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ABSTRACT OF THE DISSERTATION

Noncovalent Interactions: Evaluation of Computational Methods and
Characterization of Molecular Binding

by

Amanda Li

Doctor of Philosophy in Bioengineering with a Specialization in Multi-Scale Biology

University of California, San Diego, 2016

Professor Michael K. Gilson, Chair
Professor Xiaohua Huang, Co-Chair

Noncovalent interactions are of central importance to biochemical phenomena. This

dissertation includes both evaluations of the methods used to compute noncovalent inter-

actions and analyses of their role in binding. First, various QM approaches for calculating

noncovalent interaction energies are compared in over 1,200 gas-phase dimers. In particular,

we study semiempirical PMx methods, density functional theory (DFT) approaches, and

symmetry-adapted perturbation theory (SAPT). Linearly scaled SAPT0 (fSAPT0) meth-

ods are fitted and shown to yield high accuracy, at particularly low computational cost.

xi



Additionally, various models of polarization are examined for their ability to reproduce

perturbed electrostatic potentials (ESPs). Polarization models are broken down into two

main components: the representation of electronic polarization, and the response model

used to map from an inducing field to the polarization within the chosen representation. The

results reveal that the inducible dipole models used in many current polarizable force fields

fall far short of the optimal results in principle achievable by the atom-centered point dipole

representation. Lastly, binding interactions are examined between heteroallene-containing

guests and cucurbituril host systems using quantum calculations and in Grb2 SH2 complexes

using molecular dynamics simulations. For the host-guest systems, the heteroallenes are

shown to exhibit attractive interactions with the carbonyl oxygens of the host, and these

interactions are found to be primarily electrostatic and dispersive in nature. For the Grb2

SH2 domain, the thermodynamics of ligand preorganization are studied by computing

relative binding enthalpies for flexible and constrained ligands.

xii



Chapter 1

Introduction

Noncovalent interactions occur when atoms or molecules interact with each other

without forming bonds or sharing electrons. They are ubiquitous in nature and integral

driving forces in biology, mediating biomolecular structure as well as molecular recognition.

The list of biochemical phenomena that involve noncovalent interactions is numerous,

including protein folding, DNA structure, drug binding and metabolic processes. Thus,

accurate theoretical and computational modeling of noncovalent interactions has broad

consequences and applications, from providing insight into how biological assemblages

form and how molecular motors function, to drug design and protein engineering.

Compared to covalent interactions, which result from electron sharing through a

covalent bond, noncovalent interactions tend to be weaker, having energies up to a few

kilocalories per mole, but occur across longer interatomic separations, typically greater

than 2 Å[20]. While the following is not a comprehensive description of all noncovalent

interactions, some of the most common types are described here.

Many noncovalent interactions may described in terms of multipole moments[120].

Permanent electrostatic interactions involve permanent charge distributions, and may be

1
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either repulsive or attractive. Induction is the attraction that occurs when a charge distribution

polarizes, or induces, another charge distribution. Dispersion is also attractive and involves

correlated fluctuations of atomic electron clouds. An additional short-range interaction

is Pauli repulsion, or exchange repulsion, which is distinct in that it does not result from

electrostatic interactions between their charge distributions, but from the Pauli exclusion

principles, which leads to short-ranged steric repulsion. Collectively, the Pauli repulsion and

dispersion are known as van der Waals (VDW) forces. These interactions are most relevant

to neutral and nonpolar charge distributions, as stronger electrostatic interactions are more

dominant in charged and polar systems[86].

Hydrogen bonds originate from electrostatic attractions and are categorized sep-

arately from VDW interactions. A hydrogen bond is formed between a polar hydrogen,

covalently bonded to an electronegative atom, acting as a proton donor, and a nearby elec-

tronegative atom acting as the proton acceptor[105]. Hydrogen bonds are considered to

have covalent character, and their interaction distances can be less than the sum of nominal

VWD contact distances. Ionic interactions are attractive interactions that involve charged

ions. Ionic bonding arises from the transfer of electrons between oppositely charged ions.

Additionally, ions may also interact with polar groups of neutral charge.

Some noncovalent interactions stem not merely from electronic structure, but also

from molecular motions. These can vary with temperature and have an entropic component,

as with the hydrophobic effect, which describes the association of nonpolar groups due

to low solubility in polar solvents. Hydrophobic bonds are those that form between the

aggregated nonpolar groups[105].

In computational chemistry, noncovalent interactions are typically represented by

quantum mechanical (QM), molecular mechanical (MM) models, or a combination of
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both. Since most noncovalent interactions trace to interactions between electrons, the most

fundamental methods are those that treat electronic structure explicitly, as in QM. On the

other hand, MM models of noncovalent interactions are more approximate and, rather

than treat electrons explicitly, typically rely on atom-centered parameters in a potential

energy function, also known as a force field. The primary advantage of MM over QM is

the computational speed it affords, but the aforementioned interaction components (e.g.,

electrostatics, induction, dispersion and repulsion) are approximated by terms that cannot

fully reproduce their complexity.

The strength of noncovalent interactions is typically measured by an interaction, or

stabilization, energy. In QM, there are varied methods for estimating this quantity. The

supermolecular (or variation) approach[68, 21] computes the interaction energy as the

energy of a system of molecules less the individual energies of the subsystems. In the

perturbation approach, the interaction energy is calculated directly by treating interactions

as perturbations.

Essential to all QM calculations is the Schrødinger equation, which describes the

particle-wave behavior of electrons:

HΨ = EΨ (1.1)

where H is the Hamiltonian operator, Ψ (an eigenfunction) is the wavefunction of a system,

describing its electronic motions, and E (an eigenvalue) is the energy of the system. For

systems containing more than two particles, such as most atoms or molecules, there are

no analytical solutions to Schrødinger equations. Thus, all electronic structure methods

discussed here serve to estimate the wavefunction and energy, and are distinguished by

the approximations employed. An overview of key methods will be shared here, but the
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technical details are more thoroughly discussed in literature[99, 134, 37].

The Hartree-Fock (HF) solution to 1.1 is approximated using one and two-electron

operators and wave functions, or orbitals, and assumes that each electron only interacts

with an average of the effects, or a mean field, of other electrons. In the interest of

computational speed and facilitating calculations on larger systems, the HF solution may be

further approximated by semiempirical methods, which only consider the valence electrons

of a system and typically employ parameters fitted to experimental data[99]. The HF solution

may also be enhanced by accounting for electron correlation, which is not accounted for

when the electronic effects are averaged. Such "post-HF" methods include coupled cluster

(CC)[32] and Møller-Plesset (MP)[115] perturbation theory. Another class of methods

that account for electron correlation are density functional theory (DFT) methods, which

estimate the total electronic energy by the electron density[99]. Various DFT methods are

differentiated by their treatment of exchange, correlation and dispersion. Symmetry-adapted

perturbation theory (SAPT)[79] is a unique method that treats the interaction energy as

a perturbation series and accounts for the energies resulting from electrostatic, induction,

dispersion and repulsion separately.

The approximations used in the QM methods for calculating interaction energies are

varied, and have differing effects on computational speed and accuracy. Thus, it is important

to determine the relative accuracy of QM methods, and several are assessed by comparison

to high-level reference energies in Chapter 3. Furthermore, QM calculations are useful for

determining the driving forces of molecular phenomena such as binding, and Chapter 4

details QM studies to characterize an experimentally observed noncovalent interaction in a

host-guest system.

Molecular mechanical models are especially useful for computing thermodynamic
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quantities for complex systems, as such calculations require computing the energies of

many configurations of the system, and QM methods are typically too slow to be tractable

in such applications. In a typical MM force field, a separate set of parameters is used to

model a specific category of noncovalent interactions, such as point charges for permanent

electrostatics or Lennard-Jones (L-J) parameters for van der Waals’ interactions. The

parameters are typically derived from experimental data, QM calculations, or both, and

Chapter 2 advises specific methods (such as MO62X[195] and linearly-scaled SAPT0) for

accurate and fast calculations for parameterization purposes.

A problem for traditional force fields is the accurate representation of the po-

larization response in a molecule, or specifically the response of a charge distribution

to changing external electric fields. In recent years, polarizable force fields have been

developed to explicitly account for polarization using varied representations, including

fluctuating charges[135, 149], Drude oscillators[43, 98] (as in CHARMM[9]), inducible

dipoles[38] (as in AMBER ff02[30]) and atomic multipoles (as in AMOEBA[156]). Both

fluctuating charges and Drude oscillators model polarization using point charges: fluctuat-

ing charges are atom-centered point charges whose magnitudes are changed to equalized

electronegativities[116] while Drude oscillators include a massless charge that moves about

an atom center in addition to each atom-centered point charge. In comparison, inducible

dipole models use atom-centered point dipoles with polarization responses calculated by

atom-centered polarizabilities, and point multipoles models include higher-order multipole

moments in addition to point charges and induced point dipoles. Chapter 3 determines the

maximal accuracy achievable by the atom-centered point charge and point dipole representa-

tions for modeling polarization, and compares these with the accuracy of different response

models for inducibles dipoles.
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A key application of force fields is molecular simulations of time-varying biomolecu-

lar processes, such as protein folding and binding, which often cannot be practically modeled

by QM calculations (although we note that there exist hybrid QM/MM methods[153, 23]).

The potential energy function of a MM force field can be used to generate simulations of

molecular dynamics (MD), which are the time-varying motions of atoms and molecules.

Such simulations may be used to compute interesting thermodynamic quantities, such as

binding enthalpies and free energies, which are relevant to rational drug design and virtual

screening. Progress in developing simulation methods for modeling the driving forces of

binding has tended to focus more on calculations of binding free energies[27]. However, in

recent work [47, 66], it has been shown that host-guest binding enthalpies can be computed

to good precision by a simple direct method, using just the mean potential energies of

simulations. Although proteins are significantly more complex, recent advances in simu-

lation technologies, such as programs that can utilize multiple GPUs in parallel, suggest

that proteins may be tractable by the same approach. In Chapter 5, long-trajectory MD

simulations are used to estimate protein-ligand relative binding enthalpies using the direct

approach.

This dissertation first considers approaches for examining noncovalent interactions,

and then details selected applications of QM and MM methods. Quantum mechanical

methods for computing interaction energies are surveyed in Chapter 2, while representations

and response models commonly found in polarizable force fields are assessed in Chapter 3. In

Chapter 4, QM studies are used to characterize attractive interactions between heteroallene-

containing guests and a cucurbitiril host, and in Chapter 5, relative binding enthalpies

are estimated using MD simulations for flexible and constrained ligands of the Grb2 SH2

domain.



Chapter 2

Quantum Mechanical Calculation of

Noncovalent Interactions: A Large-Scale

Evaluation of PMx, DFT and SAPT

Approaches

2.1 Introduction

Noncovalent interactions are of fundamental importance to biomolecular systems,

as they help determine the structures and functions of protein and nucleic acids, and play a

central role in molecular recognition. A reliable representation of noncovalent interactions

therefore is critically important to computational modeling of biomolecules, with appli-

cations that include rational drug design and protein engineering[53, 184]. In molecular

simulations, noncovalent interactions are typically modeled by the nonbonded terms in

an empirical force field[35, 63, 82, 102, 104, 106, 132]. These account for electrostatic

7
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and van der Waals interactions, and may also include terms to account for time-varying

changes in electronic polarization during the simulation[156]. Although the parameters

in an empirical force field are typically adjusted to optimize agreement with experimental

data, growing computer power and a shortage of suitable experimental data are also driving

increased use of quantum mechanical (QM) calculations to parameterize and test force

fields[75, 110, 128, 155, 191]. In addition, concerns regarding the accuracy of empirical

force fields[118, 119] are motivating the direct application of QM methods to the study of

noncovalent binding in host-guest[60, 117] and protein-ligand[46, 76, 133] systems.

It would be ideal if such applications could take advantage of the highly accurate

QM approach often viewed as the gold standard for computing noncovalent interactions;

i.e., counterpoise-corrected couple-cluster theory, with single, double and perturbative triple

excitations, extrapolated to the completed basis set limit[83]. However, the computational

demands of such CCSD(T)/CBS CP calculations make them too time-consuming for routine

use in force field parameterization and prohibit direct application to biomolecular systems.

As a consequence, a range of other QM methods have been developed. Because all of these

methods make approximations for the sake of computational efficiency, it becomes essential

to evaluate their accuracy. While there are many studies which rely on high accuracy

reference results for relevant molecular systems[24, 41, 70, 74, 94], there is still need for

broader, comparative validation studies, which will provide users and developers with a

perspective of the strengths, weaknesses and tradeoffs among the various QM approaches,

and their applicability to specific classes of noncovalent interactions.

Here, therefore, we contribute a systematic assessment of accuracy and speed for

a range of QM methods, using a reference dataset of over 1,200 gas-phase dimers, for

which CCSD(T)/CBS CP reference energies are publicly available in the Benchmark En-
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ergy and Geometry Database (BEGDB)[145]. The categories of QM method examined are:

semiempirical; density functional theory (DFT), with and without dispersion corrections; and

symmetry-adapted perturbation theory (SAPT). The semiempirical PM6[164] and PM7[166]

methods, the most computationally efficient methods tested here, rely on empirically ad-

justable parameters and are often combined with additional interaction terms. We examine

the PM6 method, with post hoc corrections for dispersion and hydrogen bonding interac-

tions (PM6-DH2[95, 140], PM6-DH+[95], and halogen interactions (PM6-DH2X[141]).

The PM7 method, which is based on PM6, is also included without additional corrections,

as its parameterization strategy accounts for such interactions. We test the widely used

DFT functionals B3LYP[15, 100], B97-D[59] and M062X[195], with and without added

dispersion corrections[61], as well as the ωB97X-D[26] functional, which includes its own

correction for dispersion, is also tested. Finally, we test SAPT[79], which is distinct from

the PMx and DFT approaches in that it is applicable only to the calculation of noncovalent

interactions (e.g., it cannot be applied to geometry optimizations), and that it provides an

informative decomposition of the overall interaction energy into electrostatic, induction,

exchange and dispersion components. In SAPT, the interaction energy is computed as an

expansion of perturbative terms, and we examine the SAPT0, SAPT2, SAPT2+, SAPT2+(3)

and SAPT2+3 truncations[70]. We also explore the potential for the fast SAPT0 (fSAPT0)

method to afford accurate results through empirical scaling of its energy terms, much as done

previously in a smaller study[142], and make available the detailed energy decompositions

afforded by SAPT across all of the test systems, as these can be useful to guide force field

parameterization[111]. The present study provides a unique perspective of the reliability and

efficiency of a broad range of QM methods, and should be a useful guide to their selection

and further improvement.
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2.2 Methods

2.2.1 Benchmark Datasets

A growing collection of benchmark datasets provides high quality geometries and

interaction energies for noncovalent complexes[70]. Here, we use several datasets (Table

2.1) from the BEGDB to explore the accuracy of various QM methods for noncovalent

interactions spanning a range of system types and sizes. We study a total of 1,266 dimers,

ranging in size from 20 electrons in 4 atoms to 478 electrons in 101 atoms (Figure 2.1). These

various BEGDB datasets probe different classes of noncovalent interactions. In particular,

the S22x5[57] and S66x8[146] datasets both contain noncovalent complexes categorized as

hydrogen bonded (electrostatics dominated), dispersion dominated, or mixed electrostatic

and dispersive; X40x10[147] focuses on complexes with halogen interactions; Ionic[143]

contains systems with charged hydrogen bonds; SCAI[17] and JSCH[83] contain amino

acid and nucleic acid complexes; and the L7[152] dataset contains even larger extended

complexes, all containing greater than 200 electrons. Several of these datasets, S22x5,

S66x8[146], X40x10[147] and Ionic, contain geometries generated along a dissociation path

relative to the equilibrium geometry, and thus include many nonequilibrium conformations.

Because the aug-cc-pVTZ basis set[44, 87, 187, 189] used in the present study is not

applicable to iodine, we omit the nine iodine-containing complexes in X40x10, and term the

reduced dataset X31x10. Lastly, we also include the A24[144] dataset, which contains small

complexes sized to enable comparison of more accurate approaches that would otherwise be

unfeasible for larger complexes. BEGDB provides counterpoise-corrected CCSD(T)/CBS

interaction energies for all of these datasets, except for JSCH, which contains energies

evaluated using CCSD(T)/CBS and MP2/CBS without counterpoise (CP) correction, and
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Table 2.1: BEGDB datasets used in the present study. Note that the names
match those on the BEGDB website, which are not necessarily consistent with
the corresponding publications. For example, the X40, X40x10 and Ionic datasets
have also been referred to as ‘Halogens,’ ‘Halogensx10,’ and ‘Charged HB.’[74]

Equilibrium Datasets

Dataset Description No. of
Structures

Geometry Optimization
Method

Reference Energy
Method

A24[144] Small complexes of 7-
11 atoms

24 CCSD(T)/CBS CP or
noCP

CCSD(T)/CBS CP

S22[83] Small complexes of 8-
26 atoms

22 MP2/cc-pVTZ CP or
CCSD(T)/cc-pV(T/Q)Z
noCP

CCSD(T)/CBS CP

S66[146] Small complexes of 6-
18 atoms

66 MP2/cc-pVTZ CP CCSD(T)/CBS CP

X40[147] Complexes with halo-
genated molecules

40 MP2/cc-pVTZ CP CCSD(T)/CBS CP

SCAI[17] Amino acid side chain
complexes of 22-32
atoms

24 DFT TPSS/TZVP noCP CCSD(T)/CBS CP(D-
>T)

JSCH[83] 124 nucleic base com-
plexes and 19 amino
acid complexes of 29-
41 atoms

143 Artificial geometries,
NMR structures, crystal
structures, X-ray struc-
tures, MP2/cc-pVTZ
noCP or MP2/TZVPP
noCP

CCSD(T)/CBS noCP or
MP2/CBS noCP

L7[152] Large complexes of
48-112 atoms

7 DFT-D TPSS-D/TZVP
or other

QCISD(T)/CBS CP or
CCSD(T)/CBS CP

Nonequilibrium Datasets

Dataset Relative Displace-
ments

No. of
Structures

Geometry Optimization
Method

Reference Energy
Method

S22x5[57] 0.9, 1.0, 1.2, 1.5, 2.0 110 MP2/cc-pVTZ CP or
CCSD(T)/cc-pV(T/Q)Z
noCP

CCSD(T)/CBS CP

S66x8[146] 0.90, 0.95, 1.00, 1.05,
1.10, 1.25, 1.50, 2.00

528 MP2/cc-pVTZ CP CCSD(T)/CBS CP

X40x10[147] 0.80, 0.85, 0.90, 0.95,
1.00, 1.05, 1.10, 1.25,
1.50, 2.00

400 MP2/cc-pVTZ CP CCSD(T)/CBS CP

Ionic[143] 0.90, 0.95, 1.00, 1.05,
1.10, 1.25, 1.50, 2.00

120 MP2/cc-pVTZ CP CCSD(T)/CBS CP

L7, which uses QCISD(T)/CBS CP. It is also worth noting that there are variations within

and across these BEGDB datasets in both the basis sets and extrapolation schemes employed

to obtain the CBS results. Such details are not trivial and can produce discrepancies as large
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as 0.7 kcal/mol, as elaborated in the Results section.

Figure 2.1: Sizes of dimers studied. For nonequilibrium datasets, only one point
is shown per dimer system. The larger L7 dataset is included in the inset.

2.2.2 Computational Methods

Semiempirical PMx energy calculations were carried out with MOPAC2012[165].

The PM6[164] methods were examined with corrections for dispersion, hydrogen bonding

and halogen interactions. PM6-DH2[95] and PM6-DH+[93] differ in the hydrogen bonding

correction used, with the latter having improved long-range behavior. PM6-DH2X[141]

adds an empirical repulsive correction for halogen interactions to the same dispersion and

hydrogen-bonding corrections implemented in PM6-DH2. The more recent PM7[166]

method is parameterized against a larger reference dataset than that used for PM6, and

includes its own terms to account for dispersion and hydrogen bonding.

The DFT calculations with CP correction were carried out with the aug-cc-pVTZ
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basis set, in revision C.01 of Gaussian 09[51]. Where SCF calculations failed to converge

using default run parameters, the keyword Integral=(Acc2E=12) was used to increase the

two-electron integral accuracy. B3LYP[15, 100], B97-D[59], M062X[195], and ωB97X-

D[26] functionals were selected based on previously assessed performance for noncovalent

interactions[41]. The D3 dispersion correction was applied using DFT-D3, version 3.0[61]

to B3LYP, B97-D and M062X using the default parameters. These were optimized using

a different basis set, (aug-)def2-QZVP. However, we have found that, for the S22 dataset,

aug-cc-pVTZ and (aug-)def2-QZVP, without any dispersion correction, give results that are

within 0.18 kcal/mol RMSE of each other, across all of the methods examined in the present

study. We also observed that using the DFT-D3 parameters optimized for (aug-)def2-QZVP

reduced the RMSE across all dataset by up to 0.12 kcal/mol, compared with using those

optimized for (aug-)def2-TZVPP, the only other basis set option currently available. Becke-

Johnson damping for the D3 correction (D3BJ)[62] was also tested for B3LYP and B97-D

using parameters optimized for (aug-)def2-QZVP; there is no such correction available for

M062X. The original ‘zero-damping’ D3 corrections are so-called because they employ a

damping function for which the dispersion energy approaches zero with small internuclear

separations. We note that, with the exception of B3LYP, all the functionals already contain

some treatment of dispersion: B97-D is the B97 functional with the D2 dispersion correction;

M062X is already parameterized to account for dispersion; and ωB97X-D utilizes its own

specialized empirical dispersion correction.

