
UC Irvine
ICS Technical Reports

Title
Detecting and removing noisy instances from concept descriptions

Permalink
https://escholarship.org/uc/item/6rj4s5qx

Authors
Aha, David W.
Kibler, Dennis

Publication Date
1988-12-12
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rj4s5qx
https://escholarship.org
http://www.cdlib.org/


Notice; This Material
may be protected
by Copyright Law
(Title 17 U.S.C.)

Detecting and Removing Noisy Instances
from Concept Descriptions

David W. Aha

Dennis Kibler

Irvine Computational Intelligence Project
Department of Information and Computer Science

University of California, Irvine, CA 92717

Technical Report 88-12

5 May 1988
Revised: 12 December 1988 \

Copyright 0 1988 University of California, Irvine

Submitted to IJCAI 1989 as "Noise-Tolerant Instance-Based Learning Algorithms"

cj



belosliiiq jd ynfi:
wrd IriDnycioO yci
' .0 8 i.r f i )



Noise-Tolerant Instance-Bcised Learning Algorithms

David W. Aha Dennis Kibler

Department of Information Sc Computer Science
University of California, Irvine

Irvine, CA 92717 U.S.A.
(714) 856-8779

aha@ics.uci.edu kibler@ics.uci.edu

Requested Reviewing Area: Learning (B2)

Abstract

Several published results show that instance-based learning algorithms record high classifi
cation accuracies and low storage requirements when applied to supervised learning tasks.
However, these learning algorithms are highly sensitive to training set noise. This paper
describes a simple extension of instance-based learning algorithms for detecting and remov
ing noisy instances from concept descriptions. The extension requires evidence that saved
instances be significantly good classifiers before it allows them to be used for subsequent
classification tasks. We show that this extension's performance degrades more slowly in the
presence of noise, improves classification accuracies, and further reduces storage require
ments in several artificial and real-world databaises.

1 Introduction

Instance-based learning (IBL) algorithms have several notable character
istics, including representational simplicity, low incremental learning costs,
small storage requirements, the ability to leetrn continuous functions (Kibler
& Aha, in press), the ability to learn non-lineaxly separable categories, and
the ability to produce concept exemplars on demand. IBL algorithms have
been successfully applied to such varied tasks as speech recognition (Brad-
shaw, 1987), handwritten letter identification (Kurtzberg, 1987), the cart-
and-pole problem (Connell ^ Utgoff, 1987), powerload forecasting (Jabbour,
Riveros, Landsbergen, & Meyer, 1987), and thyroid disease diagnosis (Ki
bler ^ Aha, 1987). However, instance-based learning algorithms are highly
sensitive to noise.

The ability to tolerate noise is an important requisite for robust, practical
learning methods. Algorithms should demonstrate graceful degradations in
performance when presented with noisy data. Pruning methods, based upon
tests of statistical significance, have been developed for tolerating noisy data
in decision tree learning algorithms (Quinlan, 1986; Niblett k Bratko, 1986).
Clark & Niblett (1987) subsequentially described a similar method for toler
ating noise in CN2, their rule learning algorithm.

This paper introduces an extension for IBL algorithms, also based on a
form of significance testing, that identifies and eliminates noisy concept de
scription instances. We show that the resulting algorithms' classification ac-



curacies degrade linearly with linear increases in noise in an artificial domain
and improves classification performance on several complicated domains.

2 Instance-Based Learning Algorithms

IBL algorithms induce neither rules, decision trees, nor other types of
abstractions during learning. Instead, instance-based representations of con
cept descriptions consist solely of a set of instances. (We will assume in
this paper that each instance is represented with a set of n attribute-value
pairs.) IBL algorithms incrementally derive their concept descriptions from
a sequence of training set instances. Classifications are made with respect
to the concept description's extension, which is derived with respect to a
similarity function and a classification function.

2.1 A Framework for Instance-Based Learning Algorithms

More precisely, all IBL algorithms contain the following three components:

1. Similarity Function: Given two normalized instances, this yields their
similarity, expressed numerically.

2. Classification Function: Given an instance i to be classified and its
similarity with each of the saved instances, this yields a classification
for i. (In this paper, a classification is expressed as a concept name.)

