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ABSTRACT cosine, PCA, or wavelet spaces before quantization and

. , compression. By providing a more efficient data representa-
Compression methods have become of fundamental impor-tion, they amplify the compression gain at a given loss.
tance in almost every subfield of scientific visualization. ) : o )
However, unlike image compression, advanced visualiza- _ 'he design of a compression method is highly applica-
tion applications impose manifold constraints on the design tion dependent and has to thoroughly balance competitive
of appropriate algorithms, where progressiveness, multires-réguirements, such as information loss and speed of decom-
olution or topology preservation are some of the key issues. Pression.

This paper demonstrates the importance of multiresolution  pye to its broad range of applications, image compres-
compression methods for visualization using two examples: sion [6] has become paramount and countless algorithms
The first, compression domain volume rendering, enableshaye been devised to efficiently represent and compress still
one to visualize volume data progressively and instanta- and moving images or video. Recent developments, as in
neously from its compressed data format and has beenviPEG-4 comprise so-called model-based image compres-
designed for WWW and networked applications. The sec- sjon [2, 12] where image content is encoded individually.
ond one is a multiresolution compression and reconstructionpmany modern image compression methods @gressive

method that allows for progressive coding, transmission and and incremental, that is, they allow reconstructing the image
geometric reconstruction of surfaces and volumes. Both of syccessively as data comes in from the network.

the presented methods are so-called transform coding

schemes and use wavelets for data representation. _Unlike image compression, the graphics and visualiza-
tion community have neglected the importance of compres-
KEYWORDS sion methods for quite a long time. Specifically, in [29] the

importance of compression in visualization was pointed out,
wavelets, multiresolution, volume rendering, mesh simplifi- however, only recently, with emerging WWW and distrib-

cation, compression. uted applications, graphics researchers have faced the chal-
lenge of devising compression algorithms. [9], for instance,

1 INTRODUCTION proposed a lossy compression scheme for meshes. An ele-
gant data structure to represent and compress meshes was

1.1 Motivation proposed by [21] and [32]. In [20], Rossignac presented a

compression algorithm, which allows to efficiently repre-

From the early days of computer science, (_ja_\ta compressionsem both mesh geometry and topology. Conversely, [4] and
has been of fur!damental Importance f_or efficient representa—[26] invented methods for compression domain volume ren-
tion, transmission, storage, and archival of large data vol- dering

umes [7]. Thus, various strategies and different classes of
compression schemes have been devised over the pasf 2 The Power of Hierarchy
decades. The most successful ones are almost ubiquitous
and can be found in many high tech appliances. Wavelets, as devised by approximation theory a decade ago
[8, 5, 28], provide an extremely powerful method for vari-
ous types of compression strategies. Specifically, they can
be used in the context of transform coding algorithms,
where the initial data sets are transformed into a wavelet
representation prior to quantization and compression. The
ower of the wavelets lies in the combination of various
seful mathematical properties, such as local support, van-
ishing moments, (bi-) orthogonality, progressive approxi-
One of the essential steps in lossy compression methodsmation, hierarchical setup, fast decomposition and
is quantization by which the information loss is ultimately  reconstruction, error control and many others. Therefore,
controlled. Sophisticated lossy compression methods, suchmany lossy compression methods are based on wavelets.
as the JPEG [41] for image coding, perform compression in One of the most popular ones is the ‘zero-tree’ for image
a transform domain, that is, they project onto Fourier, coding [37].

Modern data compression [35], essentially distinguishes
between lossless compression andlossy compression.
Among the lossless techniques, very popular algorithms can
be found, such as the Huffman or arithmetic coding, which
exploit the statistical structure of the data. Others, like Ziv-
Lempel-based methods, make use of repetitive data pattern
and can be found in many operating system libraries.
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Consequently, wavelets had soon been discovered by theent examples of compression schemes devised by the
graphics and visualization communities for efficient data authors: The first example describes a compression domain
approximation [40] and have been used for many different volume rendering method, such as presented in [26]. Here,
applications, as for instance, global illumination [15], hier- yolume data sets can be rendered instantaneously from a
archical meshing [27, 19], geometric modeling [13] or vol- highly compressed file format that has been computed from
ume rendering [42, 30, 18, 24]. a wavelet representation of the data. The method is espe-

The major purpose of a wavelet transform embedded in cially designed for distributed applications and allows for
a compression scheme is to approximate the data with agprogressive rendering as data comes in from the network.
few nonvanishing coefficients as possible given a predefinedThe second example elaborates on wavelet-based compres-
information loss. The following pictures illustrate the sjon and visualization of surface and volume meshes and
approximation power of wavelets [24]. Here, semiorthogo- was presented by the authors in [38]. Again, the wavelet
nal B-spline wavelets of polynomial degree 3 [5] had been transform provides full approximation error control and pro-
used for volume data approximation. Fig. 1 shows a gressive transmission of surface and volume data over net-
sequence of images computed with a decreasing amount ofyorks. At the client side, piecewise linear representations

coefficients. For high compression rates, high frequency i, simplices can be computed from the decompressed
components are washed out and artifacts become visible.

