
UC Merced
Proceedings of the Annual Meeting of the Cognitive Science
Society

Title
Understanding the Advantages of Modularity in Neural Systems

Permalink
https://escholarship.org/uc/item/6rj4t7c6

Journal
Proceedings of the Annual Meeting of the Cognitive Science Society, 28(28)

ISSN
1069-7977

Author
Bullinaria, John A.

Publication Date
2006

Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rj4t7c6
https://escholarship.org
http://www.cdlib.org/

Understanding the Advantages of Modularity in Neural Systems

John A. Bullinaria (j.a.bullinaria@cs.bham.ac.uk)
School of Computer Science, University of Birmingham,

Birmingham, B15 2TT, UK

Abstract

Understanding, or even defining, modularity in the human brain
is not as straightforward as one might expect. It is natural to
assume that modularity offers computational advantages, and
that evolution by natural selection would translate those
advantages into the kind of modular neural structures familiar
to cognitive scientists. However, explicit simulations of the
evolution of neural systems have shown that, in many cases, it
is actually non-modular architectures that are most efficient. In
this paper, I present a further series of simulations that reveal a
crucial dependence on the details of the tasks that are being
modelled, and the importance of taking into account physical
brain constraints, such as the degree of neural connectivity.
Eventually, we end up finding modularity emerging reliably
from evolution across a range of neural processing tasks.

Introduction
Cognitive neuropsychology and fRMI research have made
great progress in elucidating the structure of the human
brain, and, although much controversy remains, it appears to
involve some degree of modularity. However, the reasons
for that modularity are not very well understood, and it is
not clear how much of the modularity is innate and how
much arises through learning, nor even how one should best
define modularity (e.g., Jacobs, 1999; Elman et al., 1996).
A natural assumption is that modular systems have some
advantage over non-modular systems, and that either
evolution or learning will therefore result in the emergence
of modules. The big question for cognitive scientists then
is: what are those advantages, and what mechanisms enable
those advantages to translate into modular architectures?
One promising approach has been to simulate or model the
evolution of some appropriately simplified neural systems
performing simplified cognitive tasks, and study the
structures that emerge. In the next section of this paper I
review some of the previous attempts to do this, and identify
some of their shortcomings. I will then present a new series
of simulations that clarify many of the relevant issues. I end
with some discussion and conclusions.

Previous Explorations
The earliest systematic study in this area was the Rueckl,
Cave & Kosslyn (1989) computational investigation of the
separation of “what” and “where” processing in the human
brain. They carried out a series of simulations of simple
neural network models trained to perform what and where
classifications from simplified ‘retinal images’, and found

that a modular architecture was able to generate more
efficient internal representations and learned more easily
than fully distributed networks. It is debatable whether this
could be the real reason for modularity in the human visual
system (Mishkin, Ungerleider & Macko, 1983; Ungerleider
& Haxby, 1994), but given the obvious potential for
disruptive interference in the simultaneous processing of
two independent tasks, it should be no surprise if, in general,
dedicated modules for two tasks work better than a single
homogeneous system. It is then easy to imagine how
evolution by natural selection could enable that advantage to
lead to the emergence of modularity.

The obvious next step was to simulate such an
evolutionary process and watch the modularity emerge.
Although such simulations did show that modularity could
evolve in that way if learning and performance were based
on the Sum-Squared Error (SSE) measure, they also showed
that even better non-modular systems could emerge if based
on the Cross Entropy (CE) error measure, thus throwing this
whole approach into doubt (Bullinaria, 2001).

Other evolutionary neural network simulations involving
the same what-where tasks (Di Ferdinando et al., 2001;
Calabretta et al., 2003) have confirmed the increasingly
wide-spread belief that for complex tasks it is most efficient
to have the neural architectures largely innate and the
connection weights largely learned (e.g., Elman et al.,
1996). These simulations have also elucidated further the
emergence of modularity in the SSE case, but they didn’t
consider CE based learning.

In another series of evolutionary neural network
simulations, Hüsken, Igel & Toussaint (2002) introduced
finer grained measures of modularity and also found that the
requirement for fast learning increased the selective pressure
for modularity in the SSE case, but could not reproduce
those results for the CE case. Most recently, Bowers &
Bullinaria (2005) took a computational embryogeny
approach to model the evolution of modularity at an even
lower level of description, involving neural stem cells and
connections growing along simulated chemical gradients.
In these simulations, no sign of modularity arose until limits
were placed on dendritic distances and the output neurons
corresponding to the two tasks were physically separated by
sufficient distance. This was seen to be consistent with the
consequences of a bias towards short connections discussed
by Jacobs & Jordan (1992).

