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Abstract of the Dissertation

On the mod p cohomology of pro-p Iwahori subgroups

by

Daniel Kongsgaard

Doctor of Philosophy in Mathematics

University of California San Diego

Professor Claus Sørensen, Chair

Let G be a split and connected reductive Zp-group and let N be the unipotent radical of

a Borel subgroup. In the first chapter of this dissertation we study the cohomology with trivial

Fp-coefficients of the unipotent pro-p group N = N (Zp) and the Lie algebra n = Lie(NFp). We

proceed by arguing that N is a p-valued group using ideas of Schneider and Zábrádi, which by a result

of Sørensen gives us a spectral sequence Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t(N,Fp), where g = Fp⊗Fp[π]grN

is the graded Fp-Lie algebra attached to N as in Lazards work. We then argue that g ∼= n by looking

at the Chevalley constants, and, using results of Polo and Tilouine and ideas from Große-Klönne,

we show that the dimensions of the Fp-cohomology of n and N agree, which allows us to conclude

that the spectral sequence collapses on the first page.

In the second chapter we study the mod p cohomology of the pro-p Iwahori subgroups I of

SLn and GLn over Qp for n = 2, 3, 4 and over a quadratic extension F/Qp for n = 2. Here we again

use the spectral sequence Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t(I,Fp) due to Sørensen, but in this chapter

xiv



we do explicit calculations with an ordered basis of I, which gives us a basis of g = Fp ⊗Fp[π] I

that we use to calculate Hs,t(g,Fp). We note that the spectral sequence Es,t
1 = Hs,t(g,Fp) collapses

on the first page by noticing that all maps on each page are necessarily trivial. Finally we note

some connections to cohomology of quaternion algebras over Qp and point out some future research

directions.
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Chapter 1

Introduction

The cohomology of Lie groups has a long history. In the late forties Chevalley and Eilenberg

found that H∗(G,R) ∼= H∗(g,R) for a connected compact Lie group G with Lie algebra g (cf.

[CE48]), and since then there has been much research into different types of Lie group cohomology.

In particular, the mod p cohomology of a connected compact real Lie group has been well understood

by Kac since the eighties (cf. [Kac85]), and the continuous mod p cohomology H∗(G,Fp) of an

equi-p-valued compact p-adic Lie group G was already described by Lazard in the sixties (cf. [Laz65]).

We note here that (except for Lazard’s work) H∗(G,R) and H∗(G,Fp) indicate the cohomology of

G as a topological space, and not continuous group cohomology, which can be thought of as the

cohomology of the classifying space BG.

This dissertation’s main interest is the continuous mod p cohomology H∗(G,Fp) of compact

p-adic Lie groups G for specific cases of G. Since p-adic Lie groups are totally disconnected, working

with them requires very different methods than what Chevalley and Eilenberg or Kac used for real

Lie groups, and we have to follow the ideas of Lazard (see [Laz65]) and Serre. In particular we need

a p-valuation on G (and on the completed group algebras associated with G), and we work with the

graded “Lazard” Lie algebra g = Fp ⊗Fp[π] grG attached to G. We will repeatedly use that Sørensen

(in [Sør21]) showed that H∗(g,Fp) determines H∗(G,Fp) via a multiplicative spectral sequence

Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t(G,Fp).

When G is equi-p-valuable, we get that g is concentrated in a single degree, and Lazard showed
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that H∗(G,Fp) ∼=
∧
H1(g,Fp), while Sørensen showed that this also follows from the above spectral

sequence. We are interested in cases where G is not equi-p-valuable, and we note that the spectral

sequence of Sørensen allows us to work purely with G and g without having to worry about the

completed group algebras Λ(G) = ZpJGK and Ω(G) = FpJGK.

Before describing our particular results in the following paragraph, we emphasize the following

remark of Sørensen from [Sør21]: It is known (due to Lazard) that any compact p-adic Lie group

contains an open equi-p-valuable subgroup (see [Laz65, Chap. V 2.2.7.1]), which gives the impression

that the distinction between p-valued and equi-p-valued groups is somewhat nuanced, which is

true for some questions. But there are many examples of naturally occurring p-valuable groups

G which are not equi-p-valuable, where detailed information about H∗(G,Fp) is important. For

example unipotent groups (i.e., the Zp-points of the unipotent radical of a Borel in a split reductive

group), Serre’s standard groups with e > 1 as in [HKN11, Lem. 2.2.2], pro-p Iwahori subgroups for

large enough p, and 1 +mD where D is the quaternion division algebra over Qp for p > 3 (or more

generally a central division algebra over Qp). Sørensen explicitly calculates H∗((1 +mD)
Nrd=1,Fp

)
for p > 3 and uses it to describe H∗(1 + mD,Fp), and he notes that 1 + mD plays an important

role both in number theory (in the Jacquet-Langlands correspondence for instance, see [JL70]) and

algebraic topology, where 1 + mD is known as the (strict) Morava stabilizer in stable homotopy

theory, and H∗(1 +mD,Fp) somehow controls certain localization functors with respect to Morava

K-theory (see e.g. [Hen07]).

Our work in Chapter 2 will build on ideas of Lazard and Serre from their more general (but

not yet finished) description of the case when G is not equi-p-valued, and especially the refinement

of these ideas as described by Sørensen and Schneider in [Sør21] and [Sch11b]. We will focus on

unipotent groups N originating from split and connected reductive Zp-groups, which is similar to

recent work in the case of Zp coefficients by Ronchetti (cf. [Ron20]). We note that this work can

be considered a slight refinement of [Gro14] since we retain information about the cup product on

H∗(N,Fp).

In Chapter 3 we focus on the case of pro-p Iwahori subgroups of SLn and GLn over Qp

for n = 2, 3, 4 or over quadratic extensions F/Qp for n = 2. We explicitly calculate the algebra

structure of H∗(I,Fp) for the pro-p Iwahori subgroups ISL2(Qp) ⊆ SL2(Zp) and IGL2(Qp) ⊆ GL2(Zp),

2



and we note that these are isomorphic as algebras to H∗((1 +mD)
Nrd=1,Fp

)
and H∗(1 +mD,Fp)

respectively. We finish the chapter by mentioning some future research directions and a conjecture

on the connection between the mod p cohomology of (1 + mD)
Nrd=1 (resp. 1 + mD) for central

division algebras and ISLn(Qp) (resp. IGLn(Qp)).

Finally, the appendix will end with a very brief description of other research (all joint) that

I have participated in.
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Chapter 2

Cohomology of Unipotent Groups

2.1 Introduction

In this chapter we show that the cohomology of certain unipotent groups can be found via a

simpler cohomology calculation for related Lie algebras. This is done using a spectral sequence due

to [Sør21].

2.1.1 Background and motivation

As mentioned in Chapter 1, we will focus on describing the continuous mod p cohomology of

unipotent groups N originating from split and connected reductive Zp-groups in this chapter. To be

precise, let N be the unipotent radical of a Borel in a split and connected reductive Zp-group, and let

N = N (Zp) be the Zp-points of N . In this chapter we will show that N is a p-valuable group (with

a nice p-valuation), which will allow us to show that the Lazard Lie algebra g = Fp ⊗Fp[π] grN is

isomorphic to n = Lie(NFp). Using an idea of Große-Klönne (cf. [Gro14, Sect. 7]) we get that discrete

mod p cohomology of NZ(Z) is isomorphic to the continuous mod p cohomology of N = N (Zp),

and results of Polo and Tilouine (see [PT18]) allow us to compare the discrete cohomology of

nZ = Lie(NZ) and NZ(Z), which by a short argument allows us to compare the dimensions of the

continuous mod p cohomology of N and the mod p cohomology of g ∼= n. This will let us conclude

that the multiplicative spectral sequence

Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t(N,Fp)
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due to Sørensen collapses at the first page, which gives us a description of H∗(N,Fp).

It is worth noting that this work started out as an attempt to better understand the proof

of [Gro14, Theorem 7.1], in particular the part using the result of Grünenfelder (which by a remark

of Polo and Tilouine might have a problem), but the work has since develop in a different direction,

where the coefficients are more restricted, but we obtain a more precise (or indeed any) description

of the cup product.

2.1.2 Notation and setup

Let p be an odd prime (that will be further restricted later).

Algebraic groups. We will work with schemes using the functorial approach and notation

described in [Jan03]. In particular, given an integral domain R, we note that a R-group functor

is a functor from the category of all R-algebras to the category of groups, a R-group scheme is a

R-group functor that is an affine scheme over R when considered as a R-functor, and an algebraic

R-group is a R-group scheme that is algebraic as an affine scheme. For more in depth introduction

to these concepts, we refer to [Con14b] and [Jan03].

Base change. If R′ is a R-algebra, then any R′-algebra A is in a natural way a R-algebra by

combining the structural homomorphisms R → R′ and R′ → A. We can therefore associate to

each R-functor X a R′-functor XR′ by XR′(A) = X(A) for any R′-algebra A. For any morphism

f : X → X ′ of R-functors, we get a morphism fR′ : XR′ → X ′
R′ of k′-functors by fR′(A) = f(A) for

any R′-algebra A. In this way we get a functor X 7→ XR′ , f 7→ fR′ from the category of R-functors

to the category of R′-functors, which we call the base change from R to R′.

Fixed Zp-groups and roots. We fix a split and connected reductive algebraic Zp-group G as well

as a split maximal torus T ⊆ G. Let Φ = Φ(G, T ) be the root system of G with respect to T . For

any α ∈ Φ we have the root subgroup Nα ⊆ G with Lie algebra LieNα = (LieG)α. We fix a Zp-basis

(Xα)α∈Φ of LieNα, and note that this choice gives rise to unique isomorphisms of group schemes

xα : Ga
∼=−→ Nα such that (dxα)(1) = Xα. We furthermore fix a basis ∆ ⊆ Φ of the root system, so

we get a decomposition Φ = Φ+ ∪Φ− into positive and negative roots. Let B = T N and B+ = T N+
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denote the Borel subgroups of G corresponding to Φ− and Φ+, respectively, with unipotent radicals

N and N+. Finally let N = N (Zp) and let n = Lie(NFp) be the Lie algebra of NFp over Fp.

Z-models. Let GZ be the Chevalley group over Z corresponding to G (cf. [Con14a, §1]), and

consider the subgroups TZ,BZ,NZ corresponding to T ,B,N . Let furthermore nZ = Lie(NZ) be the

Lie algebra of NZ over Z, and note that N = NZ(Zp) and n = nZ ⊗ Fp. (Note also that (GZ)Zp = G,

so although we abuse notation a bit here, it wont be a problem.)

Total ordering of Φ−. For any total ordering of Φ− the multiplication induces an isomorphism of

schemes
∏

α∈Φ− Nα
∼=−→ N . For convenience we fix a total ordering which has the additional property

that α1 ≥ α2 if ht(α1) ≤ ht(α2). All products indexed by Φ− are meant to be taken according to

this ordering. Here we have the height function ht: Z[∆]→ Z given by
∑

α∈∆mαα 7→
∑

α∈∆mα.

In particular, since Φ ⊆ Z[∆] the height ht(β) of any root β ∈ Φ is defined.

Coxeter number and p. Let h be the Coxeter number of G and assume from now on that

p ≥ h− 1.

Weyl group and module. Let Φ∨ be the dual root system of Φ and let W be the corresponding

Weyl group with length function ℓ on W . Let furthermore X = X(T ) ∼= X(TZ) be the character

group of T , and set

X+ = {λ ∈ X | ⟨λ, α∨⟩ ≥ 0 for all α ∈ Φ+}.

For any λ ∈ X+, let VZ(λ) be the Weyl module for GZ over Z with highest weight λ, and let

VFp(λ) = VZ(λ)⊗Z Fp.

Lazard theory. We will introduce concepts from Lazard theory in next subsection, but we note

now that we will let g = Fp ⊗Fp[π] grN be the Lazard Lie algebra corresponding to N .

Cohomology. For any ring R, we denote (using the Chevalley-Eilenberg complex) the Lie algebra

cohomology of any R-Lie algebra g by H•(g, ·), while we write H•
dsc(G, ·) and H•

cts(H, ·) for the discrete

(resp. continuous) group cohomology of a topological group G. Later we will introduce filtrations
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and then gradings on the cohomology, in which case we always use the notation Hs,t = grsHs+t for

any type of cohomology H.

Spectral sequences. Given a ring R, a cohomological spectral sequence is a choice of r0 ∈ N and

a collection of

• R-modules Es,t
r for each s, t ∈ Z and all integers r ≥ r0

• differentials ds,tr : Es,t
r → Es+r,t+1−r

r such that d2r = 0 and Er+1 is isomorphic to the homology

of (Er, dr), i.e.,

Es,t
r+1 =

ker(ds,tr : Es,t
r → Es+r,t+1−r

r )

im(ds−r,t+r−1
r : Es−r,t+r−1

r → Es,t
r )

.

For a given r, the collection (Es,t
r , ds,tr )s,t∈Z is called the r-th page. A spectral sequence converges

if dr vanishes on Es,t
r for any s, t when r ≫ 0. In this case Es,t

r is independent of r for sufficiently

large r, we denote it by Es,t
∞ and write

Es,t
r =⇒ Es+t

∞ .

Also, we say that the spectral sequence collapses at the r′-th page if Er = E∞ for all r ≥ r′, but not

for r < r′. Finally, when we have terms En
∞ with a natural filtration F •En

∞ (but no natural double

grading), we set Es,t
∞ = grsEs+t

∞ = F sEs+t
∞ /F s+1Es+t

∞ .

2.1.3 Lazard theory

In this subsection we will briefly introduce elements of Lazard theory as presented in [Sch11a].

Let G be any abstract group and let the commutator be normalized as [g, h] = ghg−1h−1.

Definition 2.1. A p-valuation ω on G is a real valued function

ω : G \ {1} → (0,∞)

which, with the convention that ω(1) =∞, satisfies

(a) ω(g) > 1
p−1 ,

(b) ω(g−1h) ≥ min(ω(g), ω(h)),
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(c) ω([g, h]) ≥ ω(g) + ω(h),

(d) ω(gp) = ω(g) + 1

for any g, h ∈ G. ♠

For the rest of this subsection, let (G,ω) be a p-valued group, i.e., a group with a p-valuation.

For any real number ν > 0 put

Gν := {g ∈ G : ω(g) ≥ ν} and Gν+ := {g ∈ G : ω(g) > ν},

and note that these are normal subgroups, cf. [Sch11a, Sect. 23].

The subgroups Gν form a decreasing exhaustive and separated filtration of G with the

additional properties

Gν =
⋂
ν′<ν

Gν′ and [Gν , Gν′ ] ⊆ Gν+ν′ .

There is a unique (Hausdorff) topological group structure on G for which the Gν form a fundamental

system of open neighborhoods of the identity element. It will be called the topology defined by ω. We

will assume that G is profinte in the topology defined by ω. Hence G = lim←−ν>0
G/Gν as topological

groups, and thus G must be a pro-p-group since ω(gp) = ω(g) + 1 implies that G/Gν is a p-group

(finite since Gν is open).

We now form, for each ν > 0, the subquotient group

grν G := Gν/Gν+.

It is commutative by (c) and therefore will be denoted additively. We now consider the graded

abelian group

grG :=
⊕
ν>0

grν G.

An element ξ ∈ grG is called, as usual, homogeneous (of degree ν) if it lies in grν G. Furthermore,

in this case any g ∈ Gν such that ξ = gGν+ is called a representative of ξ.

Note that pξ = 0 for any homogeneous element ξ ∈ grG since ω(gp) = ω(g) + 1. Hence grG

in fact is an Fp-vector space. Furthermore, by bilinear extension of the map

grν G× grν′ G→ grν+ν′ G
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(ξ, η) 7→ [ξ, η] := [g, h]G(ν+ν′)+,

for ν, ν ′ > 0, we obtain a graded Fp-bilinear map

[ · , · ] : grG× grG→ grG

which satisfies

[ξ, ξ] = 0 for any ξ ∈ grG.

One can check that [ · , · ] satisfies the Jacobi identity, and thus grG is a graded Lie algebra over Fp,

cf. [Sch11a, Sect. 23].

Now, noticing that the map

grν G→ grν+1G

gGν+ 7→ gpG(ν+1)+

is well defined and Fp-linear, by considering for varying ν the direct sum of these maps, we can

introduce an Fp-linear map of degree one

π : grG→ grG.

We can and will therefore view grG as a graded module over the polynomial ring Fp[π] in one

variable over Fp. Furthermore the Lie bracket on grG is bilinear for the Fp[π]-module structure, i.e.,

grG is a Lie algebra over the ring Fp[π]. For more details, we refer to [Sch11a, Sect. 25].

Definition 2.2. The pair (G,ω) is called of finite rank if grG is finitely generated as an Fp[π]-

module. ♠

Note that G being of finite rank does not depend on the choice of the p-valuation, and assume from

now on that (G,ω) is of finite rank. Note that grG is finitely generated and torsionfree over the

principal ideal domain Fp[π], and thus by the elementary divisor theorem grG is free. We call

rank(G,ω) := rankFp[π] grG

the rank of the pair (G,ω).
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For any g ∈ G note that we then have a group homomorphism

c : Z→ G

m 7→ gm.

Since G/N , for any N ◁ G, is a p-group, we obtain c−1(N) = paNZ for some aN ≥ 0. It follows that

c extends uniquely to a continuous group homomorphism

c̃ : Zp → lim←−
N◁G

Z/paNZ c−→ lim←−
N

G/N = G

which we always will write as gx := c̃(x). More generally, for any finitely many elements g1, . . . , gr ∈ G,

we have the continuous map

Zr
p → G

(x1, . . . , xr) 7→ gx1
1 · · · g

xr
r

(2.1)

which depends on the order of the gi and therefore is not a group homomorphism. However we

introduce the following notation, where vp denotes the usual p-adic valuation on Qp.

Definition 2.3. The sequence of elements (g1, . . . , gr) in G is called an ordered basis of (G,ω) if

the map (2.1) is a bijection (and hence, by compactness, a homeomorphism) and

ω(gx1
1 · · · g

xr
r ) = min

1≤i≤r
(ω(gi) + vp(xi)) for any x1, . . . , xr ∈ Zp. ♠

Definition 2.4. For any g ∈ G \ {1}, we put σ(g) := gGω(g)+ ∈ grG. ♠

By [Sch11a, Remark 26.3], we note that for g ∈ G \ {1} and x ∈ Zp \ {0}

ω(gx) = ω(g) + vp(x) and σ(gx) = x̄πvp(x) . σ(g), (2.2)

where x̄ is the image of p−vp(x)x in F×
p (i.e., the first non-zero coefficient of x =

∑∞
k=0 akp

k). We note

that an ordered basis (g1, . . . , gd) of (G,ω) corresponds to an ordered Fp[π]-basis
(
σ(g1), . . . , σ(gd)

)
of grG, cf. [Sch11a, Prop. 26.5].