The SAPT[79] energy calculations at varying orders (SAPT0, SAPT2, SAPT2+,

SAPT2+(3), SAPT2+3) were carried out with PSI4[174]. In SAPT, the total interaction is

computed as a sum of energy terms which are each classified as resulting from electrostatic,

exchange, induction, or dispersion effects. The specific truncations of the SAPT expansion



14

are detailed in Table A.1 (Appendix A). Due to memory limitations, only lower order

SAPT calculations were completed for larger systems. Thus, L7 was evaluated only with

SAPT0; SCAI was evaluated at orders through SAPT2+; JSCH was evaluated through

SAPT2 with the exception of 9 amino acid pair geometries (F30-K46, F30-L33, F30-Y13,

F30-F49, F30-Y4, F49-K46, F49-V5, F49-W37 and F49-Y4) taken from a rubredoxin

crystal structure[179] (PDB 1RB9), for which only SAPT0 calculations were completed. On

the opposite end of the system size spectrum, SAPT orders up to SAPT2+3 were calculated

for A24. All other datasets (S22x5, S66x8, Ionic and X31x10) were evaluated through

SAPT2+(3).

2.2.3 Evaluation of Accuracy and Computational Speed

We use the root mean squared error (RMSE) as the primary metric of error in

comparing the various computational methods. However, the mean signed error (MSE)

is also provided to further characterize the performance of each method–a negative MSE

indicates that a method overestimates the attractive interactions of a noncovalent dimer.

Relative error is often reported in the literature, presumably because errors are thought to

increase with interaction energy. Here, however, we saw no correlation between error and

interaction (R2 < 0.2 for all methods), so relative errors are not reported.

Timing studies were carried out on 8 CPUs of a 16-CPU node which was dedicated

entirely to the calculation being timed. The timings of DFT and SAPT methods were

examined by applying them in triplicate to each system in the A24 dataset and noting the

shortest of the three wall-clock times reported as elapsed “real” time by the Unix time

command. This timing approach accounts for the efficiency with which each method uses

the 8 available CPUs. The timings DFT with D3 dispersion correction are recorded without
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the add-on correction, as it requires negligible resources compared to the main calculation.

2.2.4 Linear Scaling of SAPT0 Energy Terms

The SAPT0 interaction energy is the sum of 6 energy terms, as detailed in Table A.1

of Appendix A, and in the fSAPT0 schemes, a separate scaling factor is applied to some or

all of these terms. The linear scaling factors for the SAPT0 energy terms were determined by

randomly splitting the systems in all combined datasets, except L7, into two equal subsets.

One subset was used for training, and the other for testing. Thus, we applied multiple linear

regression of the SAP0 energy terms to the corresponding CCSD(T)/CBS CP reference

energies for the training set, to obtain a set of fitted coefficients; used these coefficients

to compute interaction energies for the test set; and computed correlation coefficients and

RMSE for the test-set results. This procedure was repeated 1,000 times, with different

random selections of the training and testing subsets. Three different fitting schemes were

tested: fSAPT0(1) scales all SAPT0 energy terms; fSAPT0(2) scales only the two dispersion

terms, E(20)
disp and E(20)

exch−disp , treated independently; and fSAPT0(3) scales only the sum of

the two dispersion terms, E(20)
disp and E(20)

exch−disp. We also tried applying scaling factors to

SAPT2 thru SAPT2+(3), but this did not lead to significant improvements in accuracy.

2.3 Results

We tested a spectrum of quantum mechanical methods, spanning semiempirical

(PMx), DFT, and SAPT, by comparing their results with reference interaction energies for

a collection of noncovalent complexes in the gas phase. The reference collection, which

comprised the A24, Ionic, JSCH, L7, SCAI, S22x5, S66x8 and X31x10 datasets from
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BEGDB, totals 1,266 entries and includes a variety of molecules—nonpolar, polar, ionized

and halogenated—in equilibrium and nonequilibrium geometries. Appendix A provides the

interaction energies, calculated using the various QM methods for all the systems studied,

along with the corresponding BEGDB reference energies.

The present quantum mechanical results were compared with the highest-accuracy

reference energies available in the BEGDB for the datasets used. These were generated with

CCSD(T)/CBS calculations including counterpoise corrections, except as noted in Methods.

It is worth noting that the reference energies in the S22[83] and S66[146] datasets, which

are more limited versions of the S22x5 and S66x8 datasets used here, were recently revised,

based on larger basis sets, additional points for the CBS extrapolation, or both. The more

rigorous results differ from those originally publisrrhed by 0.2 kcal/mol and 0.1 kcal/mol

RMSE, respectively, with maximum unsigned errors of up to 0.7 kcal/mol. Given that the

reference energies were not computed at such a high level, they also presumably have errors

similar in magnitude. This uncertainty in the reference energies implies that the present

study cannot meaningfully resolve errors less than 0.2 kcal/mol.

The following subsections provide an overview of the results, followed by more

detailed discussions of the PMx, DFT and SAPT approaches. Timing comparisons are then

given for the DFT and SAPT methods. Finally, we show that a simple scaling of SAPT0

energy components offers substantially improved accuracy at minimal computational cost.

2.3.1 Overview

As shown in Figure 2.2 and tabulated in Table 2.2, the RMSE values of the various

quantum methods averaged across all datasets range from 0.52 to 3.76 kcal/mol. The

methods which yield the lowest overall errors are SAPT2+(3) and M062X, both with and
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without its dispersion correction, but a number of methods also yield overall RMSE values

within 1 kcal/mol. The methods which yield highest overall errors are the semiempirical

(PMx) methods, B3LYP without dispersion correction, and SAPT0. The MSE values are

more informative; they show that both the PMx and DFT methods without dispersion

corrections tend to provide interaction energies more positive (less favorable) than the

reference results, while the SAPT methods tend to provide interaction energies more negative

(more favorable) than the reference results. As expected, supplementing the DFT methods

with negative dispersion energy terms reduces the tendency to overestimate the interaction

energy; the resulting improvement is particularly striking on going from B3LYP to B3LYP-

D3.
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Figure 2.2: Evaluation of QM methods for combined and individual benchmark
datasets. Errors evaluated relative to CCSD(T)/CBS CP energies. *SAPT2 calcula-
tions were only evaluated for 134 out of 143 of the JCSH systems.
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The performance of the quantum approaches varies significantly across the datasets,

as shown in Figure 2.2. Perhaps most striking is that the PMx methods provide substantially

better relative results for the S22x5, S66x8, SCAI, and JCSH datasets, and worse results for

A24, Ionic and X31x10. The problems for A24 and X31x10 appear to arise largely from

errors associated specifically with halogenated molecules. The Ionic dataset includes no

halogens, however, and we speculate that the errors here may trace to the lack of ionized

hydrogen-bonded complexes in the datasets used to parameterize the PMx methods. In

addition, the minimal basis sets used in the PMx methods may have difficulty accounting

for the strong polarization effects present in such ionized complexes. Other than B3LYP,

lower-order SAPT and PMx, all methods are within 1 kcal/mol RMSE of the reference

energies for all sets except JSCH. For JSCH, all approaches yield larger errors (note the

scale of the vertical axis in Figure 2.2c). This is perhaps not surprising, because the JSCH

dataset contains the largest dimer systems, and one may expect larger systems to effectively

include more interactions, each potentially associated with some level of errorFigure 2.1.

Ranking the methods according to their overall accuracy and their accuracy on each data set,

Table 2.2 shows that, although certain methods remain near the top of the rankings across

the board, the detailed ordering of the methods varies across datasets.

The scatter plots in Figure 2.3 provide further insight into the performance of the

various approaches. All the methods tested provide excellent correlation with the reference

energies (R2>0.86), and, not surprisingly, those with the largest RMSE values Figure 2.2 also

yield the lowest R2 values (Figure 2.3). This analysis also allows further characterization

of the errors associated with some of the methods. First, the PMx scatter plots include

outliers arranged in smooth arcs. Further analysis indicates that each arc corresponds to

the dissociation curve of one dimer system, and the dimer systems which generate these
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arcs are ones for which the PMx method yields idiosyncratically high errors, as discussed

below. Second, most of the errors of the B3LYP method are associated with dimer systems

whose interactions are primarily dispersive, as indicated by the red cluster of off-diagonal

points. These errors are largely corrected by addition of the D3 dispersion correction. In

contrast, the tendency of the SAPT methods to overestimate dimer affinities is largely

independent of interaction type, as points of all colors are found below the lines of identity

in the SAPT scatter plots. Third, adding a dispersion correction to the DFT methods

uniformly improves the correlation, and the D3 correction performs somewhat better than

D2, where the comparison is made (B97-D versus B97-D3). Finally, the DFT methods have

a weak tendency to overestimate the unfavorable energy of the most repulsive interactions,

while the PMx and SAPT methods tend to assign overly favorable energies in these cases.

These repulsive interactions tend to have intermediate electrostatic-dispersive character, as

indicated by the cyan color of these points.
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Figure 2.3: Correlation of QM methods with CCSD(T)/CBS CP. We present only
those datasets to which all methods could be applied; i.e., A24, Ionic, S22x5, S66x8,
X31x10. Each entry is colored by interaction type character (see spectrum below),
which is defined as |Edisp/Eelst |, where Edisp and Eelst are the total electrostatic
and dispersion energy components taken from the SAPT2+(3) calculations.

It is of interest to examine how the performance of the various methods depends on

whether they are applied to equilibrium versus nonequilibrium geometries. Datasets S22x5,
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S66x8, X31x10 and Ionic make such comparisons possible, as they contain dissociation

curves for a total of 134 dimer systems (see Methods). Figure 2.4 compares the MSE and

RMSE for each method at close, equilibrium and far separations, defined here as 90%, 100%

and 200% of the equilibrium separations, respectively. The rankings of the methods for

equilibrium geometries correlate well with the rankings for the close geometries, but poorly

with rankings a far separations (Table 2.3).

Figure 2.4: Evaluation of QM methods for equilibrium and nonequilibrium ge-
ometries. Geometries from the S22x5, S66x8, X31x10 and Ionic datasets. Errors
evaluated relative to CCSD(T)/CBS CP energies.

Given that the long-range interactions are smaller in absolute terms, this observation

suggests that a study of equilibrium geometries suffices to determine which methods work

best overall. On the other hand, the errors rise at short distance for all methods, so that none
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Table 2.3: Ranking of QM methods by RMSE for equilibrium and nonequilibrium
geometries (kcal/mol). Dashed lines mark RMSE levels of 0.5 and 1.0 kcal/mol.
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provide excellent accuracies for the close geometries, and only M062X has an RMSE below

0.5 kcal/mol. At far separations, all methods are within 1.0 kcal/mol RMSE, and several fall

under 0.2 kcal/mol RMSE, which is comparable to the size of errors associated with basis

set choice in computing the CCSD(T) correction, as discussed above.

2.3.2 Semiempirical PMx Methods

The semiempirical PMx methods are roughly comparable in accuracy to the DFT-

D3 and higher-order SAPT methods for the S22x5, S66x8 ,and JSCH datasets, but is

considerably less accurate for A24, Ionic and X31x10, much as previously noted[74]. We

conjecture that this difference stems in part from the fact that the PMx methods considered

here, as well as their corrections (e.g. DH+), were parameterized using systems similar in

character to those in the S22x5, S66x8 and JSCH datasets. In addition, as suggested by

the scatter plots in Figure 2.3, some of the larger errors of the PMx methods are associated

with specific systems for which they give idiosyncratically poor results. In particular, the

PMx methods supply problematic results for bromobenzene· · · trimethylamine and systems

containing HF; i.e., HF dimer, HF· · ·methane, HF· · ·methanol, and HF· · ·methylamine.

Accordingly, omitting these problematic cases significantly improves the RMSE of the PMx

methods by 0.8-1.8 kcal/mol for the A24 and X31x10 datasets, and by 0.2-0.7 kcal/mol

across the full reference collection of datasets, as shown in b. The bromine-nitrogen problem,

as found here in the bromobenzene· · · trimethylamine system, is a known issue for the PM6

method, and is improved by the halogen (‘X’) correction for PM6, or by going to the PM7

method. However, we have not found previous comments on the issue for HF, and we are

not aware of a correction for it. The fact that HF is problematic for all of the PMx methods is

evident from the fact that the corresponding RMSE values for the A24 dataset, which lacks
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the bromobenzene· · · trimethylamine system, improve by 0.5-0.9 kcal/mol when only the HF

systems are omitted. When the bromobenzene· · · trimethylamine and HF-containing systems

are omitted from the PMx results, their RMSE values across all systems fall to 1.4-1.6

kcal/mol (Table 2.4, bottom row, right). However, this improvement does not significantly

change their position in the rankings in Table 2.2.

Table 2.4: Evaluation of PMx methods with and without problematic dimer cases.
Errors are presented as RMSE values, in kcal/mol.

Original No bromobenzene trimethylamine or HF
PM6-
DH+

PM6-
DH2

PM6-
DH2X

PM7 PM6-
DH+

PM6-
DH2

PM6-
DH2X

PM7

A24 1.86 1.83 1.83 2.31 0.88 0.82 0.82 0.93
X31x10 3.68 3.69 3.03 2.69 1.88 1.92 2.26 1.72
All 2.16 2.20 1.89 1.76 1.44 1.48 1.59 1.52

No single PMx method emerges as the most reliable from these data. For example,

although PM7 has a slightly better RMSE across the entire data collection than the corrected

PM6 methods, it is not clear how significant this difference is, as its relative performance is

quite inconsistent across the separate datasets (Figure 2.2). The PM6-DH2 and PM6-DH2X

methods are equivalent for all systems except those containing halogens, and thus produce

identical results for S22x5, S66x8, Ionic, SCAI and JSCH datasets. As expected, using PM7

or applying the “X” correction provides significant improvement in RMSE for the halogen-

containing X31x10 dataset. However, removing the specific problem systems mentioned in

the prior paragraph essentially eliminates the advantage of these more advanced methods.

The utility of the “X” correction, which is specifically designed to improve the treatment of

halogens, may be examined more closely by comparing the various PMx methods for the

full X40x10 dataset, for which all systems contain at least one halogen atom, and which

includes both equilibrium and non-equilibrium distances. PM6-DH2X is more accurate than
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PM6-DH2 at all distances, except that the “X” correction generates a particularly large error

(22.6 kcal/mol RMSE) for dimers at 80% of their equilibrium distances, as shown Table

A.2 (Appendix A). Interestingly, when the iodine-containing systems are omitted, to create

the X31x10 subset of X40x10, the “X” correction yields improved or equal results at all

distances, and the anomalously high error at short range is absent. Thus, although the “X”

correction yields an overall improvement, it seems problematic for the particular case of

short-ranged interactions involving iodine. The PM7 method lacks this short-range anomaly,

but is somewhat less accurate for the iodinated compounds at longer ranges.

2.3.3 DFT with and without Dispersion Corrections

The DFT methods which incorporate some treatment of dispersion show good

overall performance, with RMSE values ranging from 0.52 to 0.83 kcal/mol. In contrast,

uncorrected B3LYP yields a rather large RMSE of 3.76 kcal/mol, and its largest errors

are associated chiefly with dispersive systems (red in Figure 2.2), for which the method

underestimates the attractive forces. Supplementing B3LYP with attractive D3 dispersion

corrections markedly improves the overall RMSE across all test systems to 0.68 kcal/mol

with D3 and to 0.55 kcal/mol with D3BJ. For the B3LYP functional, the BJ-damped version

of the D3 correction typically produces results closer to reference compared with zero-

damped D3. Interestingly, there is no marked improvement going from the two-body D2

correction to the three-body D3 correction, in the context of the B97-D method, even for the

larger systems in the JSCH and SCAI datasets, where three-body contributions are expected

to be more important. Furthermore, while B97-D3BJ has a lower overall RMSE across all

systems compared with B97-D3 (0.65 kcal/mol compared to 0.79 kcal/mol), the former

produces higher RMSE values for the Ionic and SCAI datasets. Thus, it is difficult to gauge
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the benefit of applying BJ-damping over zero-damping for B97-D. The uncorrected M062X

method performs equally well for electrostatic and dispersive systems (Figure 2.3), but its

accuracy appears to be slightly improved by supplementing it with the D3 dispersion term

(Figure 2.2). The ωB97X-D method includes its own dispersion correction distinct from D2

or D3, and this method ranks well across all the datasets. It is perhaps worth noting that the

counterpoise corrections for all for DFT methods (B3LYP, B97-D, M062X, and ωB97X-D)

are small, averaging 0.15 kcal/mol across all methods and systems. The mean correction

rises only slightly, to 0.21 kcal/mol for nonequilibrium systems at close range (90% of

equilibrium separation). These corrections are small, in the sense that they are similar in

magnitude to the uncertainty in the reference energies used here, as discussed above. Finally,

it is worth noting that the low errors observed for D3-corrected DFT functionals in S22x5

are, perhaps, unsurprising, since the same molecules in similar geometries were included in

the dataset used to parameterize DFT-D3.

2.3.4 SAPT

The accuracy of the SAPT approach tends to increase with order, as expected, and the

higher orders are comparable in accuracy to the best DFT methods (Figure 2.2). The trend

of increased accuracy with increased order holds for all individual datasets, except Ionic,

for which SAPT2 yields a lower RMSE than SAPT2+. Since SAPT2+ differs from SAPT2

by only two dispersion terms, it is interesting that the inclusion of these terms seemingly

degrades accuracy here. Perhaps the excellent performance of SAPT2 for this particular

dataset results from a fortuitous cancellation of errors. It is worth noting that all orders

of SAPT tend to overestimate attractive forces, regardless of system character, as evident

from the negative MSE values in Figure 2.2 and by inspection of the scatter plots in Figure
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2.3. This overestimation is particularly marked for SAPT0, suggesting the presence of a

systematic error that might be mitigated by a post-calculation correction. Finally, because

the SAPT energy components can be useful for tuning individual force field terms[111], we

provide, in the supplementary information, the detailed SAPT2+(3) decompositions for all

the dimer systems studied here.

2.3.5 Timing Analysis

We used the A24 dataset to compare the computational speeds of the various methods.

The PMx methods all finished in less than 0.02s real (wall clock) time on a single CPU,

making them over 1000 times faster than the DFT or SAPT methods. The latter were timed

for all A24 systems on 8 dedicated CPUs, and Figure 2.5 plots real time against system

size, as measured by the number of atoms, while Figure 2.6 plots the tradeoff between

accuracy and computer time. Overall, SAPT0 is clearly the fastest approach, SAPT2+(3)

is the slowest, and the DFT timings are rather similar to each other and to SAPT2+. The

level of accuracy broadly correlates with computer time, except in the case of uncorrected

B3LYP.
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Figure 2.5: Scaling of calculation time with system size. Results are presented for
the A24 dataset, where system size is measured by the number of atoms in each
dimer.
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Figure 2.6: Tradeoff between accuracy and calculation time. Accuracies are
presented as RMSE across the A24, Ionic, S22x5, S66x8, and X31x10 datasets,
while calculation times are averaged for the A24 dataset alone. Note that the post
hoc D3 dispersion corrections and the SAPT0 fitting require negligible calculation
time.

The scaling of computer time with system size was examined by fitting the timings

for each method to a power model of the form t=anb, where t is real time and n is the number

of atoms or electrons. The curve fits are detailed in Table A.3 (Appendix A). As shown

in Figure 2.5, all of the DFT methods except ωB97X-D have exponents of about 2.5 and

prefactors of about 0.4. The ωB97X-D DFT method appears to scale rather differently, as

its exponent and prefactor are 1.65 and 3.13, respectively. On the other hand, the R2 value

of its fit to the power model is only 0.67, so its scaling behavior is not clearly defined by
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these data. The exponents for the SAPT methods increase with order: SAPT0 scales as the

number of atoms to the power 1.49, while the SAPT2+(3) time varies as the 2.44 power.

Analogous trends across the methods are observed when one fits the timings to the number

of electrons in the system, rather than the number of atoms. Perhaps surprisingly, however,

the R2 values of the fits are much lower, as evident in Table A.3.

2.3.6 Linear Scaling of SAPT0 Energy Terms

Of the methods tested here, SAPT0 is faster than all but the semiempirical PMx

methods, as detailed above. The fact that it decomposes the total dimer interaction energy

into seven contributions, which capture aspects of electrostatics, exchange, induction and

dispersion, provides an opportunity to try generating a fast method with improved accuracy

by scaling these contributions, as detailed in Methods. Table 2.5 lists the means and standard

deviations of the resulting scaling coefficients for the SAPT0 terms, across the 1000 different

training sets, and the mean and standard deviations of the RMSE and R2 values when the

trained coefficients are applied to the respective test sets. Most of the scaling coefficients are

near unity; the term which requires the most scaling is the E(20)
exch−disp term. Scaling all terms,

in fSAPT0(1), produces the lowest test-set RMSE, followed by scaling the dispersion terms

individually, in fSAPT0(2), and then by scaling the summed dispersion terms, in fSAPT0(3).

The fact that these results are obtained on test-sets not used to set the coefficients means that

the improvement in performance for the more highly parameterized models do not reflect

overfitting. The accuracy of the three scaling schemes is also compared with the various

QM methods in Figures 2.2 and 2.3 and Tables 2.2 and 2.3. Across all datasets, except L7,

applying scaling factors to the SAPT0 terms reduces the RMSE from 1.58 kcal/mol to as

low as 0.47 kcal/mol, and corrects the tendency of SAPT0 to overestimate the attractive
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nature of the dimer interactions. Indeed, the fitted SAPT0 results approach the accuracy

of the DFT methods, with the differences within the estimates of CCSD(T)/CBS basis set

choice errors (above). Note that this improvement in SAPT0, through the application of

simple scaling factors, incurs negligible additional computational cost, so that the fSAPT0

scaling methods provide a particularly favorable combination of efficiency and accuracy,

as shown in Figure 2.6. Figure A.1 (Appendix A) furthermore examines the accuracy of

fSAPT0, as well as the other QM methods, for the large noncovalent complexes of the L7

dataset; the results are generally consistent with those obtained for the other datasets. The

energy components of the fitted SAPT0 method still correlate well with the corresponding

energy components calculated at the SAPT2+(3) level, as detailed in Table A.4 (Appendix

A). The good agreement suggests that the energy decomposition derived using the scaled

terms is still physically meaningful.