In a non-evolutionary study, Jacobs, Jordan & Barto
(1991) explored the emergence of modules in a gated

119

mixtures of experts network, but it is difficult to set up those
systems in such a way that there is no inherent bias towards
modularity. If one removes the bias towards modularity,
and evolves the gating parameters, we end up with the same
SSE versus CE differences as above (Bullinaria, 2002).

Three factors clearly need further work: the dependence
on the learning algorithm (e.g., SSE or CE), the effect of
physical constraints, and the dependence on the task (i.e.,
how general are the what-where results). The following
three sections will address each of these issues.

Evolving the Learning Algorithm

The Bullinaria (2001, 2002) neural network simulations
showed that modularity was advantageous for the simplified
what-where problem if the SSE cost function was used for
learning, as in the Rueckl et al. (1989) study, but not if the
CE cost function was used. For either cost function there
will be a trade-off between employing modularity to reduce
the cross-task interference, and the additional flexibility and
free parameters arising from the full connectivity of non-
modular architectures. The question is: under which
circumstances will the trade-off favor modularity?

There is a well known problem when using the SSE cost
function in neural networks with sigmoidal outputs and
binary targets. During learning, the gradient descent weight
updates are proportional to the output sigmoid derivatives,
which are close to zero near totally incorrect outputs, as well
as for correct outputs. This means that if the weight updates
from distinct training patterns interfere with each other in
such a way as to cause incorrect outputs, then it can be
difficult, if not impossible, to correct them later. Attempts
to evolve solutions to this problem for general single task
binary mappings (Bullinaria, 2003) consistently resulted in
the SSE learning algorithm evolving into the CE learning
algorithm. The problematic sigmoid derivatives cancel out
of the weight updates for the CE cost function, and there are
also good theoretical reasons why the CE cost function is
more appropriate for classification tasks anyway (Bishop,
2001). It is not surprising then, that the Bullinaria (2001)
study found that the interference prone SSE case favored
modularity, while the superior CE algorithm preferred the
extra flexibility of non-modularity. The question remains:
will non-modularity always be the preferred option? In the
remainder of this paper I shall present a further series of
simulations that explore this issue.

The general idea of evolving neural networks is now well
established (e.g., Yao, 1999). One takes a whole population
of individual neural networks, each specified by a series of
innate parameters. Then at each generation, the least fit
individuals are replaced by children produced from the
fittest individuals (using appropriate forms of cross-over and
mutation). Such repeated natural selection causes useful
innate characteristics to proliferate in the population, and
fitness levels improve towards some local optimum.

For our purposes, a standard feed-forward neural network

as shown in Figure 1 is appropriate, with architecture
parameters Nhid1, Nhid12 and Nhid2 that specify how many
hidden units connect to each set of output units. If Nhid12
tends to zero, we have a modular architecture, with modules
consisting of a separate set of hidden units dedicated to each
of the two tasks. If Nhid1 and Nhid2 both tend to zero, the
architecture is totally non-modular. The natural innate
learning parameters here are the random initial weight
distributions [-lL, +uL] and learning rates ηL for the four
network components L (input to hidden weights IH, hidden
unit biases HB, hidden to output weights HO, and output
biases OB). Previously, the learning algorithm has been
fixed to be standard gradient descent learning using either
the SSE or CE cost function (Bullinaria, 2001). Here we
shall let the learning algorithm itself evolve too by using a
cost function that can be SSE, CE, or anything in between:

E = (1− µ)ESSE + µECE
The parameter µ is bounded to lie in the range [0, 1], so the
extreme values of 0 and 1 correspond to the SSE and CE
learning algorithm, while a value around 0.1 corresponds to
the traditional ‘sigmoid prime offset’ approach for avoiding
the SSE learning problem (Bullinaria, 2003). If we have a
fixed total number of hidden units, that gives us two
architecture and thirteen learning parameters to evolve.