Finally we let g = Fp ⊗Fp[π] grG = Fp ⊗Fp grG/π grG, and note that this is a Lie algebra

over Fp with an Fp-basis of vectors ξi = 1⊗ σ(gi).
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2.1.4 Cohomology theories and the spectral sequence

One of the main results we use in this chapter is the spectral sequence introduced in [Sør21,

§6.1], so in this subsection we aim to introduce the concepts needed to use this spectral sequence.

We also mention a translation between continuous and discrete group cohomology for the groups we

work with.

Let R be a ring and let g be a R-Lie algebra with R a trivial (left) g-module. Then we use

the cochain complex C•(g, R) = HomR(
∧• g, R) to define Lie algebra cohomology, i.e., the cochain

complex

0 R HomR(g, R) HomR

(∧2 g, R
)

· · · ,∂1 ∂2 ∂3

where the coboundary map ∂n is given by

∂n(f)(x1, . . . , xn) =
∑
i<j

(−1)i+jf([xi, xj ], x1, . . . , x̂i, . . . , x̂j , . . . , xn),

where x̂i means excluding xi. For more details we refer to [CE56, Thm. 7.1] or [Fuk86, Chap. 1 §3],

and note that we are considering the trivial action on R, which simplifies the formula slightly (cf.

[Fuk86, Chap. 1 §3.2]).

Now consider R = Fp in the following and suppose that g = g0 ⊕ g1 ⊕ · · · is a graded Lie

algebra. Then
∧n g is also graded by letting

grj
( n∧

g
)
=

⊕
j1+···+jn=j

gj1 ∧ · · · ∧ gjn .

Letting Fp be a Z-graded (concentrated in degree 0) g-module, we get a grading

HomFp

( n∧
g,Fp

)
=
⊕
s∈Z

Homs
Fp

( n∧
g,Fp

)
where Homs

Fp
denotes the homogeneous Fp-linear maps of degree s, cf. [FF74, Lem. 4.2]. One can

check that this passes to bigrading of Lie algebra cohomology

Hs,t(g,Fp) = Hs+t
(
grsHomFp

( •∧
g,Fp

))
.

See [Fuk86, Chap. 1 §3] for more details.

In the spectral sequence described in [Sør21, §6.1], we take r0 = 1 (i.e., the spectral sequence

starts from the first page) and Es,t
1 = Hs,t(g,Fp), where g = Fp⊗grG indeed is (positively) Z-graded.
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Let now G be a topological group and Fp a G-module. Then we will define two types of

group cohommology: continuous and discrete.

Continuous group cohomology Hn
cts(G,Fp) is the cohomology of the complex C•(G,Fp) =

C(G•,Fp) of continuous maps G×G× · · · ×G→ Fp, i.e.,

0 Fp C(G,Fp) C(G2,Fp) C(G3,Fp) · · · ,∂1 ∂2 ∂3 ∂4

where the coboundary map ∂n is given by

∂n(f)(g1, . . . , gn) = f(g2, . . . , gn) +
n∑

i=1

(−1)if(g1, . . . , gigi+1, . . . , gn), (2.3)

where n-th term is interpreted as (−1)nf(g1, . . . , gn−1), cf. [Sør21, §3] or [Ser02, §2]. Note again

that our formula is slightly simpler since we only consider the trivial action on Fp.

Discrete group cohomology Hn
dsc(G,Fp) is the cohomology of the complex C•(G,Fp) =

HomG(Z[G•],Fp), i.e.,

0 Fp HomG(Z[G],Fp) HomG(Z[G2],Fp) · · · ,∂1 ∂2 ∂3

where the coboundary map δn is given by (2.3), see e.g. [Ser79, Chap. VII]. Note that this discrete

cohomology can be viewed as continuous cohomology if we equip G with the discrete topology.

Note that [Sør21] gets the spectral sequence we are interested in by using an isomorphism to

translate H•
cts(G,Fp) to HH•(Ω(G),Fp) (essentially what is known as Mac Lane isomorphism) and

introducing a Z-filtration and grading on HH•(Ω(G),Fp), which is used in the spectral sequence.

Here Ω(G) = FpJGK is the completed group algebra. We will skip the full details of this translation

and just note that we get a Z-filtration and grading on H•(G,Fp), which with k = Fp gives us the

following, cf. [Sør21, Thm. 5.5–§6.1].

Theorem 2.5. Let (G,ω) be a p-valuable group and g = Fp⊗Fp[π] grG its Lazard Lie algebra. Then

there is a convergent multiplicative spectral sequence collapsing at a finite stage,

Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t

cts (G,Fp).

This means that each sheet Er has a multiplication Er ⊗ Er → Er compatible with the

(s, t)-bigrading and satisfying Leibniz formula. Furthermore H∗(Er) ∼= Er+1 as algebras. I.e., the
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multiplication on E∞ is compatible with the cup product on H∗(G,Fp) in the sense that the following

diagram commutes.

Es,n−s
∞ ⊗ Es′,n′−s′

∞ Es+s′,n+n′−s−s′
∞

grsHn
cts(G,Fp)⊗ grs

′
Hn′

cts(G,Fp) grs+s′ Hn+n′

cts (G,Fp)

∼= ∼=

♣

Remark 2.6. We note that [Fer+07, Thm. 2.10] implies that Hn
cts(N,Fp) ∼= Hn

dsc(N,Fp) for all n

(with N = N (Zp) as above), if we can show that N is a pro-p group which is poly-Zp by finite.

Definition 2.7. A group G is poly-Zp if it has a normal series

G = G1 ⊇ G2 ⊇ · · · ⊇ Gn = 1

such that each factor group Gi/Gi+1 is isomorphic to Zp.

A group is poly-Zp by finite (virtually poly-Zp) if it contains a poly-Zp subgroup of finite

index. ♠

Note that [Con14b, Prop. 5.1.16(2) and Cor. 5.2.5] (as seen in the proof of [Con14b, Cor. 5.2.13] or

[Con14b, Thm. 5.4.3]) gives us a composition series of N such that the successive quotients are Ga,

which implies that N = N (Zp) is poly-Zp by finite since Ga(Zp) = Zp. Thus, assuming that N (Zp)

is a pro-p group, we get that

Hn
cts(N,Fp) ∼= Hn

dsc(N,Fp) for all n. (2.4)
△

2.1.5 Main result

We show first that N is p-valuable, which implies by [Sør21, §6.1] that we get a convergent

multiplicative spectral sequence

Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t

cts (N,Fp). (2.5)

We note that g ∼= n and then use ideas of [Gro14, §7] to transfer results from [PT18] about (the

dimension of) Hn(nZ,Fp) and Hn
dsc(NZ(Z),Fp) to Hn(n,Fp) and Hn

cts(N (Zp),Fp), giving us that∑
s+t=n

dimFp H
s,t(g,Fp) = dimFp H

n(n,Fp) = dimFp H
n
cts(N,Fp).
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This implies that (2.5) collapses on the first page, and thus Hs,n−s(n,Fp) ∼= grsHn
cts(N,Fp). Noting

that Es,t
∞ = Es,t

1 , we get that the cup product on Es,t
1 = Hs,t(n,Fp) (from H∗(n,Fp)) is compatible

with the cup product on H∗
cts(N,Fp) in the sense that the following diagram commutes.

Hs,n−s(n,Fp)⊗Hs′,n′−s′(n,Fp) Hs+s′,n+n′−s−s′(n,Fp)

grsHn
cts(N,Fp)⊗ grs

′
Hn′

(N,Fp) grs+s′ Hn+n′

cts (N,Fp)

∼= ∼=

2.2 The p-valuation

In this section we will prove that N is p-valuable group, which we will need in multiple

arguments later. It should be noted that this section, with the exception of Proposition 2.10, is a

slightly rewritten version of [Sch11b] which expands on some of the arguments. Also, the proof of

Proposition 2.10 is based on [Zab10, Lem. 1].

Note that as a set N is the direct product N =
∏

α∈Φ− xα(Zp), which allows us to introduce

the function

ω : N \ {1} → N∏
α∈Φ−

xα(aα) 7→ min
α∈Φ−

(
vp(aα)− ht(α)

)
,

(2.6)

where vp denotes the usual p-adic valuation on Zp. Here it is important to note that we write any

g ∈ N uniquely as product

g =
∏

α∈Φ−

xα(aα)

by taking the product following the total ordering ≥ of Φ− defined above. Now, with the convention

that ω(1) :=∞, we define the descending sequence of subsets

Nm := {g ∈ N | ω(g) ≥ m}

in N for m ≥ 0, following the notation used for p-valuable groups. The goal of this section is to

show that this ω is a p-valuation by a careful analysis of the sequence of subsets given by Nm.

Remark 2.8. If we are willing to restrict from p + 1 ≥ h to p − 1 > h, then we can restrict the

p-valuation of the pro-p Iwahori subgroup of G introduced in Section 3.1 to a p-valuation on N . We
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prefer the above p-valuation because it will introduce a grading on g that will directly correspond to

the grading (by height) on n, whereas the restricted p-valuation is a scalar multiple of this p-valuation

on a basis. △

We first note that clearly N1 = N ,
⋂

mNm = {1}, and

Nm =
∏

α∈Φ−

xα(p
max(0,m+ht(α))Zp)

=
∏

α∈Φ−

ht(α)=−1

xα(p
m−1Zp) · · ·

∏
α∈Φ−

ht(α)=−(m−1)

xα(pZp)
∏

α∈Φ−

ht(α)≤−m

xα(Zp).
(2.7)

In our analysis of this sequence it will be helpful to introduce the following two other

filtrations of N . Firstly we will consider the filtration by congruence subgroups

N(m) := ker
(
N (Zp)→ N (Z/pmZ)

)
=
∏

α∈Φ−

xα(p
mZp) (2.8)

for m ≥ 0. Secondly, using the descending central series of the group G(Qp) defined by C1G(Qp) :=

G(Qp) and Cm+1G(Qp) := [CmG(Qp),G(Qp)], we consider the filtration given by

N(m) := N ∩ CmG(Qp)

for m ≥ 1. By [BT73, Prop. 4.7(iii)] we have that

N(m) =
∏

α∈Φ−

ht(α)≤−m

xα(Zp), (2.9)

and we note that the natural map

∏
α∈Φ−

ht(α)=−m

xα(Zp)→ N(m)/N(m+1)

is an isomorphism of abelian groups, and that all the subgroups N(m) and N(m) are normal in N .

We are now ready to prove the following lemma, which will help us when showing that ω is

a p-valuation.

Lemma 2.9.

(i) Nm =
∏

1≤i≤mN(m−i)∩N(i), for any m ≥ 1, is a normal subgroup of N which is independent

of the choices made.
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(ii) [Nℓ, Nm] ⊆ Nℓ+m for any ℓ,m ≥ 1.

(iii) Nm/Nm+1, for any m ≥ 1, is an Fp-vector space of dimension equal to |{α ∈ Φ− |ht(α) ≥ −m}|.

(iv) Let g ∈ Nm for some m ≥ 1. If gp ∈ Nm+2, then g ∈ Nm+1. ♣

Proof. (i) Using (2.8) and (2.9) we note that∏
α∈Φ−

ht(α)=−i

xα(p
m−iZp) ⊆ N(m− i) ∩N(i) and

∏
α∈Φ−

ht(α)≤−m

xα(Zp) = N(0) ∩N(m)

for 1 ≤ i < m, so by (2.7) it is clear that Nm ⊆
∏

1≤i≤mN(m − i) ∩N(i). We also note, by (2.8)

and (2.9), that

(
N(m− i) ∩N(i)

)(
N(m− i− 1) ∩N(i+1)

)
⊆
( ∏

α∈Φ−

ht(α)=−i

xα(p
m−iZp)

)(
N(m− i− 1) ∩N(i+1)

)
for any 1 ≤ i < m, so∏

1≤i≤m

N(m− i) ∩N(i)

⊆
∏

α∈Φ−

ht(α)=−1

xα(p
m−1Zp) · · ·

∏
α∈Φ−

ht(α)=−(m−1)

xα(pZp)
(
N(0) ∩N(m)

)

= Nm

by induction, (2.7) and (2.9). This shows the equality and that Nm is normal clearly follows.

(ii) We first recall the following formulas for commutators

[gh, k] = g[h, k]g−1[g, k] and [g, hk] = [g, h]h[g, k]h−1. (2.10)

Now, using (2.10), (i) and the fact that all the involved subgroups are normal, it is enough to show

that

[N(ℓ) ∩N(i), N(m) ∩N(j)] ⊆ N(ℓ+m) ∩N(i+j).

This further reduces to showing that

[N(ℓ), N(m)] ⊆ N(ℓ+m) and [N(i), N(j)] ⊆ N(i+j).
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The right inclusion is a well known property of the descending central series, so it follows from our

definition of N(m). For the left inclusion it suffices, by (2.8) and (2.10), to show that

[xα(p
ℓZp), xβ(p

mZp)] ⊆ N(ℓ+m)

for any α, β ∈ Φ−. To show this inclusion we recall Chevalley’s commutator formula, cf. [Con14b,

Prop. 5.1.14],

[xα(a), xβ(b)] ∈ xα+β(cα,β,1,1abZp)
∏
i,j≥1
i+j>2

xiα+jβ(cα,β,i,ja
ibjZp),

where cα,β,i,j ∈ Zp and on the right hand side we use the convention is that xiα+jβ ≡ 1 if iα+jβ /∈ Φ.

From (2.8) and Chevalley’s commutator formula the inclusion follows.

(iii) We note that

N(m− i) ∩N(i) =
∏

α∈Φ−

ht(α)≤−i

xα(p
m−iZp)

for 1 ≤ i ≤ m, so the statement follows from (i) and (ii).

(iv) For any 1 ≤ ℓ ≤ m we consider the chain of normal subgroups

Nm+2(Nm ∩N(ℓ+1)) ⊆ Nm+1(Nm ∩N(ℓ+1)) ⊆ Nm+1(Nm ∩N(ℓ))

between Nm+2 and Nm. By (2.10) and an argument like in (ii), we get that

[Nm+1(Nm ∩N(ℓ)), Nm+1(Nm ∩N(ℓ))] ⊆ Nm+2(Nm ∩N(ℓ+1)),

so the quotient group

Nm+1(Nm ∩N(ℓ))/Nm+2(Nm ∩N(ℓ+1))

is abelian. Now looking carefully at the groups as sets, we see that

Nm ∩N(ℓ) =
∏

α∈Φ−

ht(α)≤−ℓ

xα(p
max(0,m+ht(α))Zp)

and thus (using Chevalley’s commutator formula and the fact that ht(iα + jβ) ≤ ht(α + β) <

ht(α),ht(β) to move the products for the ht(α) = −ℓ term)

Nm+1(Nm ∩N(ℓ)) =
∏

α∈Φ−

ht(α)>−ℓ

xα(p
max(0,m+1+ht(α))Zp)
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·
∏

α∈Φ−

ht(α)=−ℓ

xα(p
m−ℓZp)

·
∏

α∈Φ−

ht(α)<−ℓ

xα(p
max(0,m+ht(α))Zp).

Similarly

Nm+2(Nm ∩N(ℓ+1)) =
∏

α∈Φ−

ht(α)>−ℓ

xα(p
max(0,m+2+ht(α))Zp)

·
∏

α∈Φ−

ht(α)=−ℓ

xα(p
m+2−ℓZp)

·
∏

α∈Φ−

ht(α)≤−(ℓ+1)

xα(p
max(0,m+ht(α))Zp),

and since the quotient group

Nm+1(Nm ∩N(ℓ))/Nm+2(Nm ∩N(ℓ+1))

is abelian, we see that it is isomorphic to

∏
α∈Φ−

ht(α)>−ℓ

xα(p
max(0,m+1+ht(α))Zp)

xα(pmax(m+2+ht(α))Zp)
×

∏
α∈Φ−

ht(α)=−ℓ

xα(p
m−ℓZp)

xα(pm+2−ℓZp)
.

Here the subgroup

Nm+1(Nm ∩N(ℓ+1))/Nm+2(Nm ∩N(ℓ+1))

corresponds to ∏
α∈Φ−

ht(α)>−ℓ

xα(p
max(0,m+1+ht(α))Zp)

xα(pmax(0,m+2+ht(α))Zp)
×

∏
α∈Φ−

ht(α)=−ℓ

xα(p
m+1−ℓZp)

xα(pm+2−ℓZp)
.

It follows that Nm+1(Nm ∩N(ℓ+1))/Nm+2(Nm ∩N(ℓ+1)) is the p-torsion subgroup of Nm+1(Nm ∩

N(ℓ))/Nm+2(Nm ∩N(ℓ+1)).

Now let g ∈ Nm for some m ≥ 1. For ℓ = 1 we have g ∈ Nm = Nm+1(Nm∩N(1)), since N(1) =

N , and clearly gp ∈ Nm+2(Nm∩N(2)) because gp ∈ N(2) by Chevalley’s commutator formula and (2.9).

Since Nm+1(Nm∩N(2))/Nm+2(Nm∩N(2)) is the p-torsion subgroup of Nm+1(Nm∩N(1))/Nm+2(Nm∩

N(2)), it follows that g ∈ Nm+1(Nm ∩ N(2)) and thus gp ∈ Nm+2(Nm ∩ N(3)) by Chevalley’s
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commutator formula and (2.9). By induction on ℓ, we thus get that g ∈ Nm+1(Nm∩N(m+1)) = Nm+1.

Here the last equality follows from the fact that N(m+1) ⊆ Nm+1 by (2.7) and (2.9). □

With this lemma, we are now ready to prove that ω is a p-valuation on N .

Proposition 2.10. The function ω from (2.6) is a p-valuation on N , i.e., it satisfies for any

g, h ∈ N :

(a) ω(g) > 1
p−1 ,

(b) ω(g−1h) ≥ min(ω(g), ω(h)),

(c) ω([g, h]) ≥ ω(g) + ω(h),

(d) ω(gp) = ω(g) + 1. ♣

Proof. We note that (a) is obvious by our definition of ω, (c) follows from Lemma 2.9 (ii) and (d)

follows from Lemma 2.9 (iv).

It only remains to show (b), which we will do by following the proof idea of [Zab10, Lem. 1],

i.e., we are going to use triple induction. Here we note that all products
∏

α∈Φ− xα(aα) are in

ascending order in Φ− (so descending in height). For ease of notation, we prove equivalently that

ω(gh−1) ≥ min(ω(g), ω(h)) for g, h ∈ N .

