

root administrative user (such as “globus”). This allows 
us to maintain a clear privilege separation. This will 
prevent us from running the automated startup installers 
for xinetd and init. These must be configured manually, 
by copying the appropriate files from the OSG software 
bundle. Where possible, servers and cron jobs are run as a 
non-root user. 

 

Before we discuss how we set up specific 
components of the grid infrastructure, it may be helpful to 
go over the usage model for grid software. 

6. Usage Model 
From a user’s standpoint the grid infrastructure could 

allow her to submit a job or move data to multiple 
locations, each with very different underlying 
architectures, while using the same front-end interface. 
Alternately, the user could query the grid for a list of 
resources and select her target resources based on the job 
and data characteristics. 

 
In our model (Figure 1.) we envision that users will 

access grid resources through gateway portals where they 
can define jobs and select target resources through web 
interfaces. This is then translated into the appropriate 
Globus job specification by the web portal and sent to the 
target site. At the target site the job then gets translated 
through the local job manager to the batch system. 

 

 
Figure 1. Submitting a job through a web portal 
 
Alternately, more experienced users, may wish to use 

a grid job management framework like Condor-G to write 
their own generic job descriptions which can be submitted 
to target resources. Example 1. shows a simple Condor-G 
job description for a 4 way MPI job. 

 
 
 
Universe = grid 
Executable = test_dir/test_application 
transfer_executable = false 
grid_resource=gt2 franklingrid.nersc.gov/jobmanager-pbs 
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globus_rsl = (jobType=mpi) (count=4) 
output = test.out 
error = test.err 
log = test.log 
Queue 

Example 1. Condor-G job example 
 

The Condor-G client will convert this into Globus 
RSL before submission to the jobmanager. A simplified 
version of the RSL is shown in Example 2. 
 
& (count=4) 
(jobtype=mpi) 
(directory=test_dir) 
(executable=test_dir/test_application) 
(stdout=x-gass-
cache://$(GLOBUS_GRAM_JOB_CONTACT)stdout 
anExtraTag) 
(stderr=x-gass-
cache://$(GLOBUS_GRAM_JOB_CONTACT)stderr 
anExtraTag) 

Example 2. Globus RSL example 
 

Condor-G also handles the complexities of staging 
files in and out, as well as dealing with intermediate files 
and caches. Simple jobs can also be submitted directly 
through the Globus RSL, but since this becomes unwieldy 
for more complex jobs, Condor-G is the preferred 
interface for job submission on the OSG.  
 

So, in order to run a 1000-way parallel job on another 
grid resource, the user would run an ldap query for a 
resource with the appropriate backend hardware, and 
submit the job to the given resource. All they would have 
to change in the above example would be the target 
resource and the level of parallelism. 

 
Compare this with a specification for the same job on 

Franklin’s local PBS batch system (Example 3.).  
 

#PBS -l mppwidth=4 
#PBS -l mppnppn=4 
#PBS -e test.err 
#PBS –o test.out 
cd $PBS_O_WORKDIR 
aprun -n 4 -N 4 ./a.out 

Example 3. PBS job description 
 
There are several system specific details that would 

ideally be hidden from the end user. Many of these details 
such as processor count or job launcher syntax are 
generally constant for a given system and are best left for 
the system administrators to determine. Moreover 

different parallel machines may be configured with very 
different underlying batch processing systems. 
Respecifying the above job to run on a loadleveler or SGE 
queue would require a completely different set of 
directives that essentially accomplish the same task. By 
using a single grid job specification, you can now run the 
same parallel job on multiple systems, without having to 
rewrite the job for each system.  

Life Cycle of a Grid Job 
The following describes the lifecycle of a grid job in 

the Condor-G/Globus framework on Franklin: 
1. User defines job in condor or Globus RSL on 

client 
2. Authenticate to Globus gatekeeper on Franklin 

grid node 
3. Upon successful authentication, stage in files if 

needed 
a. Authenticate to Franklin gridFTP server 
b. Use globus-url-copy to stage files from 

client to gridFTP server 
4. Upon successful stage-in, submit job to PBS job 

manager 
5. Jobmanager converts Globus RSL into PBS job 

submission script 
6. Jobmanager issues qsub  

a. Submit job to PBS 
b. Get PBS Job ID to keep track of job 

7. Return a Globus endpoint URL for the client to 
query 

8. Client will query endpoint  
a. Server listens on endpoint 
b. Returns Job status 

9. Server periodically queries PBS for job status 
10. Upon job completion server will change status to 

DONE 
11. Client will pull any files that need to be staged 

out 

7. OSG Software Configuration 
This section describes how we configure the OSG CE 

software stack for the Cray XT4. While we provide some 
basic background information, it is assumed that the 
reader will have some familiarity with the Globus toolkit 
and the VDT/OSG service stack. More details on how to 
configure an OSG compute element can be found here: 
https://twiki.grid.iu.edu/bin/view/ReleaseDocumentation/
WebHome  
We cover the following software components here: 