3. Memory Updating Algorithm: Given the instance being classified and
the results of the other two components, this updates the set of saved
instances (and possibly some relevant statistics concerning them).

Each instance is normalized to ensure that all attributes axe assigned equal
classification importance by the similarity function. While assuming that at
tributes have equal importance is not necessarily correct, it is a fair approach
when given no prior knowledge of relative attribute saliencies.

All IBL algorithms in this paper define similarity as the negation of Eu
clidean distance between two (normalized) instances. Comparisons of differ
ent similarity functions is left for future research. All our IBL algorithms
also employ the same algorithm for tolerating missing attribute values. Cal
culating the similarity of two instances involves computing their pairwise
attribute-value differences. If either value of a pair is missing, then they are
assumed to be maximally different from each other.

The IBL algorithms described in this paper employ one of two classifica
tion functions, namely the nearest neighbor or k-nearest neighbor algorithms.
The former classifies an instance as being a member of the same concept as
its most similar instance. The latter does the same, but takes a majority
vote among its k most similar instances (we set k to 3).

2.2 A Family of IBL Algorithms

The eight IBL algorithms described in this paper, summarized in Table 1,
differ primarily in their memory updating functions. The simplest IBL algo-



Table 1: Names and characterizations of the eight IBL algorithms. Asterisks denote those
algorithms for which noise-tolerant extensions are used in the paper (e.g., NTgrowth).

Memory Updating Function Classification Function

nearest neighbor k-nearest neighbor

Saves Ail Instances Proximity K-nn

Instance-Filtering Growth* K-nn Growth"

Instance-Averaging Disjunctive Spanning"

rithms (Proximity and K-nn) save all training instances. However, since most
real-world domains exhibit regularities that make them amenable to storage-
reducing algorithms, the remaining IBL algorithms save only those instances
that are misclassified during training (which axe assumed to contain addi
tional concept boundary information). Storage-reducing IBL algorithms in
turn are partitioned by how they update memory when the current training
instance is correctly classified. Instance-filtering IBL algorithms discard cor
rectly classified instemces while instance-averaging IBL algorithms replace
the instance which performed the classification with an average of it and
the instance being classified. The Growth ztlgorithm (Table 2) is an exam
ple instance-filtering algorithm. The Disjunctive Spanning algorithm (Brad-
shaw, 1987) is an otherwise identical instance-averaging algorithm. We will
also be experimenting with the same instance-filtering variant of the K-nn
algorithm and noise-tolerant versions for each of the three storage-reducing
algorithms (signified with the prefix NT in front of each algorithm name).

Our choice for experimenting with this set of eight algorithms was mo
tivated by several factors. Variants of the Growth algorithm have recorded
excellent classification accuracies and small storage requirements in several
task domains (Hart, 1967; Kurtzberg, 1987; Kibler k Aha, 1987). Similarly,
Bradshaw (1987) reported impressive results concerning an application of
the Disjunctive Spanning algorithm to a speech recognition problem. How
ever, our experiments indicate that both algorithms are sensitive to noise.
Our interest is in extending the storage-reducing algorithmsto tolerate noise.
Hence we also experimented with NTgrowth and NT Disjunctive Spanning.

Analyses of the k-neaxest neighbor algorithm suggest that it is a more ac
curate classifier than the nearest neighbor algorithm (Duda k Hart, 1973).
However, the K-nn instance-filtering algorithm (K-nn Growth) is also sen
sitive to noise and should benefit from the noise-tolereint extension. Thus
our present study also includes three IBL algorithms that use the k-nearest
neighbor classification function (K-nn, K-nn Growth, and NT K-nn Growth).

Table 2: The Growth IBL algorithm: Deriving concept description C from training set T.

Initialize C to the singleton set of T's first instance
V subsequent training instances t in trrining set T:

1. Find the nearest neighbor n of t in G
2. IF {i is classified correctly by n) THEN discard t ELSE add <to C



Table 3: NTgrowth IBL algorithm: Deriving concept description C from training set T.