2.4 Discussion

The present study systematically evaluates the accuracy and speed of a broad range

of electronic structure methods for estimating noncovalent interaction energies. Methods

spanning PMx, DFT and SAPT were applied to over 1,200 geometries of gas-phase dimers

drawn from the BEGDB resource, which is tailored to probe a variety of interaction motifs

relevant to biomolecules and drug-like compounds. These results offer useful guidance

regarding which methods are most suitable for various types of applications where “gold-

standard” CCSD(T)/CBS CP calculations are too time-consuming or impractical, as now

discussed. Key findings and implications are now discussed

The PMx methods studied here are dramatically faster than both the DFT and SAPT
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Table 2.5: Linear scaling factors for SAPT0/aug-cc-pVTZ energy terms. Three
different fitting schemes were tested: fSAPT0(1) scales all terms; fSAPT0(2) scales
only the two dispersion terms, E(20)

disp and E(20)
exch−disp, treated independently; and fS-

APT0(3) scales only the sum of the two dispersion terms, E(20)
disp and E(20)

exch−disp. The
scaling factors were determined over 1,000 iterations of multiple linear regression
on randomly selected training subsets of the dimer systems, while RMSE and R2

were evaluated over the same iterations using test subsets comprising all dimer
systems not included in the training subset. Training and test subsets were equal in
size.

fSAPT0(1) fSAPT0(2) fSAPT0(3)

E(10)
elst,r 1.01±0.02 1.00* 1.00*

E(10)
exch 1.02±0.02 1.00* 1.00*

E(20)
ind,r 0.76±0.08 1.00* 1.00*

E(20)
exch−ind,r 0.70±0.08 1.00* 1.00*

δE(2)
HF,r 1.06±0.08 1.00* 1.00*

E(20)
disp 0.93±0.01 0.96±0.02 0.76†±0.01

E(20)
exch−disp 1.7±0.2 2.1±0.2 0.76†±0.01

Test RMSE 0.66±0.06 0.82±0.05 0.93±0.04
Test R2 0.995±0.009 0.993±0.001 0.992±0.001

*Not fitted. †Both dispersion terms share a single fitted coefficient.

approaches, and they are more readily applied to larger molecules. However, they are in

general less accurate, particularly for halogenated and ionic molecules, as well as for a few

types of systems with idiosyncratic results[1]. Perhaps surprisingly, none of the various

PMx methods tested here is clearly superior to the others, in terms of overall accuracy. The

DFT methods are slower and more difficult to apply to large systems, but they can achieve

high accuracy, so long as dispersion is accounted for, either implicitly, as in M062X, or via

an add-on term, as in B97-D3. The performance of the SAPT approach depends strongly on

the order of the SAPT expansion. The SAPT2+ and SAPT2+(3) orders span the range of

accuracy seen for the dispersion-corrected DFT methods. However, while the speed of the

SAPT2+ method is comparable to that of the DFT methods, the more accurate SAPT2+(3)
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is considerably slower. It is also worth noting that, at least in the current PSI4 software, the

memory requirements of SAPT at orders higher than SAPT0 can become problematic for

the larger systems examined here. The lowest order of SAPT, SAPT0, is similar in accuracy

to the PMx methods, but significantly slower. However, we find that a simple empirical

scaling of one or more SAPT0 energy terms leads to accuracy approaching that of the best

DFT methods, at far less computational cost. With further development, an empirically

adjusted SAPT0 approach might provide a powerful alternative to DFT methods for the

study of noncovalent interactions in larger systems.

The results of this study have implications for improving the treatment of noncovalent

interactions in molecular modeling, as QM calculations are used to guide the development of

force fields for simulation, and may even replace force fields in some applications. The more

accurate DFT and DFT-D3 methods maybe most suitable for force field parameterization,

given their reliability and consistency across many types of molecular systems, and the fact

that their moderate computational cost is not a major liability for this application. Despite

the high speed of the PMx methods, their lower accuracy, especially for ionic systems and

halogens, along with occasional idiosyncratic performance, makes them less suitable for

parameterization of force fields. However, continued development of such semiempirical

methods, including training on broader datasets, remains promising. In addition, these meth-

ods may already be more accurate than typical simulation force fields, so their high speed

makes them a reasonable choice for direct modeling of biomolecular systems. The higher

order SAPT methods are about as accurate as DFT, but are relatively slow, while SAPT0

is fast but inaccurate. Interestingly, the scaled SAPT0 method offers a promising blend of

accuracy and computational speed, especially for larger molecular systems. In addition,

the present scaling approach is relatively simple, and more sophisticated schemes which
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account for geometry and chemistry might be even more accurate at minimal computational

cost.
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Chapter 3

Evaluation of Representations and

Response Models for Polarizable Force

Fields

3.1 Introduction

Classical simulations of condensed phase molecular systems rely on potential func-

tions, or force fields, to map the spatial coordinates of the atomic nuclei to the potential

energy of the system and the force on each atom. Commonly used force fields model

electrostatic interactions in terms of Coulombic interactions among atom-centered point

charges with fixed values[82, 22, 36, 182, 124, 107, 108, 130]. This functional form strikes

a practical balance between computational efficiency and accuracy, and thus has found

wide application. Indeed, we have argued that, given the modest scope of experimental

data used so far to adjust force field parameters, force fields using this functional form

can become even more accurate[66]. On the other hand, their accuracy must ultimately be

38
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limited by their neglect of configuration-dependent changes in electronic polarization; i.e.,

shifts in molecular electron densities induced by variations in the electrical field felt by a

molecule, as the system evolves over time. This limitation of the fixed-charge model has

motivated development of force fields that incorporate configuration-dependent electronic

polarization[132, 31, 125, 176, 12, 148].

One functional form used to model electronic polarization keeps the partial charges

constant and adds atom-centered dipoles, whose moments vary with the local electric field.

A well-regarded version of this functional form uses atom-centered point polarizabilities,

where the field felt by each point polarizability is that generated by the point charges and the

other induced dipoles in the system. This implementation is computationally burdensome,

however, because it requires solving a matrix equation for the self-consistent set of induced

dipoles. This problem may be moderated by improved mathematical approaches [159],

or removed entirely by variants where the field felt by each point polarizability omits

any contribution from the other induced dipoles[167, 151, 89, 183]. These direct, or

first-order, methods are fast, because there is no self-consistent matrix problem to solve,

but the lack of physical consistency between fields and dipoles might lead to reduced

accuracy. On the other hand, even the full, self-consistent point-polarizability model is

itself a simplified representation of relatively complex electron population shifts, and going

from self-consistency to the direct approximation may not add much more error. Another

way to avoid solving the self-consistent induced dipoles problem is to use the Drude

oscillator[43, 98, 9], or charge-on-spring[192], model. This approximates atom-centered

point polarizabilities by attaching an artificial particle, with a small mass and a point charge,

to each atom treated as polarizable, and including the motions of these charges as part

of the dynamical system. It is also important to mention more detailed models, such as
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SIBFA[58], which place anisotropic polarizabilities off atom centers; and treatments of

electronic polarization based on a continuum dielectric representation [154, 168, 173].

Another functional form used to model electronic polarization does not use point

dipoles, but instead allows the partial atomic charges to vary in response to time-varying

electric fields. For example, the fluctuating charge implementation of this approach [135,

149] uses an electronegativity equalization [116] ansatz to define how charges vary with

field and treats the changes in charge as additional dynamical variables via an extended

Lagrangian method. However, other polarization implementations based on variable partial

charges would also possible[48].

The applicability of these two basic models, inducible point dipoles and variable

point charges, raises the question whether one is fundamentally better suited than the other

to model shifts in the electron density of a molecule induced by external fields. That is,

setting aside how these quantities are assigned in any given implementation, is there a

difference in the ability of atom-centered point charges versus point dipoles to model the

changes in electrical field due to induced polarization? This question originally arose in

discussions about aqueous nitrobenzene: perhaps a configuration with a water molecule

hydrogen-bonded to only one nitro oxygen would lead to a redistribution of electrons

between the two oxygens that would not be readily captured by atom-centered dipoles

(William Swope, personal discussion). On the other hand, it is well known that atom-

centered point charges are not well suited to capture out-of-plane polarization of a planar

molecule, such as nitrobenzene. Additionally, given the greater computational cost of the

self-consistent induced dipole model versus the direct approximation, it is worth asking how

much accuracy is lost in going to the direct model. Finally, when formulating a polarization

model based on atom-centered polarizabilities, one must choose between simply overlaying
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the new polarizabilities on an existing set of fixed partial atomic charges (e.g., RESP

charges[14]), or optimizing a new set of charges for use with the polarizability model.

Here, we address these and related issues by computing changes in molecular

electrostatic potentials induced by point charges at multiple locations around small molecules

in vacuum, using electronic structure methods; and then testing the how well optimized

implementations of various polarizability models replicate these changes. The results have

implications for the formulation of force fields that account for configuration-dependent

electronic polarization.

3.2 Methods

The basic approach taken here is to assess how well various polarization models can

replicate electrostatic potentials (ESPs), computed by quantum mechanical (QM) methods,

around molecules polarized by artificial inducing charges. Our use of polarized QM ESPs

as a reference for polarizability models follows the work of others[85, 9]. We regard each

polarization model as consisting of a representation of polarization in terms either of shifts

in atom-centered point charges or of added atom-centered point dipoles; and a response

model, which is a recipe for computing these charges or dipoles. For example, fluctuating

charge[135, 149] is a model which represents polarization via changes in point charges, and

which uses an electronegativity equalization response model to derive these charges[116].

Similarly, the self-consistent and direct polarization models both represent polarization in

terms of atom-centered point dipoles, but they use somewhat different response models to

compute the induced dipoles. We studied the following polarization models:

Model 0: Global optimized point charges A single charge set is optimized to best repli-
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cate the full set of polarized ESPs. Chemically equivalent atoms are constrained

to have equal charges. It should be emphasized that the charges in this model are

constant across all locations of the inducing charge. In addition, there is no response

model for computing the charges beyond fitting to QM results, so this model could

not be used in an actual simulation. However, this model is informative, as it reveals

the greatest accuracy attainable by using a single set of permanent point-charge to

capture the various polarized states of a molecule.

Model 1: Optimal point charges Polarization is represented by changes in atom-centered

point charges, and, unlike Model 0, a different charge set is optimized to best replicate

each polarized ESP. There is no response model for computing the charges beyond

fitting to QM results, so this model could not be used in an actual simulation. However,

this model demonstrates the greatest accuracy attainable with any model using the

point-charge representation of polarization.

Model 2: RESP charges and optimal point dipoles Restrained ESP (RESP) charges[14]

are assigned based on the unpolarized ESP and then held constant, while a different

set of atom-centered point dipoles is optimized to best replicate each polarized ESP.

As for optimal point charges (above), there is no response model for computing the

dipoles beyond fitting to QM results, so this model could not be used in a simulation.

However, it reveals the greatest accuracy attainable by the point-dipole representation

of polarizability, in the context of the baseline RESP charges.

Model 3: RESP charges and direct polarizabilities RESP charges are assigned based on

the unpolarized ESP and then held constant; then a single set of atom-centered point

polarizabilities, modeled as not interacting with each other, is adjusted for each
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molecule, so as to allow optimal replication of the full set of polarized QM ESPs.

Chemically equivalent atoms are constrained to have equal polarizabilities.

Model 4: Co-optimized charges and direct polarizabilities This is the same as Model 3,

except that a single, fixed set of atomic charges is optimized, along with the point

polarizabilities, to best replicate the full set of polarized ESPs. Thus, the final set of

point charges differs from the RESP charges, as it is chosen to best model not only

the baseline unpolarized potential, but also all induced potentials, in conjunction with

the inducible dipoles. Chemically equivalent atoms are constrained to have equal

polarizabilities and charges.

Model 5: RESP charges and self-consistent polarizabilities Same as Model 3, except

that the induced dipoles interact with each other, and their induced dipole moments

are solved self-consistently.

Model 6: Co-optimized charges and self-consistent polarizabilities Same as Model 5,

except a single, optimal set of point charges is obtained along with the optimal point

polarizabilities.

For completeness, we also examined how much the polarized ESPs deviated from

ESPs computed with standard RESP charges optimized to the baseline, unpolarized poten-

tials. On the other hand, we did not examine the Drude model, because it is essentially an

implementation of the self-consistent, atom-centered, point-polarizability model, which is

examined here (Models 4,6). In addition, due to its dynamical nature, the Drude model does

not appear to provide an unambiguous mapping between a molecular conformation and a

set of induced dipoles.
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3.2.1 Molecular Structures and Atom Types

In order to examine polarization in the context of biologically relevant molecules,

we studied nonpolar, neutral polar, and ionized amino acid side chain analogs (Figure 3.1).

The molecule nitrobenzene was also included, to test the ability of point dipoles to model

any charge redistribution between the two nitro oxygens when an inducing charge is near

one of them, and also to probe how well the two polarization representations handle out-

of-plane induction. In addition, gas-phase dimers of the valine analog and of methane

were studied. These are informative because they increase the number of dipole-dipole

interactions among point polarizabilities, relative to the small number of such interactions

present in the monomers. They are therefore useful to further probe the accuracy of the

direct versus self-consistent polarizability models. Multiple conformations were included

for the aspartate, tyrosine and valine analogs. The coordinates of all molecular systems are

energy-minimized structures drawn from BEGDB[17].

In the point-polarizability models, whose parameters are optimized across all polar-

ized ESPs, chemically equivalent atoms are assigned identical polarizabilities and atomic

charges. In particular, using the fact that the RESP software available through the An-

techamber program [181] automatically forces chemically equivalent atoms to have identical

RESP charges, we assigned equivalent parameters to groups of atoms with identical RESP

charges. To do this, we assigned a type to each group of chemically equivalent atoms in a

molecule; for example, the valine side-chain analog has two carbon types and two hydrogen

types (Figure 3.1g). Note that these types do not necessarily correspond to force field atom

types, and that no equivalence was enforced between molecules. For example, c31 can have

different parameters in each molecule where it occurs.
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(a) Aspartate(-) (b) Lysine(+)

(c) Serine (d) Asparagine

(e) Cysteine (f) Tyrosine

(g) Valine (h) Nitrobenzene

(i) Methane

Figure 3.1: Molecular structures with atom types. Note that 3.1a-3.1g are amino
acid side chain analogs rather than the full amino acids, and that atom types are
molecule-specific.
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3.2.2 Calculations of Reference QM Electrostatic Potentials

For each molecule or dimer, gas-phase QM ESPs were computed at the HF/6-31G*

level with Gaussian 09 (RevD.01)[52]. In addition to baseline ESPs, which represent

unpolarized states, polarized ESPs were generated by solving the wave equation with an

inducing point charge, ±1.0e, at locations around the molecule determined with the dot

molecular surface program dms included with MIDAS[49]. In order to position the inducing

charges roughly one heavy-atom diameter away from the atom-centers, the surfaces were

generated with all default atom radii incremented by 1.9Å. The default probe radius of 1.4Å

was used, and the point density was set to 0.1 points per Å2, leading to roughly 150 points

per molecule. The resulting baseline and polarized ESPs were treated as reference data to

optimize the various polarization models, as detailed below.

3.2.3 Description of Systems and Characterization of Errors

We consider a molecule with N atoms, so that, for i = 1, . . . ,N, qi are atom-centered

point charges, µ i are atom-centered point dipoles, and αi are atom-centered polarizabilities,

where the atom centers are at locations ri. The molecule has T ≤ N atom types, so that

for ti ∈ [1, . . . ,T ], qti are atom-typed point charges and αti are atom-typed polarizabilities.

The ESP values are computed at M locations rm, m = 1, . . . ,M, where M is determined by

Gaussian 09 and varies from one molecule to another. The unpolarized reference quantum

ESP values are obtained in the absence of an inducing charge, while polarized reference

quantum ESP values are each computed in the presence of an inducing charge qk =±1 at

the dms-assigned location rk. The inducing charge locations are repeated for both positive

and negative point charges so that the reference set consists of a total of 2K polarized

QM ESPs. At an ESP point rm, the unpolarized reference potential is φ 0
m0, while the QM
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potential computed in the presence of inducing charge qk = 1 is φ 0
mk for k = 1, . . . ,K, and the

potential computed in the presence of inducing charge qk =−1 is φ 0
mk for k = K+1, . . . ,2K.

The corresponding potentials from a given polarization model are φmk, for k = 0, . . .2K.

Note that all ESP values considered here omit the direct Coulombic contribution from the

inducing charges.

Optimization of a polarization model means minimizing errors computed in terms of

sums of the squared potential differences (φmk−φ 0
mk)

2. We report the overall error of any

model, when applied to a given molecule in the presence of inducing charges in positions

corresponding to k = 1, . . . ,K as the root-mean-square error of the potential (kcal/mol-e)

across all ESP points for both the positive (k ∈ [1,K]) and negative (k ∈ [K+1,2K]) inducing

charges located at rk:

Rk =

(
χ2

k +χ2
k+K

2M

) 1
2

(3.1)

χ
2
k =

M

∑
m=1

(φmk−φ
0
mk)

2 (3.2)

The error across all inducing charges for a given molecule can then be written as

R =

(
1
K

K

∑
k=1

R2
k

) 1
2

(3.3)

3.2.4 Implementation of Models

The following subsections detail the calculation of RESP charges for the baseline,

unpolarized potential, and the implementation of each polarization model listed above.
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Baseline RESP charges

Atom-centered point charges were fitted to best replicate the baseline, unpolarized

QM ESP of each molecule, φ 0
0m, using RESP as implemented in the Antechamber program

[181]. The two-stage fitting process uses the default AMBER force field charge restraint

weights of 0.0005 for the first stage and 0.001 for the second.

Model 0: Global Optimal Point Charges

For each molecule, atom-centered point charges were optimized for the best simulta-

neous fit to all polarized electrostatic potentials. The electrostatic potential at ESP site rm,

due to the full set of atomic charges, qi, i = 1, . . . ,N, is calculated by

φmk =
N

∑
i

qi

|rim|
(3.4)

where well-known physical constants are omitted for simplicity, and

ri j ≡ ri− r j. (3.5)

The indices i and j are used for atomic centers, while m refers to the ESP locations. Note

that the same set of atomic charges is used for every inducing charge k, so that the potential

φmk is actually independent of k. The optimization procedure, which minimizes the quantity

R in Equation 3.3, is described in the Optimization of Parameters section.

Model 1: Optimal Point Charges

Atom-centered point charges were fitted separately to each polarized QM ESP using

the RESP software and the same set of ESP points as for the baseline, unpolarized, potential,
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but with the restraint weights set to zero and with atom equivalency disabled to allow

free optimization of point charges. Thus, this model reports on the maximal accuracy

attainable by any polarization model that uses the atom-centered point-charge representation

of polarization. However, it cannot be employed in simulations, because it requires a new

quantum calculation for each molecular configuration.

Model 2: RESP Charges and Optimal Point Dipoles

Atom-centered point charges were first fitted to the baseline, unpolarized ESP using

standard RESP, then atom-centered point dipoles, superimposed on the point charges, were

optimized separately for each polarized QM ESP. This model reports on the maximal

accuracy attainable by any polarization model that uses the atom-centered point dipole

representation of polarization along with RESP baseline point charges. However, like the

optimal point charge model above, it cannot be employed in simulations, because it requires

a new quantum calculation for each molecular configuration. The procedure for computing

optimal point dipoles is now described.

The electrostatic potential at rm due to the baseline RESP partial charges, qi, and the

atom-centered point dipoles, µ i, is given by

φm = ∑
i

qi

|rim|
+∑

i
µ iAim (3.6)

where well-known physical constants are omitted for simplicity, ri j is as in Equation 3.5 and

Ai j ≡
ri j

|r3
i j|

(3.7)

For each external charge position rk, where index k refers to the inducing charge, the error
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metric χ2
k (Equation 3.2) may be written as

χ
2
k = ∑

m

(
φ
′
mk−∑

i
µ iAim

)2

(3.8)

φ
′
mk = φ

0
mk−∑

i

qi

|rim|

where φ ′mk contains all quantities independent of the dipoles.

Optimal dipoles are arrived at by setting ∂ (χ2
k )

∂ µi
= 0 for all µi. This yields the following

system of linear equations:


∑
m

A1mφ ′m

...

∑
m

ANmφ ′m


k

=


µ1

...

µN


k


∑
m

A2
1m . . . ∑

m
A1mANm

... . . . ...

∑
m

ANmA1m . . . ∑
m

A2
Nm

 (3.9)

Solving this matrix equation yields the desired atom-centered point dipoles optimized for

external charge position rk. The NumPy linalg.norm[175] function was used to find the

solution to the matrix equation.

Model 3: RESP Charges and Direct Polarizabilities

First, atom-centered point charges were fitted to the baseline, unpolarized ESP, using

standard RESP. Then a single set of atom-typed, atom-centered, isotropic polarizabilities

was optimized for best simultaneous fit to all polarized ESPs (k = 1 . . .2K), where the

model ESPs are computed as sums of the potentials from the baseline RESP charges and

the potentials from the induced dipoles. In this first-order, or direct, polarizability model,

the field at each atom i, E i, is that due to the inducing charge, Eqk
i , plus that due to the fixed
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RESP charges, Eq
i ; fields due to induced dipoles are ignored. Thus

E i = Eqk
i +Eq

i = qkAik +
N

∑
j 6=i

Si jq jAi j (3.10)

Here Si j is a screening function which excludes 1-2 and 1-3 interactions and scales 1-4

interactions by a factor of 0.5, in keeping with common practice in computing Coulombic

interactions with empirical force fields. The induced dipoles are proportional to the inducing

field E i.

µ i = αtiE i = αti[E
qk
i +Eq

i ] (3.11)

the atom-typed, point polarizabilities, αti , are parameters which must be adjusted to minimize

the mean squared error, R2, across all polarization states k = 1, . . . ,2K; see Equation 3.3.

The optimization procedure is described in the Optimization of Parameters section. Note

that the set of charges and point polarizabilities derived in this way is applicable to all

inducing charges and charge positions, as the inducible dipoles respond to the inducing field

according to Equation 3.11. Thus, no additional QM calculations are needed, and this model

could be used in a simulation.