Specifically, the smoothness of the hierarchical basis func-data'

tions is striking. For reasons of brevity, we omit all mathematical details

The localization properties of the wavelets are demon- of wavelets.
strated in Fig. 2. Here, a filter operating in wavelet space
allows controlling the approximation quality locally and has
the effect of an electronic magnifier enhancing spatially
interesting subregions. Obviously, compression gain and
information loss are functions of the spatial position.

Similar methods can be developed for mesh generation
and mesh control [19, 38]. The series of images depicted in
Fig. 3 shows meshes, whose quality is controlled by an
underlying wavelet representation of the data. Similar filter
operations were applied on the data sets in the middle and
right hand side image to influence the mesh quality.

_The purpose of the foII_owmg paper is twofold: .F'rSt' to Figure 1: lllustration of the approximation power of cu-
point out the fundamental importance of compression meth- e g_gpline wavelets: (a) original CT data set (100%), (b)
ods for visualization and image generation and second, t0 5 049, (c) 1.92%, (d) 0.15% of nonvanishing coefficients
illustrate how efficient compression methods can be  (courtesy of Mallinckrodt Institute of Radiology, Washing-
designed using wavelets. Therefore, we present two differ-  ton University).

(a) (b) (e

Figure 2: Localization properties of cubic B-spline wavelets: (a) original data set, (b) Magnifier centered at toe-region, (c) Magni-
fier centered at heel-region.
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order to transmit our volume data efficiently we have to find
appropriate compression strategies. The underlying frame-
work of the wavelet representation being used here proposes
to develop an optimized compression technique that allows
progressive transmission, decompression and direct render-
ing at interactive frame rates. Moreover, wavelet domain
rendering avoids full decompression of the data prior to so-
called splatting which itself as an image based method does

a) b) c)

Figure 3: Localization in triangulations: a) Initial trian-
gulation. b), c) Magnifier is centered at the upper and cen-
tral area of the triangulation.

not require to store the full volume data at the client’s side.

Although much research has been done on wavelet com-
pression methods [40], [43] the specific needs of compres-
sion domain rendering encouraged us to develop a new

compression pipeline which will be explained below.

2 COMPRESSION DOMAIN VOLUME
RENDERING

2.1 Overview

Our first example is targeted at networked applications
where, for instance, a local client with low computational
power browses through a remote volume database. Thus, in
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Figure 4: Setup for distributed compression domain volume rendering.

Fig. 4 illustrates the data flow in our compression and 2.2 Wavelet Splats

rendering setup. The data preprocessing comprises five

stages. It enables both intensity and RGB volumes to beln order to understand our renderer, it is necessary to recall
handled which might be the result of an optional data classi- that in classic volume rendering, the amount of light
fication step [3]. In case of RGB volumes the second step I(t,, X, S) received at poink from directions up to a ray
consists of a colorspace optimization which essentially lengtht, is computed as:

decorrelates the data and allows color sensitive quantiza-
tion. Next, a wavelet transform is performed independently
on the three channels. Lossy compression is carried out by
an oracle [16] operating locally or globally in the wavelet
domain. The final step includes a data compression and
encoding scheme to achieve a binary output stream that can

t

t, —fa(x+su)du

It X, 9)= [a(x+tS)e”
0

dt 1)

be stored locally or transmitted directly through a network. whereq denotes the volume source term anthe opacity
Note that forward compression does not have any real-timefunction. For an isotropic medium with constant opagity

constraints as opposed to the decompression.

equation (1) reduces to
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t wheredlype, denote the wavelet coefficients of decomposi-
|t X, 9)= [a(x+t s)e it ) tion levelm at the spatial positiop, g, r and wavelet-type
typeandc,,,,, the coefficient of the scaling functiqn  of

0 level M. The computation of the line integrals for a particu-

Note that fora =0 we end up in a X-ray-like image. lar view can be accomplished by Fourier projection slicing

Especially in those cases, splatting has proved its usabil-(FPS). It allows to compute accurate projections of any
ity for fast volume rendering. In contrast to ray-casting, it Pasis function. This theorem states that the 2D Fourier
allows one to reduce the computational complexity for transform of a projection of a functidifx,2) onto a given
interpolation and integration to a minimum, since the pre- Plane P equals a plane that slices the Fourier transform
projected footprints of high-order interpolation functions (@1 @, @) parallel toP and intersects the origin.
can be stored as lookup tables. The projections themselves  Since many wavelet types such as B-splines come along
can be computed with an accurate quadrature techniquewith closed form representations in the frequency domain, it
Besides hierarchical splats [23], wavelet splatting [25] is a is straightforward to apply this theorem to get the required
sophisticated extension. splats. Fig. 5 depicts the setting, where an inverse FFT pro-

In wavelet splatting, the renderer computes the projec- C€SSes the slices to obtain the wavelet splat.

tion such as defined in (2). Taking into account the wavelet  The intersection plane spanned byv defines the 2D

decomposition levein up toM and moving the summation  Fourier transform of the texture splats

outside the integral, the formulation collapses to: I(u,v) = F(wy(u, v), 0,(u, V), ws(y, v)) , whereas the normal
vectorn of the plane equals the direction of the projection.