1. Overall Installation 
2. GSI Authentication and Authorization 
3. Globus Job Submission 
4. File transfer through GridFTP 
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5. Site Monitoring and Availability through 
CEMon and RSV 

6. Job Usage Accounting with Gratia 

7.1 Overall Installation 
The OSG software is installed from the VDT toolkit 

using an installation management tool called “pacman”. 
The basic installation works as follows: 

1. Download and install latest OSG release (SLES 
Compute Element and PBS components) from 
VDT using pacman  

2. Run osg configuration script (configure-osg.py) 
for site specific details. 

3. Run vdt-control tool to install specific services 
We go through the default installation procedure, but 

must run step 3 manually because of the root separation 
constraints described earlier. Steps 1 and 2 are run as a 
non-root administrative user and will create a complete 
software installation in the desired location. We manually 
copy the OSG services, init and xinetd entries as the root 
user into the grid node configuration.  

7.2 Authentication and Authorization: 
The OSG grid infrastructure at NERSC uses a model 

based on PKI X.509 grid certificates and the Grid 
Security Interface (GSI) to handle authentication and 
authorization functions. This enables a single sign-on 
(SSO) type system, where the user is in possession of a 
single identity certificate, and can authenticate to multiple 
sites using the same certificate. SSO technology is crucial 
for access to multiple sites since managing multiple 
credentials for each resource does not scale well on the 
grid. This model assumes the presence of certain 
dynamically generated files to provide authorization and 
authentication information. 

Authentication: 
A set of trusted certificate authorities (CAs) and their 

associated certificate revocation lists are downloaded 
periodically from a central repository at NERSC (the 
contents of which are updated from their authoritative 
sources as determined by the OSG). The NERSC grid 
infrastructure will trust a user that presents a certificate 
issued by one of these trusted CAs. A user is 
authenticated if he/she presents a valid (signed, unrevoked 
and unexpired) certificate from a trusted CA.  

Authorization: 
An authorization map file (grid-mapfile), containing 

mappings from certificate subject Distinguished Names to 
local accounts is updated periodically from an LDAP 
database at NERSC. Once a user has been authenticated 
(has a valid certificate) they need to have a valid mapping 
in this file to be authorized to use the resource as a 
specific user. If no valid mapping exists, the request to 
access the resource is denied. 

 
Both these steps rely on a set of files that are being 

constantly repopulated with current information. The grid 
infrastructure expects these files to be in a specific 
location on the root filesystem. However, since it is not 
practical to update files in the root filesystem, and since 
these files will be shared across nodes, we create a 
symbolic link pointing to a shared writable filesystem. 
This allows us to keep these files updated, and enables 
sharing these files across the entire system. 

 
Note: The OSG software also has support for a more 

dynamic authentication and authorization service in the 
form of GUMS. While we do not use this service at 
NERSC because of incompatibilities with our site account 
management infrastructure, it significantly simplifies the 
above process by replacing these files with an external 
service that provides authentication and authorization 
assertions. 

7.3 Globus Gatekeeper and Jobmanager: 
Globus jobs are described using a generic job 

specification language called the Resource Specification 
Language (RSL). A job specified in Globus RSL can be 
submitted to any Globus GRAM gatekeeper, irrespective 
of the backend compute platform or batch system. 

 
The Globus jobmanager is the interface between the 

generic Globus RSL and the underlying batch system. It 
will translate RSL directives into batch system specific 
directives. The jobmanager also supports running fork 
commands directly on the grid node.  

 
Franklin uses PBS to manage its job queues. Any 

batch job that comes in as Globus RSL must be translated 
into a PBS job script. The default Globus PBS 
jobmanager is designed to work with a very simple PBS 
installation, but does not handle the specifics of the Cray 
XT4 very well. We had to make the following 
modifications to the pbs.pm jobmanager file to get this to 
work on Franklin: 

1. Replace MPI launcher comands (mpirun / 
mpiexec) with Cray’s aprun. 

2. Default to MPI jobs. 
3. Modify nodefile semantics, so that node 

selection is automatically handled by PBS. 
4. Change “cluster” variable for single jobs, to 

differentiate from MPI jobs. 
5. Support for mppwidth and mppnppn directives in 

PBS job file. 
6. Identify the job executable and launch this 

directly through aprun, instead of wrapping this 
in a job script. 
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Additionally the system administrators have the 
ability to include default environment variables and PBS 
settings by making minor modifications to the pbs.pm 
file. For example, one may wish to redirect grid jobs to a 
specific queue, or adjust the number of processors that are 
available to a job on a given node.  