We shall start with the same what-where training data set
as used by Rueckl et al. (1989) and most subsequent studies,
with nine 3×3 patterns that may appear in nine positions in a
5×5 input space. Fitness here corresponds to the number of
training epochs required to correctly classify all 81 input
patterns. The simulation results have been found to be
extremely robust with respect to the evolutionary details.
All the results presented here are for populations of 100
individuals. At each generation, half the children copy the
innate parameters of a parent, and half have each parameter
value chosen from the range spanned by their two parents,
plus random Gaussian mutations that allow parameters
outside that range. The initial population was started with
random innate parameters, and the evolutionary process
continued until all the parameters had clearly settled down.

Figure 2 shows the evolutionary simulation results for

Figure 1: The simplified neural network architecture used to
study the evolution of modularity.

Task 1 Outputs

Inputs

Nhid1 Nhid2Nhid12

Task 2 Outputs

120

neural networks with 36 hidden units, with mean values and
standard deviations over ten runs. The learning rates and
initial weight distributions don’t tell us much, apart from the
fact that they differ somewhat from the kinds of parameters
traditionally used in hand-built networks. The parameter µ
ends up very close to 1, corresponding to a purely CE
learning algorithm. The evolved architecture parameters
correspond to totally non-modular networks. Together the
evolved parameters result in the training data being learned
in around 18 epochs, and provide a solid confirmation of the
earlier results (Bullinaria, 2001) that the requirement for
faster learning in this what-where task leads reliably to the
emergence of non-modular neural architectures.

A further important consideration is the relation between
the computational power of the neural network compared
with the complexity of the task. It is easy to check this by
repeating the above simulations with different total numbers
of hidden units. Figure 3 shows how the evolved network
architecture and performance varies with the computational
power. On the left we see that the evolved architecture
remains non-modular from the minimal network required to
perform the given task (9 hidden units) to over a hundred
times that size (1000 units). On the right we see how the
required number of epochs of training varies with the

computational power available. It seems that the optimality
of non-modular architectures for this what-where task is
quite robust with respect to network complexity too.

Physical Constraints on Neural Connectivity
In building cognitive models, one naturally needs to take
into account the physical properties of the brain, in addition
to the computations they are performing. Of particular
relevance to us here is the fact that the significant volume
occupied by neural connections (i.e. axons and dendrites)
precludes full neural connectivity (Chklovskii et al., 2002;
Sporns et al., 2004). Jacobs & Jordan (1992) and Bowers &
Bullinaria (2005) have already looked at the emergence of
restricted connectivity resulting from a bias towards short
connections in models where the neurons have positions
specified in a three dimensional space. In this section I will
show that modularity will emerge simply by restricting the
proportion of connections, without regard to the neuron
positions and connection lengths. With a given pattern of
connectivity, evolution will surely arrange the neurons and
connections to minimize the volume of connections, but
restrictions on the connectivity proportions alone is
sufficient to lead to the evolution of modularity.

6000400020000
0

1

2

3

Generation

et
a

etaHB

etaHO

etaOB

etaIH

6000400020000

0.0

0.2

0.4

0.6

0.8

1.0

Generation

m
u

6000400020000
0

0

1

1

Generation

Un
its

Nhid2
Nhid1

Nhid12
 36

 24

 12

6000400020000

0

20

40

60

Generation

Ep
oc

hs

Figure 2: The evolution of the standard what-where neural network with 36 hidden units: the learning rates (top left), the CE
versus SSE parameter µ (top right), the architecture parameters (bottom left), and epochs of training required (bottom right).

121

The above simulations can easily be modified to test these
ideas – one simply has to repeat them with the degree of
connectivity between layers restricted to some fraction f of
full connectivity. Figure 4 shows the architectures that
emerge if we have 72 hidden units in total. As we reduce f,
the number of hidden units shared by both output tasks,
Nhid12, falls almost linearly until f reaches 0.5 and then
stays around zero for all lower levels of connectivity. This
means that a modular architecture makes the most efficient
use of the available connections if they are limited to the
extent that is found in real brains. Throughout, Nhid2,
corresponding to the easier ‘where’ task, is lower than
Nhid1 , as was found in the modular SSE simulations
(Bullinaria, 2001) and the original Rueckl et al. (1989)
study, but the appropriate relative size of the two modules
varies with the connectivity proportion.

More Realistic Learning Tasks

We have now established that modularity will only be an
advantage for learning the what-where task when there are

constraints on the proportion of neural connectivity, but it is
not obvious that this will be true of all tasks. A particular
worry is that learning a small set of input-output mappings
for the what-where task is very different to most realistic
human cognitive tasks in which we are typically required to
generalize from, and respond to, an unpredictable stream of
inputs drawn from some continuous data distribution.