M 7 ® The definition of the viewing parameters is figured out in
(o, X, 9= % % dRpG [ Wapd(x+ stdt spherical coordinates (B).
m=1type=1 —
porioz 3)
+ Cy PRpqr(X + st)dt
. qZD , pqr_J; par
@ slicing plane

00

®(u, v) I O(X(H, v, 1), (W, v, 1), Z(W, v, 1)) dt

v \ TV

! \

frequency domain frequency domain spatial domain

Figure 5: lllustration of the Fourier projection slicing theorem in 3D for an idealized wavelet.

Once the renderer builds the viewpoint dependent inte- dow. Exploiting the coherence of different viewing angles
gral tables, the screen position of the table is calculated, given by the symmetry of tensor-product constructions, the
mapped, weighted by the wavelet coefficient and accumu- basic single-view splatting approach can be extended to a
lated into the framebuffer. Since the basis functions of dif- multiview renderer without computational overhead for
ferent iteration levelsm differ by dilation, only eight splat calculation [26].
different splats of deptiv have to be calculated. All other
footprints are derived by subsampling in the spirit of a
mipmap. Correct sampling and optimized data-structures of
the calculated splats are discussed in [18].

The triple view rendering is illustrated in Fig. 6, where a
classified data set is displayed from three directions. The
image was grabbed directly from the screen as it is dis-
played to the user. Skin is colored white, brain tissue red

. . i | in blue.
2.3 Multiview Rendering and a tumor is colored in blue

In our implementation the software decompressor works
One way to overcome the drawback of missing occlusion in at a rate of ~30 k wavelet-coefficients/sec. on an Indy
X-ray images is the introduction of a multiview arrange- R4400 workstation and allows on-line decompression. The
ment. Here, the volume is rendered simultaneously from renderer splats the computed footprints weighted with the
different directions and presented to the user in a single win- decoded wavelet-coefficients directly into a software or
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lenging on offline forward compression, yet they provide
better results. In this case the absolute values of the eigenva-
lues are taken to describe the significance of the correspond-
ing eigenvector. Note that this step can be skipped for
intensity volumes, such as raw CT or MRI data sets.

Table 1: Colorspace significance assignments for different color cod-
ing schemes

COLORSPACE IMPORTANCE /
\ I(Cy) \ [(A) \ [(Cy)
RGB 1 1 1
YIQ 4 15 0.6
Figure 6: Triple views seen from different viewing an- BIGEN- C  UALUE 1| EIGEN-VALUE 2| EIGEN-VALUE 3
gles. (volume size: 256 x 128 x 256) @) 3 = 0.0. b)a = VECTORS (PCA)

0.66,3 = 0.91.

hardware accumulation buffer. In addition, our framework 2.5 Data Compression Pipeline

incorporates a local cache to store coefficients at the client'sThe algorithmic steps for data compression are executed
side. The required splats are computed locally. Since thesequentially in the pipeline summarized in Fig. 7 and con-
wavelet coefficients are transmitted in significance order the vert the wavelet transformed data sets into a sequential bitst-
rendering quality is fully controlled by a user-defined fra- ream.

merate, the client’s hardware and, if no cache mechanism is
enabled, also by the bandwidth of the network. Hence, this Waveletcoefficients (WC)
concept balances CPU, network and graphics performance
and allows scalability. In a minimum configuration we have
to provide client storage only for the eight mother-wavelet | i |
splats and three Huffman tables. Together they take less [ defacodngWe | A
than 5KB of memory even for huge data sets. This allows g

the scheme to run on clients such as the upcoming network [ hormalization AWC |
computers. | | I

) [ quantization AWC |
2.4 Colorspaces for Compression [ [ |

| merge-Sort |

deltacoding Pos

runlength-coding
type, depth, colorchannel

channel l| channel 2 |channel 3|

| sorting WC |

If the initial volume is given in RGB, it is critical to trans-
form the volume into an optimized colorspace prior to com-
pression. Here, we assume the optimized space to be
spanned by the three vectdy, C, andC;. This allows to
assign an additional significance to each vector. As a result
we get two independent significance weights per coefficient [Huffmancoding AWC]
which affect encoding and quantization. The first weight is '
defined by the energy of the associated function [16]. The

uoissaldwo)d
uoissaldwooag

[Huffmancoding APos |

second one is a global significance determined by the color- |Huﬁmancodi|ng runlength |
space-coordinates. For instance, a coefficient with the coor- v

dinates (1,0,0) is regarded as more relevant than a
coefficient (0,1,0), if the vectdt, is considered to be more

significant tharC,. bitstream

Figure 7: Pipeline representing the individual steps of the

In addition to RGB we employ two colorspaces: The .
compression scheme.