At first by induction on the number of non-zero coordinates among (aβ)β∈Φ− in
∏

β∈Φ− xβ(aβ)

we are reduced to the case where h is of the form h = xβ(aβ) for some β ∈ Φ− and aβ ∈ Zp. To

see this let h ∈ N \ {1} and write h =
∏

β∈Φ− xβ(aβ) in our unique way (according to the ordering

of Φ−), and let α be the smallest element of Φ− for which aα ̸= 0 so that h = xα(aα) · h′. Then

gh−1 = g(h′)−1 · xα(aα)−1 and thus strong induction will imply that

ω(gh−1) ≥ min
(
ω(g(h′)−1), v(aα)− ht(α)

)
≥ min

(
ω(g), ω(h′), v(aα)− ht(α)

)
= min

(
ω(g), ω(h)

)
.

Fix h = xβ(aβ) and let now g be of the form g =
∏r

k=1 xαk
(aαk

) with α1 < α2 < · · · < αr

in Φ−. If β > αr, then gh−1 =
∏r−1

k=1 xαk
(aαk

) · xαr(aαr)xβ(−aβ), so (b) is clearly true if β > α1
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(by the definition of ω), and if β = αr, then xαr(aαr)xβ(−aβ) = xβ(aαr − aβ) and (b) follows from

vp(a− b) ≥ min(vp(a), vp(b)) for a, b ∈ Zp.

On the other hand, if β < αr, then we write

gh−1 =
r∏

k=1

xαk
(aαk

) · xβ(−aβ)

=

r−1∏
k=1

xαk
(aαk

) · xβ(−aβ) · xαr(aαr) · [xαr(−aαr), xβ(aβ)].

Now we use descending induction on β in the chosen ordering of Φ− and suppose that the

statement (b) is true for any g and any h′ of the form h′ = xβ′(aβ′) with β′ > β. Note that the base

case is trivial and recall that Φ− is finite and totally ordered. Note furthermore that Chevalley’s

commutator formula gives us

[xα′(aα′), xβ′(aβ′)] =
∏

iα′+jβ′∈Φ−

i,j>0

xiα′+jβ′(cα′,β′,i,ja
i
α′a

j
β′) (2.11)

for any α′, β′ ∈ Φ−, where cα′,β′,i,j ∈ Zp. Also, we have ht(iα′ + jβ′) ≤ ht(α′ + β′) < ht(α′), ht(β′),

so we can apply the induction hypothesis for xαr(aαr) and each xiαr+jβ(cαr,β,i,j(−aαr)
iajβ) in

[xαr(−aαr , xβ(aβ))], since αr > β and all terms on the right side of (2.11) are larger than β (and

αr) in the ordering of Φ−. We thus obtain

ω(gh−1) ≥ min

(
min

iαr+jβ∈Φ−

i,j>0

ω(xiαr+jβ(cαr,β,i,j(−aαr)
iajβ)),

ω(xαr(aαr)), ω
(r−1∏
k=1

xαk
(aαk

) · xβ(−aβ)
))

.

(2.12)

Now, for i, j > 0 with iα′ + jβ′ ∈ Φ−,

ω(xiα′+jβ′(cα′,β′,i,ja
i
α′a

j
β′)) = vp(cα′,β′,i,ja

i
α′a

j
β′)− ht(iα′ + jβ′)

≥ vp(cα′,β′,i,j) + vp(a
i
α′) + vp(a

j
β′)− ht(α′ + β′)

≥ vp(aα′)− ht(α′) + vp(aβ′)− ht(β′)

= ω(xα′(aα′)) + ω(xβ′(aβ′))

≥ min
(
ω(xα′(aα′)), ω(xβ′(aβ′))

)
.

(2.13)

So taking α′ = αr and β′ = β and using (2.13) in (2.12), we get that

ω(gh−1) ≥ min

(
ω(xαr(aαr)), ω(xβ(aβ)), ω

(r−1∏
k=1

xαk
(aαk

) · xβ(−aβ)
))

. (2.14)
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Finally induction on r will imply that

ω
(r−1∏
k=1

xαk
(aαk

) · xβ(−aβ)
)
≥ min

(
ω
(r−1∏
k=1

xαk
(aαk

)
)
, ω(xβ(aβ))

)
= min

(
min

1≤k≤r−1
ω(xαk

(aαk
)), ω(xβ(aβ))

)
,

which by (2.14) implies that

ω(gh−1) ≥ min
(
min
1≤k≤r

ω(xαk
(aαk

)), ω(xβ(aβ))
)

= min
(
ω(g), ω(h)

)
,

thus finishing the proof. □

We have now shown that N = N (Zp) is a p-valuable group with the p-valuation ω introduced

in (2.6), which is the main result of this section. Before continuing, we will clarify what this means

based on Lazard theory as described in Section 2.1.

We note that

grN :=
⊕
m≥1

Nm/Nm+1

is a graded Fp-vector space, and recall the following well known result, cf. [Laz65] or [Sch11a,

Sect. 25].

Proposition 2.11. grN is a Lie algebra over the polynomial ring Fp[π] in one variable π where

[gNℓ+1, hNm+1] := [g, h]Nℓ+m+1 and π(gNm+1) := gpNm+2,

and as an Fp[π]-module grN is free of rank |Φ−|. ♣

2.3 Spectral sequence and cohomology

Recall that N = N (Zp), g = Fp ⊗Fp[π] grN and n = Lie(NFp). In this section we will first

look at the spectral sequence from [Sør21] (cf. Theorem 2.5), i.e.,

Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t

cts (N,Fp),
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and note that we can work with the left side using that Hs,t(g,Fp) ∼= Hs,t(n,Fp). Afterwards, we

will use results from [PT18] to argue that the spectral sequence collapses on the first page.

We will start by showing that g ∼= n, for which we will need the following lemma, which is

again from [Sch11b].

Lemma 2.12. grN ∼= Fp[π]⊗Fp n as graded Lie algebras (where π has degree 1). ♣

Proof. We first note that the elements Xα, where Xα is our fixed Zp-basis of LieNα, reduce modulo

p to an Fp-basis {Xα}α∈Φ− of n. On the other hand all

σ
(
xα(1)

)
∈ gr− ht(α)N,

with xα(1) ∈ N− ht(α), form an Fp[π]-basis of grN , cf. [Sch11a] Proposition 26.5. Hence the map

Fp[π]⊗Fp n→ grN

f ⊗Xα 7→ f . σ
(
xα(1)

)
is an isomorphism of graded modules. Chevalley’s commutator formula (cf. [Con14b, Prop. 5.1.14])

says that there are p-adic integers cα,β = cα,β,1,1 such that [Xα, Xβ] = cα,βXα+β and

[xα(1), xβ(1)] ∈ xα+β(cα,β)N−ht(α)−ht(β)+1 = xα+β(1)
cα,βN− ht(α)−ht(β)+1,

where Xα+β = 0 and xα+β ≡ 1 if α+ β /∈ Φ. This implies that the image of the above map is a Lie

subalgebra, and thus that the map is an isomorphism of Lie algebras. We note that n is graded by

the height function, which corresponds to the grading on grN by the definition of ω in (2.6). □

Now grN ∼= Fp[π]⊗Fp n implies that g ∼= Fp ⊗Fp[π] Fp[π]⊗Fp n
∼= n, where both g and n is

graded by the height function. From this it clearly follows that Hs,t(g,Fp) ∼= Hs,t(n,Fp). (Note that

this can also be seen directly by looking at the Chevalley constants.)

By [PT18, §2.10] (using that p ≥ h− 1) and the Universal Coefficient Theorem (as used in

[PT18, §3.8]), we get an Fp-vector space isomorphism

Hn(nZ,Fp) = Hn(nZ, VFp(0))
∼=

⊕
w∈W
ℓ(w)=n

VFp(w · 0),
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where VFp(0) = Fp with the trivial action (concentrated in degree 0). Similarly, by the corollary in

[PT18, §3.8], we have an Fp-vector space isomorphism

grHn
dsc(NZ(Z),Fp) = grHn

dsc(NZ(Z), VFp(0))
∼=

⊕
w∈W
ℓ(w)=n

VFp(w · 0).

Here the grading on cohomology will not be important, since we just need that

dimFp H
n(nZ,Fp) = dimFp H

n
dsc(NZ(Z),Fp). (2.15)

We now equip NZ(Z) with the discrete topology and claim that

Hn
dsc(NZ(Z),Fp) = Hn

cts(NZ(Z),Fp) ∼= Hn
cts(N (Zp),Fp).

Here the first equality is clear since NZ(Z) is equipped with the discrete topology. To see the

isomorphism, first note that Z is a discrete group, Zp is a profinite group, and the homomorphism

Z→ Zp has dense image in Zp. So we have homomorphisms

Hn
cts(Zp,Fp)→ Hn

cts(Z,Fp)

for all n ≥ 0 from [Ser02, Sect. I §2.6]. Now both H0
cts(Z, · ) and H0

cts(Zp, · ) are the functor of taking

invariant, both H1
cts(Z, · ) and H1

cts(Zp, · ) are what [Gro14] calls the functor of taking “coinvariants”

(giving the group of continuous crossed-homomorphisms of G into · , cf. [Ser02, I. §2]), and all

Hn
cts(Z, · ) and Hn

cts(Zp, · ) vanish for n ≥ 2, so Z is “good” in the sense of [Ser02, Section I §2.6

Exercise 2]. Thus [Ser02, Section I §2.6 Exercise 2(d)] implies that the homomorphisms

Hn
cts(N (Zp),Fp)→ Hn

cts(N (Z),Fp) n ≥ 0,

induced by the homomorphism N (Z)→ N (Zp), are all isomorphisms. To see this one can consider

a filtration of N (Z) with subquotients isomorphic with Z, and its parallel filtration of N (Zp) with

subquotients isomorphic with Zp as in [Gro14, Sect. 7], which will make it follow directly from [Ser02,

Section I §2.6 Exercise 2(d)].

Hence

dimFp H
n(nZ,Fp) = dimFp H

n
dsc(NZ(Z),Fp) = dimFp H

n
cts(N (Zp),Fp).
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Now n = nZ⊗Fp, and Hn(g,Fp) ∼= Hn(n,Fp) (since g ∼= n) is the cohomology of the complex

C•(n,Fp) = HomFp

( •∧
n,Fp

)
while Hn(nZ,Fp) is the homology of the complex

C•(nZ,Fp) = HomFp

( •∧
nZ,Fp

)
.

Here
∧• nZ is a free Z-module and (

∧• nZ) ⊗ Fp
∼=
∧•(nZ ⊗ Fp) ∼=

∧• n, so we have natural

isomorphisms

HomFp

( •∧
nZ,Fp

)
∼= HomFp

(( •∧
nZ

)
⊗ Fp,Fp

)
∼= HomFp

( •∧
n,Fp

)
.

These isomorphisms are clearly compatible with the differentials, so C•(n,Fp) ∼= C•(nZ,Fp), and

thus Hn(n,Fp) ∼= Hn(nZ,Fp). Hence

dimFp H
n(n,Fp) = dimFp H

n(nZ,Fp) = dimFp H
n(N (Zp),Fp).

Now dimFp H
n(n,Fp) = dimn

Fp
(g,Fp) and N = N (Zp) implies that

∑
s+t=n

dimFp H
s,t(g,Fp) = dimFp H

n(g,Fp) = dimFp H
n(N,Fp),

so the multiplicative spectral sequence

Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t(N,Fp)

collapses on the first page, since the dimension of Es,t
r is non-increasing as r increases. Since the

spectral sequence collapses on the first page, we get that Es,t
1 = Es,t

∞ , so

grsHn(N,Fp) ∼= Hs,t(g,Fp) ∼= Hs,t(n,Fp),

giving us a good description of Hn(N (Zp),Fp). Furthermore, we can describe the cup product, by

calculating it in H∗(g,Fp) or H∗(n,Fp), cf. Theorem 2.5 for the details. I.e., we have shown:

Theorem 2.13. Let N = N (Zp) be the Zp-points of N , where N is the unipotent radical of a Borel

in a split and connected reductive Zp-group, and let and n = LieNFp. Then ω from (2.6) gives a

p-valuation on N , and if we let g = Fp ⊗Fp[π] grN be the Lazard Lie algebra of N , then g ∼= n.
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Furthermore, there is a convergent multiplicative spectral sequence

Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t

cts (N,Fp)

collapsing at the first page, so grsHn(N,Fp) ∼= Hs,t(g,Fp) ∼= Hs,t(n,Fp), and the cup product on

H∗(g,Fp) is compatible with the cup product on H∗(N,Fp) in the sense that the following diagram

commutes.
Hs,n−s(g,Fp)⊗Hs′,n′−s′(g,Fp) Hs+s′,n+n′−s−s′(g,Fp)

grsHn
cts(G,Fp)⊗ grs

′
Hn′

cts(G,Fp) grs+s′ Hn+n′

cts (G,Fp)

∼= ∼=

♣

2.4 Example: N ⊆ SL3(Zp)

In the case of G = SL3 (in this case h = 3, so p ≥ 3), we can take T to be the diagonal

matrices in SL3 (det = 1), B upper triangular matrices in SL3 and

N =

{1 ∗ ∗
0 1 ∗
0 0 1

} ⊆ SLn .

Furthermore we can take Φ− = {α1, α2, α3 = α1 + α2} with

Xα1 =

1 1 0
0 1 0
0 0 1

, xα1(A)(a) =

1 a 0
0 1 0
0 0 1

,

Xα2 =

1 0 0
0 1 1
0 0 1

, xα2(A)(a) =

1 0 0
0 1 a
0 0 1

,

Xα3 =

1 0 1
0 1 0
0 0 1

, xα3(A)(a) =

1 0 a
0 1 0
0 0 1

,

for any Zp-algebra A and a ∈ A. Here ht(α1) = ht(α2) = −1 and ht(α3) = −2, and explicit

calculations show that, in N = N (Zp), g1 = xα1(1), g2 = xα2(1), g3 = xα3(1) is an ordered basis

of (N,ω). Thus (cf. [Sch11a, Prop. 26.5]) σ(g1), σ(g2), σ(g3) is a basis of the Fp[π]-module grN ,

and ξ1, ξ2, ξ3 is a basis of g = Fp ⊗Fp[π] grN , where ξi = 1⊗ σ(gi). Furthermore g = g1 ⊕ g2, where

g1 = span(ξ1, ξ2) and g2 = span(ξ3).
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The only non-trivial commutator among the gi’s is [g1, g2] = xα3(−1) = g−1
3 , which implies

(cf. [Sch11a, Rem. 26.3]) that σ([g1, g2]) = −σ(g3) and thus [ξ1, ξ2] = −ξ3. In particular [g, g] = g2.

Now H1(g,Fp) = Homk(g/[g, g],Fp) = H−1,2(g,Fp), and, since
∧3 g = g1 ∧ g1 ∧ g2 is degree

4, H3(g,Fp) = H−4,7(g,Fp). A version of Poincaré duality (cf. [Fuk86, Chap. 1 §3.6–7]) gives

us that H1 × H2 → H3 with H−1,2 × Hs,t → H−4,7 is only non-trivial for (s, t) = (−3, 5), so

H2(g,Fp) = H−3,5(g,Fp). By considering the maps ds,tr : Es,t
r → Es+r,t+1−r

1 , we see that the spectral

sequence collapses at the first page, so this gives us a description of H∗(N,Fp), and we note that

the only non-trivial cup product is H1(N,Fp)×H2(N,Fp)→ H3(N,Fp).

We note that we skipped some of the details above since we will go through many examples

of this kind of computation in Chapter 3, so we refer to there for more of the details in this type of

argument.
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Chapter 3

Cohomology of pro-p Iwahori Subgroups

3.1 Intoduction

In this chapter we will calculate the cohomology over perfect fields k (or just k = Fp) of a

collection of pro-p Iwahori subgroups of SLn and GLn over Zp or OF for quadratic extensions F/Qp.

3.1.1 Background and motivation

In this chapter we will focus on describing the continuous mod p cohomology of pro-p Iwahori

subgroups of SLn and GLn over Qp for n = 2, 3, 4 or over quadratic extensions F/Qp for n = 2.

We start by introducing the techniques we use throughout this chapter, and then we explicitly

calculate the algebra structure of H∗(I,Fp) for the pro-p Iwahori subgroups ISL2(Qp) ⊆ SL2(Zp) and

IGL2(Qp) ⊆ GL2(Zp), and we note that these are isomorphic as algebras to H∗((1 +mD)
Nrd=1,Fp

)
and H∗(1 + mD,Fp) respectively. This part heavily relies on results of Sørensen and Fuks (see

[Sør21] and [Fuk86]). Afterwards we fully describe the cohomological dimensions (but not the cup

products, which are quite complicated) of the pro-p Iwahori subgroups of SL3(Qp), GL3(Qp), SL2(F )

and GL2(F ), where F is a quadratic extension of Qp. We also roughly describe the cohomological

dimensions of the pro-p Iwahori subgroups of SL4(Qp) and GL4(Zp), but we note that we run into

some problems here. In particular the multiplicative spectral sequence

Es,t
1 = Hs,t(g,Fp) =⇒ Hs+t(I,Fp)
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of Sørensen (see [Sør21]) collapses on the first page in all the previous examples, but for pro-p

Iwahori subgroups of SL4(Qp) or GL4(Qp) we no longer (trivially) get this. Here g = Fp ⊗Fp[π] gr I

is the graded Lazard Lie algebra associated with I.

This work can be seen as a continuation of the recent work on the mod p cohomology

of pro-p Iwahori subgroups. E.g. the work by Schneider and Olivier (see [OS18; OS19; Sch15])

working with pro-p Iwahori-Hecke modules and the work by Koziol (see [Koz17]) computing H1(I, π)

as a H-algebra (where H is the pro-p Iwahori-Hecke algebra and π is a mod p principal series

representation of GLn(F ) for some p-adic field F ). Work by Cornut and Ray (cf. [CR16]) finding a

minimal set of topological generators of the pro-p Iwahori subgroup of a split reductive group over

Zp is also relevant, since the number of generators can be used to find the cohomological dimension

of H1(I,Fp). Overall all of this work can be seen as part of the search for a mod p and p-adic local

Langlands program.

We finish the chapter by mentioning some observations on the nilpotency index of our

calculated cohomology rings and discussing future research directions and a conjecture on the

connection between the mod p cohomology of (1 + mD)
Nrd=1 (resp. 1 + mD) for central division

algebras and ISLn(Qp) (resp. IGLn(Qp)). Finally we note that working with the Serre spectral sequence

might allow us to generalize to all ISLn(Qp) for all n.

3.1.2 Setup and notation

Let p be an odd prime (further restricted later) and let k be a perfect field of characteristic

p.