Model 4: Co-optimized Charges and Direct Polarizabilities

This model is identical to Model 3, except that a single set of atom-centered, atom-

typed, point charges is co-optimized with the point polarizabilities across all polarization

states, to minimize the global mean squared error R2. Again, this yields a model which

could be used in a simulation, because no additional QM calculations are needed.
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Model 5: RESP Charges and Self-consistent Polarizabilities

This model is the same as Model 3, except that the field at each atom i now includes

a contributions from other induced dipoles, Eµ

i , and the system of induced dipoles is solved

self-consistently. For a given inducing charge k, the total electric field at atom i becomes

E i = Eqk
i +Eq

i +Eµ

i = qkAik +
N

∑
j 6=i

Si jq jAi j +
N

∑
j 6=i

Si jµ jBi j (3.12)

(Because the RESP charges are atom-typed, one could properly replace q j by qt j .) We use

the Applequist dipole interaction model [10], for which Bi j depends only on separation ri j

Bβγ

i j =
3rβ

i rγ

j

r5
i j
−

δβγ

r3
i j

(3.13)

where β ,γ ∈ {x,y,z}.

The induced dipoles are, again, computed from these fields and the atom-typed point

polarizabilities:

µ i = αiE i = αti[E
qk
i +Eq

i +Eµ

i ] (3.14)

These equations can be rewritten in matrix form as



Eqk
1 +Eq

1

...

...

Eqk
N +Eq

N


=



µ1

...

...

µN





α ′t1 −B12 . . . −B1N

−B12 α ′t2 . . . −B2N

...
... . . . ...

−BN1 −BN2 . . . α ′tN


(3.15)

where α ′ti = α
−1
ti I and Bi j are 3x3 matrices. Solving this matrix equation yields a set of

self-consistent induced dipoles µi, particular to a set of point charges qi, polarizabilities αti ,
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and inducing charge qk at rk.

Using baseline, atom-typed RESP charges for qti , the atom-typed, isotropic polariz-

abilities αti are solved for by the same optimization process as used the direct polarization

models (see Optimization of Parameters section). The resulting polarization model is par-

ticular to the set of baseline RESP charges, but applicable to all external charge locations

rk. Again, this is a model which could be used in a simulation, because no further QM

calculations are required once the polarizabilities are established.

The treatment of close-ranged dipole-dipole interactions adopted here deserves

comment. As noted above, we exclude 1-2 and 1-3 interactions, and scale 1-4 interactions by

0.5. This approach is consistent with many existing polarizable force fields, especially those

also utilizing the Applequist model, such as AMBER ff02[30, 185]. Some dipole-dipole

screening models, such as that of Thole [171] and its variations [139], also modify the Bi j

term (Equation 3.13) to prevent the polarization catastrophe to which the Applequist model

is susceptible. However, excluding 1,2 and 1,3 short-range intramolecular interactions and

halving 1,4 interactions, as done here, prevents this problem, even with the Applequist

model, and our test calculations demonstrated that adding Thole or Thole-like screening

terms to the present models produced negligible changes in the results (data not shown).

Indeed, Cieplak et al.[31] note that other screening models deviate significantly from the

Applequist model only at ranges shorter than about 3.0Å; but the 1-2 and 1-3 exclusions

already eliminate many interactions within this range so the screening models become

virtually equivalent. This observation is corroborated by the similarity of fitting results and

parameters in Wang et al[180] for the CL, CE, CT and CA models, where C refers to the

same short-range scaling as detailed above and the second letter refers to added screening

functions tested.
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Model 6: Co-optimized Charges and Self-Consistent Polarizabilities

This model is the same as Model 5, except that a fixed set of atom-typed partial

charges is co-optimized with the polarizabilities against the full set of polarized ESPs.

Thus, the atom-typed parameters qti and αti are simultaneously adjusted, using the same

optimization process and error function as used for the other inducible dipole models. Again,

this model could be used in a simulation, as no additional QM calculations are needed.

3.2.5 Optimization of Parameters

All models require global parameter optimization. For Model 0 and Models 3-6,

parameters were optimized to minimize R2, the mean of the squared potential deviations

across all inducing charge sites k, for each molecule of interest (Equation 3.3). For Models 1

and 2, parameters were optimized to minimize R2
k , the mean squared potential deviations for

each separate inducing charge position (Equation 3.1). All optimizations were performed

with a SciPy implementation of L-BFGS-B[197, 81], a gradient-based constrained mini-

mization method. Charges are left unconstrained, while polarizabilities are restricted to

positive values. For the inducible dipole models with fixed RESP charges (Models 3 and

5), only the atom-typed polarizabilities,αti , require adjustment; for those with co-optimized

point charges, the atom-typed charges, qti , are adjusted along with the polarizabilities.

For each molecule, multiple optimizations were run with initial parameter values

drawn from a uniform distribution using numpy.random.rand()[175]. For Model 0, 5

optimizations were run using initial charges randomly drawn from the range -1.0e to 1.0e.

For Models 3-6, 50 optimizations were run using initial polarizabilities randomly drawn

from between 0 to 10 bohrs3 (0 to 1.482 Å3). The parameter set with the lowest value of

R2 was selected as the optimum. When charges were co-optimized (Models 4 and 6), the
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baseline RESP charges were used as their starting values. Only 10 optimizations were run

for tyrosine, as the calculations became time-consuming for this relatively large molecule.

3.2.6 Calculation of Isotropic Molecular Polarizabilities

To check the plausibility of the optimized atomic polarizabilities for the inducible

dipole models, we computed the corresponding molecular polarizabilities and compared

them with molecular polarizabilities for the same compounds computed with the Gaussian

09 software. The isotropic molecular polarizability of each molecule was calculated from

the optimized isotropic atomic polarizabilities as

αmol = ∑
i

αti (3.16)

The molecular polarizabilities from Gaussian 09 were calculated at the HF/6-31G* level, for

consistency with the ESP calculations used to derive the atomic polarizabilities.

3.3 Results and Discussion

This section reports on the accuracy of the various representations and models of

polarization, and then appraises the charges and polarizabilities obtained by optimizing

these parameters for the four inducible dipole models.
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3.3.1 Accuracy of Polarization Models

Overall Accuracy

Figure 3.2: RMSE (R) of polarization models (kcal/mol-e). An asterisk in the
legend indicates that RESP charges were used.

The errors of the models are reported as R (Equation 3.3), which is the RMSE of the

ESPs approximated by each model for all inducing charges. Note that these errors will vary

with the magnitudes of the inducing fields, with larger fields generating larger errors. Here,

the inducing fields were generated by unit monopoles placed roughly one atomic diameter

away from the nearest atom-center of the molecule, in vacuo. Thus, roughly similar errors

might be anticipated in simulations of systems with univalent ions near organic compounds

in a low dielectric environment, like a lipid membrane; the overall error in such a system
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will then accumulate and/or cancel across a multitude of complex interatomic interactions.

In order to establish a baseline for comparing the various models, it is of interest

to summarize the errors incurred by not using any polarizable model at all. This baseline

R measures the RMSE of the approximate ESPs computed using standard RESP point

charges, which were fit to the unpolarized QM ESP, for all the inducing charges. As shown

in Figure 3.2 (yellow columns), these errors range from about 3-4 kcal/mol-e. No significant

reduction in error is obtained by using a single set of point charges simultaneously optimized

to the ESPs associated with all inducing charges (Model 0), as evident in Figure 3.2. In

fact, the values of R from Model 0 are the same as those from plain RESP to within 0.01

kcal/mol-e. The validity of this result was confirmed by running five different optimizations

of the Model 0 charges from different randomized starting values; the standard deviation

of the optimized atomic charges for each atom across the five runs was within 0.0026e.

Interestingly, the Model 0 charges strongly resemble the RESP charges: a linear regression

of Model 0 versus RESP charges across all molecules gives a slope of 0.99, y-intercept

of 0.0017 and Pearson correlation coefficient of 0.997. Due to the similarity of the Model

0 and RESP charges and errors, subsequent references to the results when polarization is

neglected may be considered to reference either the baseline RESP results or Model 0.

As detailed in Methods, we tested two representations of polarization tuned to fit

each individual polarized QM ESP: adjustable atom-centered point charges (Model 1),

and adjustable atom-centered point dipoles (Model 2). Both representations lead to errors

in the induced ESPs well below the 3-4 kcal/mol-e errors obtained when polarization is

neglected (prior paragraph). Optimal point charges reduce the error, on average, to about

0.75 kcal/mol-e (gray columns, Figure 3.2), while optimal point dipoles lead to even lower

average errors of about 0.4 kcal/mol-e (magenta columns, Figure 3.2). The advantage
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of point dipoles over point charges is consistent across all molecules studied, though the

difference varies from case to case and is lowest for methane and for the simple alkane

model of valine. It should be emphasized, however, that these results bear only on the ability

of adjustable point charges and point dipoles to capture induced changes in molecular ESPs.

We investigated whether Model 2 provides greater accuracy than Model 1 less

because it offers a better description of the polarization as that it provides a more accurate

description of the baseline, unpolarized electrostatic field. We used nitrobenzene as a test

case to check for this possibility, creating a model with RESP charges supplemented by

point dipoles optimized to replicate the baseline, unpolarized ESP of this molecule. These

baseline optimized dipoles, µ0
i , may be viewed as optimized permanent dipoles for the

unpolarized molecule, and they help correct for the errors of RESP charges in replicating the

unpolarized quantum mechanical ESP. We then computed the RMSE of the ESP generated

by this permanent-charge plus permanent-dipole model against the full set of induced

ESPs for all 382 inducing charges (±1.0e at each of 191 locations). The resulting RMSE

of 4.06 kcal/mol-e is essentially the same as that for baseline RESP charges alone, 4.08

kcal/mol-e. Thus, adding permanent dipoles to the baseline RESP charges produces minimal

improvement in the ESP fits across the set of inducing charges. In contrast, the RMSE is 0.37

kcal/mol-e for Model 2, in which a new set of point dipoles is optimized for each inducing

charge. Thus, the plower errors observed for Model 2 versus baseline RESP charges are

attributable to the improved description of induced polarization, rather than to an improved

description of the baseline potential.

The four polarizability models based on inducible, atom-centered point dipoles

(Models 3-6), were then examined. In each case, a single set of polarizabilities and, where

applicable, point charges, was optimized to best replicate the full set of QM polarized ESPs
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for each molecule. Figure 3.2 summarizes the accuracy of the resulting parameterized

models.

Models 3 and 4 both use the efficient direct polarization approximation, but, whereas

Model 3 keeps the baseline RESP point charges (first paragraph of Results), Model 4 uses a

new set of point charges optimized along with the polarizabilities. Both of these models

yield errors (R) averaging about 1.25 kcal/mol-e (blue and orange columns, respectively,

Figure 3.2). This is substantially better than the baseline errors of 3-4 kcal/mol-e associated

with unpolarized RESP charges (above), but about threefold worse than the theoretical

optimum of about 0.4 kcal/mol-e for the point dipole representation (Model 2). It is also

nearly twofold worse than the theoretical optimum of about 0.75 kcal/mol-e achievable with

the variable point-charge model (Model 1).

One possible source of error in Models 3 and 4 is their nonphysical neglect of

interactions among the induced dipoles. However, Models 5 and 6, which are the same,

respectively, except that they include these interactions and thus require solving a matrix

equation, yield at best marginal improvements in accuracy across all cases tested (purple

and green columns, Figure 3.2); the differences in R, are all <0.15 kcal/mol-e. A possible

concern regarding this observation is that the exclusion of 1-2 and 1-3 interactions, and

the scaling of 1-4 interactions, eliminates or weakens many dipole-dipole interactions that

would otherwise have been fully included in the self-consistent calculations; thus, the direct

model may not be very different from the self-consistent model. We addressed this concern

by including two dimers (valine analog and methane), reasoning that no intermolecular

dipole-dipole interactions are excluded, so these cases should better probe the differences

between the direct and self-consistent approaches. Nonetheless, the self-consistent models

do not particularly outperform the direct models for the dimers either (Figure 3.2); in fact,
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they are marginally worse than the direct models for the methane dimer.

Note that the highest-level polarizability model tested here, Model 6, which uses

self-consistent induced dipoles and co-optimized point charges, does not reach the maximal

accuracy achievable for the point-charge representation of polarization (Model 1). This

means that a sufficiently well-designed point-charge model of polarizability could outper-

form Model 6, which is the standard self-consistent induced dipole model. Given the failure

of Model 6 to approach the accuracy of the theoretical optimal point-dipole model (Model

2), there is even more room to improve the accuracy of polarization models based on the

point-dipole representation.

We examined whether the greater accuracy of Models 1 and 2, relative to the linear

response models, Models 3-6, perhaps resulted from their ability to account for nonlinearity

in the quantum mechanical polarization response. We again used nitrobenzene as a test case,

rerunning quantum calculations with charges of ±0.2, ±0.4, ±0.6, and ±0.8 e at each of

the 191 inducing charge locations, and testing for linearity by several criteria. First, for

each inducing charge location, we ran a linear regression of the molecular dipole moment

provided by Gaussian against the value of the inducing charge: the Pearson correlation

coefficients were found to be at least 0.9999 for all locations of the inducing charge,

confirming the linearity of the overall polarization response. Second, for each inducing

charge location, we carried out linear regressions of the magnitudes of the optimized

(Model 2) point dipoles at each atom against the magnitude of the inducing charges. (Since

nitrobenzene has 14 atoms, there are 382 x 14 regression fits.) We averaged the Pearson

correlation coefficients for each atom across charge locations to provide summary statistics,

and the lowest mean correlation coefficient is found to be 0.9999, again indicating a linear

response. The corresponding analysis for the optimal point charge model, Model 1, similarly
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yielded correlation coefficients ≥0.9990. Finally, we tested how well the accuracy of a

linear extrapolation of the atom-centered point dipoles fitted to inducing charges of ±0.2e

could replicate quantum ESPs induced with a charge of ±1.0e. For each inducing charge

location (not indexed, for simplicity) and atom (i), the dipole moment for a unit inducing

charge is extrapolated as follows µ1.0
i ≈ 5

(
µ0.2

i −µ0
i
)
+ µ0

i , where µ indicates a dipole

moment, and the superscripts indicate the value of the inducing charges to which they

pertain. (The expression for a negative inducing charge is analogous.) The ESPs from these

extrapolated dipoles were compared with the quantum ESPs for the corresponding inducing

charge locations but obtained with inducing unit charges. The RMSE across all inducing

charge positions is 0.372 kcal/mol-e, which is essentially the same as the Model 2 result

obtained by optimizing dipoles for inducing charges of unit magnitude, 0.369 kcal/mol-e.

The analogous extrapolation from inducing charges of 0.2 for the optimal point charge

model, Model 1, yields an RMSE of 1.247 kcal/mol-e, which is essentially the same as

the error for Model 1 charges optimized directly against ESPs for inducing charges of unit

magnitude, 1.246 kcal/mol-e. Thus, the greater accuracy of Models 1 and 2, relative to the

linear polarization models, Models 3-6, is not related to their ability to capture a nonlinear

polarization response.

Figure 3.3: RMSE (R0) of polarization models for unpolarized states (kcal/mol-e).

Another dimension of the inducible dipole models studied here is their use of either
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baseline unpolarized RESP charges, or a new set of point-charges optimized along with

the polarizabilities to best replicate the QM polarized ESPs. The use of co-optimized

charges yields somewhat greater accuracy in all cases; compare Model 4 with Model

3, and Model 6 with Model 5 (Figure 3.2). The improvements are greatest (0.3 to 0.5

kcal/mol-e) for the ionized systems, and least for the cysteine analog (∼0.03 kcal/mol-e).

Importantly, when Models 4 and 6, with co-optimized charges and either direct or self-

consistent polarizabilities, are used to compute the baseline, unpolarized ESP, the agreement

is somewhat better, on average, than that provided by standard (unpolarized) RESP charges

(Figure 3.3). Thus, optimization of charges and polarizabilities against sets of polarized

ESPs results in parameters that are also applicable to the unpolarized state.

Accuracy at Each Inducing Charge Location

Further insight into the strengths and weaknesses of the various polarization models

can be obtained by visualizing the errors associated with different positions, rk of the

inducing charge. Figures 3.4 and 3.5 depict nitrobenzene and the valine analog, respectively,

each surrounded by colored spheres at representative positions, rk of the inducing charge.

Each sphere is colored according to the overall error Rk (Equation 3.1) associated with

the inducing charge at the location of the sphere. Results are presented for the baseline

RESP charges, optimal point charges, optimal point dipoles, and co-optimized charges and

self-consistent polarization. We used different color scales for different panels, in order to

bring out the geometric variations associated with each model and molecule.
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(a) Baseline RESP

(b) Optimal point charges

(c) Optimal point dipoles

(d) Co-optimized charges and self-consistent polarizabilities

Figure 3.4: RMSE (Rk) for nitrobenzene (kcal/mol-e), as a function of inducing
charge location rk.
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(a) Baseline RESP

(b) Optimal point charges

(c) Optimal point dipoles

(d) Co-optimized charges and self-consistent polarizabilities

Figure 3.5: RMSE (Rk) for valine analog (kcal/mol-e), as a function of inducing
charge location rk.

Not surprisingly (see Figure 3.2), baseline RESP charges do a poor job of replicating

the induced potentials. For nitrobenzene, the errors are less for out-of-plane than in-plane

inducing charges (Figure 3.4a), while for the valine analog, the errors are least for inducing
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charges near the axes of the carbon-carbon bonds (Figure 3.5a). All of the polarization

models yield lower errors than the baseline RESP at all external locations, so accounting

for polarization is consistently advantageous. The relative ranking of the methods is also

consistent: optimal point dipoles (Model 2) yield the lowest errors, followed by optimal

point charges (Model 1), and then co-optimized charges with self-consistent polarizabilities

(Model 6). In the case of valine, which is nonplanar: the errors for all three models vary

little with the position of the inducing charge, as the values of Rk remain within a 0.7

kcal/mol-e range for each model. However, the pattern is more complex for the planar

molecule nitrobenzene. Here, the errors are greater for out-of-plane inducing charges than

for in-plane ones, for both Models 1 and 6 (Figures 3.4b,d). (A similar pattern is seen for

the aromatic ring of the tyrosine analog; data not shown.) It is necessarily the case that the

point-charge representation of polarization in Model 1 is unable to account for out-of-plane

polarization for a planar molecule. It is harder to explain why Model 6 performs worse for

out-of-plane than in-plane charges, and indeed, worse for out-of-plane charges than Model

1: compare Figures 3.4b and3.4d.

Optimal point dipoles (Model 2) can yield out-of-plane induced moments, and they

afford good accuracy for inducing charges at in-plane and out-of-plane positions around

nitrobenzene, as well as for all positions around the valine analog. Indeed, the errors

for optimal point dipoles are uniform, to within 0.0035 kcal/mol-e, for inducing charges

around both molecules. This result supports a view that the point dipole representation can

provide consistent performance in modeling all polarization phenomena. However, optimal

performance is clearly not attained by the customary inducible dipole models.
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3.3.2 Optimized Polarizabilities and Charges

A basic check of the plausibility of the optimized polarizabilities is that they should

be consistent with independently determined molecular polarizabilities. Isotropic molecular

polarizabilities were computed from the atomic polarizabilities with Equation 3.16, and

Table 3.1 compares these values with molecular polarizabilities computed independently

with Gaussian 09 QM calculations at the same HF/6-31G* level used to compute the

molecular ESPs, as well as with available experimental molecular polarizabilities. The

molecular polarizabilities from the inducible dipole models agree well with the independently

computed QM molecular polarizabilities, and hence with each other. However, the QM

molecular polarizabilities underestimate the experimental results by on the order of 30%.

This is consistent with a broader set of data showing that polarizabilities computed at the

6-31G* level underestimate experimental results, while more complete basis sets, such as

aug-cc-pVTZ[87, 190], yield more accurate results[3].

All optimized parameters for the four inducible dipole models are listed in Table 3.2;

the unpolarized RESP charges are also shown, as these are used in Models 3 and 5, and may

be compared with the co-optimized charges of Models 4 and 6. The values of the optimized

polarizabilities range from 0.000 to 3.643Å3. The zeroes are, arguably, nonphysical, but we

note that, in many of these cases, there appears to be compensation by neighboring atoms

with particularly large polarizabilities, consistent with the fact that the overall molecular

polarizabilities are physically reasonable (above). For example, in nitrobenzene, where the

direct and self-consistent polarizabilities, optimized with RESP charges, are zero for the

no atom (Figure 3.1), the polarizabilities of the immediately neighboring ca4 atoms are

relatively large, at 2.964 or 3.643Å3, respectively. Similarly, while the c31 atoms in the
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Table 3.1: Isotropic molecular polarizabilities (Å3), from Equation 3.16 using
optimized parameters, QM calculations, and experiment. The experimental values
listed for the dimers are merely twice the experimental monomer results.

3. 4. 5. 6.
RESP, Co-opt Chgs, RESP, Co-opt Chgs,
Dir Pol Dir Pol SC Pol SC Pol HF/6-31G* Expt[4]

Asp(-) 4.806 5.050 4.813 5.082 5.294
Asp(-) 4.820 5.048 4.833 5.087 5.306
Lys(+) 7.258 8.004 7.313 8.249 8.589
Ser 3.666 3.641 3.674 3.650 3.763 5.41
Asn 5.087 5.256 5.128 5.320 5.625
Cys 5.073 5.113 5.128 5.178 5.414 7.41
Tyr 10.312 10.443 10.812 10.931 11.734
Tyr 10.199 10.339 10.725 10.893 11.826
Val 6.064 6.121 6.108 6.166 6.302 8.14
Val 6.065 6.123 6.110 6.169 6.315 "
Val 6.063 6.129 6.105 6.169 6.314 "
Val Dimer 11.966 12.034 12.241 12.285 12.829 16.28
Methane Dimer 3.571 3.571 3.609 3.609 3.618 5.186
Nitrobenzene 8.218 8.579 8.666 9.043 9.808

valine analog are consistently assigned a polarizability of 0.000Å3, the central c32 atom type

has a relatively large polarizability (>2Å3). Cases like these could be avoided by adding

further restraints during the optimization, such as by forcing all carbon atoms in the valine

analog to have equal polarizabilities. However, adding restraints would presumably lessen

the accuracy of the agreement of the models with the QM polarized ESPs, and the present

minimally restrained optimizations have the merit of revealing the best possible performance

of each model.