first one is data-independent and equals the YIQ-colorspace
obtained by a simple matrix transform [34]. TNecompo-
nent encodes the luminance information, whereas the chro-
maticity is encoded il and Q. We followed the NTSC
bandwidth conventions and assigned a quantization factor 4
to Y, 1.5 tol and 0.6 toQ. In practical use this colorspace
allows to compute a black and white imag8 és a rough
sketch and to refine color progressively. Thus, progression

Therefore, we start with a sorting operation that gener-
ates a sequence of coefficients and positional data in signifi-
cance order. The significance sc&#s determined for each
color channel CO{C,;C,Cs} and  coefficient
w(C) O {d}}{ggr(C) CMmpqr(C} individually according to its
associated wavelet enerfyand color channel importante

is figured out both in the spatiahdin color domain. Alter- S(w C) = E(w(C)) 0(C) @)
natively, our second colorspace is calculated by a statisti-
cally optimal principle component analysis (PCA) or Table 1 summarizes the importance factors for the three

Karhunen-Loéve expansion [14] whose matrix has to be different colorspaces. For each color chanr@), (vavelet
computed individually for each data set. Although the solu- type type and decomposition leveir{) a deltacoding, nor-
tions of the eigenproblems are computationally more chal- malization and quantization operation is performed sepa-
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rately depending on the individual ranges of the coefficients
w. More precisely, if quantization is restrictedRdits for a
given sequence dfi+1 significance sorted non-zero wavelet
and scaling function coefficientsv, (C, m, type), _

. N

we compute the coefficient's delta factyC, m, type as:
A(C, m, typg = (5)
m

ax
n=0,.., N_l(‘Wn(C, m, type)\ - ‘Wn+1(cr m, type)\)
2P

This factor is used to store the coefficient's range witth
respect to the assigned bytes. Thus, it has to be transmitte
once for each wavelet type, decomposition level and color
coordinate. In contrast, the normalized and quantized differ-
ence of two coefficient® has to be transmitted for each
coefficient individually. It is computed as:

5(C, m, type 1 =
{|Wn(C,m, t
roundD

(6)
yp9| —|W, . 1(C, m, typg|);
A(C, m, type O

Upon reconstruction we end up with approximated
wavelet and scaling function coefficients,(C, m, type
n = 1,...,N which can be computed by:

W, 1(C.m typg = sign(n+ 1)([#,(C. m, typg]  (7)

—-3(C, m, type n [A(C, m, typg)

Since the coefficients are sorted according to their indi-
vidual scores we optimize the residual approximation error

as a function of the parameters introduced above. Note that

the sign of each coefficient is encoded by an additional flag,
referred to asign(n).

We choose to limit the quantizatidhto eight bits, since
standard framebuffers use eight bits for R&GBach. How-
ever, observations in practice encourage us to reduce quanti-
zation to even three bits without significant loss of visual
quality (see Section 2.6). The three data sequences are
merged and sorted according to the scores of their wavelet
coefficients. In particular, the sorted sequence requires for
each coefficient to encode additionally its spatial position,
wavelettype and color-channel in a lossless scheme. In order
to overcome the drawbacks in compression performance
arising from this requirement we introduce an additional
spatial clustering mechanism [26]. That is, we balance spa-
tial coherence and the energy-based sorting order of the

oefficients. Note that clustering also speeds up the render-
ng process, since splats outside the field of view can be
detected easily and skipped without further computation.

Additional runlength-codings of wavelettype, decompo-
sition depthm and colorchannel are performed and trans-
mitted as variable length Hufman tag codes. The third
Huffman-table encodes the deltd®f wavelet-coefficients.
These three tables together take about 2kBytes and have to
be transmitted separately prior to the data. In addition the
transmitted meta-data includes information about the basis
vectors of the colorspace, maximum depth of the wavelet
transform M), exact initial wavelet coefficients
(wo(C,m, typg) and the coefficient delta factors
(A(C, m, typg).

The reconstruction scheme has to decode all required
information, such as the spatial position, wavelet type, depth
m, colorchannel and the data value. For computational effi-
ciency, we propose to precompute 10-bit Huffman look-up
tables.

Fig. 8 illustrates a fraction of the bitstream as generated
by our method. The number of bits varies as a function of
the individual Huffman codes.

Significance (decreasing)

<
positional positional coefficient positional positional  positional
deltay delta, delta deltay, deltay delta,
coefficient coefficient positional positional coefficient | coefficient positional
Server sign delta delta, delta, sign delta deltay Client
< 011poo1ddrogo11100fo11{11011ipor10d111d11001f1110{10dq11000 111611403 dorop11pr¢10ddo101t011]11d01 LS
positional coefficient runlength positional  |positional | coefficient runlength
delta, sign colorchannel delta, delta, sign wavelettype
coefficient positional positional coefficient coefficient positional positional
delta delta, deltay sign delta deltay delta,
Bitstream I

Figure 8: Fraction of the bitstream generated by the compression scheme

2.6 Examples

L2 image measure (onforming to the signal-noise ratio
(SNR in [dB] well known from signal processing applica-