Field extension of Qp. We fix a finite extension of F/Qp of degree ℓ with valuation ring OF and

maximal ideal mF = (ϖF ) ⊆ OF . Let e = e(F/Qp) be the ramification index and f = f(F/Qp) the

inertia degree of the extension F/Qp. Let furthermore v be the valuation on F for which v(p) = 1,

and thus v(ϖF ) =
1
e .

exp and log. Given finite field extension F/Qp with valuation ring OF and maximal ideal mF

with pOF = me
F , we get by [Neu99, Prop. (5.5)] (noting that we will ensure that 1 > e

p−1 later) that
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the power series

exp(x) = 1 + x+
x2

2!
+

x3

3!
+ · · · and log(1 + z) = z − z2

2
+

z3

3
− · · · ,

are two mutually inverse isomorphisms (and homeomorphisms)

mF U
(1)
F .

exp

log

Note that this implies that a Zp-basis of mF translates to a Zp-basis of U (1)
F = 1 +mF via exp.

Big-O notation. For elements of OF we write x = y +O(pr) if and only if x− y ∈ prOF .

Matrices. Let Eij denote the matrix with 1 in the (i, j) entry, and zeroes in all other entries, and

write 1n for the identity matrix in Mn(F ). Let A = (aij). We write A = diag(a1, . . . , an) for the

diagonal matrix in Mn(F ) with entries aii = ai in the diagonal, and A = diagi1,...,ik(a1, . . . , ak) for

the diagonal matrix in Mn(F ) with entries aiℓiℓ = aℓ for ℓ = 1, . . . , k, ones in the other diagonal

entries and zeroes in all other entries. Finally, we write A⊤ for the transpose matrix of A.

Dual basis. Let V be a k-vector space with basis B = (e1, . . . , ed). Then we let B∗ = (e∗1, . . . , e
∗
d)

be the dual basis of Homk(V, k) defined by e∗i (ei) = δij , where δij is the Kronecker delta function.

Now consider two vector spaces V and W with bases BV and BW . Given a linear map d : V →W

with matrix A when described in these bases, it is a well known fact from linear algebra that the

dual map d∗ : Homk(W,k)→ Homk(V, k) has matrix A⊤ when described in the dual bases B∗V and

B∗W . We will often use this without mention and abuse notation writing d and d⊤ for these matrices.

Smith normal form. Let R be an integral domain and consider only non-zero matrices over R in

this paragraph. Given an n×m matrix A, there exist invertible m×m and n× n matrices S and T

such that

SAT =



a1 0 0
0 a2

ar
0

0
0 0 0


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and the diagonal entries ai satisfy ai | ai+1 for i = 1, . . . , r − 1. This matrix is called the Smith

normal form of the matrix A. Given n×m matrices A,B, we write A
SNF∼ B if A and B have the

same Smith normal form. This notation will mainly be used when B is already a matrix in Smith

normal form. Finally we introduce the notation A = SNFn×m(a1, . . . , ar, 0, . . . , 0) for the n ×m

matrix with aii = ai for i = 1, . . . , r and zeroes in all other entries as above. In next subsection, we

will note that the Smith normal form will be useful for our cohomology calculations.

Remark 3.1. In the case R = Z, the Smith normal form of a matrix can be found using the following

row and column operations, which are invertible over Z.

(R1): swap rows Ri and Rj (C1): swap columns Ci and Cj

(R2): multiply row Ri by −1 (C2): multiply column Ci by −1

(R3): replace row Ri by Ri + kRj (C3): replace column Ci by Ci + kCj

for some row Rj ̸= Ri and for some column Cj ̸= Ci and

k ∈ Z k ∈ Z.

We will not do these calculations by hand in this chapter, and will instead utilize implementations

in Sage and SymPy that can find the Smith normal form of a matrix over Z. Here it is important to

note that the SymPy implementation does not allow the use of the rules (R2) and (C2), so we get a

small difference between the results of the calculations in SymPy and Sage, but it will only be a

difference of sign on some entries in the diagonal. △

Lazard theory. For an introduction to Lazard theory see Section 2.1, or [Sch11a] for more details.

In particular, note that the Lazard Lie algebra generalizes from Fp to general k of characteristic p.

We will let g = k⊗Fp[π] gr I be the Lazard Lie algebra corresponding to the pro-p Iwahori subgroup I.

Furthermore, recall that a sequence of elements (g1, . . . , gr) in G is called an ordered basis of (G,ω)

if the map Zr
p → G given by (x1, . . . , xr) 7→ gx1

1 · · · gxr
r is a bijection (and hence, by compactness, a

homeomorphism) and

ω(gx1
1 · · · g

xr
r ) = min

1≤i≤r
(ω(gi) + v(xi)) for any x1, . . . , xr ∈ Zp.
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Algebraic groups. We will work with schemes using the functorial approach and notation

described in [Jan03]. In particular, given an integral domain R, we note that a R-group functor

is a functor from the category of all R-algebras to the category of groups, a R-group scheme is a

R-group functor that is an affine scheme over R when considered as a R-functor, and an algebraic

R-group is a R-group scheme that is algebraic as an affine scheme. For more in depth introduction

to these concepts, we refer to [Con14b] and [Jan03].

Fixed groups and roots. We fix a split and connected reductive algebraic F -group G, and

consider the locally profinite group G = G(F ). We then fix split maximal torus T ⊆ G and let

T = T (F ). In T we have a maximal compact subgroup T 0 and its Sylow pro-p subgroup T 1.

Let Φ = Φ(G, T ) be the root system of G with respect to T , and let (X∗(T ),Φ, X∗(T ),Φ
∨)

be the associated root datum. Fix a system of positive roots Φ+ and let ∆ ⊆ Φ+ be the simple

roots. For any α ∈ Φ we have the root subgroup Uα ⊆ G with Lie algebra LieUα = (LieG)α. We let

Uα = Uα(F ) and choose an isomorphism xα : F
∼=−→ Uα such that txα(x)t

−1 = xα(α(t)x) for t ∈ T

and x ∈ F . For r ∈ Z≥0 we let Uα,r = xα(m
r
F ).

Remark 3.2. In this chapter we write U instead of N since we try to stick to the notation of

surrounding literature. △

Coxeter number and p. Let h be the Coxeter number of G and assume from now on that

p− 1 > eh.

Pro-p Iwahori subgroups. We follow the definitions of [OS19] with G, T and Uα as above. Let I

be the pro-p Iwahori subgroup of G (associated with a positive chamber as in [OS19], but we do not

need the exact definition). We note by [OS19, Lem. 2.1(i)] and the proof of [OS19, Lem. 2.3] that I

has the following factorization: Multiplication defines a homeomorphism

∏
α∈Φ−

Uα,1 × T 1 ×
∏

α∈Φ+

Uα,0
∼=−→ I, (3.1)

where the products are ordered in an arbitrarily chosen way. For a more detailed introduction to

these pro-p groups we refer to [OS19].
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Pro-p Iwahori subgroups of GLn(F ) and SLn(F ). In this chapter, we will only work with

pro-p Iwahori subgroups of GLn(F ) or SLn(F ), which simplifies the definitions. When G = GLn or

G = SLn, we can always take T the diagonal maximal torus, and we can take I to be the subgroup

of G(OF ) which is upper triangular and unipotent modulo ϖF . In this case we have that Uα,1 for

α ∈ Φ− correspond to entries below the diagonal and Uα,0 for α ∈ Φ+ corresponds to the entries

above the diagonal.

p-valuation on I. By a recent preprint by Lahiri and Sørensen (cf. [LS22, Prop. 3.4]), we know

(since p− 1 > eh) that I admits a p-valuation ω satisfying the properties:

(a) ω is compatible with Iwahori factorization (3.1) of I (cf. [LS22, Def. 3.3]).

(b) ω(xα(x)) = v(x) + ht(α)
eh where


x ∈ mF if α ∈ Φ−,

x ∈ OF if α ∈ Φ+.

(c) ω(t) = 1
e · sup{n ∈ N : t ∈ Tn} for t ∈ T 1.

Ordered basis of I. Let {b1, . . . , bℓ} be a Zp-basis of OF , where ℓ = [F : Qp]. Then(
xα(b1), . . . , xα(bℓ)

)
is an ordered basis for Uα,0 when α ∈ Φ+, and

(
xα(ϖF b1), . . . , xα(ϖF bℓ)

)
is an ordered basis for Uα,1 when α ∈ Φ−. Furthermore, when G is semisimple and simply

connected, we have that the simple coroots {α∨ : α ∈ ∆} form a Z-basis of X∗(T ), and thus(
α∨(exp(ϖF b1)), . . . , α

∨(exp(ϖF bℓ))
)
α∈∆ form an ordered basis of T 1. By [LS22, Cor. 3.6], given

orderings of Φ+ and Φ−, and assuming that G is semisimple and simply connected, we now get: the

sequence of elements

•
(
xα(ϖF b1), . . . , xα(ϖF bℓ)

)
α∈Φ− ,

•
(
α∨(exp(ϖF b1)), . . . , α

∨(exp(ϖF bℓ))
)
α∈∆,

•
(
xα(b1), . . . , xα(bℓ)

)
α∈Φ+

forms an ordered basis of (I, ω) (with ω from the previous paragraph) which is a saturated p-valued

group. Here, [LS22] notes that the p-valuation from the previous paragraph on this basis is given by
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(cf. [LS22, Prop. 3.4]) 
ω
(
xα(ϖF bℓ)

)
=

1

e
+

ht(α)

eh
α ∈ Φ−

ω
(
α∨(ui)

)
=

1

e
α ∈ ∆

ω
(
xα(bℓ)

)
=

ht(α)

eh
α ∈ Φ+.

(3.2)

We note that the above argument uses that exp: mF = (ϖF )→ U
(1)
F = 1+mF takes a basis

to a basis, and noting that {ϖF b1, . . . , ϖF bℓ} is a Zp-basis of mF = ϖFOF .

When G = SLn, we have that Φ = {εi − εj | 1 ≤ i, j ≤ n, i ̸= j} and can take

∆ = {α1 = ε1 − ε2, α2 = ε2 − ε3, . . . , αn−1 = εn−1 − εn},

where εi is the map that takes a diagonal matrix to its i-th diagonal entry. In this case α∨
i (u) =

diag(1, . . . , 1, u, u−1, 1, . . . , 1) = diagi,i+1(u, u
−1), where the non-trivial entries are the i-th and

(i+ 1)-th entries. Since the second non-trivial entry of these matrices are always just the inverse of

the first entry, we will abuse notation and write diagi,i+1(u) = diagi,i+1(u, u
−1). This together with

the above gives us the following ordered basis (in the listed order and with a chosen ordering of

{(i, j) : 1 ≤ i, j ≤ n}) in the case G = SLn:

•
(
1n +ϖF b1Eij , . . . , 1n +ϖF bℓEij

)
1≤j<i≤n

,

•
(
diagi,i+1(exp(ϖF b1)), . . . ,diagi,i+1(exp(ϖF bℓ))

)
i=1,...,n−1

,

•
(
1n + b1Eij , . . . , 1n + bℓEij

)
1≤i<j≤n

.

Here the p-valuation described in (3.2) is given by
ω
(
1n +ϖF bmEij

)
=

1

e
+

j − i

eh
j < i,

ω
(
diagi,i+1(exp(ϖF bm))

)
=

1

e
i = 1, . . . , n− 1,

ω
(
1n + bmEij

)
=

j − i

eh
i < j

(3.3)

on the above ordered basis.

Finally note that an ordered basis of GLn can be obtained from an ordered basis of

SLn by adding non-trivial elements of the center, which in the above corresponds to adding(
exp(ϖF b1)1n, . . . , exp(ϖF bℓ)1n

)
to the middle item above (adding the root ε1 + · · ·+ εn), and the

p-valuation on these is still 1
e .
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Cohomology. We denote (using the Chevalley-Eilenberg complex) the Lie algebra cohomology of

any k-Lie algebra g by H•(g, · ), while we write H•(G, · ) for the continuous group cohomology of

a topological group G. Here we let the entries distinguish between different types of cohomology

without any ambiguity. As in Section 2.1, we introduce filtrations and then gradings on the

cohomology and use the notation Hs,t = grsHs+t for any type of cohomology H.

Spectral sequences. A cohomological spectral sequence is a choice of r0 ∈ N and a collection of

• k-modules Es,t
r for each s, t ∈ Z and all integers r ≥ r0

• differentials ds,tr : Es,t
r → Es+r,t+1−r

r such that d2r = 0 and Er+1 is isomorphic to the homology

of (Er, dr), i.e.,

Es,t
r+1 =

ker(ds,tr : Es,t
r → Es+r,t+1−r

r )

im(ds−r,t+r−1
r : Es−r,t+r−1

r → Es,t
r )

.

For a given r, the collection (Es,t
r , ds,tr )s,t∈Z is called the r-th page. A spectral sequence converges

if dr vanishes on Es,t
r for any s, t when r ≫ 0. In this case Es,t

r is independent of r for sufficiently

large r, we denote it by Es,t
∞ and write

Es,t
r =⇒ Es+t

∞ .

Also, we say that the spectral sequence collapses at the r′-th page if Er = E∞ for all r ≥ r′, but not

for r < r′. Finally, when we have terms En
∞ with a natural filtration F •En

∞ (but no natural double

grading), we set Es,t
∞ = grsEs+t

∞ = F sEs+t
∞ /F s+1Es+t

∞ .

3.1.3 Smith normal form and cohomology

It is well known that the Smith normal form of matrices are useful when calculating

(co)homology over Z as follows.

Fact 3.3. Given a complex

Zn Zm Zℓ,
d1 d2

where d1 and d2 are Z-linear maps with d2 ◦ d1 = 0, the homology at the middle term is given by

ker(d2)/ im(d1) ∼=
r⊕

i=1

Z/aiZ⊕ Zm−r−s.
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Here r = rank(d1), s = rank(d2) and a1, . . . , ar are the non-zero diagonal elements of the Smith

normal form of d1. ♣

We will not directly use this result, but instead we will follow the same ideas but reduce

modulo p to get matrices over k (using the natural embedding Fp ↪→ k). Assuming that the non-zero

diagonal entries ai of the Smith normal form of a matrix d are in {1, 2, . . . , p− 1} (or more generally

gcd(ai, p) = 1), we note that ai (mod p) ∈ k×. So, given an n ×m matrix d with integer entries

such that

d
SNF∼ SNFn×m(a1, . . . , ar, 0, . . . , 0),

where a1, . . . , ar are non-zero and gcd(ai, p) = 1, we get by considering d as a matrix over k that

dimk ker(d) = m− r,

dimk im(d) = r,

dimk coker(d) = n− r.

(3.4)

Remark 3.4. Note that finding the Smith normal form of all matrices used in our (co)homology

calculations, will thus allow us to calculate (co)homological dimensions for p relatively prime to

all non-zero diagonal entries of the Smith normal form matrices. This is what makes this method

preferable to just calculating the rank of the matrices directly, since that would just allow us to find

(co)homological dimensions for p≫ 0, but not give us the precise p it will work for. △

Remark 3.5. We assume here that g can be lifted to a Lie algebra gZ with the same Chevalley

constants such that g = gZ ⊗ k. In particular, we assume that these Chevalley constants are such

that gZ satisfy Jacobi’s identity. This will not be a problem in the following sections, since we are

working with Lie algebras that are well defined mod p for any large enough prime p with coefficients

independent of p. In Section 3.11.2 we will see examples of Lie algebras where we need to work

modulo a specific prime (we will do p = 5) and cannot lift easily to gZ. △

So, when calculating dimensions of homology over k of the middle term in a given complex

kn km kℓ,
d1 d2

where d1 and d2 can be described by matrices with integer entries, and d1
SNF∼ SNFm×n(a1, . . . , ar, 0, . . . , 0)

and d2
SNF∼ SNFℓ×m(b1, . . . , br, 0, . . . , 0), then we can do it as follows:
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n = 0: The dimension of the homology of the middle term is dimk ker(d2) = m− s.

ℓ = 0: The dimension of the homology of the middle term is dimk coker(d1) = m− r.

n, ℓ ̸= 0: The dimension of the homology of the middle term is dimk
ker(d2)
im(d1)

= m − s − r, since

d2 ◦ d1 = 0.

Remark 3.6. Here the general formula is obviously just that the dimension of the homology of the

middle term is m − s − r. Also, note that this is what we directly get from Fact 3.3 in the case

k = Fp, recalling that Z/mZ⊗ Z/nZ ∼= Z/ gcd(n,m)Z. △

Remark 3.7. When the dimensions of the vector spaces we work with get sufficiently large, the

runtime of calculating the full Smith normal form of integer matrices becomes prohibitively high, so

we can use an alternative solution. In this case, we can utilize that we know such a form exists, and

that rankZ(A) = rankZ(B) when A
SNF∼ B. Considering the n×m matrix A with integer entries as a

matrix over R, we can then find the Singular value decomposition (SVD) of A, i.e., complex matrices

U,Σ, V such that A = UΣV ∗. Here U is an n × n unitary matrix, Σ is a rectangular diagonal

n ×m matrix (a matrix like in the Smith normal form) with non-negative real numbers on the

diagonal, and V is an m×m unitary matrix. Now rankRΣ = rankZA allows us to find dimensions

of (co)homology as in the case where we know the Smith normal form, but we use information about

which p exactly the calculations work for. Thus we will only be able to find the (co)homological

dimensions for p≫ 0 in this case. △

3.2 Techniques

In this section we will describe how to calculate information about the cohomology of a

p-valuable group by using its Lazard Lie algebra. Note that this section uses a lot of concepts and

notation from Section 2.1.3.

Let (G,ω) be a p-valuable group and let k be a perfect field of characteristic p. In this

section we will describe how the spectral sequence

Es,t
1 = Hs,t(g, k) =⇒ Hs+t(G, k) (3.5)
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from [Sør21, §6.1] can be used to calculate information about the dimensions of Hn(G, k) for varying

n and information about the cup product on H∗(G, k). After this, we will then briefly discuss how

this applies to pro-p Iwahori subgroups I of GLn or SLn.

Recall that g in the above spectral sequence is given by g = k⊗Fp[π] grG, so to describe g, we

first need a good description of the Fp[π]-Lie algebra grG. To get this description, suppose that we

have an ordered basis (g1, . . . , gd) of G, so that ω(g) = mini=1,...,d

(
ω(gi) + vp(xi)

)
for g = gx1

1 · · · g
xd
d ,

and recall that
(
σ(g1), . . . , σ(gd)

)
is a basis of grG, where σ(g) = gGω(g)+ ∈ grG for g ̸= 1.

To understand the Fp[π]-Lie algebra, we need to find [σ(gi), σ(gj)] = σ
(
[gi, gj ]

)
for all

i, j = 1, . . . , d. We recall from (2.2) that σ(gx) = xπvp(x) . σ(g) for g ∈ G \ {1} and x ∈ Zp \ {0}.