 
For fork jobs (simple jobs that run immediately on 

the grid node), we simply use the default Globus Fork 
jobmanager. Globus also supports other batch systems – 
LSF, Loadleveler, Condor, SGE. Similar modifications 
would be required if these were managing the batch 
queue. 

7.4 GridFTP: 
GridFTP provides a high performance file transfer 

layer for moving data in and out of Franklin. In order to 
take full advantage of GridFTP, we need to be able to 
tune buffer sizes and set up striped transfers. GridFTP 
needs to be able to make both incoming and outgoing 
connections to work optimally, particularly when 
performing striped transfers. 

 
To do this we create a hole in the network firewall 

and reserve a range of ports for GridFTP to be able to 
make and accept connections in both directions. We 
configure the GridFTP server to use this port range 
through an environment variable.  

 
GLOBUS_TCP_PORT_RANGE=<START>,<END> 

 
Here <START> and <END> define the beginning 

and end of the open port range. We then rely on more 
sophisticated network monitoring techniques, such as the 
BRO intrusion detection system, to ensure that the open 
ports are not being abused by malicious entities. 

 
Additionally we configure GridFTP to use the 

generic DNS alias for the host, so that users have a 
standard endpoint to connect to, irrespective of underlying 
node changes 

 
GLOBUS_HOSTNAME=franklingrid.nersc.gov 

 
In the context of grid jobs, the Franklin GridFTP 

server provides an interface to stage-in input data and 
stage-out the results and output files back to the client. 
Stage-In and Stage-Out are handled directly by a GridFTP 
server on the interactive grid node, and are not typically 
managed by the batch system.  

7.5 Monitoring and Availability Reporting: 
In order for a system to integrate well with the grid, it 

must advertise details about its system configuration and 
availability. This allows users to make queries based on 

desired system characteristics and to schedule jobs on 
appropriate resources. For example a user may be 
interested in a parallel resource with a certain number of 
cores or a particular flavor of MPI. Monitoring and 
availability software plays a key role in matching users 
and jobs with the appropriate resources, thus optimizing 
grid usage. 

 
In the OSG CEMon provides this functionality. 

CEMon runs as a Java web service in an Apache Tomcat 
container that queries the local resources and reports back 
to a central OSG collector in two formats - ReSS (for 
condor matchmaking services) and BDII (for WLCG 
compatibility). The CEMon information is based on the 
Generic Information Provider GLUE schema which 
includes several attributes considered important to grid 
users when trying to select resources. 

 
In order to support MPI and parallel jobs we need to 

extend the GLUE schema to publish additional attributes 
that are necessary to describe a parallel platform. 
Specifically, we publish the following extended attributes: 
 
• MPIInterconnect 
• MPIVendor 
• MPICompilerLocation 

 
We update the Glue Schema template file 

(gip/etc/GlueCluster.template) with these attributes to 
make sure they get published.  

 
CEMon is expected to run on the main interactive 

grid node for the cluster. By default CEMon will query 
this node for system characteristics and report back to the 
OSG CEMon collector.  

 
However, on the Franklin system, much of this 

information will be inaccurate for the compute node 
where the user’s job is expected to run. For example the 
interactive node runs a version of SLES 10 Linux, while 
the compute node runs a very different operating system - 
CNL – with a stripped down Linux kernel and much more 
restrictive functionality.   

 
CEMon provides a mechanism to override this 

information, and to publish additional attributes in the 
form of two files: 
 
• add-attributres.conf – publish additional attributes 

(See example 4.) 
• alter-attributes.conf – modify values for existing 

attributes (See example 5.) 
•  
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# Cray MPICH2 
dn: GlueSoftwareLocalID=MPICH2-pgi_2.1.4HD, 
GlueSubClusterUniqueID=franklingrid.nersc.gov, 
GlueClusterUniqueID=franklingrid.nersc.gov,mds-vo-
name=local,o=grid 
objectClass: GlueClusterTop 
objectClass: GlueSoftware 
objectClass: GlueKey 
objectClass: GlueSchemaVersion 
GlueHostApplicationSoftwareRunTimeEnvironment: 
pgi_2.1.41HD 
GlueSoftwareLocalID: MPICH2-pgi_2.1.41HD 
GlueSoftwareName: Cray MPICH2 PGI 