To investigate the performance of the proposed method, wejgns as:

applied the approach to the RGB-Visible Human data set of
size 128x128x128 voxels (3 x 8 bits/voxel). The wavelet
decomposition was performed with Haar wavelets up to
level M=3. In order to quantize image quality we define an
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Q, = 200 PCA-based color representations. However, as progression
proceeds the representations converge to each other. It is
E Z [i ef(PiX, cON]? % ®) clear that the entropy of the color information is lower than
log, o3 pixel color g in the Y channel. Therefore, we observe in general higher
Ep [im(pix, col) =i 4(pix, CO')]ZB compression gains (SNRs) on color volume compression.
ixel color
where,ii(pix, col) denotes the intensity of a giveixel Table 2 summarizes the performance of our algorithm.

of the computed image for theolor-component in RGB-  1imings are given for a SGI-Indy workstation (MIPS R
colorspace, e.gcol0J{R G B orol=Y respectively. 4400/150 MHz) and a SGI Maximum Impact workstation
Note specifically that in image compression ratios > 40 dB (MIPS R10000/195 MHz). Both workstations use our soft-
refer to reasonable visual qualities and at ratios >60 dB Ware-accumulation scheme as introduced in [18]. The reso-
images are perceived as ,noise-free”. The reference imagelution of the rendered image was 160x180 pixels. For the

was generated by the proposed splatting methodVfe® delta-coding of the wavelet coefficients we assigned three
and 100% of the coefficients. We observe that ratios >60 dB bits. The timings reveal, that we still achieve interactive
are achieved at compression gains of almost 95%. framerates for fast previewing. Note in particular, that com-

The colorplates in Fig. 10 display the image quality petitive high quglity_renderers, such as shear warp _factoriza-
achieved from the RGB data set for different colorspaces 0N [22] are significantly slower at these data sizes and
and compression rates with respect to the original data sizef€duire careful settlng of the trgnsfe.r functlon.for speed-up.
of 6291456 bytes. The qualitative differences of the three OUr proposed splatting technique is well-suited for hard-
colorspaces reveal mostly for small datasizes. Note that YIQ Ware support [25]. The hardware assisted accumulation of
favors the Y-component and renders greyscale images atthe calculated splats is done within the accumulation buffer
high compression rates. This is contrasted by the RGB coloror uses alpha-blending operations, depending on the avail-
space where the method reconstructs the volume both in theable hardware platform. Hardware support allows to further
spatial and colorspace domain and ends up in a poorerincrease the rendering speed significantly, especially for the
image quality. Finally the best results are obtained by the generation of high resolution images.

Table 2: Performance of the method.

<

COMPUTED BY PCA

)
]

TIME (INDY)
TIME (INDY

4.6 KBYTE 2155 2175 2184
4480 0.9 0.31 4221 0.93 0.3 3820 0.86 0.26
31714 3.21 1.14 35655 3.06 1.09 30554 2.61 0.9
170761 11.52 4.01 178065 12.55 3.75 172240 10.77 3.58I

Fig. 9 shows a Java applet as running on a standard WWW3 COMPRESSION AND GEOMETRIC
browser. Note again that the method renders instantaneously RECONSTRUCTION
as the bits arrive and does not require full volume expansion

at the client side. .
3.1 Overview

In our second example, we present a framework for multi-
resolution compression and geometric reconstruction of
arbitrarily dimensioned data designed for distributed appli-
cations. Although being restricted to uniformly sampled
data, our versatile approach enables the handling of a large
variety of real world elements, such as nonparametric, para-
metric and implicit lines, surfaces or volumes.

Here, we designed a compression/decompression pipe-
line as depicted in Fig. 11. The forward compression pro-
ceeds as follows: After extraction of constraints, the data set
is normalized, wavelet-transformed and both local and glo-

Figure 9: JAVA-Applet for compression domain volume bal approximation errors are controlled by the oracles intro-
rendering (URL: http://www.inf.ethz.ch/department/IS/cg/ duced above. Sorting of the individual channels of the WT
html/research/evolve/) transforms the multidimensional array into a 1D data vector

which is quantized and encoded subsequently. Line-con-
straints, as extracted earlier, are fed into a lossless compres-
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DATA sizE

ABS: 4.6 KBYTE ABS: 9.4 KBYTE ABS: 79 KBYTE ABS: 368 KBYTE
REL: 0.07 % REL: 0.15 % REL: 1.25 % REL: 5.84 %

g - ; -
0;=3135dB Q,=38.67dB Q;=51.29dB Q=7071dB

2 e,

COMPUTED BY PCA

u
@)
<
a
%)
o
@]
)
QO

©)

- a : Y
0,=15.24 dB 0, =28.65 dB Q;=49.94dB 0, = 68.65 dB

3

N -
Q,=16.22dB Q;=29.67 dB Q,=46.01dB Q,=62.61 dB

5]

Figure 10: Progressive compression in three different colorspaces. (data source: [31]) volume s?zmaxzaiecomposition level
M=3.

sion scheme. Conversely, the decompression pipeline
inverts the procedure and prepares the data for subsequent
geometric reconstruction. Note thatn strongly affects the quantization error and
appears as noise after reconstruction. Lossless quantization
3.2 Progressive Lossy Compression would typically require 23 bits on a 32 bit machine for sin-

) ) , . gle precision due to the normalized IEEE-754 floating point
First the data is normalized, i. e. the values are scaled tofgrmat.