Now, calculating [gi, gj ] for all i, j = 1, . . . , d, we can find x1, . . . , xd ∈ Zp such that

[gi, gj ] = gx1
1 · · · g

xd
d ,

and thus [
σ(gi), σ(gj)

]
= σ

(
[gi, gj ]

)
=

d∑
ℓ=1

xℓπ
vp(xℓ) . σ(gℓ).

See the proofs of [Sch11a, Lem. 26.4 and Prop. 26.5] for more details.

Let {ℓ1, . . . , ℓr} be the subset of {1, . . . , d} such that vp(xℓs) = 0 and vp(xℓ) > 0 for

ℓ /∈ {ℓ1, . . . , ℓr}, and recall that g = k ⊗Fp[π] grG has basis 1 ⊗ σ(gi). Since π acts trivially on k

here, we see that

[ξi, ξj ] =
[
1⊗ σ(gi), 1⊗ σ(gj)

]
=

r∑
s=1

xℓsξℓs .

Now we have a basis (ξ1, . . . , ξd) of g = k ⊗Fp[π] grG, and we know all the structure constants.

Remark 3.8. Note that the structure constants are in Fp ⊆ k by the above, so we can lift them to

structure constants in {0, 1, . . . , p− 1} ⊆ Z, which will be useful later. Also note that we will often

(but not always) be able to lift g to a Z-Lie algebra gZ with g = gZ ⊗ k. △

Assume from now on that the Lie algebra g is unitary, i.e., that [ξi, ξj ] =
∑d

ℓ=1 cijℓξℓ

has
∑d

j=1 cijj = 0. This will be the case for all Lie algebras, we will work with in this chapter.

Suppose furthermore that g is a graded Lie algebra, graded by finitely many positive integers,

g = g1 ⊕ g2 ⊕ · · · ⊕ gm, which will also be the case for all Lie algebras we work with in this chapter.
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Remark 3.9. Note that any p-valuable group G admits a p-valuation ω with values in 1
mZ for some

m ∈ N, cf. [Sch11a, Cor. 33.3]. Thus we can reindex the filtration of G by letting Gi = G i
m

for

i = 0, 1, . . . , and this translates to griG = gr i
m
G and gi = g i

m
in general. In the cases we care

about there will be no zero graded part, which allows us to make the above assumption. △

Then
∧n g is graded as well by letting

grj
( n∧

g
)
=

⊕
j1+···+jn=j

gj1 ∧ · · · ∧ gjn .

We note that, since g is finite dimensional, there are only finitely many non-zero grj
(∧n g

)
we are

interested in, and we can find a basis of each of these using our basis (ξ1, . . . , ξd) of g.

Remark 3.10. When ordering the basis of grj
(∧n g

)
=
⊕

j1+···+jn=j g
j1 ∧ · · · ∧ gjn , we will do it as

follows. First we order the gj1 ∧ · · · ∧ gjn by the lexicographical order on (j1, . . . , jn). Then we order

the basis of each gj1 ∧ · · · ∧ gjn by the lexicographical order on equal jℓ’s, i.e., if g1 = spank(ξ1, ξ3)

and g2 = spank(ξ2, ξ4), then g1 ∧ g1 ∧ g2 has basis ξ1 ∧ ξ3 ∧ ξ2, ξ1 ∧ ξ3 ∧ ξ4. △

Assuming furthermore that k is Z-graded (concentrated in degree 0), the space Homk

(∧n g, k
)

inherits the Z-grading

Homk

( n∧
g, k
)
=
⊕
s∈Z

Homs
k

( n∧
g, k
)
,

where Homs
k denotes the homogeneous k-linear maps of degree s, cf. [FF74, Lem. 4.2]. We note, by

[Fuk86, Chap. 1 §3.7], that these gradings on the chain and cochain complexes transfer to gradings

on the homology and cohomology. We write

Hs,t = Hs,t(g, k) = Hs+t
(
grsHomk

( •∧
g, k
))

.

Remark 3.11. We do not spend effort to describe the homology for a few reasons. First, we need

the cohomology, not the homology, in our spectral sequence. Second, by [Fuk86, Chap. 1 §3.6], we

have a version of Poincaré duality for Lie algebra cohomology, i.e., Hn(g, k) ∼= Hn−d(g, k), so we

can easily describe the homology using the cohomology. Third, we will care about the cup product

later, and we do not get a nice product in homology, cf. [Fuk86, Chap. 1 §3.2]. △
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Now we have bases of all grj
(∧n g

)
, and by [Fuk86, Chap. 1 §3.7] we get graded chain

complexes that we can use to find the homology of g. Here the boundary maps of

· · ·
∧3 g

∧2 g g k 0,
d4 d3 d2 d1

are given by

dn(x1 ∧ · · · ∧ xn) =
∑
i<j

(−1)i+j [xi, xj ] ∧ x1 ∧ · · · ∧ x̂i ∧ · · · ∧ x̂j ∧ · · · ∧ xn,

and the coboundary maps

· · · Homk

(∧2 g, k
)

Homk(g, k) Homk(k, k) = k 0,
∂3 ∂2 ∂1

are the dual maps of the boundary maps (see [Fuk86, Chap. 1 §3.1] for more details). Thus, if we

use the dual basis of
∧n g in Homk

(∧n g, k
)
, we get that ∂n = d⊤n as matrices, where ( · )⊤ is the

transpose (cf. Section 3.1). Since we know bases and linear maps explicitly, and we know that the

linear maps restrict to graded linear maps, we can now find matrices describing all graded linear

maps

grj
( n∧

g
)
→ grj

(n−1∧
g
)
,

and thus we can find matrices describing all graded linear maps

Homs
k

(n−1∧
g, k
)
→ Homs

k

( n∧
g, k
)
.

Noting that all the structure constants can be lifted to Z (in the examples we work with)

and looking at the formula for the boundary maps, it is clear that the above matrices describing

the (co)boundary maps can be lifted to Z. Finding the Smith normal form of these lifts, we can

calculate the cohomology over k by Section 3.1.3 for p large enough. (In most examples, p ≥ 5 will

be enough.)

Suppose now that we have found the dimensions of Hs,t = Hs,t(g, k) for all s, t. To get

information about the cohomology Hn(G, k), we need to use the multiplicative spectral sequence

(3.5), i.e.,

Es,t
1 = Hs,t(g, k) =⇒ Hs+t(G, k)

and information about spectral sequences in general. We already know that this spectral sequence

collapses at a finite page, and one can hope is that it will actually collapse at the first page. One way
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we can verify that the spectral sequence (in certain cases) collapses at the first page, is by considering

the exact bidegrees of the differentials. We know that the differentials ds,tr : Es,t
r → Es+r,t+1−r

r have

bidegree (r, 1− r), so if the non-zero modules on the first pages is distributed in such a way that

all differentials ds,tr are trivial for all s, t and r ≥ 1, then we can be sure that the spectral sequence

collapses on the first page. This will become clearer when we look at examples in the next few

sections.

Now note, by [Fuk86, Chap. 1 §3.7], that the cup product is compatible with the gradings

on the Lie algebra cohomology, in particular

Hs,t ∪Hs′,t′ ⊆ Hs+s′,t+t′ , (3.6)

where Hs,t = Hs,t(g, k). Thus, since the spectral sequence is multiplicative, we can describe the cup

product on H∗(G, k) when the spectral sequence collapses on the first page. Some cup products will

be trivially zero by (3.6), and for the rest of the cup product, we can calculate them with an explicit

basis using the following.

For f ∈ Homk

(∧p g, k
)

and g ∈ Homk

(∧q g, k
)
, we know from [CE56, Chap. XIII, Sect. 8],

that the cup product in cohomology is induced by: f ∪ g ∈ Homk

(∧p+q g, k
)

defined by

(f ∪ g)(x1 ∧ · · · ∧ xp+q) =
∑

σ∈Sp+q

σ(1)<···<σ(p)
σ(p+1)<···<σ(p+q)

sign(σ)f(xσ(1) ∧ · · · ∧ xσ(p))g(xσ(p+1) ∧ · · · ∧ xσ(p+q)). (3.7)

Even when the spectral sequence does not (necessarily) collapse on the first page, we can

still get some bounds on the dimensions of Hn(G, k) that will allow us to draw some conclusions

about the structure of H∗(G, k).

In the rest of this chapter we will focus on using the techniques described in this section to

get as much as possible information about the cohomology of H∗(I, k), where I is the pro-p Iwahori

subgroup of SLn(Qp) or GLn(Qp) n = 2, 3, 4 or the pro-p Iwahori subgroup of SL2(F ) or GL2(F )

for F/Qp a quadratic extension.
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3.3 I ⊆ SL2(Zp)

In this section we will describe the continuous group cohomology of the pro-p Iwahori

subgroup I of SL2(Qp).

When I is the pro-p Iwahori subgroup in SL2(Qp), we know by Section 3.1 that we can take

it to be of the form

I =

(
1 + pZp Zp

pZp 1 + pZp

)det=1

⊆ SL2(Zp).

In this case, an obvious guess for an ordered basis (using that (1 + p)Zp = 1 + pZp) is

g′1 =

(
1 0
p 1

)
, g′2 =

(
1 + p 0

0 (1 + p)−1

)
, g′3 =

(
1 1
0 1

)
.

Because we want to be able to describe the commutators using this ordered basis, we will at one

point need to solve for x in equation of the form (1 + p)x = y. For this reason a better choice of

ordered basis is (as described in Section 3.1)

g1 =

(
1 0
p 1

)
, g2 =

(
exp(p) 0

0 exp(−p)

)
, g3 =

(
1 1
0 1

)
. (3.8)

In this case the above equations to solve translate to solving for x in exp(x) = y, which we can

easily do, as x = log(y), cf. Section 3.1.

3.3.1 Finding the commutators [ξi, ξj]

Now write

gx1
1 gx2

2 gx3
3 =

(
exp(px2) x3 exp(px2)

px1 exp(px2) px1x3 exp(px2) + exp(−px2)

)
=

(
a11 a12
a21 a22

)
. (3.9)

Furthermore, write gij = [gi, gj ] and ξij = [ξi, ξj ]. Then we are ready to find x1, x2, x3 such that

gij = gx1
1 gx2

2 gx3
3 for different i < j. (In the following we use that 1

p−1 = 1 + p + p2 + · · · and

log(1− p) = −p− p2

2 −
p3

3 − · · · .)

We now list all non-identitiy commutators gij = [gi, gj ] and find ξij = [ξi, ξj ] based on these.

(For gij = 12 it is clear that x1 = x2 = x3 = 0, and thus ξij = 0.)

g12 =

(
1 0

p
(
1− exp(−2p)

)
1

)
: Comparing g12 with (3.9), we see that x2 = x3 = 0. This leaves

a21 = px1 = p
(
1 − exp(−2p)

)
= 2p2 + O(p3), which implies that x1 = 2p + O(p2). Hence

σ(g12) = 2π . σ(g1), which implies that ξ12 = 0.
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g13 =

(
1− p p

−p2 1 + p+ p2

)
: Comparing g13 with (3.9), we see that

a11 = exp(px2) = 1− p,

a12 = x3 exp(px2) = x3(1− p) = p,

a21 = px1 exp(px2) = px1(1− p) = −p2,

and thus

x2 =
1

p
log(1− p) =

1

p

(
(−p) +O(p2)

)
= −1 +O(p),

x3 =
p

1− p
= p+O(p2),

x1 =
−p2

p(1− p)
= −p+O(p2).

Hence σ(g13) = −π . σ(g1)− σ(g2)− π . σ(g3), which implies that ξ13 = −ξ2.

g23 =

(
1 exp(2p)− 1
0 1

)
: Comparing g23 with (3.9), we see that x1 = x2 = 0. This leaves a12 =

x3 = exp(2p)− 1 = 2p+O(p2). Hence σ(g23) = 2π . σ(g3), which implies that ξ23 = 0.

To clarify, we found that

σ(g12) = 2π . σ(g1),

σ(g13) = −π . σ(g1)− σ(g2)− π . σ(g3),

σ(g23) = 2π . σ(g3),

and recalling that ξi = 1⊗ σ(gi) in k ⊗Fp[π] grG, where π acts trivially on k, we get that

ξ12 = 0, ξ13 = −ξ2, ξ23 = 0, (3.10)

where ξij = [ξi, ξj ].

3.3.2 Describing the graded chain complex, grj
(∧n g

)
Looking at (3.3) (with e = 1 and h = 2), we see that

ω(g1) = 1− 1

2
=

1

2
, ω(g2) = 1, ω(g3) =

1

2
.
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Hence g1 = g 1
2
= spank(ξ1, ξ3) and g2 = g1 = spank(ξ2), cf. Remark 3.9.

Now we are ready to describe the graded chain complex

grj
( n∧

g
)
=

⊕
j1+···+jn=j

gj1 ∧ · · · ∧ gjn

and its bases. We list the grading of
∧n g for all n.

n = 0 :

grj(k) =


k j = 0,

0 otherwise.

Bases:

k : 1.

n = 1 :

grj(g) =


g2 j = 2,

g1 j = 1,

0 otherwise.

Bases:

g1 : ξ1, ξ3,

g2 : ξ2.

n = 2 :

grj
( 2∧

g
)
=


g1 ∧ g2 j = 3,

g1 ∧ g1 j = 2,

0 otherwise.

Bases:

g1 ∧ g2 : ξ1 ∧ ξ2, ξ3 ∧ ξ2,

g1 ∧ g1 : ξ1 ∧ ξ3.
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n = 3 :

grj
( 3∧

g
)
=


g1 ∧ g1 ∧ g2 j = 4,

0 otherwise.

Bases:

g1 ∧ g1 ∧ g2 : ξ1 ∧ ξ3 ∧ ξ2.

n ≥ 4 :

grj
( n∧

g
)
= 0 for all j.

Table 3.1: Dimensions of grj
(∧n g

)
for the I ⊆ SL2(Zp) case.

0 1 2 3 4

0 1

1 2 1

2 1 2

3 1

n j

We collect the above information about the dimensions of the chain complex of g in Table 3.1,

and note that we only need to consider non-zero (non-empty) entries of the table, when we calculate

Hs,t = Hs,n−s (where Hs,t = Hs,t(g, k)). Also, recalling that

Homk

( n∧
g, k
)
=
⊕
s∈Z

Homs
k

( n∧
g, k
)
,

we see that, with j = −s, we get the same table for dimensions of the graded hom-spaces in the

cochain complex.

3.3.3 Finding the graded Lie algebra cohomology, Hs,t(g, k)

Remark 3.12. In this section we will calculate the cohomology directly instead of using the method

described in Section 3.1.3, since the calculations are only with small matrices. To see how Section 3.1.3

is used, we refer to Section 3.5. △

We will now go through all different graded chain complexes one by one, using that grj

in the chain complex corresponds to grs with s = −j in the cochain complex. We note that the

graded chain complex corresponds to vertical downwards arrows in Table 3.1, while the cochain
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complex corresponds to vertical upwards arrows. And finally, we reiterate that Hn = Hn(g, k) and

Hs,t = Hs,t(g, k) in the following.

In grade 0 we have the chain complex

0 k 0,

which gives us the grade 0 cochain complex

0 Hom0
k(k, k) 0.

So H0 = H0,0 with dimH0,0 = 1.

In grade 1 we have the chain complex

0 g1 0,

which gives us the grade −1 cochain complex

0 Hom−1
k (g, k) 0.

So dimH−1,2 = 2 by Table 3.1.

In grade 2 we have the chain complex

0 g1 ∧ g1 g2 0,
(1)

since

g1 ∧ g1 → g2

ξ1 ∧ ξ3 7→ −[ξ1, ξ3] = ξ2.

This gives us the grade −2 cochain complex

0 Hom−2
k

(∧2 g, k
)

Hom−2
k (g, k) 0.

(1)

So with d = (1), and comparing with Table 3.1,

dimH−2,3 = dimker(d) = 0,

dimH−2,4 = dim coker(d) = 0.
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In grade 3 we have the chain complex

0 g1 ∧ g2 0,

which gives us the grade −3 cochain complex

0 Hom−3
k

(∧2 g, k
)

0.

So dimH−3,5 = 2 by Table 3.1.

In grade 4 we have the chain complex

0 g1 ∧ g1 ∧ g2 0,

which gives us the grade −4 cochain complex

0 Hom−4
k

(∧3 g, k
)

0.

So dimH−4,7 = 1 by Table 3.1.

Table 3.2: Dimensions of Es,t
1 = Hs,t(g, k) for the I ⊆ SL2(Zp) case.

0 −1 −2 −3 −4

0 1

1

2 2

3

4

5 2

6

7 1

t
s

Altogether, we see that

H0 = H0,0,

H1 = H−1,2,

H2 = H−3,5,

H3 = H−4,7,

(3.11)

with dimension as described in Table 3.2.
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3.3.4 Describing the group cohomology, Hn(I, k)

We note that all differentials ds,tr : Es,t
r → Es+r,t+1−r

r in Table 3.2 has bidegree (r, 1− r), i.e.,

they are all below the (r,−r) arrow going r to the left and r up in the table, where r ≥ 1. Looking

at Table 3.2, this clearly means that all differentials for r ≥ 1 are trivial, and thus the spectral

sequence collapses on the first page. Hence Hs,t(g, k) = Es,t
1
∼= Es,t

∞ = grsHs+t(I, k), and by (3.11)

and Table 3.2 we get that

dimHn(I, k) =



1 n = 0,

2 n = 1,

2 n = 2,

1 n = 3.

(3.12)

Recalling that the spectral sequence is multiplicative, we also note, by Table 3.2, that

Hs,t ∪Hs′,t′ ⊆ Hs+s′,t+t′ implies that the cup products

grsHn(I, k)⊗ grs
′
Hn′

(I, k)→ grs+s′ Hn+n′
(I, k)

are trivial, except for the obvious ones with H0(I, k) and H1 ⊗H2 → H3. We now want to describe

the cup product H1 ⊗H2 → H3.

Let ei1,...,im = (ξi1 ∧ · · · ∧ ξim)
∗ be the element of the dual basis of Homk

(∧m g, k
)

corre-

sponding to ξi1 ∧· · ·∧ ξim in the basis of
∧m g. Looking at the cochain complexes and descriptions of

the maps above together with the known bases of the graded chain complexes, we get the following

precise descriptions of the of the graded cohomology spaces Hs,t = Hs,t(g, k):

H−1,2 = k[e1, e3],

H−3,5 = k[e1,2, e3,2],

H−4,7 = k[e1,3,2].