Initialize C to the singleton set of T's first instance
V subsequent training instances t in training set T:

1. Find the nearest acceptable neighbor n of t in C
2. IF {t is classified correctly by n) THEN discard t ELSE add t to C
3. Update the classification records of all instances in C at least as similar to < as n
4. Drop from C those instances that appear to be noisy

3 The Noise Tolerant Extension

The NTgrowth algorithm (Table 3) is a noise-tolerant extension of the
Growth algorithm (NT Disjunctive Spanning and NT K-nn Growth are sim
ilar extensions of their respective algorithms). The noise-tolerant algorithms
differ from their respective storage-reducing algorithms in three respects.

1. First, they maintain classification records for all saved instances (i.e.,
number of correct and incorrect classifications of subsequent training
instances).

2. Second, only those saved instances with significantly good cla.ssification
records are acceptable for use in subsequent classification tasks.

3. Third, the noise-tolerant algorithms discard those saved instances that
appear to be noisy (i.e., those instances whose classification performance
is poor after several classification attempts).

For each training instance t, classification records are updated for all saved
instances that are at least as similar as fs most similar acceptable neighbor.^

The noise-tolerant extensions employ a significance test for determining
whether saved instances are acceptable, noisy, or neither. Instances are ac
ceptable if their classification accuracy is statisticeilly significantly greater
than their class' observed frequency and dropped if their accuracy is statis
tically significantly less. Confidence intervals are constructed around both
the instances' current accuracy and their class' current frequency. If the ac
curacy interval's lowest (highest) value is greater than (less than) the class
frequency interval's greatest (lowest) value, then the instance is accepted
(dropped).^

We designed the extensions to make it difficult for an instance to be
accepted by employing a high (90%) confidence for acceptance. However, we
selected a lower (75%) confidence value for dropping since we would like to
drop those instances with even moderately poor classification accuracies.

^Duringthe initial stages of training, noneof the savedinstancesare acceptable. In order to moreclosely
mimic the behavior of the algorithms when at least one instance is acceptable, only a subset of the saved
instances' classification records are updated. In these cases, the most similar r instances' classification
records are updated, where r is a randomly selected integer between 1 auid the number of instances saved.

^The confidence interval is constructed from formula 5.5-4 in (Hogg& Tanis, 1983, pp. 296).



(Circles Denote Noisy Instances)
Growth's Description NTgrowth's Description

Figure 1: Growth and NTgrowth produced these concept descriptions when applied to 250
training instances with 10% noise. (NTgrowth accepted no noisy instances!) The instance
space has 2 numeric attributes. The boundary between the positive and negative disjuncts
is the rectilinear line shown in the instance space.

4 Advantages of the Noise-Tolerant Extension

We applied the Growth and NTgrowth algorithms to a training set con
taining 250 randomly drawn instances from a 2-dimensional instance space
containing two concepts. Figure 1 reveals which instances were saved by each
algorithm when each of the training instances' class was mislabeled with a
probability of 10%. In this trial, Growth saved 74 instances, 20 of which
were mislabeled. An inspection of the saved noisy instances showed that
they invariably recorded poor classification accuracies on subsequent train
ing instances. Since the NTgrowth algorithm accepts only those instances
with significantly good classification accuracies, we expected it to distinguish
the noisy instances from those with good classification records.

In fact, Figure 1 reveals that NTgrowth successfully prevented noisy in
stances from entering the concept description. An inspection confirmed that
all the instances accepted by NTgrowth had good classification accuracies
(in this case, at least 70%). While NTgrowth's performance in this example
might seem better than expected, it was actually typical. Averaged over 50
trials, 28.3% of Growth's saved instances were noisy. However, only a mere
0.5% of NTgrowth's accepted instances were likewise mislabeled.

We conducted a set of experiments with the Proximity, Growth, and
NTgrowth algorithms on this same instance space. A summary of the re
sults (averaged over 50 trials per noise setting) is displayed in Figure 2. The
purpose was to discover how these algorithms' performances and concept
descriptions degraded with increasing amounts of noise, which was varied
from 0% to 50%. The three dependent variables were classification accuracy,
storage requirements (number of instances in concept descriptions), and the
quality of the concept descriptions (the percentage of concept description
instances that were mislabeled).

1. Classification Accuracy: While the three algorithms performed equally
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Figure 2: NTgrowth is a better noise filter than Growth.

well with 0% noise, NTgrowth's accuracy degraded linearly with the
noise level while the other algorithms' accuracies degraded more quickly.^

2. Storage Requirements'. The Proximity algorithm saved all training in
stances. As expected, the Growth algorithm's storage requirements were
much lower, zisymptoting towards 50%. However, NTgrowth's was sig
nificantly lower than Growth's and asymptoted towards zero. This was
expected: since none of the saved instance's accuracies were significantly
good at high noise levels, NTgrowth accepted only small numbers of
them into the concept description.