[0,...,1] . In order to prepare the data for bandwise progres- ] ] o
sive transmission, we sort the multidimensional coefficient  The major task in the proposed compression is to con-
array into a 1D vector as displayed in Fig. 12. Here, the Vert the quantized integer vector into a bitstream of data.
array is traversed from the most significant scaling function Therefore, we employ an entropy coding scheme in the
coefficients to the high frequency bands representing fine SPirit of JPEG [41]. Assuming that many of the coefficients
grained detail. will equal zero, encoding is carried out as follows: All non-
) ) _ zero coefficients are represented by 2—tuples, where the first
Note that the vector contains floating point values and element represents the number of bits of the second one.
has to be converted into an array of integers. The second element contains the data value itself. All nega-
The quantization step comprises a multiplication of the tive numbers are thus replaced by their .abso.lu_te values,
initial floating point coefficients with a factor op" L where in the case of a positive number the first bit is cleared.

wheren represents the number of bits to be assigned forThis enables the encoding of the sign. Let's say to encode a

each coefficient. Subsequent rounding operations transformValue of 17 we get (5, 00001), whereas to encode -17 we

: ; : : : .~ Obtain (5, 10001). Similarly, 5 is represented by (3, 001),
t:e floating point value into signed integer formats of size whereas -5 is converted to (3, 101). Note specifically that

since the number of bits is known in advance, the represen-
Let cqo, b€ @ coefficient, we obtain it's quantized ver- tation is unique and the additional encoding of the sign bit
SI0N Cyant DY in the most significant bit is possible.

Cquant = round 2~ I hoa) - 9)
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Figure 11: Compression pipeline including both lossless and lossy data compression. For decompression, all of the above steps have

to be reversed.
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Figure 12: Conversion of the multidimensional array into
a 1D coefficient vector depicted for a 2D WT.

Zero valued coefficients are encoded differently. Here
we recommend a runlength coding up to a length of

25 = 32 which generates a set of 32 new symbols. These

symbols, together with the first part of our 2-tuples, are

stored in a Huffman—table which has essentially 64 entries.

The Huffman symbols are as follows:

*  Symbols 0 — 30:First element of a 2—tuple minus 1
e Symbol 31: ‘EOB’ (End Of Bitstream)
e Symbols 32 — 63:Runlength of ‘zero’-coefficients

The scheme proposed here compromlses the complexity
of the Huffman—table with the maximum number of zero
coefficients (32) to be encoded in one symbol. The ‘EOB’
Symbol usually allows the encoding of long sequences of
‘zero'—coefficients in the least significant positions of our
data vector. However, it is only used where the Huffman
table has not been built individually. The following pseudo-
code illustrates the procedural flow of the scheme:

// N:total number of integer coefficients

//d j:coefficient i

// hufflen i : length of Huffman—code for symbol i
// huffcode | : Huffman-code for symbol i

// WriteBits  (1,i):

V4 appends the last | bits of i to bitsream

// Make2Tupel (i first,second):

/7 converts integer into 2-tuple

i < 0;
while i<N do
if dj =0 then
j <0;
while j<32&&d ; ~ 0 do inc (i); inc (j); end;
WriteBits(hufflen j+31 » huffcode i3 );
else
Make2Tupel(d ; first,second);
WriteBits(hufflen first.1 shuffcode  fser )
WriteBits(first,second);
inc (i);
end,
end;
WriteBits(hufflen 31,huffcode  3;);

In our framework the Huffman—table is generated indi-
vidually for each data set upon compression and is transmit-
ted along with the data and header information. Since the
size of the table is fixed to 64 entries, this does not lead to a
notable overhead. Another solution would be the employ-
ment of a generic table, such as in image compression
which, however, drops the compression gain and, due to the

variety of geometric data, is much more difficult to con-
struct An example of encoding a sequence of coefficients is
given in Fig. 13.

\(/;Iggegﬁls)(ioeﬁlmemsg [ 0.037 [ 0147 J0.000 J0.000 J0.000 [ 0439] ¢

Quantization ST Jau] o | 0 | TR
2-tuples | (7.76) [@30n] 0 o Jao, 899)|
Bitstream [2022 0001100/22 000101101 2000100022 0111101 &
(67 bits)

|:| Huffman symbol |:| value |:| ‘zero’ Huffman symbol

Figure 13: Encoding a sequence of coefficients.



Appeared in Compression Methods for Visualization. Future Generation Computer Systems, Vol. 15, No. 1, 1999, pp. 11-29.