(3.13)

Remark 3.13. Here we abuse notation and write k[e1, e3] for the k-vector space with basis e1 and

e3, and not the polynomial ring. We use the same notation from now on without notice, and note

that this should not give rise to any confusion since it will only be used for basis elements of the

ei1,...,im . △
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For f ∈ Homk

(∧p g, k
)

and g ∈ Homk

(∧q g, k
)
, we recall from (3.7) that the cup product

in cohomology is induced by: f ∪ g ∈ Homk

(∧p+q g, k
)

defined by

(f ∪ g)(x1 ∧ · · · ∧ xp+q) =
∑

σ∈Sp+q

σ(1)<···<σ(p)
σ(p+1)<···<σ(p+q)

sign(σ)f(xσ(1) ∧ · · · ∧ xσ(p))g(xσ(p+1) ∧ · · · ∧ xσ(p+q)).

So, when finding

H−1,2 ⊗H−3,5 H−4,7,∪

we need to calculate e1 ∪ e1,2, e1 ∪ e3,2, e3 ∪ e1,2 and e3 ∪ e3,2 on the basis B = (ξ1 ∧ ξ3 ∧ ξ2) of

gr4
∧3 g.

We first note that (3.7) simplifies to

(ei ∪ ej,k)(x1 ∧ x2 ∧ x3) =
∑
σ∈S3

σ(2)<σ(3)

sign(σ)ei(xσ(1))ej,k(xσ(2) ∧ xσ(3))

in these cases. Here the terms of the sum on the right is only non-zero if xσ(1) = ξi and xσ(2)∧xσ(3) =

ξj ∧ ξk (up to constants). In the case e1 ∪ e1,2 (resp. e3 ∪ e3,2), we can only have this if x1 ∧ x2 ∧ x3

contains two copies of ξ1 (resp. ξ3), which implies that x1 ∧ x2 ∧ x3 = 0. So e1 ∪ e1,2 = 0 and

e3 ∪ e3,2 = 0. Alternatively, one can see this by plugging in x1 ∧ x2 ∧ x3 = ξ1 ∧ ξ3 ∧ ξ2 and simply

calculating the right side.

In the case e1 ∪ e3,2, (3.7) simplifies to

(e1 ∪ e3,2)(x1 ∧ x2 ∧ x3) =
∑
σ∈S3

σ(2)<σ(3)

sign(σ)e1(xσ(1))e3,2(xσ(2) ∧ xσ(3)).

When x1 ∧ x2 ∧ x3 = ξ1 ∧ ξ3 ∧ ξ2, we see that the terms on the right side are only non-zero if

xσ(1) = ξ1, i.e., σ(1) = 1, and thus σ = (1) since σ(2) < σ(3). So xσ(1) = ξ1, xσ(2) ∧ xσ(3) = ξ3 ∧ ξ2

and sign(σ) = 1, which gives us (e1 ∪ e3,2)(ξ1 ∧ ξ3 ∧ ξ2) = 1. Hence e1 ∪ e3,2 = e1,3,2.

In the case e3 ∪ e1,2, (3.7) simplifies to

(e3 ∪ e1,2)(x1 ∧ x2 ∧ x3) =
∑
σ∈S3

σ(2)<σ(3)

sign(σ)e3(xσ(1))e1,2(xσ(2) ∧ xσ(3)).

When x1 ∧ x2 ∧ x3 = ξ1 ∧ ξ3 ∧ ξ2, we see that the terms on the right side are only non-zero if

xσ(1) = ξ3, i.e., σ(1) = 2, and thus σ = (1, 2) since σ(2) < σ(3). So xσ(1) = ξ3, xσ(2) ∧xσ(3) = ξ1 ∧ ξ2

and sign(σ) = −1, which gives us (e3 ∪ e1,2)(ξ1 ∧ ξ3 ∧ ξ2) = −1. Hence e3 ∪ e1,2 = −e1,3,2.
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In conclusion, all the non-trivial and non-zero cup products (up to graded commutativity)

are:
e1 ∪ e3,2 = e1,3,2,

e3 ∪ e1,2 = −e1,3,2.
(3.14)

Now, since the spectral sequence collapses on the first page, all of the above work on the cup

product of the Lie algebra cohomology transfers to the cup product on H∗(I, k) as described above.

In particular, since all Hn(I, k) only have one graded component, this is a clear description of the

cup product on H∗(I, k), and not just a graded cup product.

Remark 3.14. Let D be the division quaternion algebra over Qp for a prime p > 3 and let G =

(1 +mD)
Nrd=1, where Nrd = NrdD/Qp

is the norm form. From [Sør21, Sect. 6.3] (or from [Hen07,

Prop. 7]) we know that there is an isomorphism

H∗(G,Fp) ∼= Fp ⊕ FD ⊕ FD ⊕ Fp

of graded Fp-algebras (where FD
∼= Fp2 is viewed simply as a Fp-vector space). I.e., Hn(G,Fp)

has the same dimensions as described in (3.12) (with k = Fp). [Sør21] also shows that the only

non-trivial and non-zero cup product is H1(G,Fp) ×H2(G,Fp) → H3(G,Fp), which corresponds

to the trace pairing FD × FD → Fp, (x, y) 7→ Tr(xy) (where Tr = TrFD/Fp
from [Neu99, Def. 2.5]).

To be more explicit, let’s assume that p ≡ 3 (mod 4). Then x2 + 1 is irreducible over Fp, so we

can write FD = Fp[α] with α2 = −1, where Fp[α] has Fp-basis 1, α. Now, considering the maps

1: a+ bα 7→ a+ bα, α : a+ bα 7→ −b+ aα and α2 = −1: a+ bα 7→ −a− bα, we see that the trace

pairing is given by

FD × FD → Fp

(1, 1) 7→ Tr(1) = 2,

(1, α) 7→ Tr(α) = 0,

(α, 1) 7→ Tr(α) = 0,

(α, α) 7→ Tr(α2) = −2.

This is (up to a multiple of 2) the same as the description of the cup product on H∗(I,Fp) above for

I ⊆ SL2(Zp), so an interesting question is: Is there a nice relation between mod p representations of
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G = (1 +mD)
Nrd=1 and I? We already have bijections between certain mod p representations of

D× and GL2(Qp) from the Jacquet-Langlands correspondence for GL2 (cf. [JL70]), but by [Tok15,

Rem. 4.5] irreducible representations of D× are trivial on 1 +mD, so we need something new if we

want a correspondence between mod p representations of G = (1 +mD)
Nrd=1 and I ⊆ SL2(Qp).

As a continuation to the question in the p ≡ 3 (mod 4) case, we note that gD = FD ⊕ FTr=0
D

sitting in degree 1 and 2 has Lie bracket given by [x, y] = xyp − yxp for any x, y ∈ FD in degree 1

(and 0 otherwise) by [Sør21, (6.6)]. So, with FD = Fp[α], we note that

[1, α] = 1 · αp − α · 1p = −2α,

since p ≡ 3 (mod 4) and α2 = −1. Thus we have an obvious relation between g and gD given

by ξ1, ξ3 ↔ 1, α in degree 1 and ξ2 ↔ 2α in degree 2. The question is whether we can lift this

to a relation between (the representations of) I and G. Which we will explore in more detail in

Section 3.11.1. △

It might even be the case, that we have a group isomorphism between (1 +mD)
Nrd=1 and I,

which lifts the Fp-Lie algebra isomorphism g ∼= gD of Remark 3.14, but this seems less likely.

3.3.5 Lower p-series of I

One of the consequences of the cohomology calculations above is that I is not a uniformly

powerful group. To see this, note by the proof of [HKN11, Thm. 3.3.3] that a uniformly powerful

pro-p group is equi-p-valuable, and thus Lazard’s famous isomorphism H∗(G, k) ∼=
∧
Homk(g, k) for

equi-p-valued groups G can be applied to uniformly powerful groups. We refer to [Sør21, Cor. 6.3]

for a proof of the isomorphism with methods similar to what we use in this chapter. Now, since the

dimensions from (3.12) do not match the dimensions of
∧
Homk(g, k) (1, 3, 3, 1 since dimk g = 3), we

see that I cannot be uniformly powerful (or equi-p-valuable). This leads to the interesting question

of, whether we can describe the lower p-series of I, and see that I is not uniformly powerful directly?

Before answering this question, we recall the following definitions, cf. [Dix+99, Def. 1.15,

Cor. 1.20, Def. 3.1 and Def. 4.1].

Definition 3.15. A p-valued group G is equi-p-valuable if it admits a p-valuation ω and an ordered

basis (g1, . . . , gd) such that ω(gi) = ω(gj) for all i, j. ♠
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Definition 3.16. Let G be a finitely generated pro-p group. The lower p-series · · · ≥ P3(G) ≥

P2(G) ≥ P1(G) of G is given by Pi(G), where P1(G) = G and

Pi+1(G) = Pi(G)p
[
Pi(G), G

]
for i ≥ 1. ♠

Definition 3.17. Let p be an odd prime. A pro-p group G is uniformly powerful (often written as

uniform) if

(i) G is finitely generated,

(ii) G is powerful, i.e., G/Gp is abelian, and

(iii) for all i, [Pi(G) : Pi+1(G)] = [G : P2(G)]. ♠

To show directly that I is not uniformly powerful, we will calculate its lower p-series, for

which we will introduce the notation Ii = Pi(I) and work with generators of I. We already know

that I is generated by g1, g2, g3 (note that this is similar to [CR16, Thm. 2.4.1] but with exp(p)

instead of 1 + p in the torus), and we now want to describe the generators of each Ii = Pi(I). For

this description we will use the following lemma.

Lemma 3.18. Let J be the subgroup of I generated by gp
v1

1 , gp
v2

2 , gp
v3

3 , and set m1 = min(v1, v2),

m2 = min(v1, v3) and m3 = min(v2, v3). Then

(i) Jp is the subgroup generated by gp
v1+1

1 , gp
v2+1

2 , gp
v3+1

3 , and

(ii) [J, I] is the subgroup generated by gp
m1+1

1 , gp
m2

2 , gp
m3+1

3 . ♣

Proof. By the definition of J , it is clear that Jp is the subgroup generated by gp
v1+1

1 , gp
v2+1

2 , gp
v3+1

3 ,

so we only need to show (ii).

To find generators of [J, I], it is enough to calculate the commutators of the generators of J

and I, and we note that g and gx generate the same subgroup for g ∈ I if x ∈ Z×
p . Now

[
gp

v1

1 , g2
]
=

(
1 0

pv1+1
(
1− exp(−2p)

)
0

)
= g

pv1 (1−exp(−2p))
1 ,
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[
g1, g

pv2
2

]
=

(
1 0

p
(
1− exp(−2pv2+1)

) )
= g

pv2 (1−exp(−2pv2+1))
1 ,

where 1
p

(
1 − exp(−2p)

)
∈ Z×

p and 1
p

(
1 − exp(−2pv2+1)

)
∈ Z×

p (since they both have vp = 0), so

these commutators are correspond to generators gp
v1+1

1 and gp
v2+1

1 . Since gp
v1+1

1 and gp
v2+1

1 clearly

generate the same group as gp
m1+1

1 , we have the subgroup generated by gp
m1+1

1 in [J, I].

Similarly

[
gp

v2

2 , g3
]
=

(
1 exp(2pv2+1)− 1
0 1

)
= g

exp(2pv2+1)−1
3 ,

[
g2, g

pv3
3

]
=

(
1 pv3

(
exp(2p)− 1

)
0 1

)
= g

pv3 (exp(2p)−1)
3 ,

where 1
pv2+1

(
exp(2pv2+1) − 1

)
∈ Z×

p and 1
p

(
exp(2p) − 1

)
, so these commutators correspond to

generators gp
v2+1

3 and gp
v3+1

3 , which generate the same subgroup as gp
m3+1

3 . Hence the subgroup

generated by gp
m1+1

1 and gp
m3+1

3 is a subgroup of J .

Finally, comparing

[
gp

v1

1 , g3
]
=

(
1− pv1+1 pv1+1

−p2v1+2 p2v1+2 + pv1+1 + 1

)
= gx1

1 gx2
2 gx3

3

with (3.9), we see that

a11 = exp(px2) = 1− pv1+1,

a12 = x3 exp(px2) = x3
(
1− pv1+1

)
= pv1+1,

a21 = px1 exp(px2) = px1
(
1− pv1+1

)
= −p2v1+2,

and thus

x2 =
1

p
log(1− pv1+1) = −pv1 +O(pv1+1),

x3 =
pv1+1

1− pv1+1
= pv1+1 +O(pv1+2),

x1 =
−p2v1+2

p(1− pv1+1)
= −p2v1+1 +O(p2v1+2).

Using that gm1+1
1 and gm3+1

3 generate a subgroup of J and that m1 ≤ v1 and m3 ≤ v3, we can see

that the above adds a generator g
1
p
(log(1−pv1+1))

2 , and since

1
p log(1− pv1+1)

pv1
∈ Z×

p ,
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we see that this is equivalent to adding a generator gp
v2

2 . Similarly, comparing

[
g1, g

pv3
3

]
=

(
1− pv3+1 p2v3+1

−pv3+2 p2v3+2 + pv3+1 + 1

)
= gx1

1 gx2
2 gx3

3

with (3.9), we see that

a11 = exp(px2) = 1− pv3+1,

a12 = x3 exp(px2) = x3
(
1− pv3+1

)
= p2v3+1,

a21 = px1 exp(px2) = px1
(
1− pv3+1

)
= −pv3+2,

and thus

x2 =
1

p
log(1− pv3+1) = −pv3 +O(pv3+1),

x3 =
p2v3+1

1− pv3+1
= p2v1+1 +O(p2v1+2),

x1 =
−pv3+2

p(1− pv3+1)
= −pv3+1 +O(pv3+2).

Using that gm1+1
1 and gm3+1

3 generate a subgroup of J and that m1 ≤ v1 and m3 ≤ v3, we can see

that the above adds a generator g
1
p
(log(1−pv3+1))

2 , and since

1
p log(1− pv3+1)

pv3
∈ Z×

p ,

we see that this is equivalent to adding a generator gp
v3

2 . So we have added the generators gp
v1

2 and

gp
v3

2 , which is equivalent to adding the generator gp
m2

2 .

Altogether, we see that [J, I] is generated by gp
m1+1

1 , gp
m2

2 and gp
m3+1

3 . □

Now I = I1 is generated by g1, g2, g3, so by Lemma 3.18 Ip is generated by gp1 , g
p
2 , g

p
3 and [I, I]

is generated by gp1 , g2, g
p
3. Thus I2 = Ip[I, I] is generated by gp1 , g2, g

p
3, and we see that I2 = [I, I].

Using Lemma 3.18 again, we see that [I, I]p is generated by gp
2

1 , gp2 , g
p2

3 and
[
[I, I], I

]
is generated

by gp1 , g
p
2 , g

p
3 . So I3 is generated by gp1 , g

p
2 , g

p
3 , and we see that I3 = Ip. We now claim that

Ii =


Ip

n
if i = 2n+ 1,

[I, I]p
n−1

if i = 2n,

where I2n+1 is generated by gp
n

1 , gp
n

2 , gp
n

3 and I2n is generated by gp
n

1 , gp
n−1

2 , gp
n

3 . We will prove this

by induction on i, where we already covered the base cases above. Assume first that I2n = [I, I]p
n−1
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is generated by gp
n

1 , gp
n−1

2 , gp
n

3 . Then, by Lemma 3.18, Ip2n is generated by gp
n+1

1 , gp
n

2 , gp
n+1

3 and

[I2n, I] is generated by gp
n

1 , gp
n

2 , gp
n

3 , so I2n+1 = Ip2n[I2n, I] is generated by gp
n

1 , gp
n

2 , gp
n

3 and thus

I2n+1 = Ip
n . Assume now, on the other hand, that I2n+1 = Ip

n is generated by gp
n

1 , gp
n

2 , gp
n

3 . Then, by

Lemma 3.18, Ip2n+1 is generated by gp
n+1

1 , gp
n+1

2 , gp
n+1

3 and [I2n+1, I] is generated by gp
n+1

1 , gp
n

2 , gp
n+1

3 ,

so I2n+2 = Ip2n+1[I2n+1, I] is generated by gp
n+1

1 , gp
n

2 , gp
n+1

3 and thus I2n+2 = [I, I]p
n . Hence, by

induction, we have proved:

Theorem 3.19. Let I be the pro-p Iwahori subgroup of SL2(Qp) and let g1, g2, g3 be the ordered

basis of I from (3.8). Then the lower p-series is given by

Pi(I) =


Ip

n
if i = 2n+ 1,

[I, I]p
n−1

if i = 2n,

where P2n+1(I) = Ip
n is the subgroup generated by gp

n

1 , gp
n

2 , gp
n

3 and P2n(I) = [I, I]p
n−1 is the

subgroup generated by gp
n

1 , gp
n−1

2 , gp
n

3 .

Thus

[Pi(G) : Pi+1(G)] =


1 if i = 2n,

2 if i = 2n+ 1.

In particular, I is not uniformly powerful. ♣

3.4 I ⊆ GL2(Zp)

In this section we will describe the continuous group cohomology of the pro-p Iwahori

subgroup I of GL2(Qp).

When I is the pro-p Iwahori subgroup in GL2(Qp), we know by Section 3.1 that we can take

it to be of the form

I =

(
1 + pZp Zp

pZp 1 + pZp

)
⊆ GL2(Zp),

and, by Section 3.1, we have an ordered basis

g1 =

(
1 0
p 1

)
, g2 =

(
exp(p) 0

0 exp(−p)

)
,

g3 =

(
exp(p) 0

0 exp(p)

)
, g4 =

(
1 1
0 1

)
.

(3.15)
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Since we just renamed some elements and added an element of the center of GL2(Zp) when comparing

to the ordered basis of I ⊆ SL2(Zp) from Section 3.3, it is clear from Equation (3.10) that the only

non-zero commutator in g = k ⊗ grG is

[ξ1, ξ4] = −ξ2,

where ξi = 1⊗ σ(gi) as usual.

3.4.1 Describing the graded chain complex, grj
(∧n g

)
Looking at (3.3) (with e = 1 and h = 2) and the note about the GLn case after (3.3), we see

that

ω(g1) =
1

2
, ω(g2) = 1,

ω(g3) = 1 ω(g4) =
1

2
.

Hence g1 = g 1
2
= spank(ξ1, ξ4) and g2 = g1 = spank(ξ2, ξ3), cf. Remark 3.9.

Now we are ready to describe the graded chain complex

grj
( n∧

g
)
=

⊕
j1+···+jn=j

gj1 ∧ · · · ∧ gjn

and its bases.

n = 0 :

grj(k) =


k j = 0,

0 otherwise.