3. Concept Description Quality. The percentage of noisy instances in the
Proximity algorithm's concept description increased linearly with the
noise level. Growth's percentage of noise in the concept description rose
far more quickly. However, NTgrowth's filtering effect drastically slowed
the influx of noisy instances into its concept descriptions.

5 Experiments and Results

The NTgrowth algorithm's performance degraded more slowly than the
other two algorithms in these and other experiments with artificial domains.
This encouraged us to test the noise-tolerant extensions on six more chal
lenging domains in order to see if the benefits seen here pay off in practical
applications. For comparison purposes, C4, a descendant of IDS (Quinlan,
1986), was also applied to the databases. A summary of the database char
acteristics is given in Table 4. The results (averaged over 50 trials) are
summarized in Table 5. (We have also included, for comparison purposes,
the benchmark algorithm "Frequency" that always guesses the class with the
highest frequency in the database. This algorithm also provides a compgira-
tive measure of the domain's difficulty.) In each case, the instances chosen

^We found that NTgrowth's parameters could be tailored to yield significantly slower degradations in
accuracy.



Table 4: Database characteristics.

Database Name Database # Training Size Test Size # Attributes # Classes

LED Display 1 200 500 7 10

Waveform 2 300 500 21 3

Cleveland 3 250 53 13 2

Hungarian 4 250 44 13 2

Voting 5 350 85 16 2

Primary Tumor

Table 5: Percent average accuracy/percent average storage requirements results (over 50
trials). Storage results not given for Frequency and C4. (OS = Disjunctive Spanning)

Algorithm Database Number

3 6

Frequency

Proximity

Growth

NTgrowth

OS

NT DS

K-nn

K-nn Growth

NT K-nn Growth

C4

10.0/-

72.2/100

63.1/43.5

72.0/28.7

61.5/44.6

71.4/27.7

60.5/100

52.6/53.7

36.1/17.0

68.1/-

33.3/-

74.7/100

70.3/31.8

74.7/14.1

72.4/29.3

76.6/12.0

77.6/100

72.0/31.2

77.8/18.6

71.1 /-

54.1/-

76.2/100

70.5/29.9

77.9/7.4

71.3/28.3

78.7/7.2

79.2/100

63.9/-

56.6/36.0

78.6/7.5

58.4/35.9

73.1/12.3

64.9/100

54.8/-

91.7/100

90.7/11.4

91.9/7.5

92.4/9.4

92.9/6.4

86.2/100

86.4/14.6

24.8/-

71.1/30.4 59.4/33.5

79.4/11.0 80.8/11.5

75.4/- 75.4/- I 94.5/-

28.2/73.

35.4/15.0

26.2/73.5

34.6/15.4

28.9/100

26.3/75.1

24.0/7.4

36.9/-

for the training and test sets were randomly selected from the databases.
Furthermore, we ensured that that training ond test sets were disjoint.

The LED Display and Waveform domains (Breiman, Friedman, Olshen,
&Stone, 1984) are artificial domains with large amounts ofnoise (each LED
attribute value has a 10% chance of being noisy and all Waveform attribute
values contain a noise factor that is added to the original value). For bothdo
mains, the three noise-tolerant extensions easily outperformed their respec
tive unextended algorithms (However, NT K-nn Growth required 500 LED
training instances to reach a 64.7% accuracy). They also recorded equally
good classification accuracies and incomparably lower storage requirements
than their respective all-instance saving algorithms (Proximity and K-nn).

The Cleveland and Hungarian databases consist of caxdiological records
recordedat the Cleveland Clinic Foundationand Hungarian Institute of Car
diology respectively. These domains are known to contain a great deal of
noise. Detrano (1988) reported that his discriminant analysis method for
predicting heart disease resultedwith accuracies of approximately 75%. The
NT algorithms again significantly outperformed their ancestor algorithms.