A typical problem humans are faced with is to classify in
various ways new inputs drawn from some continuous space
by learning to generalize from different examples they have
experienced before. To keep things simple for simulation
purposes, suppose we have just two continuous valued
inputs that are normalized to lie in the range [0, 1], and we
need to perform two distinct classifications based on those
input values. For example, the inputs could correspond to
two crucial measurable characteristics of animals, and the
two output tasks could be to classify them as being good
food (or not) and dangerous (or not). We require our neural
networks to learn the classification boundaries in our two
dimensional input space for each output task, from a
continuous stream of examples. Obviously, even for this

1000100101
0.0

0.2

0.4

0.6

0.8

1.0

Hidden Units

Pr
op

.

Nhid2
Nhid1

Nhid12

1000100101

0

30

60

90

Hidden Units

Ep
oc

hs

Figure 3: Dependence of the evolved what-where neural network results on the total number of hidden units. The architecture
parameters as a proportion of the total number of hidden units (left), and the number of epochs of training required (right).

1.000.750.500.25
0.0

0.2

0.4

0.6

0.8

1.0

Connectivity

Pr
op

.

Nhid2

Nhid1

Nhid12

1.000.750.500.25

0

30

60

90

Connectivity

Ep
oc

hs

Figure 4: Dependence of the evolved what-where neural network results on the degree of connectivity between the network
layers. The architecture parameters as proportions (left), and the number of epochs of training required (right).

122

simplified set-up, there are an infinite number of possible
tasks corresponding to different classification boundaries.
The question is: will a separate module for each output task
consistently work better or worse than a fully distributed
network, or will the need for modularity be problem
dependent? I attempted to answer that by re-running the
above simulations with everything else the same except for
the training data and the fitness measure. Here fitness is the
ability to learn quickly to generalize, i.e. to produce the right
outputs for each new item before training on it, rather than
producing the right outputs for each item after many epochs
of training on it. In practice, the infinite sequence of
possible inputs was presented in blocks (or epochs) of 400
training items, and fitness was measured as the number of

blocks required before a full block of items was classified
correctly before training on each item.

It did not take many simulations to find the answer that
“the advantage of modularity is problem dependent”, and
that the advantage depends on many factors, in particular,
the overlap of the two classification tasks, the relative
difficulties of the two tasks, the complexity of the decision
boundaries, and the number of classes. The two simple
problems shown in Figure 5 illustrate this. The case on the
left has one two class task and one three class task. We see
that for full neural connectivity, the optimal architecture is
non-modular, and that as the degree of neural connectivity is
reduced, the degree of modularity increases, as for the what-
where case earlier. The case on the right has two two class

1.000.750.500.25
0.0

0.2

0.4

0.6

0.8

1.0

Connectivity

Pr
op

.

Nhid2

Nhid1

Nhid12

1.000.750.500.25

0.0

0.2

0.4

0.6

0.8

1.0

Connectivity
Pr
op

.

Nhid2

Nhid1

Nhid12

1.000.750.500.25
0

150

300

450

Connectivity

Ep
oc

hs

1.000.750.500.25

0

150

300

450

Connectivity

Ep
oc

hs

Figure 5: Results for two online generalization problems. The two pairs of classification boundaries (top), the architecture
parameters as functions of connectivity proportion (middle), and the number of epochs of training required (bottom).

123

tasks. In this case, a modular architecture is found to evolve
for any degree of neural connectivity. As one would expect,
for both cases, the average amount of training data required
to reach a block of perfect performance increases as the
connectivity, and hence computational power, is reduced.

A final complication is that we need to check that the
evolution has not become stuck with an architecture worse
than the global optimum. So, all the simulations were run
again with the architecture constrained to be modular, and
again with it constrained to be non-modular. These runs
confirmed that the evolved architectures did indeed produce
the fastest learning performance for each task.

Discussion and Conclusions

This paper began by reviewing the previous attempts to
understand the advantages of modularity in neural systems,
and how evolution could translate those advantages into
brain structures. These studies were extended here by
allowing the neural learning algorithms to evolve alongside
the architectures, and by investigating more realistic
learning tasks. We found that for many tasks there is no
learning advantage for modularity because the reduction in
cross-task interference that modularity provides is out-
weighed by the extra computational power allowed by full
connectivity. For other tasks, the problem of interference is
more important than computational power, and modularity
does evolve. For artificial systems then, the need for
modularity is problem dependent, and it is proving difficult
to formulate general purpose heuristics to tell us when there
is an advantage to modularity, and when there isn’t.