Bases:

k : 1.

n = 1 :

grj(g) =


g2 j = 2,

g1 j = 1,

0 otherwise.
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Bases:

g1 : ξ1, ξ4,

g2 : ξ2, ξ3.

n = 2 :

grj
( 2∧

g
)
=



g2 ∧ g2 j = 4,

g1 ∧ g2 j = 3,

g1 ∧ g1 j = 2,

0 otherwise.

Bases:

g2 ∧ g2 : ξ2 ∧ ξ3,

g1 ∧ g2 : ξ1 ∧ ξ2, ξ1 ∧ ξ3, ξ4 ∧ ξ2, ξ4 ∧ ξ3,

g1 ∧ g1 : ξ1 ∧ ξ4.

n = 3 :

grj
( 3∧

g
)
=


g1 ∧ g2 ∧ g2 j = 5,

g1 ∧ g1 ∧ g2 j = 4,

0 otherwise.

Bases:

g1 ∧ g2 ∧ g2 : ξ1 ∧ ξ2 ∧ ξ3, ξ4 ∧ ξ2 ∧ ξ3,

g1 ∧ g1 ∧ g2 : ξ1 ∧ ξ4 ∧ ξ2, ξ1 ∧ ξ4 ∧ ξ3.

n = 4 :

grj
( 4∧

g
)
=


g1 ∧ g1 ∧ g2 ∧ g2 j = 6,

0 otherwise.

Bases:

g1 ∧ g1 ∧ g2 ∧ g4 : ξ1 ∧ ξ4 ∧ ξ2 ∧ ξ3.
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Table 3.3: Dimensions of grj
(∧n g

)
for the I ⊆ GL2(Zp) case.

0 1 2 3 4 5 6

0 1

1 2 2

2 1 4 1

3 2 2

4 1

n j

n ≥ 5 :

grj
( n∧

g
)
= 0 for all j.

We collect the above information about the dimensions of the chain complex of g in Table 3.3,

and note that we only need to consider non-zero (non-empty) entries of the table, when we calculate

Hs,t = Hs,n−s (where Hs,t = Hs,t(g, k)). Also, recalling that

Homk

( n∧
g, k
)
=
⊕
s∈Z

Homs
k

( n∧
g, k
)
,

we see that, with j = −s, we get the same table for dimensions of the graded hom-spaces in the

cochain complex.

3.4.2 Finding the graded Lie algebra cohomology, Hs,t(g, k)

We will now go through all different graded chain complexes one by one, using that grj

in the chain complex corresponds to grs with s = −j in the cochain complex. We note that the

graded chain complex corresponds to vertical downwards arrows in Table 3.3, while the cochain

complex corresponds to vertical upwards arrows. And finally, we reiterate that Hn = Hn(g, k) and

Hs,t = Hs,t(g, k) in the following.

In grade 0 we have the chain complex

0 k 0,

which gives us the grade 0 cochain complex

0 Hom0
k(k, k) 0.

So H0 = H0,0 with dimH0,0 = 1.
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In grade 1 we have the chain complex

0 g1 0,

which gives us the grade −1 cochain complex

0 Hom−1
k (g, k) 0.

So dimH−1,2 = 2 by Table 3.1.

In grade 2 we have the chain complex

0 g1 ∧ g1 g2 0,

1

0



since

g1 ∧ g1 → g2

ξ1 ∧ ξ4 7→ −[ξ1, ξ4] = ξ2.

This gives us the grade −2 cochain complex

0 Hom−2
k

(∧2 g, k
)

Hom−2
k (g, k) 0.

(
1 0

)

So with

d =
(
1 0

)
,

and comparing with Table 3.3,

dimH−2,3 = dimker(d) = 1,

dimH−2,4 = dim coker(d) = 0.

In grade 3 we have the chain complex

0 g1 ∧ g2 0,
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which gives us the grade −3 cochain complex

0 Hom−3
k

(∧2 g, k
)

0.

So dimH−3,5 = 2 by Table 3.1.

In grade 4 we have the chain complex

0 g1 ∧ g1 ∧ g2 g2 ∧ g2 0,

(
0 1

)

since

g1 ∧ g1 ∧ g2 → g2 ∧ g2

ξ1 ∧ ξ4 ∧ ξ2 7→ −[ξ1, ξ4] ∧ ξ2 + [ξ1, ξ2] ∧ ξ4 − [ξ4, ξ2] ∧ ξ1 = ξ2 ∧ ξ2 = 0,

ξ1 ∧ ξ4 ∧ ξ3 7→ −[ξ1, ξ4] ∧ ξ3 + [ξ1, ξ3] ∧ ξ4 − [ξ4, ξ3] ∧ ξ1 = ξ2 ∧ ξ3.

This gives us the grade −4 cochain complex

0 Hom−4
k

(∧3 g, k
)

Hom−4
k

(∧2 g, k
)

0.

0

1



So with

d =

(
0
1

)
,

and comparing with Table 3.3,

dimH−4,6 = dimker(d) = 0,

dimH−4,7 = dim coker(d) = 1.

In grade 5 we have the chain complex

0 g1 ∧ g2 ∧ g2 0,

which gives us the grade −5 cochain complex

0 Hom−5
k

(∧3 g, k
)

0.
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So dimH−5,8 = 2 by Table 3.1.

In grade 6 we have the chain complex

0 g1 ∧ g1 ∧ g2 ∧ g2 0,

which gives us the grade −6 cochain complex

0 Hom−6
k

(∧4 g, k
)

0.

So dimH−6,10 = 1 by Table 3.1.

Table 3.4: Dimensions of Es,t
1 = Hs,t(g, k) for the I ⊆ GL2(Zp) case.

0 −1 −2 −3 −4 −5 −6

0 1

1

2 2

3 1

4

5 4

6

7 1

8 2

9

10 1

t
s

Altogether, we see that

H0 = H0,0,

H1 = H−1,2 ⊕H−2,3,

H2 = H−3,5,

H3 = H−4,7 ⊕H−5,8,

H4 = H−6,10,

(3.16)

with dimension as described in Table 3.4.
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3.4.3 Describing the group cohomology, Hn(I, k)

We note that all differentials ds,tr : Es,t
r → Es+r,t+1−r

r in Table 3.4 have bidegree (r, 1− r),

i.e., they are all below the (r,−r) arrow going r to the left and r up in the table, where r ≥ 1.

Looking at Table 3.4, this clearly means that all differentials for r ≥ 1 are trivial, and thus the

spectral sequence collapses on the first page. Hence Hs,t(g, k) = Es,t
1
∼= Es,t

∞ = grsHs+t(I, k), and

by (3.16) and Table 3.4 we get that

dimHn(I, k) =



1 n = 0,

3 n = 1,

4 n = 2,

3 n = 3,

1 n = 4.

(3.17)

Recalling that the spectral sequence is multiplicative, we also note, by Table 3.4, that

Hs,t ∪Hs′,t′ ⊆ Hs+s′,t+t′ implies that the cup products

grsHn(I, k)⊗ grs
′
Hn′

(I, k)→ grs+s′ Hn+n′
(I, k)

are trivial except for the cases with H0 and

H−1,2 ∪H−2,3 ⊆ H−3,5,

H−1,2 ∪H−3,5 ⊆ H−4,7,

H−1,2 ∪H−5,8 ⊆ H−6,10,

H−2,3 ∪H−3,5 ⊆ H−5,8,

H−2,3 ∪H−4,7 ⊆ H−6,10,

H−3,5 ∪H−3,5 ⊆ H−6,10,

(3.18)

and the reverse of the above (which we can find using graded commutativity).

Next we want to describe these cup products.

Let ei1,...,im = (ξi1 ∧ · · · ∧ ξim)
∗ be the element of the dual basis of Homk

(∧m g, k
)

corre-

sponding to ξi1 ∧· · ·∧ ξim in the basis of
∧m g. Looking at the cochain complexes and descriptions of
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the maps above together with the known bases of the graded chain complexes, we get the following

precise descriptions of the of the graded cohomology spaces Hs,t = Hs,t(g, k):

H−1,2 = k[e1, e4],

H−2,3 = ker
(
1 0

)
= k[e3],

H−3,5 = k[e1,2, e1,3, e4,2, e4,3],

H−4,7 =
k[e1,4,2, e1,4,3]

im

(
0
1

) = k[e1,4,2],

H−5,8 = k[e1,2,3, e4,2,3],

H−6,10 = k[e1,4,2,3].

(3.19)

For f ∈ Homk

(∧p g, k
)

and g ∈ Homk

(∧q g, k
)
, we recall from (3.7) that the cup product

in cohomology is induced by: f ∪ g ∈ Homk

(∧p+q g, k
)

defined by

(f ∪ g)(x1 ∧ · · · ∧ xp+q) =
∑

σ∈Sp+q

σ(1)<···<σ(p)
σ(p+1)<···<σ(p+q)

sign(σ)f(xσ(1) ∧ · · · ∧ xσ(p))g(xσ(p+1) ∧ · · · ∧ xσ(p+q)).

We will now find all the cup products in (3.18) by working with our given bases and the

(3.7).

We will start by finding

H−1,2 ⊗H−2,3 H−3,5.∪

Looking at (3.19), we need to describe the maps e1 ∪ e3 and e4 ∪ e3 on the basis of gr3
∧2 g, i.e., on

B = (ξ1 ∧ ξ2, ξ1 ∧ ξ3, ξ4 ∧ ξ2, ξ4 ∧ ξ3). In the case of e1 ∪ e3, (3.7) simplifies to

(e1 ∪ e3)(x1 ∧ x2) =
∑
σ∈S2

sign(σ)e1(xσ(1))e3(xσ(2)),

which is zero on all of B except ξ1 ∧ ξ3 with σ = (1), where we get (using that sign
(
(1)
)
= 1)

(e1 ∪ e3)(ξ1 ∧ ξ3) = 1.

Hence e1 ∪ e3 = e1,3. In the case of e4 ∪ e3, (3.7) simplifies to

(e4 ∪ e3)(x1 ∧ x2) =
∑
σ∈S2

sign(σ)e4(xσ(1))e3(xσ(2)),
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which is zero on all of B except ξ4 ∧ ξ3 with σ = (1), where we get (using that sign
(
(1)
)
= 1)

(e4 ∪ e3)(ξ4 ∧ ξ3) = 1.

Hence e4 ∪ e3 = e4,3. Looking at (3.19), we see that e1,3 and e4,3 are the second and forth basis

elements of H−3,5, so the above calculation caries over to the above cup product in cohomology.

We will now describe

H−1,2 ⊗H−3,5 H−4,7.∪

Looking at (3.19), we need to describe the maps

e1 ∪ e1,2, e1 ∪ e1,3, e1 ∪ e4,2, e1 ∪ e4,3,

e4 ∪ e1,2, e4 ∪ e1,3, e4 ∪ e4,2, e4 ∪ e4,3

on the basis of gr4
∧3 g, i.e., on B = (ξ1 ∧ ξ4 ∧ ξ2, ξ1 ∧ ξ4 ∧ ξ3). In any case with repeat numbers, it

is clear from (3.7) (and the fact that there are no repeats in B) that the cup product will be zero,

so we only need to consider e1 ∪ e4,2, e1 ∪ e4,3, e4 ∪ e1,2 and e4 ∪ e1,3. In all cases of ei ∪ ej,k, (3.7)

simplifies to

(ei ∪ ej,k)(x1 ∧ x2 ∧ x3) =
∑
σ∈S3

σ(2)<σ(3)

sign(σ)ei(xσ(1))ej,k(xσ(2) ∧ xσ(3)),

i.e., the sum is over σ ∈ {(1), (1, 2), (1, 3, 2)}. When (i, j, k) = (1, 4, 2) or (i, j, k) = (1, 4, 3), this

sum is zero on all of B except ξi ∧ ξj ∧ ξk with σ = (1), since σ needs to fix 1 and B uses the same

ordering. Here we get (using that sign
(
(1)
)
= 1)

(ei ∪ ej,k)(ξi ∧ ξj ∧ ξk) = 1.

Hence e1 ∪ e4,2 = e1,4,2 and e1 ∪ e4,3 = e1,4,3. When (i, j, k) = (4, 1, 2) or (i, j, k) = (4, 1, 3), the sum

is zero on all of B except ξj ∧ ξi ∧ ξk with σ = (1, 2), since the order of the first and second elements

of (i, j, k) are swapped compared to in B. Here we get (using that sign
(
(1, 2)

)
= −1)

(ei ∪ ej,k)(ξi ∧ ξj ∧ ξk) = −1.

Hence e4 ∪ e1,2 = −e1,4,2 and e4 ∪ e1,3 = −e1,4,3. Looking at (3.19), we see that e1,4,3 reduces to

zero in H−4,7, while e1,4,2 is part of the basis. So in the cup product on the cohomology, the only

nontrivial products are e1 ∪ e4,2 = e1,4,2 and e4 ∪ e1,2 = −e1,4,2.
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At this point, it should be clear how to skip some of the details, so we will proceed with less

justification than above.

Now consider

H−1,2 ⊗H−5,8 H−6,10.∪

Looking at (3.19), the only nontrivial maps we need to describe are e1 ∪ e4,2,3 and e4 ∪ e1,2,3 on the

basis of gr6
∧4 g, i.e., on B = (ξ1 ∧ ξ4 ∧ ξ2 ∧ ξ3). For e1 ∪ e4,2,3 to be non-zero, we need σ ∈ S4 that

fixes 1 and satisfies σ(2) < σ(3) < σ(4), which is only true for σ = (1). For e4 ∪ e1,2,3 to be non-zero,

we need σ ∈ S4 that swaps 1 and 2 and satisfies σ(2) < σ(3) < σ(4), which is only true for σ = (1, 2).

Since sign
(
(1)
)
= 1 and sign

(
(1, 2)

)
= −1, we get that e1 ∪ e4,2,3 = e1,4,2,3 and e4 ∪ e1,2,3 = −e1,4,2,3.

Looking at (3.19), we see that e1,4,2,3 it the basis elements of H−6,10, so the above calculation caries

over to the above cup products in cohomology.

Continue with

H−2,3 ⊗H−3,5 H−5,8.∪

Looking at (3.19), the only nontrivial maps we need to describe are e3 ∪ e1,2 and e3 ∪ e4,2 on the

basis of gr5
∧3 g, i.e., on B = (ξ1 ∧ ξ2 ∧ ξ3, ξ4 ∧ ξ2 ∧ ξ3). For e3 ∪ e1,2 or e3 ∪ e4,2 to be non-zero,

we need σ ∈ S3 that satisfies σ(1) = 3 (putting ξ3 first) and σ(2) < σ(3), which is only true for

σ = (1, 3, 2). Since sign
(
((1, 3, 2)

)
= 1, we get that e3 ∪ e1,2 = e1,2,3 and e3 ∪ e4,2 = e4,2,3. Looking

at (3.19), we see that e1,2,3 and e4,2,3 are the basis elements of H−5,8, so the above calculation caries

over to the above cup products in cohomology.

Continue with

H−2,3 ⊗H−4,7 H−6,10.∪

Looking at (3.19), the only map we need to describe is e3 ∪ e1,4,2 on the basis of gr6
∧4 g, i.e., on

B = (ξ1 ∧ ξ4 ∧ ξ2 ∧ ξ3). For e3 ∪ e1,4,2 to be non-zero, we need σ ∈ S4 that satisfies σ(1) = 4 (putting

ξ3 first) and σ(2) < σ(3) < σ(4), which is only true for σ = (1, 4, 3, 2). Since sign
(
((1, 4, 3, 2)

)
= −1,

we get that e3 ∪ e1,4,2 = −e1,4,2,3. Looking at (3.19), we see that e1,4,2,3 it the basis elements of

H−6,10, so the above calculation caries over to the above cup product in cohomology.

Finally, consider

H−3,5 ⊗H−3,5 H−6,10.∪
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Looking at (3.19), the only nontrivial maps we need to describe are e1,2 ∪ e4,3 and e1,3 ∪ e4,2 (getting

the rest by graded-commutativity) on the basis of gr6
∧4 g, i.e., on B = (ξ1 ∧ ξ4 ∧ ξ2 ∧ ξ3). For

e1,2 ∪ e4,3 to be non-zero, we need σ ∈ S4 that satisfies

• {σ(1), σ(2)} = {1, 3} (putting ξ1 and ξ2 in e1,2),

• {σ(3), σ(4)} = {2, 4} (putting ξ4 and ξ3 in e4,3),

• σ(1) < σ(2) and σ(3) < σ(4),

which is only true for σ = (2, 3). Since sign
(
(2, 3)

)
= −1, we get that e1,2 ∪ e4,3 = −e1,4,2,3. For

e1,3 ∪ e4,2 to be non-zero, we need σ ∈ S4 that satisfies

• {σ(1), σ(2)} = {1, 4} (putting ξ1 and ξ3 in e1,3),

• {σ(3), σ(4)} = {2, 3} (putting ξ4 and ξ2 in e4,2),

• σ(1) < σ(2) and σ(3) < σ(4),

which is only true for σ = (2, 4, 3). Since sign
(
(2, 4, 3)

)
= 1, we get that e1,3∪ e4,2 = e1,4,2,3. Looking

at (3.19), we see that e1,4,2,3 it the basis elements of H−6,10, so the above calculation caries over to

the above cup products in cohomology. Also, since H−3,5 = H2, we get, by graded commutativity of

the cup product, that e4,2 ∪ e1,3 = (−1)2×2e1,3 ∪ e4,2 = e1,4,2,3 and e4,3 ∪ e1,2 = (−1)2×2e1,2 ∪ e4,3 =

−e1,4,2,3.

In conclusion, all the non-trivial and non-zero cup products (up to graded commutativity)
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are:
e1 ∪ e3 = e1,3,

e4 ∪ e3 = e4,3,

e1 ∪ e4,2 = e1,4,2,

e4 ∪ e1,2 = −e1,4,2,

e1 ∪ e4,2,3 = e1,4,2,3,

e4 ∪ e1,2,3 = −e1,4,2,3,

e3 ∪ e1,2 = e1,2,3,

e3 ∪ e4,2 = e4,2,3,

e3 ∪ e1,4,2 = −e1,4,2,3,

e1,3 ∪ e4,2 = e1,4,2,3,

e1,2 ∪ e4,3 = −e1,4,2,3.

(3.20)

Now, since the spectral sequence collapses on the first page, all of the above work on the cup

product of the Lie algebra cohomology transfers to the cup product on H∗(I, k) as described above.