GlueSoftwareVersion: 2.1.41HD 
GlueSoftwareInstalledRoot: /opt/cray/xt-asyncpe/2.0 
GlueSoftwareModuleName: PrgEnv-pgi 
GlueSoftwareEnvironmentSetup: module load PrgEnv-
pgi 
GlueChunkKey: 
GlueSubClusterUniqueID=franklingrid.nersc.gov 
GlueSchemaVersionMajor: 1 
GlueSchemaVersionMinor: 3 

Example 4. Add-attributes.conf for Franklin 
 

dn: GlueSubClusterUniqueID=franklingrid.nersc.gov, 
GlueClusterUniqueID=franklingrid.nersc.gov,mds-vo-
name=local,o=grid 
GlueHostApplicationSoftwareRunTimeEnvironment: 
pgi_2.1.41HD 
MPIVendor: MPICH2 
MPIInterconnect: CStar 
MPICompilerLocation: /opt/cray/xt-asyncpe/2.0/bin/cc 

Example 5. Alter-attributes.conf for Franklin 
 
Use of the above files, allows us to accurately 

describe the underlying system architecture in the 
published CEMon records. 

7.6 Accounting: 
While the PBS accounting records provide a 

comprehensive view of all jobs run, we need to be able to 
separate any grid jobs from the local jobs. The grid jobs 
need to be reported back to the centralized grid 
accounting collector (Gratia), so that usage can be tracked 
for a given user or Virtual Organization (VO) on the grid.  

 
The Gratia probe is a python script that runs 

periodically (as a cron job) on the CE node, collecting this 
PBS accounting information and reporting it back to the 
OSG. However, since PBS is configured to run on a 
separate service node, we need to periodically move the 
accounting information back to the grid node. For our 
purposes we found that a nightly copy of the accounting 
records from the PBS node to the grid node, was 

sufficient. This also gets around a couple of additional 
difficulties:  

1. Timing issues of dealing with live records that 
may be in the process of being written – this is 
addressed by only reporting on the previous 
day’s file. 

2. Permissions problems with the accounting 
records (typically only readable by root) - we 
copy the accounting file over so that it is 
accessible to the Gratia administrative user (such 
as “globus”)  

 
We need to parse through the PBS records and then 

filter them based on  
1. Designated OSG users  
2. Gatekeeper logs for grid specific jobs 
 
In order to filter on designated OSG users we look 

for a file called “osg-user-vo-map.txt”. This file will 
contain a list of current OSG users and the VOs to which 
they belong. This allows us to limit reporting to OSG 
users. 

 
The OSG software stack makes some minor 

modifications to the Globus Gatekeeper, to keep track of 
grid jobs for Gratia reporting. Before sending information 
back to the Gratia collector, job information is reconciled 
with the gatekeeper logs so that we only report on jobs 
submitted via the grid interfaces (and not locally 
submitted jobs).  

 
The above configuration changes, provide a high-

level description of the changes needed to create a 
production OSG compute/storage element on the Franklin 
Cray XT4. Readers are encouraged to contact the authors 
of this paper for additional configuration and setup 
details. 

8. Open Issues and Future Work 
We have identified the following as open issues and 

areas for future work in our grid access model:   
• Static Binaries – user jobs must directly invoke 

the application binary because the compute 
nodes only support statically compiled binaries. 
These binaries must be precompiled with static 
library linking. This also implies that compute 
node jobs cannot be wrapped in a script. We 
expect that dynamic library support would 
address this issue. 

• Support for grid portals – we are currently 
creating science gateway portals that will 
encapsulate grid job submission, thus hiding 
most of the Globus RSL details from the user. 
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• Insufficient MPI support in OSG – MPI 
extensions are not a standard part of the GLUE 
schema. These attributes will need to be made 
permanent so that MPI support is part of the 
standard OSG configuration. 

• Support for external login node – create an 
external Franklin login node for grid access. This 
will simplify the root node configuration, and 
make the system more manageable. 

• Shared project accounts – investigating the 
feasibility of grid VO based project accounts to 
share jobs and data, while maintaining individual 
traceability. 

Conclusion 
Using the Open Science Grid interfaces we have 

successfully created transparent user-friendly interfaces 
into the NERSC Franklin Cray XT4 system. This has 
allowed scientists from a wide range of fields to run 
parallel HPC jobs across multiple OSG sites, without 
having to deal with the complexities of the individual 
system. For instance, this has enabled the Franklin system 
to be used for grid-based weather forecasting models and 
fusion research simulations. Along with the advent of web 
gateways, we expect this model to become increasingly 
common as a user-friendly method to access HPC 
resources. 
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