Cognitive scientists, of course, are interested in biological
brains, rather than artificial systems, and their models are
further constrained by various physical properties. Once we
incorporate the known physical constraints on the degree of
neural connectivity (Chklovskii et al., 2002) into those brain
models, modular architectures are found to have a clear
advantage when it comes to learning efficiently, and
simulated evolution does lead to the emergence of modular
structures, for all the pairs of simplified tasks considered.
Understanding how these modules actually come about in
real brains is something that still requires more detailed
simulations, including more realistic neural structures and
connectivity patterns, as well as incorporation of the known
stages in human brain evolution. I hope to report on such
simulations in the near future.

References
Bishop, C.M. (2001). Neural networks for pattern

recognition. Oxford, UK: Oxford University Press.
Bowers, C.P. & Bullinaria, J.A. (2005). Embryological

modelling of the evolution of neural architecture. In: A.
Cangelosi, G. Bugmann & R. Borisyuk (Eds), Modeling
Language, Cognition and Action, 375-384. Singapore:
World Scientific.

Bullinaria, J.A. (2001). Simulating the evolution of modular
neural systems. In Proceedings of the Twenty-third
Annual Conference of the Cognitive Science Society, 146-
151. Mahwah, NJ: Lawrence Erlbaum.

Bullinaria, J.A. (2002). The evolution of gated sub-networks
and modularity in the human brain. In: J.A. Bullinaria &
W. Lowe (Eds), Connectionist Models of Cognition and
Perception, 27-39. Singapore: World Scientific.

Bullinaria, J.A. (2003). Evolving efficient learning
algorithms for binary mappings. Neural Networks, 16,
793-800.

Calabretta, R., Di Ferinando, A., Wagner, G.P. & Parisi, D.
(2003). What does it take to evolve behaviourally
complex organisms? BioSystems, 69, 245-262.

Chklovskii, D.B., Schikorski, T. & Stevens, C.F. (2002).
Wiring optimization in cortical circuits. Neuron, 34, 341-
347.

Di Ferdinando, A., Calabretta, R, & Parisi, D. (2001).
Evolving modular architectures for neural networks. In
R.F. French & J.P. Sougne (Eds), Connectionist Models
of Learning, Development and Evolution, 253-262.
London: Springer-Verlag.

Elman, J.L., Bates, E.A., Johnson, M.H., Karmiloff-Smith,
A., Parisi, D. & Plunkett, K. (1996). Reth ink ing
innateness: A connectionist perspective on development.
Cambridge, MA: MIT Press.

Hüsken, M., Igel, C. & Toussaint, M. (2002). Task-
dependent evolution of modularity in neural networks.
Connection Science, 14, 219-229.

Jacobs, R.A. (1999). Computational studies of the
development of functionally specialized neural modules.
Trends in Cognitive Science, 3, 31-38.

Jacobs, R.A. & Jordan, M.I. (1992). Computational
consequences of a bias toward short connections. Journal
of Cognitive Neuroscience, 4, 323-336.

Jacobs, R.A., Jordan, M.I. & Barto, A.G. (1991). Task
decomposition through competition in modular
connectionist architecture: The what and where vision
tasks. Cognitive Science, 15, 219-250.

Mishkin, M., Ungerleider, L.G. & Macko, K.A. (1983).
Object vision and spatial vision: Two cortical pathways.
Trends in Neurosciences, 6, 414-417.

Rueckl, J.G., Cave, K.R. & Kosslyn, S.M. (1989). Why are
“what” and “where” processed by separate cortical visual
systems? A computational investigation. Journal of
Cognitive Neuroscience, 1, 171-186.

Sporns, O., Chialvo, D.R., Kaiser, M. & Hilgetag, C.C.
(2004). Organization, development and function of
complex brain networks. Trends in Cognitive Sciences, 8,
418-425.

Ungerleider, L.G. & Haxby, J.V. (1994). ‘What’ and
‘where’ in the human brain. Current Opinion in
Neurobiology, 4, 157-165.

Yao, X. (1999). Evolving artificial neural networks.
Proceedings of the IEEE, 87, 1423-1447.

124