The optimized polarizabilities may also be analyzed by element. As shown in

Table 3.3, carbon consistently emerges as most polarizable, followed by oxygen, and with

nitrogen and hydrogen approximately tied for third place. (The solitary sulfur atom in the

models studied is assigned polarizabilities of 1.7-1.9 Å3, well above the mean of about 1.0

for carbon.) This ranking is in rough agreement with the polarizabilities assigned to these
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Table 3.2: Optimized parameters for inducible dipole models; polarizabilities (α)
in Å3 and charges (q) in e.

3. 4. 5. 6.
RESP RESP, Co-opt Chgs, RESP, Co-opt Chgs,

Dir Pol Dir Pol SC Pol SC Pol
q α q α α q α

Asp(-)

c 0.819 0.127 0.864 0.304 0.000 0.868 0.251
c31 -0.062 0.000 -0.145 0.446 0.000 -0.137 0.490
c32 0.018 2.884 -0.267 2.058 2.938 -0.269 2.042
hc1 -0.002 0.162 0.049 0.306 0.160 0.048 0.305
hc2 -0.050 0.000 0.041 0.000 0.000 0.041 0.000

o -0.835 0.655 -0.841 0.661 0.698 -0.844 0.693

Asp(-)

c 0.808 0.186 0.884 0.240 0.116 0.889 0.094
c31 -0.103 0.652 0.004 1.330 0.655 -0.004 1.356
c32 0.213 2.695 -0.206 1.842 2.713 -0.203 1.854
hc1 -0.008 0.000 0.001 0.081 0.000 0.004 0.085
hc2 -0.110 0.000 0.007 0.000 0.000 0.007 0.000

o -0.837 0.643 -0.850 0.696 0.674 -0.853 0.764

Lys(+)

c31 -0.348 0.000 -0.360 0.000 0.000 -0.364 0.011
c32 0.242 0.000 0.297 2.155 0.000 0.306 1.929
c33 -0.102 1.574 -0.221 0.007 1.473 -0.210 0.133
c34 -0.096 0.000 0.022 0.003 0.000 0.019 0.000
c3x 0.283 2.920 0.441 1.990 3.007 0.432 1.972
hc1 0.094 0.481 0.087 0.377 0.475 0.087 0.393
hc2 -0.024 0.376 -0.047 0.044 0.411 -0.052 0.123
hc3 0.035 0.000 0.061 0.502 0.000 0.056 0.524
hc4 0.041 0.000 0.013 0.444 0.000 0.015 0.457
hn 0.373 0.190 0.390 0.246 0.196 0.389 0.253
hx 0.043 0.000 -0.000 0.000 0.000 0.003 0.000
n4 -0.568 0.000 -0.663 0.004 0.000 -0.654 0.057

Ser

c 0.866 1.992 0.966 0.683 2.018 0.968 0.634
c31 -0.135 0.943 -0.204 0.678 0.550 -0.199 0.597
c32 -0.086 1.191 -0.214 1.972 1.249 -0.213 1.918
hc1 0.045 0.106 0.065 0.162 0.221 0.064 0.192
hc2 0.029 0.000 0.070 0.047 0.000 0.069 0.088

n -1.087 0.644 -1.094 0.507 0.649 -1.108 0.322

Asn

c31 -0.282 0.014 -0.255 0.000 0.019 -0.257 0.000
c32 0.526 1.888 0.468 1.929 1.897 0.466 1.931
h1 -0.062 0.000 -0.053 0.000 0.000 -0.053 0.000

hc1 0.061 0.473 0.059 0.452 0.474 0.059 0.455
hn 0.443 0.000 0.451 0.190 0.000 0.459 0.281
ho 0.419 0.279 0.376 0.192 0.312 0.376 0.229
o -0.637 0.000 -0.691 0.455 0.000 -0.697 0.535

oh -0.722 0.066 -0.659 0.164 0.023 -0.658 0.126

Cys

c31 -0.125 0.000 -0.161 0.000 0.000 -0.178 0.000
c32 0.050 1.211 0.101 1.174 0.973 0.114 0.820
h1 0.038 0.271 0.026 0.250 0.334 0.022 0.348

hc1 0.057 0.455 0.065 0.464 0.483 0.069 0.499
hs 0.189 0.254 0.177 0.276 0.279 0.177 0.294
sh -0.360 1.702 -0.364 1.771 1.758 -0.365 1.870

3. 4. 5. 6.
RESP RESP, Co-opt Chgs, RESP, Co-opt Chgs,

Dir Pol Dir Pol SC Pol SC Pol
q α q α α q α

Tyr

c31 -0.128 1.358 -0.116 0.925 2.146 -0.012 2.138
c32 0.136 0.552 0.063 1.911 0.000 0.079 0.000
ca1 -0.047 1.724 -0.120 0.957 1.834 -0.067 1.609
ca2 -0.451 0.777 -0.495 1.775 0.994 -0.525 1.601
ca3 0.542 1.183 0.684 0.000 0.421 0.693 0.000
ca4 -0.127 0.000 0.007 0.063 0.000 -0.082 0.000
ha1 0.143 0.251 0.162 0.350 0.320 0.155 0.272
ha2 0.208 0.034 0.214 0.000 0.097 0.215 0.000
hc1 0.032 0.195 0.030 0.223 0.000 0.002 0.000
hc2 -0.009 0.270 -0.007 0.000 0.462 -0.003 0.523
ho 0.376 0.000 0.389 0.000 0.056 0.398 0.199
oh -0.581 0.520 -0.626 0.711 0.773 -0.632 0.585

Tyr

c31 -0.123 1.419 -0.184 0.473 2.164 -0.116 1.538
c32 0.103 0.444 0.011 2.169 0.000 0.010 1.442
ca1 -0.271 1.702 -0.425 0.828 1.643 -0.424 1.059
ca2 -0.241 0.662 -0.212 1.803 0.727 -0.200 1.860
ca3 0.335 1.407 0.400 0.072 1.219 0.373 0.000
ca4 0.103 0.000 0.315 0.001 0.000 0.301 0.000
ha1 0.182 0.204 0.213 0.343 0.388 0.209 0.398
ha2 0.172 0.070 0.179 0.000 0.121 0.177 0.000
hc1 0.030 0.177 0.048 0.316 0.000 0.030 0.087
hc2 -0.010 0.322 -0.002 0.000 0.475 -0.001 0.134
ho 0.372 0.088 0.389 0.015 0.139 0.401 0.399
oh -0.546 0.388 -0.581 0.712 0.494 -0.578 0.353

Val

c31 -0.510 0.000 -0.412 0.000 0.000 -0.416 0.000
c32 0.572 2.858 0.557 2.291 2.809 0.563 2.279
hc1 0.114 0.356 0.087 0.410 0.367 0.088 0.416
hc2 -0.068 0.000 -0.107 0.138 0.000 -0.108 0.143

Val

c31 -0.514 0.000 -0.405 0.000 0.000 -0.409 0.000
c32 0.564 2.877 0.551 2.297 2.827 0.558 2.282
hc1 0.116 0.354 0.086 0.409 0.365 0.086 0.415
hc2 -0.066 0.000 -0.108 0.142 0.000 -0.109 0.149

Val

c31 -0.526 0.000 -0.386 0.000 0.000 -0.392 0.000
c32 0.555 2.931 0.522 2.312 2.874 0.529 2.284
hc1 0.120 0.348 0.082 0.408 0.359 0.083 0.414
hc2 -0.061 0.000 -0.103 0.145 0.000 -0.104 0.157

Val
Dimer

c31 -0.523 0.000 -0.371 0.000 0.000 -0.379 0.000
c32 0.567 3.148 0.495 2.540 3.051 0.503 2.519
hc1 0.118 0.315 0.079 0.374 0.341 0.080 0.390
hc2 -0.062 0.000 -0.090 0.109 0.000 -0.090 0.113

Methane
Dimer

c3 -0.500 0.980 -0.496 0.983 1.020 -0.497 1.018
hc 0.125 0.201 0.124 0.201 0.196 0.124 0.196

Nitro-
benzene

ca1 -0.194 0.000 -0.286 0.598 0.000 -0.291 1.670
ca2 -0.111 0.779 -0.047 1.867 0.498 -0.005 1.523
ca3 -0.127 1.573 -0.133 0.000 1.914 -0.156 0.000
ca4 0.092 2.964 0.170 1.099 3.643 0.158 0.000
ha1 0.183 0.000 0.196 0.145 0.000 0.188 0.062
ha2 0.146 0.443 0.149 0.041 0.505 0.145 0.093
ha3 0.151 0.000 0.152 0.328 0.000 0.151 0.436
no 0.751 0.000 0.715 0.862 0.000 0.707 0.062
o -0.458 0.619 -0.465 0.495 0.552 -0.467 0.925

elements in a prior study, which used only experimental molecular polarizabilities as target

data [180]. Perhaps the largest discrepancy is for nitrogen, whose optimized polarizabilities

are significantly lower here. However, when appropriately atom-typed polarizabilities from

the prior study are substituted for the optimized ones developed here, they yield polarized

ESPs that deviate about twice as much from the reference polarized QM ESPs, regardless

of the point-charge model used (data not shown). About 30% of this increased deviation
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probably traces to the tendency of the present quantum calculations to underestimate the

experimental molecular polarizabilities used (see above).

Table 3.3: Means and standard deviations of atomic polarizabilities by element,
for Models 3-6 (Å3).

3. 4. 5. 6.
RESP, Co-opt Chgs, RESP, Co-opt Chgs,
Dir Pol Dir Pol SC Pol SC Pol

Mean Std Dev Mean Std Dev Mean Std Dev Mean Std Dev
C 1.107 1.070 0.972 0.893 1.102 1.156 0.950 0.903
H 0.163 0.164 0.198 0.164 0.184 0.188 0.232 0.171
O 0.413 0.276 0.556 0.203 0.459 0.320 0.569 0.266
N 0.215 0.372 0.458 0.431 0.216 0.375 0.147 0.152

It is also instructive to examine how the optimized polarizabilities can change

with molecular conformation. For the simple valine analog, all three conformations are

quite similar to each other, and the three sets of polarizabilities agree to within 0.015Å3.

However, the picture is more complicated for the two conformations apiece of the aspartate

and tyrosine analogs (Figure 3.6). The molecular conformations tested for the aspartate

analog differ in the torsion of the side chain relative to the ethyl terminus. Thus, in one

conformation the shortest oxygen to methyl carbon (o-c31) distance is 2.8Å while in the

other conformation it is 3.2Å. The optimal polarizability of c31 is larger for the structure

with the shorter o-c31 distance, but the polarizabilities of the other atoms are quite similar.

The two conformations tested for the tyrosine analog are the same to within 0.078Å RMSD.

Nonetheless, the optimized polarizabilities for certain atoms differ substantially between the

two conformations; notably, the c32 atom type has polarizability 0.000Å3 in one structure

and 1.442Å3 in the other. However, this change is partly compensated by opposite shifts in

the polarizabilities of atom types ca1 and c31. Interestingly, when the optimized parameters
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are swapped between conformers, the ESP errors, R, change by <0.05 kcal/mol-e; thus, the

optimal solutions found here are degenerate.

(a) Aspartate Polarizabilities (b) Tyrosine Polarizabilities

Figure 3.6: Comparison of Model 6 atomic polarizabilities from different molecu-
lar conformations of aspartate and tyrosine analogs

As detailed in the prior section, all four inducible dipole models (Models 3-6) yield

rather similar levels of accuracy (Figure 3.2). Comparisons of the optimized parameters

(Table 3.2) indicate that they, also, tend to be quite similar, for matching molecules and

atom types. For example, polarizabilities optimized for the direct and self-consistent models

with RESP charges (Models 3,5) agree well with each other (Figure 3.7). This agreement

suggests that the optimized polarizabilities might be swapped between the two molecules

with little loss of accuracy. In fact, using polarizabilities optimized for Model 5 in Model 3

increases the mean RMSE, R, by only 0.05 kcal/mol-e, while the reverse swap decreased the

mean RMSE by 0.03 kcal/mol-e. Thus, the optimized values are effectively interchangeable.

Similarly, the co-optimized charges of Models 4 and 6 are quite similar to corresponding

baseline RESP charges (Figure 3.8). Overall, then, the four inducible dipole models end up
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with similar parameters and yield similar levels of accuracy.

Figure 3.7: Comparison of self-consistent and direct polarizabilities for Models 3
and 5 across all molecules.
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Figure 3.8: Comparison of co-optimized and RESP charges for Models 5 and 6
across all molecules.

3.4 Conclusions

Incorporating conformation-dependent electronic polarization into force fields promises

to advance the predictive power of molecular simulations. Although various polarization

models exist, the self-consistent atomic polarizability model has emerged as a well-regarded

standard. This approach has been implemented in its full form, and approximated via the

Drude oscillator method, as well as the first-order, or direct, approximation. Conformation-

dependent polarization has also been modeled via a redistribution of charge among atomic

point charges[149, 48], instead of using added point dipoles. (A combined approach has
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also been reported[163].) Charge redistribution approaches cannot capture polarization that

is not directed along bonds, but they are simpler, because they do not add point dipoles to

the representation of the molecule.

In considering the relative merits of various polarization models, it is useful to

distinguish between how a model represents polarization, and how it computes the po-

larization within this representation. The present study has considered two polarization

representations, atom-centered point dipoles, and redistribution of atom-centered charges;

and it has examined two response models for the point-dipole representation, namely direct

and self-consistent inducible dipoles. (Although not studied here, there are also useful

response models for the charge-based representation[149, 188].) It should be emphasized

that, although the response models used in polarizable force fields are physically motivated,

they are simplified representations of the mechanisms controlling how electrons in molecules

shift in response to inducing fields. This holds not only for the charge-redistribution models,

but also for the physically appealing picture of self-consistent, atom-centered inducible

point dipoles. Thus, given that the parameters have been properly optimized, the accuracy

of a polarization model can be limited by its representation of polarization, by its response

model, or both.

A central finding of this study is that it is the response model, rather than the

polarization representation, that limits the accuracy of the self-consistent atomic polarization

model: point dipoles optimized independent of any response model yield much more

accurate ESPs than the full polarization model. Indeed, the inducible dipole response model

is so problematic that it yields ESPs less accurate than those achievable with a point-charge

representation of polarization. Thus, although a key advantage of the dipole representation

should be its ability to capture out-of-plane polarization, the induced dipole implementations
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studied here are no more accurate than point charges at capturing out-of-plane induction of

the planar molecule nitrobenzene.

This means that a polarization model using a point-charge representation could

outperform the standard inducible dipole model, if it were outfitted with a good response

model. Further accuracy might be available at modest computational cost by adding out-of-

plane charge centers above and below aromatic rings; these could improve the representation

both of the baseline potential and of polarization normal to the ring. On the other hand,

because the point-dipole representation can yield greater accuracy than the point-charge

representation, it would also be of great interest to seek improved response models for

the point-dipole representation. Although any specific directions for improvements are

currently speculative, several possible approaches may be considered. One is to allow for

anisotropic polarizabilities. Another would be to modify the current electrostatic treatment

of short-ranged induced dipole-induced dipole interactions, which clearly does not capture

the complex details of quantum mechanical electronic reorganization. Finally, the success

of Models 1 and 2 suggests that one might develop empirical response models for chemical

fragments.

We also observed only a slight improvement in accuracy on going from the first-

order, or direct, approximation of the induced dipole model to the fully self-consistent

model, even though the self-consistent model is more physically complete. Perhaps greater

improvement would be observed if a similar study could be done for molecules in the

condensed phase, where there would be many more dipole-dipole interactions. Nonetheless,

our results support prior suggestions [167, 151, 89, 183] that the direct approximation offers

an advantageous combination of accuracy and computational efficiency. It is also interesting

that polarizabilities optimized for the self-consistent model were essentially interchangeable
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with those optimized for the direct model.

Somewhat greater improvement was observed upon replacing regular RESP charges

with partial charges co-optimized with the atomic polarizabilities, particularly for the ionized

compounds. Thus, although good results can be obtained with RESP charges combined with

the inducible polarization models, it makes sense to re-optimize charges in the context of

the inducible dipoles for charged compounds. Indeed, this affords to improvement in both

the polarized and unpolarized baseline ESPs.

In the present study, the atomic polarizabilities were optimized to replicate the QM

ESPs generated by molecules in the fields of external point charges. The agreement of

molecular polarizabilities computed from these fitted atomic polarizabilities with molecular

polarizabilities computed direction from the QM calculations supports the physical plausi-

bility of the values assigned. On the other hand, some of the optimized polarizabilities differ

significantly from previously published values. This often appears to result from compen-

sating deviations of neighboring atoms. In addition, there is evidence that the solutions to

the optimization problem can be degenerate, in the sense that equally good (or nearly so)

fits can be obtained with different polarizabilities, much as observed in the optimization of

point charges to match QM ESPs[14]. Procedures analogous to those used in RESP, such as

the addition of weak restraints and/or the use of multiple conformations in fitting, could be

used to generate more uniform polarizability assignments across chemically similar atoms.

When assessing the reliability of the present conclusions, it is reasonable to consider

the degree to which the ability of a polarization model to fit the QM ESPs of polarized

molecules is a useful metric of the model’s quality. The central argument in support of

this view is that this approach directly probes the relevant physics, and indeed other groups

have used a similar approach [163, 9, 64]. In addition, RESP, one of the most successful
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approaches to assigning partial atomic charges, works by fitting charges to QM ESPs, so a

similar approach should also be suitable for adjusting and evaluating polarization models.

More particuarly, using QM calculations at the HF/6-31G* level to calculate the reference

QM ESPs is consistent with the standard RESP protocol. On the other hand, since this

QM leads to molecular polarizabilities that underestimates experiment by roughly 30%,

the reliability of the parameters might benefit from use of a larger basis set, such as aug-

cc-pVTZ. It is also worth noting that partial charges fitted to the HF/6-31G* results in

vacuum yield dipole moments that somewhat overestimate gas phase experimental results.

These partial charges are regarded as suitable for simulations in the condensed phase, where

some self-polarization occurs. However, an explicit treatment of polarizability should

allow molecular dipole moments to adjust automatically to the environment, so it would be

appropriate, when accounting explicitly for polarization, to set baseline gas-phase partial

charges with a QM method that yields molecular dipole moments appropriate to the gas

phase.

In summary, the accuracy of a polarization model is determined not only by how

it represents polarization, but also by the response model it uses to compute polarization.

Although atom-centered point dipoles can do an excellent job of representing molecular

polarization, the inducible dipole response models typically used with this representation fall

well short of the theoretical maximum accuracy it could attain. It should therefore be possible

to develop more accurate polarization models not through more detailed representations of

polarization, but instead through improved response models.
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Chapter 4

Attractive Interactions between

Heteroallenes and the Cucurbituril

Portal

4.1 Introduction

Molecular recognition and noncovalent interactions govern a wide range of chem-

ical events[101, 136, 150, 120, 162, 113], including crystal growth[80], supramolecular

chemistry[55, 178, 138, 40], self-assembly[186], catalysis[91] and almost every biochemi-

cal process[8], including protein-ligand binding, protein-protein binding, and DNA base-

pairing. Noncovalent interactions encompass multiple binding mechanisms[109], such as

hydrophobic interactions[169, 170, 19]; charge-charge, charge-dipole and dipole-dipole

interactions[72, 42]; hydrogen-bonding[78]; and delocalization of electrons into antibond-

ing orbitals[16, 131]. For the cucurbiturils, a class of host molecules with an already rich

supramolecular chemistry, binding of guest molecules is thought to be dominated by three

78
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fundamental mechanisms[97, 127, 77, 11]: (a) charge-dipole interactions between a strong

dipole of the host’s carbonyl-fringed portal and the positive charge of a guest; (b) hydrogen

bonding between the portal carbonyls and a guest’s donor moieties; and (c) hydrophobic

interactions within the cucurbituril cavity, which is formed by the concave faces of the

glycoluril subunits and their methylene bridges. Identification of new binding mechanisms

accessible to the cucurbiturils would further enrich the uses of this important family of

hosts, and would be of interest as another available fastener for use in the design of targeted

molecules for many applications.

While investigating the structural and dynamic properties of bistable rotaxanes

made of 1,4-bis(alkylaminomethyl)benzene and cucurbit[6]uril, 1, we noticed a remarkable

crystallographic feature in one of the complexes[160]. The azide moiety of the guest N,N’-

bis-(azidoethyl)-p-xylylene diammonium chloride forms close contacts with the oxygen

atoms of the host, and the azidoethyl group adopts a conformationally unfavorable gauche

state (Figure 4.1). These observations suggested an interesting stabilizing attraction between

the azide group and the carbonyls. We realized that this rare attractive interaction could

provide a yet unexploited tool in supramolecular chemistry and therefore should be further

explored.

Figure 4.1: X-ray crystal structure of complex 9b in ref. 13 (top and side views).
Color code: C, gray; N, blue; O, red.
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Here, we report attractive interactions between organic azides in a guest molecule and

the portal carbonyls of cucurbit[6]uril, and characterize this interaction by crystallography,

NMR and IR spectroscopy, and quantum chemical calculations. The results provide evidence

that favorable interactions of heteroallenes with carbonyls are a general phenomenon that

can be exploited for supramolecular applications.