It should be stated again that progression is achieved Table 3 compares the proposed encoding scheme
channel by channel. That is, we transmit the low frequency (encodg with some of the most popular lossless compres-
scaling function coefficients first, followed by the wavelet sion methods, likeip, arc, urbon and compressNote that
coefficient channels in order of ascending frequency. information loss occurs only upon coefficient removal and
guantization. Thus, all subsequent steps in our pipeline are
lossless and can be compared with some standard algo-
rithms. Results are given for a 3D volume data set, where
the data was prequantized with 8 bits and 16 bits respec-
tively. Interestingly, even in lossless mode our method com-
petes with popular algorithms in overall performance.

Some results of the lossy compression of a B—spline sur-
face with different parameter settings are depicted in Fig.
21. In order to decompose the control points of this B—
spline surface we used the pipeline explained in detail in
[38]. We observe that quantization noise is seriously dis-
turbing the B-spline surface. Sophisticated least-square esti
mators, such as the Wiener-Filter [17] allows one to remove
noise and to reconstruct the surface.

Table 3: Comparison of the proposed method (encode) with some popular compression algorithms (3D volume data set of Fig. 20: 128x64x64 voxels).

8 BIT QUANT. 16 BIT QUANT.
50% COEFF. 10% COEFF. 50% COEFF. 10% COEFF.
(IN KB) (IN KB) (IN kB) (IN KB)

ENCODE

2218

3.3 Compression of Constraints

§ data-stream |y-stream |x-stream |AC header |genera| header

!n many cases it is desirable to compress spatially in_tgrest— transmission -
ing features, such as boundary- or isolines and individual . T .
vertices in a lossless manner. We call these datstraints Figure 15: Data format of the bitstream for constraint

since they usually constrain subsequent geometric recon- compression.

struction. In our pipeline we represent constraints as poly-  Any further details, such as the header formats of the
lines or polygons. Fig. 14 illustrates the use of constraints in bitstream, can be found in [38].

a digital terrain data set of the Swiss Alps. Here the geomet-

ric reconstruction, i. e. triangulation of the surface, was sim- 3.4 Vertex Removal Strategies in 1D

plified up to a given bound. The constraints invoked by the
polygon force the reconstruction to keep the triangulation
dense. The constraint is imposed in terms of a terrain fol-
lowing polyline of a given extent.

Vertex removal methods enable the client to compute geo-
metric reconstructions adaptively and progressively from
the incoming bitstream of data. When seeking an appropri-
ate algorithm, computational performance and invariance to
the dimensionality are important considerations. Due to the
rich literature on vertex removal in graphics and computa-
tional geometry we found that the well-known algorithm of
Douglas et. al. [10] is a good starting point. First, we briefly
explain its initial form in a nonparametric 1D setting and

: i e illustrate its application in multiresolution representations.
a) line constraint path b) Here, special emphasis is given to extension of the method

Figure 14: lllustration of constraints in a digital terrain for progressive reconstruction. Next, we generalize the
data set. a) Interactive specification of the constraint path. method to multidimensional cases and give some examples
b) Mesh after constraint insertion. of how it works. The versatility of the introduced method
(Data source: Courtedgundesamt fiir Landestopographie imposes no restriction on subsequent triangulation methods,

Bern, Switzerland) which can range from constraint Delaunay [33] to fast look—

Assuming the polyline constraint is represented as a UP tables [19].

stream of vertices of typg, y, data) , we employ a In order to construct a point removal strategy, let’s first
lossless compression strategy, as shown in Fig. 11. consider the 1D setting. Here, the problem reduces to find-
ing a strategy for the reduction of line segments in piece-
wise linear approximations. Inspired by the algorithm of
[10] we extended these ideas and modified the method to a
recursive and progressive algorithm, illustrated in Fig. 16. It
The resulting bitstream format is presented below in Fig. starts by connecting the first point of a cun®, , with the
15, where two headers are followed by the individgaly- last pointP, . All intermediate points representing the curve
and data-streams. are compared against the line segmeg®, and the point

The position(x, y) and the data value are encoded sepa-
rately using both delta and higher order arithmetic compres-
sion algorithms. For details see [35].
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with the largest distance, for instaneg  , is identified. If its p.
distance exceeds a predefined threshgjd , the vertex is  surface patch J
consideredmportantand labeled. We split the initial line distance to the _\
segment in two halves, on each of which the algorithm can bilinear interpolant
be applied recursively. Obviously, the quality of the removal
can be controlled by the distance threshold. The advantage \~
of this extension to the original method lies in the tree type  p.
refinement of the vertex analysis coming along with the
recurrence relations.