The voting domain contains only small amounts of noise. Therefore the
payoff of the noise-tolersint algorithms was smaller than in more noisy do
mains. Finally, while the NTgrowth and NT Disjunctive Spanning algo-



rithms performed well on the primary tumor domain, there were not enough
training instances to allow the NT K-nn Growth algorithm to perform well.

In summary, the noise-tolerant extensions of the Growth and Disjunc
tive Spanning algorithms always recorded higher classification accuracies and
lower storage requirements than their ancestor algorithms. Also, their classi
fication accuracies were always as good or better than proximity's. However,
while NT K-nn Growth always recorded low storage requirements, the aver
age learning curves generated from these experiments indicate it is a much
slower learner than its ancestor algorithms. Only when given enough in
stances was it able to achieve accuracies as good as or better than the K-nn
and K-nn Growth algorithms.

NTgrowth, NT Disjunctive Spanning, and C4 recorded the most consis
tently high classification accuracies among the ten algorithms (i.e., NTgrowth
was within 3% and the others within 8% of the highest accuracy recorded
for each database). This result indicates that these two noise-tolerant IBL
algorithms should perform well in a large number of database applications.

6 Advantages and Limitations of IBL Algorithms

We believe that IBL and decision tree (or rule) learning algorithms are
both highly similar and complementary. We showed (Kibler k Aha, 1988)
that the Growth algorithm can learn any concept whose disjuncts have shapes
in instance space that are piecewise approximable. We believe that this is the
same general class of concepts that decision tree algorithms can learn. The
two types of algorithms can also be extended to support probability-based
classifications, polythetic prediction tasks (i.e., predict all attribute values
rather than only the class), and multiclass le2irning tasks (in which classes
are not necessarily disjoint). However, each method has its own advantages.

First, IBL algorithms are a more natural choice for tolerating concept
drift. Since they retain and attend to only a small subset of the training
examples, they can detect shifts in a concept's boundary (definition) more
quickly than can those decision tree algorithms which save all the instances
(e.g., ID5). Second, IBL algorithms are more cost-effective incremental meth
ods. While they require 0(|/p x |A|) attribute examinations for a training
set with |J| instances and |.A| attributes per instance, only 0(|i"| x |A|) exam
inations are required to update the concept description for a single instance.
Furthermore, since they greatly reduce storage requirements, their actual
number of attribute examinations is much lower. In comparison, C4 and
IDS (Utgoff, 1988) require at most 0(|Jp x \A\^) and 0(|J| x |A|̂ ) attribute
examinations respectively to update the decision tree for a single instance.
Finally, IBL algorithms are not constrained to forming hyper-rectangular
partitions ofinstance space (as are several rule and decision tree algorithms).

In terms of classification accuracy, C4 outperformed NTgrowth in only
two of the six experiments. However, the noise-tolerant IBL algorithms have
several limitations. We haven't yet applied them to non-numeric attributes,
they are sensitive to irrelevant attributes, and they do not summarize their



concept descriptions. We axe currently working on solutions to these prob
lems. This includes an amalgamation with the decision tree approach, which
allows for the generation of concise concept description summaries.

7 Conclusions

This paper described a noise tolerant extension for instance-based learn
ing algorithms. We showed that the NTgrowth algorithm's performance
degrades more gracefully, in the presence of noise, than does the perfor
mance of previous instance-based algorithms. In addition, the noise-tolerant
extensions recorded lower storage requirements and higher classification ac
curacies than previous instance-based algorithms on several complicated do
mains (some artificial and some real-world). These gains occurred because
the noise-tolerant extensions decreased the number of noisy instances par
taking in classification decisions.

The key contribution of this paper was the introduction of a simple vot
ing method, combined with a statistical test, to assist in the detection and
removal of noisy instances from concept descriptions. This method, like the
pruning of decision trees (Quinlan, 1986; Niblett & Bratko, 1986) and the
testing of the quality of CN2's complexes (Clark k Niblett, 1987), is based
upon a simple significance test. This method, which tolerates noise by gath
ering evidence of correctness before employing information for classification
decisions, is a representation-independent technique. An amalgamation of
IBL algorithms with those that yield compilations (in the forms of rules or
decision trees) should result with a superior learning algorithm having lower
updating costs, lower storage requirements, higher tolerability of concept
drift, and the ability to present concept descriptions concisely.
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