4.2 Results and Discussion

4.2.1 Synthesis

In order to characterize the attractive interaction between organic azides and the

CB[6] portals, we synthesized a series of guest molecules with two azidoethylamine end

groups, the N,N-(2-azidoethyl)-α ,ω-alkanediamines 2-6, using a general four-step procedure

(Figure 4.2). Reaction of sodium azide with bromoethylamine hydrobromide, 7, in water

produced 2-azidoethylamine 8. Protection of the latter with Boc anhydride afforded 9, which

underwent N-alkylation with the appropriate α ,ω-dibromoalkane to produce compounds

10a-e. Finally, removal of the Boc protecting groups with ethanolic HCl afforded the guest

molecules, 2-6, in the form of their dihydrochloric salt in overall yields of 20-30%.
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Figure 4.2: Synthesis of guest molecules 2-6. Reagents and conditions: a) NaN3,
H2O, 80◦C, 24 h; b) (Boc)2O, Et3N, CH2Cl2, RT, 16 h; c) α ,ω-dibromoalkane,
NaH, DMF, RT, 48 h; d) HCl (4N), EtOH, RT, 16 h.

4.2.2 NMR studies

The stoichiometry of the inclusion complexes was determined by 1H NMR. Each

of the protonated guest molecules, 2-6, was dissolved in D2O-DCl at pH 5, then mixed

with solid 1 (1 equiv) and the mixture was kept at room temperature for 16h. Formation of

1:1 inclusion complexes was evident by their 1H NMR spectra, which exhibited significant

changes in the chemical shifts of the guest molecules in comparison with their spectra in the

absence of 1 (Figure 4.3). Consistent with previous observations[160, 114], all protons of

the guest molecule residing in the host interior exhibit significant upfield shifts ∆δ , which

increase with the depth of burial in the binding cavity. For example, a comparison between

free 5 and its complex 5@1, reveals that the upfield shifts of the hydrogen atoms along the

oligomethylene chain are 0.02, 0.52, 0.88 and 0.98 ppm, beginning with the α-methylene

attached to the ammonium groups and moving inward. This shielding presumably reflects

the cumulative influence of the urea units, which form a hydrophobic wall of filled π orbitals,

and make the host’s cavity remarkably different from the acidic aqueous environment of the

bulk solvent.
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Figure 4.3: 1H NMR induced chemical shift differences (∆δ , ppm) upon formation
of 1:1 complexes between guests 2-6 and 1 at room temperature in D2O-DCl
containing traces of DMSO (δ=2.71 ppm) as an internal standard. The shielding
effect (ppm, upfield shift) is shown in bold, whereas deshielding (ppm, downfield
shift) is shown in italics.

Interestingly, the upfield shift of the α-methylene protons, which reside at the portals,

decreases with increased chain length: −∆δ = 0.78, 0.25, 0.07, 0.02 and 0.00 ppm for C4,

C5, C6, C7 and C8, respectively. This trend indicates that with chains of increasing length,

the α-methylene group is pushed further out of the cavity. We have previously reported

that all guest protons that reside outside the cavity in the vicinity of the portal undergo

deshielding, probably due to the strong anisotropic effect exerted by the combined dipole of

the portal of the carbonyl groups[160]. Thus, in case of the octa-methylene chain, 6, the lack

of any shift exhibited by α-methylene protons indicates that the shielding and deshielding

effects completely offset one another.
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The observation that the α-methylene group resides at the portal, regardless of

the length of the guest’s oligomethylene chain, may be understood in terms of induced

fit[88], as further supported by our crystallographic data (vide infra). For example, whereas

the penta-methylene chain exhibits an all-anti conformation, the hexa-methylene chain

adopts a slightly folded conformation that allows it to retain favorable interactions with the

host[96]. This phenomenon has been reported for alkyltrimethylammonium salts hosted by

cucurbiturils[92], as well as for other host-guest complexes[193]. The ability of a molecule

to shorten its length by adopting multiple conformations, which are achieved by multiple

gauche interactions, also provides an entropic advantage to the complexation event[194].

The chemical shifts of the oligomethylene chain represent a valuable probe of the above-

mentioned host-guest interactions, their conformation and relative orientation. In addition,

the NMR data of the azidoethyl groups, which always reside outside the cavity, represent

another helpful probe of these properties: −∆δ = 0.22-0.20, 0.33-0.34, 0.17-0.21, 0.13-0.15,

and 0.04-0.03 ppm for C4, C5, C6, C7 and C8, respectively.

4.2.3 IR study

To further probe the host-guest interactions, we compared the solid state IR bands

of the free guests and their host-guest complexes, and particularly those of the urea and

azide groups at 2050-2150 and 1700-1750 cm−1, respectively. Both bands can report on

the local electrostatic environment. For example, the azide stretching vibration band of

β -azidoalanine at 2000-2200 cm−1 is strongly red-shifted (14 cm−1) in the hydrophobic

environment of DMSO relative to water[123].

As evident from Figure 4.4a, the ureidocarbonyl vibration frequency becomes in-

creasingly red-shifted (6-16 cm−1) on going from free CB[6] to complexes with guests of
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increasing size. This trend indicates that the exposure of the host carbonyl groups to the

surrounding aqueous environment of water molecules is progressively attenuated by the

hydrophobic parts of the guest molecules, which replace more water molecules.

The trends found for the azido stretching frequencies are more complex. In general,

increased intermolecular interactions upon binding would weaken the internal N-N bonds,

manifested by red shifts. The mixed effects shown in Figure 4.4b suggest that the azide

groups in the free guest molecules are involved in inter- or intramolecular attractive inter-

actions, which could be weaker or stronger than the azide-carbonyl interactions. Indeed,

gas-phase MM2 dynamics calculations (Figure A.2) indicate that the free guest molecules

feature intramolecular ion-dipole interactions between an azide group and a distant ammo-

nium group, which is augmented by a dipole-dipole attractive interaction of two azides in

an antiparallel orientation. Although gas-phase calculations may not fully represent the

situation in the solid, the strong tendency of the free guest molecules to participate in inter-

and intramolecular attractive interactions is self-evident. The loss of these interactions upon

binding to 1 may not be fully compensated by the attractive host-guest interactions at the

level of a single azide group.
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(a) (b)

Figure 4.4: IR vibrational frequencies (KBr pellet) of ureido and azide groups.
(a) Ureido carbonyl stretching band for free host 1 and its complex with guests
2, 4 and 6. (b) Azido stretching band as a function of the number of methylene
groups for guests 2-6 in the absence of the host (blue), and for guests 2, 4 and 6 in
complex with the host (red).

4.2.4 X-ray crystal structures

The crystallographic studies provide valuable structural information concerning

specific interactions within the host-guest complexes was gained from X-ray crystallog-

raphy. Single crystals of complexes 2@1, 3@1, 4@1, 5@1 and 6@1 suitable for X-ray

analysis were obtained from acidic (pH=6) aqueous solution by vapor diffusion. Crystal-

lographic and refinement data of all structures are provided in Appendix A (Table A.5).

Our structures (Figure 4.5) may be compared with the reported complexes of 1 hosting

α ,ω-alkanediammonium guests[88].
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(a) (b)

(c) (d)

(e)

Figure 4.5: X-ray crystal structures of (a) 2@1, (b) 3@1, (c) 4@1, (d) 5@1 and
(e) 6@1. The host, 1, is presented in a cross-sectional, space-filling format. Atom
doubling and missing bonds indicate disordered structures.

In both families of complexes the oligomethylene chain connecting the two am-

monium groups adopts the same conformation within the CB[6] interior. Depending on

the chain length, the guests assume an extended or partially bent conformation inside the

cavity. The distance between the ammonium groups varies from 6.18 Å in 2@1 to 10.14 Å

in 6@1. Since the distance between the two portal planes, which accommodate the carbonyl

oxygen atoms, is 6.1±0.1 Å, the oligomethylene chain in 2@1 adopts a fully extended
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conformation, whereas the longer chains exhibit partially folded conformations. Thus, while

the intramolecular distances between two ammonium nitrogen atoms in the fully extended

conformation of free 3, 4, 5 and 6 are 7.51, 8.81, 10.0 and 11.33 Å, respectively,1 these

distances shrink to 7.36 and 7.80 Å in their corresponding complexes (Figure 4.6a). These

folded conformations award the guest molecules with maximal charge-dipole interactions be-

tween the ammonium groups and the portals, along with favorable hydrophobic interactions

between the oligomethylene chain and the interior of 1.

Since this study aims at understanding the nature of the specific interactions between

the host portals and the azide groups of the guest, their relative orientation is of particular

interest. All structures reveal two consistent structural features. First, the azide group

itself preserves a nearly linear geometry, as reflected by the consistent bond angles, CNN

(116±1◦) and NNN (172±1◦). Second, all azide groups maintain short contacts with two

carbonyl oxygen atoms through their central β - and terminal γ-nitrogen atoms (Figures 4.6b,

4.7, and 4.8). Remarkably, while the distance between the portal plane and most atoms at

the guest end groups increase progressively with the molecular size, the β -nitrogen atoms

maintain a constant distance from the portal plane in all homologs (Figure 4.6b), pointing at

a strong attractive interaction between the azide group and the portal.

1The distance between the two ammonium groups of 1,5-pentanediammonium and 1,6-hexanediammonium
is estimated according to molecular modeling study (MM2 force field).
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(a) (b)

Figure 4.6: Crystallographic distances. (a) The intramolecular distances between
the ammonium nitrogen atoms in the fully extended conformation of free guest
molecules (blue circles) and in the corresponding complexes (red squares). (b) The
intramolecular distances between the portal plane and selected atoms at the guest
end group. For the non-symmetrical complex 5@1, the data points represent an
average between the two sides of the complex.

The significantly short inter-atomic distances between the positively polarized nitro-

gen atoms of the azido groups and the negatively polarized carbonyl oxygen atoms approach

the sum of the effective van-der-Waals radii of these atoms (∼3.07 Å, Figure 4.7)[196].2

Such distances require a gauche conformation of the azidoethyl chain, which is reflected by

the NCCN dihedral angle in all bound guest molecules, ranging between 64◦ and 71◦.3 This

binding mode is modulated by the size of the guest. With the smaller guests, 2, 3 and 4, the

host carbonyl groups interact mainly with the β - and γ- nitrogen atoms of the azide. In the

non-symmetrical complex 5@1, however, one of the two azides is pushed further away from

the portal, so that its γ-nitrogen is further from the carbonyl oxygen, while hydrogen bonds

2Since different atomic radii are used in the van der Waals programs, we shall refer to Bondi radii of atoms
3An alternative driving force for this gauche interaction could be a potential intramolecular hydrogen

bonding between the ammonium group and the α nitrogen atom of the azide group. Nevertheless, the
contribution of this hydrogen bonding to the observed folded conformation seems negligible because the
ammonium group is bound more strongly to the carbonyl groups.
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are formed between the methylene group on the α-nitrogen and the carbonyls (Figure 4.5d).

This trend is more pronounced with the symmetrical complex 6@1 where both azide groups

are pushed away from the portal.

Figure 4.7: Representative short contacts between the guest azidoethyl groups and
the carbonyl oxygen atoms of the host. From left: 2@1, 3@1, 4@1, 5@1 and
6@1.

Two significant structural parameters that characterize the attractive interaction

between the carbonyl and azide are the distance (dN···O) between the two heteroatoms and

the angle (θNOC) between the dN···O vector and the carbonyl bond (Figure 4.8a). The distance

dN···O is of particular interest because it can shed light on the issue of binding mechanism,

pointing at the relative importance of either n→ π* interaction[84] (vide infra) or the

orthogonal dipolar description[129]. As can be concluded from the scatterplot correlation

between θNβ OC and dNβ ···O, the shortest interactions occur between the carbonyl and the

β -nitrogen. Interestingly, the angle θNOC at short distances is narrowly distributed around

140◦ (Figure 4.8b), and the angle diminishes linearly with increased dN···O.

In order to set these results in context, we searched the Cambridge Structural

Database (CSD)[34, 5] for short carbonyl-azide contacts (up to 3.6Å) and found 45 cases,

which exhibited 84 interactions between a carbonyl oxygen and a β -nitrogen of an organic
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(a) (b)

Figure 4.8: Geometrical parameters. (a) Definition of geometrical parameters
θNOC(◦) and dNβ ···O (Å). (b) Scatterplot correlation between θNOC and dN···O, ex-
tracted from the X-ray structural data. The red circles refer to the interactions with
the azide β -nitrogen and blue circles refer to the γ-nitrogen.

azide. The distribution of geometries for the intermolecular cases (Figure 4.9, blue circles)

encompasses those seen in our host-guest complexes (Figure 4.8b, red circles), typically

ranging within 140◦ ± 20◦ at a distance of 2.8-3.3Å. The distribution of angles for in-

tramolecular interactions of this type in the CSD results is shifted and narrowed, relative to

the intermolecular cases (Figure 4.9, red circles). This would be consistent with a view that

tighter geometric constraints in the intramolecular setting prevent geometric optimization of

an attractive carbonyl-azide interaction.

4.2.5 Computational analysis

The interactions between the host, 1, and the azide moiety of guest 5 were further

analyzed by quantum-mechanical (QM) electronic structure calculations. We examined

the attractive forces between the azide group of the guest and the carbonyl group of the

host, and compared these with the corresponding interactions of three geometrically similar

groups, isocyanate, isothiocyanate, and propadiene. Like azide, isocyanate and isothio-
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Figure 4.9: Scatterplot correlation between θ Nβ OC (◦) and dNβ ···O (Å) extracted
from the CSD database. The red circles refer to intramolecular interactions whereas
the blue circles describe intermolecular interactions.

cyanate are heteroallenes, and thus might form similarly attractive interactions with the

host. In contrast, propadiene is a nonpolar allene, and thus may not establish such favorable

interactions. The character of these various interactions were further analyzed in terms

of potential contributions from dispersion forces, electrostatic interactions, and n→ π*

delocalization[84].

The crystal structure of the 5@1 system was modified, using the Maestro software

[2] to generate models of complete host-guest complexes for the isocyanate, isothiocyanate

and propadiene guests (11, 12, 13, respectively, in Figure 4.10, by direct substitution of the

nitrogens in the azide moieties of 5 with the appropriate other elements, and addition of

three hydrogens for propadiene. Each host-guest complex, 5@1, 11@1, 12@1 and 13@1,

was then geometrically optimized using the semi-empirical PM6-DH+[93] method with

the COSMO implicit solvation model[90]. Higher-level quantum calculations, used to

assess interaction energies, etc., were then carried out on fragments of these optimized
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Figure 4.10: Structures used in computational studies.

systems where the host was represented by methylenediurea, 14, and the guests by the small

molecules 15-18 (Figure 4.10) without further changes in geometry. The azides at the two

host portals adopt somewhat different geometries in the crystal structure of 5@1, and the

optimized host-guest structures retain these differences. We report computations for both

geometries. Separate geometry optimizations, with PM6-DH+ and COSMO, were also

carried out for each of the guest fragments, in order to look for possible geometric changes

on binding.

Interaction energies were calculated for the representative dimers using both symmetry-

adapted perturbation theory (SAPT)[79], implemented in the PSI4 program[174], and

MP2[115], implemented in Gaussian D.01[52]. SAPT has been shown to accurately de-

scribe noncovalent interactions between molecules, including binding energies of large

organic complexes[67]. We computed the total interaction energies as well as the decom-

posed energy terms resulting from electrostatic (elst), exchange (exch), induction (ind), and

dispersion (disp) contributions using SAPT2+3/aug-cc-pVTZ[69]. It is worth noting that all

orders of SAPT tend to overestimate attractive forces, and the performance of the SAPT ap-

proach depends strongly on the order of the SAPT expansion. The highest order, SAPT2+3,

provides a full description of third-order interactions with accuracy that approaches the gold-
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standard CCSD(T)/CBS level[103, 126]. Since current implementations of SAPT cannot

include solvent effects, we also carried out similar calculations with MP2/aug-cc-pVTZ,

both with and without the polarizable continuum method (PCM) implicit solvent model of

water[172].

The nature of these host-guest interactions were further characterized by calculations

by the NBO 3.0 program[54] as implemented in Gaussian 09 D.01. First, the electrostatic

character of the allene moeities of the guests was evaluated by computing atom-centered

natural charges, which are calculated using natural population analysis (NPA)[137], and

assigning each atom a partial charge equal to its nuclear charge less the total population

of its natural atomic orbitals. Second, the possibility that n→ π* interactions might play

a role in the azide-carbonyl attraction was evaluated with natural bond orbital (NBO)

analysis, which uses second-order perturbative analysis to estimate energies of donor-

acceptor interactions[122].

The geometrically optimized 5@1 structure has dβ ···O distances of 3.2 and 3.5Åfor

the azide moieties at the two host portals, as measured between the β position of each azide

group and the closest host carbonyl oxygen atom. These distances agree well with those

observed in the crystal structure (Figure 3B) and are comparable with distances measured

between groups engaged in orthogonal dipole interactions[129]. For the end groups of the 5

analogs, isocyanate, 11, isothiocyanate, 12, and propadiene, 13, the corresponding distances

are slightly increased, to 3.3 and 3.6Å for 11, 3.4 and 3.6Å for 12, and 3.5 and 3.6Å for 13.

Interaction energies computed by various methods (Table 4.1) evidence significant

attractive forces between the polar, heteroallene guest-representative molecules (methyl

azide, methyl isocyanate, methyl isothiocyanate) and the host-representative molecule

(methylenediurea), and weaker attractive forces for the nonpolar propadiene-containing
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complexes. The comparison of SAPT energy decompositions reveals that the favorability

of the azide-containing complexes is due to more than just dispersion. While MP2 tends

to predict stronger binding with larger interaction energies than SAPT2+3, when the MP2

calculation is performed with the PCM solvent, the strength of the interaction is reduced.

For the polar heteroallenes, this is consistent with the expectation that dipolar interactions

will be weaker in a high dielectric solvent, like water.

Table 4.1: Interaction energies and energy decomposition of truncated host-guest
complexes, all expressed in kcal/mol. Results are provided for the geometries of
each end of each guest, as their geometries are somewhat different; the one with
the shortest guest-host distance is reported first in each case.

Total Interaction Energy SAPT2+3 Decomposition
Guest MP2 MP2-PCM SAPT2+3 elst exch ind disp

15 -5.6 -2.9 -4.9 -2.9 3.6 -1.3 -4.3
-5.3 -3.2 -4.3 -1.7 2.3 -0.8 -4.0

16 -5.1 -2.3 -5.0 -2.9 3.0 -1.2 -3.9
-4.9 -2.7 -4.5 -2.1 2.3 -0.8 -3.8

17 -6.9 -3.1 -6.4 -3.6 2.9 -1.4 -4.3
-7.3 -3.6 -6.7 -3.8 2.8 -1.1 -4.6

18 -2.6 -1.3 -1.8 -0.1 4.2 -1.4 -4.5
-4.6 -3.0 -3.6 -1.9 4.7 -1.3 -5.1

The SAPT2+3 energy decompositions offer further insight regarding the attractive

host-guest interactions. While the largest attractive component for all guests is dispersion,

the electrostatic component is stronger in all heteroatom-containing functional groups than

in the propadiene analog. This is congruent with the fact that the azide, isocyanate and

isothiocyanate are polar, while the propadiene is nonpolar. The induction energy component

is comparably small for all guests, indicating that mutual polarizing effects only have a

minor influence on the overall stabilizing energies. The exchange term, which includes

exchange-induction and exchange-dispersion effects, measures repulsion, and is stronger

for the propadiene than for the polar functional groups. Thus, in the SAPT decomposition,
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the weaker repulsion and stronger electrostatic attraction between those groups and the host

account for their overall greater attraction relative to that of propadiene.

The role of electrostatics is further elucidated by the natural atomic charges com-

puted for all guest fragments in complex with methylenediurea (Table 4.2). The structures

correspond to those used in Table 1, and two sets of charges are listed, as the fragments adopt

slightly different geometries at the two portals of the host. While the methyl propadiene has

partial charges less than 0.11e at each position, the azide, isocyanate, and isothiocyanate

analogs have partial charges at the α and β positions whose magnitudes are greater than 0.3e.

The substantial localization of positive charge at the β position in all three heteroallenes is

consistent with a favorable electrostatic interaction with the negative charge on the nearby

carbonyl oxygen of the host.

We also considered whether the attractive interactions between the polar guest

groups and the host carbonyl might result in part from n→ π* interactions[84], which are

characterized by the delocalization of a lone pair (n) of a donor group, typically a heteroatom

nucleophile, into an antibonding orbital (π*) of an acceptor group, typically a carbonyl

group[29]. In the host-guest systems, we would expect delocalization of a lone pair of the

ureidocarbonyl oxygen atom donor in the host to the antibonding orbital of an acceptor

in the guest functional group. However, the systems studied here do not demonstrate the

characteristic out-of-plane bending that results from attractive n→ π* interactions[28].

We used two criteria to check whether n→ π* interactions might play a role in these

stabilizing interactions. First, recognizing that such interactions would make the α-β -γ

angle, θαβγ , deviate from linearity, we carred out PM6-DH+ geometry optimizations in

implicit solvent (COSMO model) for the various guests free in solution, and compared the

resulting structures with the optimized host-guest structures. We observed no significant host-
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Table 4.2: Natural atomic charges of guest functional groups, expressed in e.

Natural Atomic Charge
Guest α β γ

15 N
-0.4297

N
0.3224

N
-0.1218

-0.4336 0.3088 -0.1022

16 N
-0.6573

C
1.0407

O
-0.6430

-0.6547 1.0290 -0.6348

17 N
-0.5052

C
0.4292

S
-0.2318

-0.5112 0.4176 -0.2167

18 CH
-0.0219

N
0.0889

CH2
-0.1081

-0.0286 0.0744 -0.0856

induced bending of either azide or the other analogs, as θαβγ changed by at most 0.7◦ for the

polar groups and 4.6◦ for the propadiene on going from solvent to the bound state (Table A.6).