The distance can be computed in different ways, where, Figure 17: Extension towards multiple dimensions exam-
however, the computation of the vertical distance, such as  Plified for nonparametric data: 2D version. A new vertex is
depicted in Fig. 16c, is computationally much more expen- '“Se”e‘jaﬁpg.sl!“o"" _and thle distance is computed with re-

\ : e X : spect to the bilinear-interpolant ef, P, , 1, P, 1, Pi,y s
sive for general multidimensional settings. Therefore, we P . " . Imerp . J. A
recommend computation of thedistance (see Fig. 16a) of resolution2™-M in each direction, whetd  represents

approximating nonparametric data_ the maXimum iteration. The Vel’tices are prOVided by the
scaling function approximatioriM(x,y) and are processed
b P further by our algorithm. To define a distance metric, we

._M’Ve A assume a bilinear interpolant between the vertices which
Po / N4P, P 1 SR approximates the_ B-spline scalmg fun(_:tlon representation.
AN If the difference signabhf™(x, y) is received, the resolution

is refined by 2 and all newly inserted vertices are checked

conforming to our distance metric. If required, they will be

P
AN inserted.
BB 1P Pt PP , : .
1 0 "1 k In order to compute the intermediate vertices for each

y-distance approximation

vertical distance iteration, an inverse wavelet transform has to be applied on
©) 9 all coefficients of a given iteratiom as soon as they are
Figure 16: a) Recursive algorithm assuming a smooth rep- received and decompressed.
resentation of the underlying curve: a) ks largest verti-
cal distance. b) new approximation after insertion gfd) An apparent drawback of this approach, however,
example for vertical distance measure. d) final result. deserves some attention: Once a vertex is labeled as impor-
L ] ] ] tant there is no way to reject it in subsequent steps. Obvi-
3.5 Generalizations to Multiple Dimensions ously, the detail signals added during progression influence

Generalizations of the method towards multidimensional the importance of each vertex. Therefore, we recommend an

nonparametric data is straightforward. Starting from an ini- €XPonential alignment of the threshodg to the iteration.
tial grid, as in Fig. 17, the algorithm seeks the vertex  with That is if m stands for the current iteration step, the associ-

the maximum distance and subdivides the field into 4 (in ated threshold(m) is computed by
2D) or 8 (in 3D) subcells on which the method is applied

. . . _ M —-m 10
recursively. In these cases the distances to the bilinear and gm) = g5l (10)
trilinear interpolants of the cell vertices are computed, ) )
respectively. g, : global threshold governing the point removal.

Recalling the multiresolution B—spline approximation of In our implementation we employ a tree type data struc-

the data motivates the extension of the algorithm towards ature to maintain the individual cells representing the mesh.
channelwise progressive point insertion. Therefore, the The tree grows iteratively as progression proceeds. After
algorithm analyzes mesh vertices progressively and labelsiteration, the leaves of the tree represent the remaining cells
unimportant points as new data comes in. In 2D, for and can be triangulated with appropriate methods. Fig. 18
instance, the basic idea is to start from an initial vertex field further elucidates the data representation.

root root root
active segment
1 64 1 64
— 5
begin end

L 28] [29 64

a) b) c)
root root —[T28— 2064 root—THIHITHIHD

Figure 18: Construction of a 1D tree data structure with 64 vertices and its growth during progression. The equivalent list structure
is given below. a) First segment at the beginning. b) Insertion,gtRuses split into two segments. c) Final tree after inserting all
points.
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For subsequent triangulations we employed ¢l
library from [1] in 2D and 3D. An example of progressive
point removal is depicted in Fig. 19, where the mesh is
refined gradually with each wavelet channel arriving at the
client side.

Figure 19: Extraction of isolines and interior surfaces from a digital terrain model of the Swiss Alps and progressive mesh refine-
ment: 3isolines are extracted fo 120 1 = 125 and 130 , respectively, &)0.01 , Wavelet channel 1, 0.1% triangles. b) Chan-
nel 3, 1.15% triangles. ¢) Channel 5, 5.80% triangles. d) Channel 7, 15.83% triangles. e) Standard isoline algorithm for channel 1. f)
DTM split into interior and exterior regions at= 130 . g) 5% coeff., compression gain 1,33p.0035 , 62% triangles. h) 1% coeff.,
compression gain 1:106, = 0.0035 , 62% triangles (data set courtesy of Bundesamt fiir Landestopographie, Bern, Switzerland).

a) b) c)
Figure 20: Extraction of interior and exterior volumes. a) Initial CT volume data set with 2,704,000 tetrahedrons. b) Interior and ex-
terior volumesy = 42 (skin surface), 133,091+ 34,290 tetrahedrons. c) Interior valunte, (skull), 124,491 tetrahedrons.

Apart from the hierarchical bases provided by the wave-
lets, mere multiresolution compression schemes, such as the
CONCLUSIONS progressive mesh [21] might bear much potential for com-

ression, since they are less restrictive and give a fine grain

We presented two examples for compression SCheme£ontrol over the progression. A sequence of progressive
designed for applications in visualization. Both methods are iotrahedralizations is presented in Fig. 22, where an irregu-

lossy transform coding schemes and used wavelets for the,r rhine data set has been approximated with an increas-
underlying data representation. The advantages are obwous;ng amount of simplices [39].

High compression gain, precise approximation error control

in L2, localization, progressive refinement of the bitstream ACKNOWLEDGEMENT

and very fast decompression — to name a few. The major

drawback of wavelet based methods is their restriction to This research was supported in parts by the ETH research
trivial data topologies. The current examples employed ten- council under grant No. 41-2642.5.
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