This result is consistent with the near linearity of the azide groups in the X-ray structures

of 2-6 in complex with 1. Second, we used NBO calculations to look fordono-acceptor

interactions between carbonyl oxygen lone pairs of the host and antibonding π orbitals of the

guest-representative fragments. Initial calculations on formamide-formaldehyde complexes

previously studied in the Raines group[122] served to validate the present approach, as the

NBO results confirmed the interaction of the oxygen lone pair of the formaldehyde donor

with the antibonding orbital of the C=O acceptor in formamide (Table A.3). In contrast, NBO

analysis of the solvent-optimized methylenediurea systems complexed with the truncated

guest molecules indicates no significant n→ π* interaction, as detailed in Figure A.4, which

compares the donor-acceptor interactions between carbonyl oxygen lone pairs of the host

and antibonding π orbitals across the various guest-representative fragments. In particular,

no n→ π* delocalizations above 0.07 kcal/mol were recorded. Thus, the present results

indicate that n→ π* interactions do not contribute significantly to the attractive interactions

studied here.

Altogether, these computational results point to a substantial azide-carbonyl attrac-
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tion, which is attributable largely to dispersion and electrostatics interactions, and which

goes beyond the weaker, primarily dispersive, attraction of a simple propadiene group for

the host. The electrostatic component of the interaction traces largely to localization of

positive charge on the β -nitrogen of the azide, and has the character of an orthogonal dipole

interaction[129]. The calculations do not support a significant role for n→ π* interactions.

Analogous calculations for two other heteroallenes, isocyanate and isothiocyanate, suggest

that these groups can interact with the host in much the same way as azide.

4.3 Conclusions

This study reports the discovery of a remarkable attractive interaction between

organic azides and the portal carbonyls of cucurbiturils. Since this yet unexploited interaction

could be more broadly useful as a driver of supramolecular assembly, we investigated it using

a set of homologous bis-α ,ω-azidoethylammonium alkanes. The interactions between these

molecules and cucurbit[6]uril were studied by NMR, IR, ITC, X-ray crystallography and by

computational methods. The results indicate that the attractive azide-carbonyl interaction is a

general phenomenon that can be exploited for supramolecular applications in the cucurbituril

family and other systems. In addition, computational studies indicate that the interaction is

not limited to azides, but generalizes to other isoelectronic heteroallenes, such as isocyanate

and isothiocyanate. Further computational analysis points to electrostatics as the main driver

for this interaction; in particular n→ π*) delocalization does not play a significant role.

Further studies with other functional groups are currently under way in our laboratories.
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Chapter 5

Calculation of Relative Binding

Enthalpies for Constrained and Flexible

Ligands of the Grb2 SH2 Domain

5.1 Introduction

The growth factor receptor protein 2 (Grb2) is an adapter protien that promotes

cellular signal transduction[112]. The Src homology 2 (SH2) domain of Grb2 binds

phosphotyrosine-containing proteins with a pYXNX recognition sequence. Thus, the Grb2

SH2 domain also binds synthetic phosphotyrosine-containing peptides of the same sequence.

Matched pairs of flexible and constrained pYXN ligands for the Grb2 SH2 domain have been

previously studied experimentally by Stephen Martin’s group, with the goal of elucidating

the thermodynamic consequences of ligand preorganization [39]. In general, preorganization

of a ligand into its bound conformation may be expected to make the binding free energy

more favorable, by reducing the entropic penalty on binding. Unexpectedly, although Martin

99
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and coworkers did find that the constrained ligands bound with higher affinity, the binding

entropies were less favorable and the enthalpies were more favorable.

To further investigate the thermodynamics of this system, we used molecular dy-

namics (MD) simulations of a series of protein-ligand complexes and the corresponding

unbound ligands, under conditions mimicking those at which the experiments were done, to

estimate the relative binding enthalpies of a series of constrained and unconstrained peptides

for this protein. While related simulation studies using the AMOEBA polarizable force field

have previously been published[157], the present study is distinct, as we use much longer

simulations, 20-120 µs, with a more traditional, fixed-charge potential function, and we

estimate binding enthalpies by a direct method [66], rather than via binding free energy

simulations at multiple temperatures. With the multiple-GPU version of PMEMD, and

long (4 fs) time steps made possible by hydrogen mass repartitioning [73], we were able to

achieve up to 450 ns of simulation per day. This study thus presses the state of the art in

protein-ligand simulations accessible with GPU computing, and the results are informative

regarding the convergence of enthalpies by the direct method.

5.2 Methods

5.2.1 Calculation of Relative Binding Enthalpies

Relative binding enthalpies (∆∆H) were estimated by the direct method which only

requires the mean potential energy of converged simulations. For the systems studied, ∆∆H

are calculated to describe the energetic consequences of mutating of the central residue from

valine to glutamine or incorporating conformational constraints to the phosphotyrosine. The

relative binding enthalpies considered in this study are computed as in Equations 5.1-5.4,
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where 〈UPL〉 is the mean potential energy for the protein-ligand complex, and 〈UL〉 refers to

the same for the unbound ligand. A shorthand is used for the ligands so that fV refers to

fpYVN, cV refers to cpYVN, and so on.

∆∆HcV− fV = (〈UPL,cV 〉−〈UL,cV 〉)− (〈UPL, fV 〉−〈UL, fV 〉) (5.1)

∆∆HcQ− f Q = (〈UPL,cQ〉−〈UL,cQ〉)− (〈UPL, f Q〉−〈UL, f Q〉) (5.2)

∆∆H f Q− fV = (〈UPL, f Q〉−〈UL, f Q〉)− (〈UPL, fV 〉−〈UL, fV 〉) (5.3)

∆∆HcQ−cV = (〈UPL,cQ〉−〈UL,cQ〉)− (〈UPL,cV 〉−〈UL,cV 〉) (5.4)

Since the force field energy terms are additive, one can also decompose relative

binding enthalpies by structural components. For examples, the ligand structure alone can

be isolated from both the complex and unbound ligand simulations, without any solvent

molecules, to determine the energy differences that are specific to the ligand.

5.2.2 Molecular Dynamics Simulations

Relative binding enthalpies for the Grb2 SH2 domain and pYXN ligands were

estimated with molecular dynamics (MD) simulations designed to mimick the experimental

ITC conditions. All pYXN ligands are pseudopeptides which contain a varied central amino

acid (X) flanked by a modified phosphotyrosine (pY) and an asparagine (N) (see Figure 5.1).

For each flexible ligand structure (fpYXN, Fig. 5.1a), a constrained analog is also compared



102

(cpYXN, Fig. 5.1b). The cpYXN ligands are conformationally constrained by cyclization of

the phosphotyrosine to form a cyclopropane ring. Here, we examine two pairs of flexible

and constrained ligands, where each pair contains the same central residue, either valine (V)

or glutamine (Q). The structures of these ligands in complex with the Grb2 SH2 domain

were previously solved citeDeLorbe2009 and are available in the RSCB PDB[18]: fpYNVN

(PDB ID: 3C7I) and cpYVN (2HUW); fpYQN (3IMD) and cpYQN (3IN7).

(a) (b)

Figure 5.1: Flexible (a) and constrained (b) ligand structures. (a) fpYXN (b)
cpYXN, where Xaa (X) is either valine (V) or glutamine (Q).

Each of the 4 ligands was simulated in complex with the Grb2 SH2 domain as well

as free in solution (without the protein). The starting coordinates were prepared from the

crystal structures of the complexes using Maestro[2] to remove waters beyond 5Å and add

missing hydrogens. For the free ligand simulations, the coordinates of the ligand alone

were extracted from the crystal structure. The complex (with the retained crystal waters)

or the free ligand was then solvated with TIP3P water, buffer and ions to approximate the

experimental conditions[39]. To facilitate the calculation of relative binding enthalpies, the

contents of each simulation box are kept identical with the exception of the solute (either

the complex or free ligand). Thus, each truncated octahedral simulation box (measuring



103

12Å from the solute to the box edge for the complex, and 23Å for the free ligand), was

populated with 1 solute, 6154 waters, 6 HEPES molecules and 17 NaCl. Additional Na+

and Cl− ions were added for neutralization, dependent on the charge of the solute. The

charges on the residues of Grb2 SH2 and the protonations of its histidines at pH 7.45 were

determined using the H++ 3.0 server (http://biophysics.cs.vt.edu)[7, 121, 56]. Based on the

pKa values predicted by MarvinSketch 16.3.7.0, 2016, ChemAxon (www.chemaxon.com),

three different ionization states of HEPES were included (see Appendix A).

The RESP charges for both the HEPES molecules and the modified phosphotyrosine

residues were determined using the R.E.D. Server[177, 45] and Gaussian09 C.01[51]. The

forcefield parameters for the modified phosphotyrosine (PTY) were taken from the set

determined by Steinbrecher et al[161, 71], available in the AMBER frcmod.phosaa10 file.

The cyclized phosphotyrosine (CPY) parameters were the same as PTY with the exception

of the cyclopropyl moeity, which used the GAFF parameters for sp3 carbons in triangle

systems (cx). The complete parameter sets are made available in the supplementary material.

The systems were prepared by the LEaP program using the ff12SB force field.

The MD simulations were performed by using the multiple GPU version of PMEMD

(pmemd.cuda.MPI) available in the AMBER simulation package[25]. The systems were

first NVT heated to 300K and then NPT equilibrated for 5ns. The equilibrated coordinates

were then used as the initial coordinates for the production simulations. The production

simulations were performed using periodic boundary conditions with a nonbonded cutoff

of 9Å. The SHAKE algorithm was used to constrain the bond lengths containing hydrogen

atoms. Constant pressure and temperature were regulated by a Monte Carlo barostat and a

Langevin thermostat. Hydrogen mass repartitioning was enabled for longer timesteps (4 fs).

A prior study showed that this approach does not lead to a statistically significant change in
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computed binding enthalpies [66]. The simulations were performed in 200 ns blocks, with

each block seeded by a new random number. Coordinates and energies were recorded every

500 steps (2 ps).

For each system, two replicate simulations were initiated using the same equilibrated

starting coordinates, but the trajectories are non-identical due to different random seeds.

Each replicate was simulated for over 20 µs for the free ligands and over 120 µs for the

complexes, so that the total simulation time was over 40 µs for each free ligand and over

240 µs for each complex.

5.2.3 Evaluation of Uncertainty

There are many approaches to estimating the uncertainties associated with calculating

quantities that rely on means of the potential energies, such the binding enthalpy. Here

we apply two of the methods previously detailed in [66]. Using the approach described in

[158], the statistical inefficiency is determined from the autocorrelation function to create

subsampled data series that is uncorrelated, at least in principle. The standard error of the

mean (SEM,σ ) is then computed for the resulting uncorrelated series. Blocking analysis

[50] is another approach to estimating the uncertainty of the time series of potential energies,

where block-wise SEMs are computed for successively longer blocks of energies. On a plot

of block size versus SEM, a plateau is generally seen for simulations that are considered

converged, and the SEM value corresponding to the plateau is taken as the error of the

estimation. For a more conservative (i.e., larger) error estimate, one may also read off the

largest SEM reached for any of the block sizes tested [66].
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5.2.4 Structural Decomposition of Trajectories

Since the total energies of the simulations include the effects of water, buffer and

ions, it is of interest to examine the energies specific to relevant substructures, such as

the ligand or the binding site. These can be calculated by isolating, or decomposing, the

component structures from the trajectories. We anticipated that the fluctuations of the

solvent molecules would be larger than those of the components, and that the energies of the

components would converge more rapidly than those of the total system.

Both complex and free ligand trajectories were processed using cpptraj[25] to

generate decomposed trajectories. To generate trajectories containing only the ligand, the

protein and all solvent molecules, including water, HEPES buffer and ions, were stripped.

Similarly, to generate trajectories containing only 13 binding site residues (Arg13, Arg32,

Ser34, Glu35, Ser36, Ser42, Val51, Gln52, His53, Phe54, Lys55, Leu66, Trp67) with and

without the ligand, the rest of the protein and all solvent molecules were stripped. The

potential energies of the decomposed systems were then evaluated by specifying imin=5 and

maxcyc=1 in sander[25] to read in the trajectories and calculate a single-point energy at each

frame. PME was disabled by using ntb=0 so that no periodicity is applied and long-ranged

interactions were accounted for instead by increasing the nonbonded cutoff to 100.0Å.

5.2.5 Principal Component Analysis

In order to look for large-scale, slow protein motions that might account for conver-

gence issues, we applied principal component analysis (PCA) to the simulation trajectories.

PCA is commonly used to determine the essential dynamics of a simulation [6, 65] by

reducing the dimensionality of the trajectory motions. Principle components, or PCs, are the

eigenvectors obtained from diagonalizing the covariance matrix of a trajectory. We used
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the cpptraj program to obtain the first three PCs for combined trajectories of the simulation

replicates (Run A and Run B) and then to project the individual trajectories onto each PC.

Only the Cα atoms of the protein and all atoms of the ligand were considered.

5.3 Results

5.3.1 Mean Potential Energies

The cumulative and running means of the total potential energies of the systems are

plotted in Figures 5.2-5.4). For the free ligand simulations, the plots of the cumulative means

of both runs converge to values within 0.5 kcal/mol of each other by roughly 4,000,000

frames (8µs). For the complex simulations, there is a difference of at least 2.0 kcal/mol

between the final means of the runs.
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(a) fV, complex (b) fV, ligand

(c) cV, complex (d) cV, ligand

Figure 5.2: Cumulative means of total potential energy for fV and cV. The dotted
line indicates the mean, calculated across all frames.
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(a) fQ, complex (b) fQ, ligand

(c) cQ, complex (d) cQ, ligand

Figure 5.3: Cumulative means of total potential energy for fQ and cQ. The dotted
line indicates the mean, calculated across all frames.
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(a) fV, complex (b) fV, ligand

(c) cV, complex (d) cV, ligand

(e) fQ, complex (f) fQ, ligand

(g) cQ, complex (h) cQ, ligand

Figure 5.4: Running means of total potential energy, calculated using a window
size of 10,000 frames.



110

5.3.2 Relative Binding Enthalpies

The relative binding enthalpies ∆∆H are calculated from the mean potential energies

of the simulations (Equations 5.1-5.4). The relative enthalpy differences are evaluated

for pairs of flexible and constrained ligands and for pairs of ligands with different central

residues, and compared to experimental ITC results in Table 5.1.

Table 5.1: Relative Enthalpies (∆∆H, kcal/mol). The average of the four possible
differences between parallel runs listed for each of the differences. For example,
the mean ∆∆HcV− fV is the average of ∆∆HcV,A− fV,A, ∆∆HcV,A− fV,B∆∆HcV,B− fV,A,
and ∆∆HcV,B− fV,B. The SEMs are propagated from the SEMs estimated using the
statistical inefficiency for each run; the experimental errors are taken from [39],
which are propagated from the errors in ligand concentration

Calculated Experimental [39]
Mean ∆∆H SEM σ ITC Error

cV - fV 5.59 2.63 -2.5 0.32
cQ - fQ 1.34 1.47 -1.1 0.30
fQ - fV -1.42 2.25 -3.3 0.27
cQ - cV -5.67 2.00 -1.9 0.35

The computed relative binding enthalpies do not agree well with experiment: the

root mean square error across all four values is 4.72 kcal/mol, and the Pearson correlation

coefficient is -0.03. Also, the large uncertainties in the computed results, relative to the

differences of interest, reduce the significance of these comparisons. Nonetheless, some

interesting patterns emerge from the calculations. First, although experiments saw that

constrained ligands had more favorable binding enthalpies than their flexible counterparts,

the simulated results indicate the opposite, even accounting for the deviations between

the matched A and B runs, and for the numerically estimated errors (see next section).

The enthalpic changes associated with mutating the central residue also differ between the
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computational and experimental estimates. While both experiment and computation indicate

that ligands with glutamine have more favorable binding enthalpies than those with valine,

the experimental measurements indicate that glutamine leads to more favorable binding for

the flexible ligands, while the computational results indicate the opposite.

5.3.3 Evaluation of Uncertainty

When considering the estimated binding enthalpies, it is important to also evaluate

the uncertainty of the estimate. Since the binding enthalpies are estimated using the means

of the total potential energies from a simulation, it is useful to examine the standard error

of the mean (SEM, σ ) to quantify the uncertainty. The estimates of the SEM based on the

statistical inefficiency[158] are listed in Table 5.2. The SEMs of the complex simulations are

much greater than those of the free ligand simulations, and whereas the replicate runs of the

complex simulations have different SEMs, those of the free ligand simulations have nearly

identical SEM values. Altogether, this provides evidence that the simulations of the free

ligands are converged to within approximately 0.06 kcal/mol error, while the simulations

of the complexes are not well enough converged to support a detailed comparison with

experiment, with errors up to 3.0 kcal/mol.

Table 5.2: SEMs based on statistical inefficiency (kcal/mol).

SEM σ

Ligand Run Complex Free Ligand

fV
A 0.8571 0.0576
B 2.9865 0.0577

cV
A 0.7833 0.0603
B 1.8932 0.0615

fQ
A 0.5417 0.0591
B 0.4248 0.0596

cQ
A 1.0936 0.0608
B 1.6178 0.0607
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The statistical uncertainties were also evaluated by blocking analysis (Figures 5.5

and 5.6). Plateaus are observed in the curves for all the simulations of the ligand alone (right

column), but not in the simulations of the full complex (left column). Congruent with the

statistical inefficiency results, the errors for the ligand simulations are determined to be no

more than 0.07 kcal/mol, and there is notably good agreement between the parallel runs. In

the absence of a plateau on the blocking curves, it is difficult to quantify the errors for the

complex simulations.

(a) fV, complex (b) fV, ligand

(c) cV, complex (d) cV, ligand

Figure 5.5: SEM blocking curves for fV and cV total potential energies.
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(a) fQ, complex (b) fQ, ligand

(c) cQ, complex (d) cQ, ligand

Figure 5.6: SEM blocking curves for fQ and cQ total potential energies.

We conjectured that the mean potential energies of parts of these large systems

would converge more rapidly than the total energies, and that these component energies

would be informative regarding the mechanistic determinants of the computed relative

binding enthalpies. Thus, blocking analysis was also applied to the energies of decomposed

systems of the ligand alone (Figures 5.7 and 5.8) and binding residues with and without

the ligand (Figure 5.9 and 5.10). For the energy components, plateaus are only seen for

the free cQ ligand trajectories (Figures 5.5 and 5.6); in all other cases, the errors for the

component terms appear to be larger than those for the total potential energies of the same

systems. The blocking analysis of the decomposed trajectories of 13 binding site residues
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with and without the ligand also demonstrate larger errors for the component energies than

for the total energies of the solvated systems. Altogether the larger errors of the component

energies indicate that these actually experience greater fluctuations (see Table 5.3) and are

less converged than the energies of the full systems that include water, buffer and ions. This

result suggests that there is strong anticorrelation of energies among the various components

of each system. For example, large fluctuations of the internal energy of the free ligands are

effectively opposed by anticorrelation fluctuations of the ligand-solvent and solvent-solvent

energies.

(a) fV ligand, from complex sim. (b) fV ligand, from unbound sim.

(c) cV ligand, from complex sim. (d) cV ligand, from unbound sim.

Figure 5.7: SEM blocking curves of the potential energies of the fV and cV ligands,
decomposed from simulations of the complex and of the unbound ligand.
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(a) fQ ligand, from complex sim. (b) fQ ligand, from unbound sim.

(c) cQ ligand, from complex sim. (d) cQ ligand, from unbound sim.

Figure 5.8: SEM blocking curves of the potential energies of the fQ and cQ ligands,
decomposed from simulations of the complex and of the unbound ligand.
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(a) fV binding site complex (b) fV binding site alone

(c) cV binding site complex (d) cV binding site alone

Figure 5.9: SEM blocking curves for the potential energies of the binding site with
and without ligand, for fV and cV, decomposed from simulations of the complex
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(a) fQ binding site complex (b) fQ binding site alone

(c) cQ binding site complex (d) cQ binding site alone

Figure 5.10: SEM blocking curves for the potential energies of the binding site
with and without ligand, for fQ and cQ, decomposed from simulations of the
complex

Table 5.3: SEMs based on statistical inefficiency for component energies
(kcal/mol).

SEM σ

Ligand Run from Complex from Free Ligand

fV
A 0.4465 1.0908
B 1.0566 0.5949

cV
A 0.9606 0.1059
B 0.5161 0.1558

fQ
A 0.6525 1.3140
B 0.2831 0.5319

cQ
A 0.7362 0.0490
B 2.9349 0.0496
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5.3.4 Principal Component Analysis

In light of the significantly different mean potential energies for parallel runs of

the same complex simulation, and the large errors and lack of plateaus in the blocking

curves, we used principal component analysis (PCA) to look for slow motions which might

contribute to the slow convergence of the simulations. The first three principal components

(PCs) were determined for the combined parallel simulations (Run A and Run B). The

projection of each individual run on each PC for the complex and ligand simulations as well

as their normalized histograms are shown in Figures 5.11 and 5.12

(a) fV, complex (b) cV, complex

(c) fQ, complex (d) cQ, complex

Figure 5.11: PC projections for complex simulations
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(a) fV, ligand (b) cV, ligand

(c) fQ, ligand (d) cQ, ligand

Figure 5.12: PC projections for free ligand simulations

The histograms of the projections for the complex simulations (right column of

Fig. 5.11) illustrate that the two matched runs explore largely non-overlapping regions of

the leading PCs. In contrast, for the ligand simulations, the histograms of the projections for

the parallel runs (right column of Fig. 5.12) have more overlap, indicating that the motions

along the PC are represented equally in each runs. The lack of overlap in the PCs observed

for the complex trajectories is consistent with previous observations of poorly sampled

sub-nanosecond MD simulation of proteins[13, 33] and points to relatively large-scale, slow,
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motions as a limiting factor in the slow convergence of the mean potential energies of the

protein-ligand complexes.

5.4 Conclusions

Although experimental results[39] indicate that the constrained Grb2 SH2 ligands

studied have more favorable binding enthalpies than their flexible analogs, our simulations

point in the opposite direction. However, since the mean energies of the complexes are

not well converged, these results could change with longer simulation time. Although the

simulated complex and unbound ligand systems are of similar size (∼20,000 atoms for the

complexes and ∼18,000 atoms for the unbound ligands), the unbound ligand simulations

yield mean energies that converge to fractions of a kcal/mol within ∼20 µs while the

complex simulations are converged to within 0.4-3.0 kcal/mol after over ∼120 µs. This

observation suggests that the slow convergence of the complexes does not result solely from

the large number of degrees of freedom, but also from the fact that the protein undergoes

slow motions that the free ligands and water do not. This idea is supported by the lack

of convergence of the leading principal components of motion of the complexes. Future

directions of this study will include further investigation to better characterize the dynamics

which may be responsible for the slow convergence of the protein simulations.

It is also interesting to note that the estimated errors for the decomposed trajectories

of just the ligand or just the selected binding site residues are greater than those of the whole

system. The fact that the fluctuations of the component energies are greater than those of

the total energies implies that there is strong anticorrelation among component terms. Thus,

it is more difficult than anticipated to informatively dissect the differences in overall binding

enthalpies into components.
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While the current simulations of the complexes are not sufficiently converged to

allow clear comparisons with experimental results, the estimated errors are within 3 kcal/mol,

which is only 0.004% of the total energy. This is, arguably, an impressive and ultimately

encouraging result, and we would anticipate future attempts with faster MD implementations

to be more successful. It is also of interest to ask whether better convergence might be

reached by alternative methods. In particular, the van’t Hoff relation, and related expressions,

allow the binding enthalpy to be obtained by analysis of the variation of binding free

energy as a function of temperature. Such approaches have the advantage of not requiring

tight convergence of the full system potential energy. On the other hand, computing the

numerical derivative of the binding free energy with respect to temperature requires very

tight convergence of the free energy, and this poses its own challenges.



Chapter 6

Conclusions and Future Directions

The research described in the prior chapters addresses a range of issues relating to

noncovalent interactions between molecules. One thing that comes across in all chapters is

that there is no definitive way to model any of the biochemical phenomena examined. There

is a "zoo" of different QM methods for computing interaction energies, a variety of ways to

model polarization, and many different approaches to characterizing binding. Common to all

the studies presented is the use of approximations in the interest of allowing calculations to

be more tractable within computer resource and time constraints. Thus, measuring the error

of these approximations is important, especially for understanding the tradeoffs between

accuracy and computation speed.

For a given system, there should only be one correct value for a physical quantity of

interest, such as an interaction energy or electrostatic potential, and an accurate calculation

should be able to reproduce it. However, computational chemistry seems to be saturated

with approximate methods of comparable accuracy. In Chapter 2, we see that the DFT

methods with dispersion corrections and the linearly-scaled SAPT0 methods all have similar

accuracies. In Chapter 3, we show that using different response models for inducible

122



123

dipoles produces only slight differences in error, and note that the use of different screening

functions did not significantly change our results. Thus, the choice between methods or

models, especially amongst those with similar accuracies, is usually discerned by their

computational efficiency. For example, in Chapter 2, the linearly-scaled SAPT0 is twice as

fast as the DFT methods, and in Chapter 3, direct polarization requires less calculation time

than self-consistent polarization.

Overall, the evaluations of QM methods and polarization models in Chapters 2 and 3

yield informative considerations for modeling noncovalent interactions. A fast and accurate

QM method may be used for parameterizing force fields. One promising application of the

linearly-scaled SAPT0 method would be for fitting parameters of the physically-motivated

force field introduced by McDaniel and Schmidt[111]. Chapter 3 reveals that the inducible

dipole models found in popular polarizable force fields improve upon traditional force fields

which model polarization implicitly, but fall short of the theoretical maximum accuracy

achievable for both point charge and point dipole representation. These results imply

that polarizable force fields would benefit from improved response models for both these

representations. The future direction of this work would endeavor to develop such response

models that could be readily implemented into a force field for simulation. This could

be done by adding a term to the force field potential energy equation that would generate

optimal point charges or optimal point dipoles, likely dependent on changing electric field.

Either a mathematical model or a lookup table would be needed to map from the electric

field to the parameters.

The characterization of binding between two molecules also has diverse set of

approaches. Binding is a complex process, resulting from many noncovalent interactions and

molecular motions acting together. In Chapters 4 and 5 a few different approaches are applied
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to specific systems, including equilibrium quantum mechanical calculations and dynamic

molecular mechanical simulations. We note that there are many other ways to assess binding,

but the comparison of these is beyond the scope of this dissertation. The QM calculations

used in Chapter 4 support that there is an attractive interaction between heteroallene moieties

in guests and carbonyl groups in cucurbituril portals. The SAPT2+3 decompositions and

NBO analyses provide further detail regarding the dominance of electrostatic and dispersion

components in the favorable interaction. On the other hand, since the systems examined

were optimized equilibrium geometries, these calculations give no sense of how those

interactions would behave over time.

In contrast, in Chapter 5, the time-varying interactions and motions of the Grb2 SH2

domain are simulated using molecular dynamics, whereas the finer details of the noncovalent

interactions are too computationally costly and not explicitly calculated. As with all MD,

these details are coarse-grained by the parameters for force field terms, but the ability to

simulate molecular motions over time allows the calculation of thermodynamic quantities

such as binding free energies, entropies or enthalpies. There are different ways to estimate

relevant thermodynamic quantities from simulations, but Chapter 5 focuses on the direct

approach for calculating relative binding enthalpies from mean potential energies.

Since the protein-ligand simulations of Chapter 5 were not well-converged, future

work will involve additional analyses to understand and characterize the slow convergence.

While the principal component analyses demonstrated that replicate runs of the complex

simulations exhibit different essential dynamics, they do not specify which motions are

responsible for the slow convergence. To answer this question, we plan to investigate repre-

sentative structures along the principal components and perform more structural analyses on

the simulations. Additionally, the structural decomposition of the entire Grb2 SH2 protein
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should be interesting to look at, since previously we had only decomposed selected residues

of the binding site. The component energies of the protein would then be calculated and

compared to the principal component projections. We do anticipate, though, as computers

become more powerful and simulations become more efficient, that the full convergence of

the complex simulations will be possible in the next few years.

In this field of molecular modeling, we are always looking to make artful approxi-

mations that capture physics as well as possible within current computational constraints.

Continual growth in computing power promises inevitable improvements for the whole field

over time, but the choice of best approximation will always be necessary. In addition to

technological progress, the development of next generation models for simulation, such as

more accurate polarizable force fields, should also advance the field. Ultimately, advances in

computational chemistry theory, software and hardware will eventually enable more adept

manipulation of biochemical system, as in drug design and protein engineering.



Appendix A

A.1 Supplementary Information for Chapter 2

Table A.1: Definitions of SAPT truncations. The subscripts "elst," "exch", "ind",
and "disp" refer to electrostatics, exchange, induction, and dispersion. The subscript
"resp" denotes that the orbital response of the perturbed system is taken into account.
The superscripts refer to the orders of the interaction and Møller-Plesset fluctuation
potential operators. A complete explanation of the SAPT theory and terms is
available from Szalewicz[79].
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Table A.2: Evaluation of PMx methods with and without halogen corrections
across various dissociation separations. Errors are presented as RMSE values, in
kcal/mol.

Table A.3: Curve fitting results for scaling of calculation time with system size.
Timings for the A24 dataset are fit to the equation t = anb, where n is the number
of atoms or electrons in each dimer.
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Table A.4: Comparison of SAPT0 scaled energy components with corresponding
SAPT2+(3) energy components. Electrostatics: E(10)

elst , E(12)
elst,resp, E(13)

elst,resp, Ex-

change: E(10)
exch , E(11)

exch , E(12)
exch , Induction: E(20)

ind,resp, E(20)
exch−ind,resp, tE(22)

ind , tE(22)
exch−ind ,

Dispersion: E(20)
disp , E(20)

exch−disp, E(21)
disp , E(12)

disp , E(30)
disp . Results are presented as a linear

regression, y = mx+b.
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Figure A.1: Correlation of QM methods with reference results for complexes in
L7 dataset. All reference energies were obtained using QCISD(T)/CBS, except for
the guanine-cytosine· · ·guanine-cytosine complex, for which the reference energy
was obtained using CCSD(T)/CBS[152]. M062X and M062X-D3 calculations
were not completed for the circumcoronene systems.
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A.2 Supplementary Information for Chapter 4

A.2.1 Experimental details



 

General methods:  

All reactions were carried out in anhydrous solvents under inert atmosphere. Starting 
materials including compound 7 and a,w-alkanediamines (CmDA, m=4-8) were purchased 
and used without further purification. CB[6] 1, 2-azidoethylamine 8, N-Boc-2-
azidiamineethane 9, N,N'-Di-Boc-bis-(2-azidoethyl)-1,6-diaminohexane, 10c, N,N'-Bis-(2-
azidoethyl)-hexane-1,6-diammonium chloride salt, 4 and 4@1 were prepared as described 
before.1 Flash chromatography was performed on Merck silica gel 60 (230-400 mesh). 1H 
and 13C NMR spectra were recorded in the solvents indicated by using either AVIII400 
Bruker spectrometer. Chemical shifts (d) are given in ppm relative to TMS. The residual 
solvent signals were used as references and the chemical shifts were converted to the TMS 
scale: CDCl3: dH = 7.26 ppm, dC = 77.0 ppm, D2O-DCl: (with trace DMSO) dH = 2.70 
ppm, dC = 39.5 ppm. The following abbreviations or combinations thereof were used to 
explain the multiplicities: s = singlet, d = doublet, t = triplet, q = quartet, qu = quintet, m = 
multiplet, br = broad. Mass spectra were recorded by using either Waters MALDI 
microMX (TOF) or Waters LCT Premier microMax spectrometers (TOF-ESI, with 
MeCN/water, 1:1). Crystals of all five complexes, 2@1, 3@1, 4@1, 5@1 and 6@1 were 
obtained by slow diffusion of iso-propanol into aqueous solutions of the complexes. The 
Single crystals were mounted on a Nonius KappaCCD diffractometer and data was 
collected using graphite monochromatized MoKα radiation (l=0.71073) at 293 K (2@1, 
5@1 and 6@1), 150 K (3@1) or at 120 K (4@1). The following program was used for 
data collection and reduction: Nonius 1997 Collect,2 HKL DENZO, and Scalepack.3 The 
structures were solved by direct methods using the program package maXus4 and refined 
in the usual way using SHELXL97.5 Non-hydrogen atoms were refined anisotropically 
and hydrogen atoms isotropically. 

General procedure for N-alkylation: 

The synthesis was performed by addition of NaH (60% suspended in oil, 0.7g, 18 mmol) 
to solution of 9 (1.15g, 6.1 mmol) in DMF (25 mL) at 0 oC for 1 h. Dibromide (1,4-butane, 
1,5-pentane, 1,7-heptane and 1,8-octane) was added (2.8-3.0 mmol) and the mixture was 
stirred overnight at RT, then quenched with aq. NH4Cl solution, extracted with Et2O, 
washed with water and brine and dried over Na2SO4. Removal of the solvent followed by 
column chromatography afforded the desired products as colorless to pale yellow viscous 
oils. 

N,N¢- Di-Boc-bis-(2-azidoethyl)-butane-1,4-diammonium chloride (10a):  

Product was isolated by column chromatography (hexane/EtOAc, 85:15) in 60% yield 
(1.05 g). 
1H NMR (400 MHz, CDCl3): δ 3.42 (bs, 4H), 3.34 (bs, 4H), 3.25 (bs, 4H), 1.50 (bs, 4H), 
1.46 (bs, 18H). 13C NMR (100 MHz, CDCl3): δ 155.4, 80.0, 49.8, 48.3, 47.5, 46.8, 28.4, 
25.5. MS (TOF-MS-ES+): m/z calcd for C18H34N8O4 [M]+: 426; found: 427 [M+H] +. 

N,N¢- Di-Boc-bis-(2-azidoethyl)-pentane-1,5-diammonium chloride (10b):  
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Product was isolated by column chromatography (hexane/EtOAc, 85:15) in 60% yield (2 
g). 

1H NMR (400 MHz, CDCl3): δ 3.35 (bs, 8H), 3.24 (bs, 4H), 1.69 (bs, 4H), 1.46 (bs, 18H), 
1.27 (bs, 2H). 

N,N¢- Di-Boc-bis-(2-azidoethyl)-heptane-1,7-diammonium chloride (10d):  

Product was isolated by column chromatography (hexane/EtOAc, 9:1) in 80% yield (1.05 
g). 
1H NMR (400 MHz, CDCl3): δ 3.42 (bs, 4H), 3.34 (bs, 4H), 3.22 (bt, J=6.8 Hz, 4H), 1.50 
(bs, 4H), 1.46 (bs, 18H), 1.25 (m, 6H). 13C NMR (100 MHz, CDCl3): δ 155.4, 79.7, 49.6, 
48.2, 46.6, 29.2, 28.5, 26.2. HRMS (TOF-MS-ES+): m/z calcd for C21H41N8O4 [M+H]+: 
469.3251; found: 469.3257 [M+H] +. 

N,N¢- Di-Boc-bis-(2-azidoethyl)-octane-1,8-diammonium chloride (10e):  

Product was isolated by column chromatography (hexane/EtOAc, 95:5) in 80% yield (1.65 
g). 
1H NMR (400 MHz, CDCl3): δ 3.40 (bs, 4H), 3.34 (bs, 4H), 3.2 (bt, J=6.8 Hz, 4H), 1.60 
(bs, 4H), 1.46 (bs, 26H), 1.29 (bs, 4H). 13C NMR (100 MHz, CDCl3): δ 155.4, 79.7, 49.6, 
48.2, 46.6, 29.2, 28.5, 26.6. HRMS (TOF-MS-AP+): m/z calcd for C22H43N8O4 [M+H]+: 
483.3407; found: 483.3417 [M+H] +. 

General procedure for the removal of Boc protecting groups: 

A mixture of each starting material, i.e, 10a-e (1.2-2.0 mmol) in EtOH (35-50 mL) and 4N 
HCl (15-20 mL) was stirred overnight at RT. After removal of the solvent the residue was 
dissolved in hot MeOH (5-10 mL) and upon standing overnight the resultant precipitate 
was collected. If precipitation was not occur or resulted in a poor precipitate, Et2O was 
added to the hot solution of methanol and resulted in precipitation upon cooling and 
afforded the desired products as off-white solids. 

N,N¢- Bis-(2-azidoethyl)-butane-1,4-diammonium chloride (2):  

Product was isolated in 60% yield (0.25 g). 
1H NMR (400 MHz, D2O): δ 3.74 (m, 4H), 3.23 (m, 4H), 3.11 (m, 4H), 1.77 (m, 4H). 13C 
NMR (100 MHz, D2O): δ 47.6, 47.1, 23.4. HRMS (TOF-MS-ES+): m/z calcd for C8H19N8 
[M-HCL-Cl-]+: 227.1733; found: 227.1721 [M-HCl-Cl-] +. 

N,N¢- Bis-(2-azidoethyl)-pentane-1,5-diammonium chloride (3):  

Product was isolated in quantitative yield (0.5 g). 
1H NMR (400 MHz, D2O) δ 3.74 (bt, J=5.6 Hz, 4H), 3.22 (bt, J=5.6 Hz, 4H), 3.07 (bt, 
J=8 Hz, 4H), 1.72 (bq, 4H), 1.44 (bq, 4H). 13C NMR (400 MHz, D2O): δ 48.0, 47.6, 47.0, 
25.7, 23.6. HRMS (TOF-MS-ES+): m/z calcd for C9H21N8 [M-HCl-Cl-]+: 241.1889; found: 
241.1896. 

N,N¢- Bis-(2-azidoethyl)-heptane-1,7-diammonium chloride (5):  

Product was isolated in 70% yield (0.5 g). 
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1H NMR (400 MHz, D2O): δ 3.75 (bt , J=5.6 Hz, 4H), 3.22 (bt , J=5.6 Hz , 4H), 3.06 (bt, 
J=8.0 Hz, 4H), 1.68 (bs, 4H), 1.37 (bs, 6H). 13C NMR (100 MHz, D2O): δ 48.3, 47.6 46.9, 
28.3, 26.1, 25.9. HRMS (TOF-MS-ES+) m/z calcd for C11H25N8 [M-HCl-Cl-]+: 269.2202; 
found: 269.2175. 

N,N¢- Bis-(2-azidoethyl)-octane-1,8-diammonium chloride (6):  

Product was isolated in 70% yield (0.5 g). 
1H NMR (400 MHz, D2O) δ 3.75 (bt, J=5.2 Hz, 4H), 3.21 (bt, J=5.2 Hz, 4H), 3.06 (bt, 
J=7.6 Hz, 4H), 1.66 (bs, 4H), 1.34 (bs, 8H). 13C NMR (100 MHz, D2O): δ 48.4, 47.6, 
46.9, 28.6, 26.2, 26.0. HRMS (TOF-MS-AP+): m/z calcd for C12H27N8 [M-HCl-Cl-] +: 
283.2359; found: 283.2344. 

General procedure for the complex formation of bis-(2-azodoethyl)-a,w-
alkanediammonium salts with 1: 

To a stirred solution of selected guest (0.05 mmol) in water (5 mL) and conc. HCl (150 
µL), 1 (0.1 mmol) was added and the solution was left stirring at RT overnight. The 
resulting mixture was filtered and few drops of co-solvent was added slowly to the filtrate 
to afford a single crystal of 2@1, 3@1, 5@1 and 6@1 within several days and then 
subjected to X-ray analysis. 

2@1: Crystals were obtained by using i-PrOH as the co-solvent. 
1H NMR (400 MHz, D2O-DCl): δ 5.73 (d, J=15.6, 12H), 5.66 (s, 12H), 4.39 (d, J=15.6, 
12H), 3.94 (m, 4H), 3.44 (m, 4H) , 2.33 (m, 4H) , 0.57 (m, 4H). 13C NMR (100 MHz, 
D2O- DCl): δ 157.4, 71.1, 52.4, 49.4, 48.2, 47.5, 24.5. 

3@1: Crystals were obtained by using ethylenglycol as the co-solvent. 
1H NMR (400 MHz, D2O-DCl): δ 5.85 (d, J=15.6, 12H), 5.74 (s, 12H), 4.48 (d, J=15.6, 
12H), 4.08 (bt, J=5.6 Hz, 4H), 3.55 (bt, J=5.6 Hz, 4H), 2.84 (m, 4H), 0.82 (m, 4H), 0.5 (m, 
4H). 13C NMR (100 MHz, D2O- DCl): δ 156.4, 70.4, 47.4, 47.2, 46.9, 27.4, 22.7. 

5@1: Crystals were obtained by using i-PrOH as the co-solvent. 
1H NMR (400 MHz, D2O- DCl) δ 5.77 (d, J=15.6 Hz, 12H), 5.55 (s, 12H), 4.29 (d, J=15.6 
Hz, 12H), 3.90 (bt, J=5.2, 4H), 3.36 (bt, J=5.2, 4H), 3.04 (bt, J=6.8, 4H), 1.16 (m, 4H), 
0.48 (m, 4H), 0.4 (m, 2H). 13C NMR (100 MHz, D2O-DCl): δ 156.1, 70.4, 51.4, 48.4, 
47.4, 47.2, 30.2, 26.9, 26.2. MS (TOF-MS-ES+) m/z (%):  For C47H60N32O12 1265.5 
(100%), 1266.5 (54%), 1267.5 (21%); Found: [MH]+ 1265.5 (100%), 1266.5 (52%), 
1267.5 (18%); [MH2]+2 633.2 (100%), 633.7 (60%), 634.2 (22%). HR-MS (TOF-MS-
ES+): calcd. for C47H61N32O12 1265.5147, found 1265.5144. 

6@1: Crystals were obtained by using i-PrOH as the co-solvent. 
1H NMR (400 MHz, D2O-DCl) δ 5.66 (d, J=15.6 Hz, 12H), 5.43 (s, 12H), 4.18 (d, J=15.6 
Hz, 12H), 3.78 (t, J=5.2, 4H), 3.27 (t, J=5.2, 4H), 3.06 (t, J=6.0, 4H), 1.33 (m, 4H), 0.54 
(m, 4H), 0.35 (m, 4H). 13C NMR (100 MHz, D2O-DCl): δ 155.9, 70.3, 51.4, 48.7, 47.4, 
46.9, 30.3, 26.6, 25.6. MS (TOF-MS-ES+) m/z (%): For C48H62N32O12 1278.5 (100%), 
1279.5 (53%), 1280.5 (16%); Found: [MH]+ 1279.5 (100%), 1280.5 (64%), 1281.5 (26%); 
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Table A.5: Crystallographic data collection and structure refinement details of
complexes of 1.

Figure A.2: Calculated structures of guests 2-6 (Geometry color codes: green,
short contacts (< 3ÃĚ); magenta, bond angles; red, dihedral angles). Chloride ions
were omitted for clarity.
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Table A.6: Linearity of guest functional groups assesed by the θαβγ bond angle, for
PM6-DH+ geometry optimizations in implicit solvent (COSMO model) performed
for the guest alone and in complex with the CB[6] host system.

Optimized θαβγ

Guest free in complex with host

5 169.1 168.4
169.0 169.5

11 165.3 164.8
165.2 165.4

12 175.6 176.0
175.5 176.0

13 179.6 176.7
178.6 174.0
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Figure A.3: MP2 stabilization energies for formaldehyde-formamide nO→ πA=B*
delocalizations as a function of separation distance. Structures were obtained from
the supporting information from [122].
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Figure A.4: MP2 stabilization energies for host-guest nO→ πA=B* delocalizations.
No such delocalizations were recorded for isothiocyanate. (Note: stabilization
energies less than 0.05 kcal/mol are not reported by the NBO method).
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[142] ŘEZÁČ, J., AND HOBZA, P. Extrapolation and Scaling of the DFT-SAPT Interaction
Energies toward the Basis Set Limit. Journal of Chemical Theory and Computation
7, 3 (mar 2011), 685–689.
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