Remark 3.20. Let Fp[ε] denote the dual numbers (ε2 = 0), where ε sits in grade −2. The above cup

product calculations show that H∗(ISL2(Qp),Fp)⊗Fp Fp[ε] ∼= H∗(IGL2(Qp),Fp) as algebras, where IG

is the pro-p Iwahori subgroup of G. To see this, note that the both algebras are 12 dimensional, and

on H∗(ISL2(Qp),Fp), and we know from (3.13) that

H0 = Fp,

H1 = H−1,2 = Fp[e1, e3] = Fp[x1, x2],

H2 = H−3,5 = Fp[e1,2, e3,2] = Fp[y1, y2],

H3 = H−4,7 = Fp[e1,3,2] = Fp[z],

where we write x1 = e1, x2 = e3, y1 = e1,2, y2 = e3,2, z = e1,3,2, and from (3.14) that

x1 ∪ y2 = z, x2 ∪ y1 = −z,

y2 ∪ x1 = (−1)1×2x1 ∪ y2 = z, y1 ∪ x2 = (−1)1×2x2 ∪ y1 = −z.
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are the only non-trivial and non-zero cup products. Now Fp[ε] ∼= Fp ⊕ Fpε and

H∗(ISL2(Qp),Fp)⊗Fp Fp[ε]

=
(
Fp ⊕ Fp[x1, x2]⊕ Fp[y1, y2]⊕ Fp[z]

)
⊗Fp Fp[ε]

∼= Fp[ε]⊕ Fp[ε][x1, x2]⊕ Fp[ε][y1, y2]⊕ Fp[ε][z]

∼= Fp︸︷︷︸
H0,0

⊕ Fpε︸︷︷︸
H−1,2

⊕Fpx1 ⊕ Fpx2︸ ︷︷ ︸
H−1,2

⊕Fpx1ε⊕ Fpx2ε⊕ Fpy1 ⊕ Fpy2︸ ︷︷ ︸
H−3,5

⊕ Fpy1 ⊕ Fpy2︸ ︷︷ ︸
H−5,8

⊕Fpy1ε⊕ Fpy2ε︸ ︷︷ ︸
H−5,8

⊕ Fpz︸︷︷︸
H−4,7

⊕ Fpzε︸︷︷︸
H−6,10

,

and the map

H∗(ISL2(Qp),Fp)⊗Fp Fp[ε]→ H∗(IGL2(Qp),Fp)

1 7→ 1,

ε 7→ e3,

x1 7→ e1,

x2 7→ e4,

x1ε 7→ e1,3,

x1ε 7→ e4,3,

y1 7→ e1,2,

y2 7→ e4,2,

y1ε 7→ e1,2,3,

y2ε 7→ e4,2,3,

z 7→ e1,4,2,

zε 7→ e1,4,2,3,

is an isomorphism of algebras (cf. (3.19)) since the above and (3.20) gives us (writing × for the

product in the algebra on the left)

x1 × ε = x1ε e1 ∪ e3 = e1,3,

x2 × ε = x2ε e4 ∪ e3 = e4,3,
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x1 × y1 = z e1 ∪ e4,2 = e1,4,2,

x2 × y1 = −z e4 ∪ e1,2 = −e1,4,2,

x1 × y1ε = zε e1 ∪ e4,2,3 = e1,4,2,3,

x2 × y1ε = −zε e4 ∪ e1,2,3 = −e1,4,2,3,

ε× y1 = (−1)1×2y1 × ε = y1ε e3 ∪ e1,2 = e1,2,3,

ε× y2 = (−1)1×2y2 × ε = y2ε e3 ∪ e4,2 = e4,2,3,

ε× z = (−1)1×3z × ε = −zε e3 ∪ e1,4,2 = −e1,4,2,3,

y1 × x2ε = −zε e1,2 ∪ e4,3 = −e1,4,2,3,

y2 × x1ε = zε e4,2 ∪ e1,3 = e1,4,2. △

3.5 I ⊆ SL3(Zp)

In this section we will describe the continuous group cohomology of the pro-p Iwahori

subgroup I of SL3(Qp).

When I is the pro-p Iwahori subgroup in SL3(Qp), we know by Section 3.1 that we can take

it to be of the form

I =

1 + pZp Zp Zp

pZp 1 + pZp Zp

pZp pZp 1 + pZp

det=1

⊆ SL3(Zp),

and, by Section 3.1, we have an ordered basis

g1 =

1
1

p 1

, g2 =

1
p 1

1

, g3 =

1
1
p 1

,

g4 =

exp(p)
exp(−p)

1

, g5 =

1
exp(p)

exp(−p)

,

g6 =

1
1 1

1

, g7 =

1 1
1

1

, g8 =

1 1
1

1

.

(3.21)

Here we write any zeros as blank space in matrices, to make the notation easier to read for the

bigger matrices.
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3.5.1 Finding the commutators [ξi, ξj]

Now

gx1
1 gx2

2 gx3
3 gx4

4 gx5
5 gx6

6 gx7
7 gx8

8 =

a11 a12 a13
a21 a22 a23
a31 a32 a33

,

where
a11 = exp(px4),

a12 = x7 exp(px4),

a13 = x8 exp(px4),

a21 = px2 exp(px4),

a22 = px2x7 exp(px4) + exp
(
p(x5 − x4)

)
,

a23 = px2x8 exp(px4) + x6 exp
(
p(x5 − x4)

)
,

a31 = px1 exp(px4),

a32 = px1x7 exp(px4) + px3 exp
(
p(x5 − x4)

)
,

a33 = px1x8 exp(px4) + px3x6 exp
(
p(x5 − x4)

)
+ exp(−px5).

(3.22)

Writing gij = [gi, gj ] and ξij = [ξi, ξj ], we are now ready to find x1, . . . , x8 such that

gij = gx1
1 · · · g

x8
8 for different i < j. (In the following we use that 1

p−1 = 1 + p + p2 + · · · and

log(1− p) = −p− p2

2 −
p3

3 − · · · .) Also, except in the first case, we will note that xk ∈ pZp implies

that the coefficient on ξk in ξij is zero.

We now list all non-identity commutators gij = [gi, gj ] and find ξij = [ξi, ξj ] based on these.

(For gij = 13 it is clear that x1 = · · · = x8 = 0, and thus ξij = 0.)

g14 =

 1
1

p
(
1− exp(−p)

)
1

: Comparing g14 with (3.22), we see that x2 = x4 = x7 = x8 = 0,

and thus also x3 = x5 = x6 = 0. This leaves a31 = px1 = p
(
1− exp(−p)

)
= p2 +O(p3), which

implies that x1 = p+O(p2). Hence σ(g14) = π . σ(g1), which implies that ξ14 = 0.

g15 =

 1
1

p
(
1− exp(−p)

)
1

: Since g15 = g14, the above calculation shows that ξ15 = 0.
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g16 =

 1
−p 1

1

: Comparing g16 with (3.22), we see that x1 = x4 = x7 = x8 = 0, and thus

also x3 = x5 = x6 = 0. This leaves a21 = px2 = −p, which implies that x2 = −1. Hence

σ(g16) = −σ(g2), which implies that ξ16 = −ξ2.

g17 =

1
1
p 1

: Comparing g17 with (3.22), we see that x1 = x2 = x4 = x7 = x8 = 0, and thus

also x5 = x6 = 0. This leaves a32 = px3 = p, which implies that x3 = 1. Hence σ(g17) = σ(g3),

which implies that ξ17 = ξ3.

g18 =

1− p p
1

−p2 1 + p+ p2

: Comparing g18 with (3.22), we see that x2 = x7 = 0, and thus also

x3 = x6 = 0 and x4 = x5. Using

a11 = exp(px4) = 1− p,

a13 = x8 exp(px4) = x8(1− p) = p,

a31 = px1 exp(px4) = px1(1− p) = −p2,

we get that

x4 =
1

p
log(1− p) =

1

p

(
(−p) +O(p2)

)
= −1 +O(p),

x8 =
p

1− p
= p+O(p2),

x1 =
−p2

p(1− p)
= −p+O(p2).

Hence σ(g18) = −π . σ(g1)− σ(g4)− σ(g5) + π . σ(g8), which implies that ξ18 = −(ξ4 + ξ5).

g23 =

 1
1

−p2 1

: Comparing g23 with (3.22), we see that x2 = x4 = x7 = x8 = 0, and thus

also x3 = x5 = x6 = 0. This leaves a31 = px1 = −p2, which implies that x1 = −p. Hence

σ(g23) = −π . σ(g1), which implies that ξ23 = 0.

g24 =

 1

p
(
1− exp(−2p)

)
1

1

: Comparing g24 with (3.22), we see that x1 = x4 = x7 = x8 = 0,

and thus also x3 = x5 = x6 = 0. This leaves a21 = px2 = p
(
1 − exp(−2p)

)
= p

(
1 −

(
1 +

(−2p)+O(p2)
))

= 2p2+O(p3), which implies that x2 = 2p+O(p2). Hence σ(g24) = 2π . σ(g1),

which implies that ξ24 = 0.
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g25 =

 1

p
(
1− exp(p)

)
1

1

: Except a factor −2 in the exponential, which clearly does not change

the final result, we have the same calculation as for g24. Thus ξ25 = 0.

g27 =

1− p p

−p2 1 + p+ p2

1

: Comparing g27 with (3.22), we see that x1 = x8 = 0, and thus also

x3 = x6 = 0, so x5 = 0. Using

a11 = exp(px4) = 1− p,

a12 = x7 exp(px4) = x8(1− p) = p,

a21 = px2 exp(px4) = px2(1− p) = −p2,

we get that

x4 =
1

p
log(1− p) =

1

p

(
(−p) +O(p2)

)
= −1 +O(p),

x7 =
p

1− p
= p+O(p2),

x2 =
−p2

p(1− p)
= −p+O(p2).

Hence σ(g27) = −π . σ(g2)− σ(g4) + π . σ(g7), which implies that ξ27 = −ξ4.

g28 =

1
1 p

1

: Comparing g28 with (3.22), we see that x1 = x2 = x4 = x7 = x8 = 0, and thus

also x3 = x5 = 0. This leaves a23 = x6 = p. Hence σ(g28) = π . σ(g6), which implies that

ξ28 = 0.

g34 =

1
1

p
(
1− exp(p)

)
1

: Comparing g34 with (3.22), we see that x1 = x2 = x4 = x7 = x8 = 0,

and thus also x5 = x6 = 0. This leaves a32 = px3 = p
(
1− exp(p)

)
= p
(
1−

(
1 + p+O(p2)

))
=

−p2 +O(p3), which implies that x3 = −p+O(p2). Hence σ(g34) = −π . σ(g3), which implies

that ξ34 = 0.

g35 =

1
1

p
(
1− exp(−2p)

)
1

: Except a factor −2 in the exponential, which clearly does not

change the final result, we have the same calculation as for g34. Thus ξ35 = 0.
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g36 =

1
1− p p

−p2 1 + p+ p2

: Comparing g36 with (3.22), we see that x1 = x2 = x4 = x7 = x8 = 0.

Using

a22 = exp(px5) = 1− p,

a23 = x6 exp(px5) = x6(1− p) = p,

a32 = px3 exp(px5) = px3(1− p) = −p2,

we get that

x5 =
1

p
log(1− p) =

1

p

(
(−p) +O(p2)

)
= −1 +O(p),

x6 =
p

1− p
= p+O(p2),

x3 =
−p2

p(1− p)
= −p+O(p2).

Hence σ(g36) = −π . σ(g3)− σ(g5) + π . σ(g6), which implies that ξ36 = −ξ5.

g38 =

1 −p
1

1

: Comparing g38 with (3.22), we see that x1 = x2 = x4 = x8 = 0, and thus also

x3 = x5 = x6 = 0. This leaves a12 = x7 = −p. Hence σ(g38) = −π . σ(g3), which implies that

ξ38 = 0.

g46 =

1
1 exp(−p)− 1

1

: Comparing g46 with (3.22), we see that x1 = x2 = x4 = x7 = x8 = 0,

and thus also x3 = x5 = 0. This leaves a23 = x6 = exp(−p) − 1 = −p + O(p2). Hence

σ(g46) = −π . σ(g6), which implies that ξ46 = 0.

g47 =

1 exp(2p)− 1
1

1

: Comparing g47 with (3.22), we see that x1 = x2 = x4 = x8 = 0, and

thus also x3 = x5 = x6 = 0. This leaves a12 = x7 = exp(2p) − 1 = 2p + O(p2). Hence

σ(g47) = 2π . σ(g7), which implies that ξ47 = 0.

g48 =

1 exp(p)− 1
1

1

: Comparing g48 with (3.22), we see that x1 = x2 = x4 = x7 = 0, and

thus also x3 = x5 = x6 = 0. This leaves a13 = x8 = exp(p) − 1 = p + O(p2). Hence

σ(g48) = π . σ(g8), which implies that ξ48 = 0.
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g56 =

1
1 exp(2p)− 1

1

: Except a factor −2 in the exponential, which clearly does not change

the final result, we have the same calculation as for g46. Thus ξ56 = 0.

g57 =

1 exp(−p)− 1
1

1

: Except a factor −2 in the exponential, which clearly does not change

the final result, we have the same calculation as for g47. Thus ξ57 = 0.

g58 =

1 exp(p)− 1
1

1

: Since g58 = g48, the above calculation shows that ξ58 = 0.

g67 =

1 −1
1

1

: Comparing g67 with (3.22), we see that x1 = x2 = x4 = x7 = 0, and thus also

x3 = x5 = x6 = 0. This leaves a13 = x8 = −1. Hence σ(g67) = −σ(g8), which implies that

ξ67 = −ξ8.

Thus the non-zero commutators [ξi, ξj ] with i < j are:

[ξ1, ξ6] = −ξ2, [ξ1, ξ7] = ξ3, [ξ1, ξ8] = −(ξ4 + ξ5),

[ξ2, ξ7] = −ξ4, [ξ3, ξ6] = −ξ5, [ξ6, ξ7] = −ξ8.
(3.23)

3.5.2 Describing the graded chain complex, grj
(∧n g

)
Looking at (3.3) (with e = 1 and h = 3), we see that

ω(g1) = 1− 2

3
=

1

3
, ω(g2) = 1− 1

3
=

2

3
, ω(g3) = 1− 1

3
=

2

3
,

ω(g4) = 1, ω(g5) = 1, ω(g6) =
1

3
,

ω(g7) =
1

3
, ω(g8) =

2

3
.

Hence

g = k ⊗Fp[π] gr I = spank(ξ1, . . . , ξ8) = g1 ⊕ g2 ⊕ g3,

where

g1 = g 1
3
= spank(ξ1, ξ6, ξ7),

g2 = g 2
3
= spank(ξ2, ξ3, ξ8),
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g3 = g1 = spank(ξ4, ξ5).

See Remark 3.9 for more details.

Now we are ready to describe the graded chain complex

grj
( n∧

g
)
=

⊕
j1+···+jn=j

gj1 ∧ · · · ∧ gjn ,

but we will skip the description of the bases this time. For a description of the basis, we refer to the

supplemental files of [Kon22]. We list the grading of
∧n g for all n.

n = 0 :

grj(k) =


k j = 0,

0 otherwise.

n = 1 :

grj(g) =



g3 j = 3,

g2 j = 2,

g1 j = 1,

0 otherwise.

n = 2 :

grj
( 2∧

g
)
=



g3 ∧ g3 j = 6,

g2 ∧ g3 j = 5,

g1 ∧ g3

⊕ g2 ∧ g2
j = 4,

g1 ∧ g2 j = 3,

g1 ∧ g1 j = 2,

0 otherwise.
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n = 3 :

grj
( 3∧

g
)
=



g2 ∧ g3 ∧ g3 j = 8,

g1 ∧ g3 ∧ g3

⊕ g2 ∧ g2 ∧ g3
j = 7,

g1 ∧ g2 ∧ g3

⊕ g2 ∧ g2 ∧ g2
j = 6,

g1 ∧ g1 ∧ g3

⊕ g1 ∧ g2 ∧ g2
j = 5,

g1 ∧ g1 ∧ g2 j = 4,

g1 ∧ g1 ∧ g1 j = 3,

0 otherwise.

n = 4 :

grj
( 4∧

g
)
=



g2 ∧ g2 ∧ g3 ∧ g3 j = 10,

g1 ∧ g2 ∧ g3 ∧ g3

⊕ g2 ∧ g2 ∧ g2 ∧ g3
j = 9,

g1 ∧ g1 ∧ g3 ∧ g3

⊕ g1 ∧ g2 ∧ g2 ∧ g3
j = 8,

g1 ∧ g1 ∧ g2 ∧ g3

⊕ g1 ∧ g2 ∧ g2 ∧ g2
j = 7,

g1 ∧ g1 ∧ g1 ∧ g3

⊕ g1 ∧ g1 ∧ g2 ∧ g2
j = 6,

g1 ∧ g1 ∧ g1 ∧ g2 j = 5,

0 otherwise.
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n = 5 :

grj
( 5∧

g
)
=



g2 ∧ g2 ∧ g2 ∧ g3 ∧ g3 j = 12,

g1 ∧ g2 ∧ g2 ∧ g3 ∧ g3 j = 11,

g1 ∧ g1 ∧ g2 ∧ g3 ∧ g3

⊕ g1 ∧ g2 ∧ g2 ∧ g2 ∧ g3
j = 10,

g1 ∧ g1 ∧ g1 ∧ g3 ∧ g3

⊕ g1 ∧ g1 ∧ g2 ∧ g2 ∧ g3
j = 9,

g1 ∧ g1 ∧ g1 ∧ g2 ∧ g3

⊕ g1 ∧ g1 ∧ g2 ∧ g2 ∧ g2
j = 8,

g1 ∧ g1 ∧ g1 ∧ g2 ∧ g2 j = 7,

0 otherwise.

n = 6 :

grj
( 6∧

g
)
=



g1 ∧ g2 ∧ g2 ∧ g2 ∧ g3 ∧ g3 j = 13,

g1 ∧ g1 ∧ g2 ∧ g2 ∧ g3 ∧ g3 j = 12,

g1 ∧ g1 ∧ g1 ∧ g2 ∧ g3 ∧ g3

⊕ g1 ∧ g1 ∧ g2 ∧ g2 ∧ g2 ∧ g3
j = 11,

g1 ∧ g1 ∧ g1 ∧ g2 ∧ g2 ∧ g3 j = 10,

g1 ∧ g1 ∧ g1 ∧ g2 ∧ g2 ∧ g2 j = 9,

0 otherwise.

n = 7 :

grj
( 7∧

g
)
=



g1 ∧ g1 ∧ g2 ∧ g2 ∧ g2 ∧ g3 ∧ g3 j = 14,

g1 ∧ g1 ∧ g1 ∧ g2 ∧ g2 ∧ g3 ∧ g3 j = 13,

g1 ∧ g1 ∧ g1 ∧ g2 ∧ g2 ∧ g2 ∧ g3 j = 12,

0 otherwise.

n = 8 :

grj
( 8∧

g
)
=


g1 ∧ g1 ∧ g1 ∧ g2 ∧ g2 ∧ g2 ∧ g3 ∧ g3 j = 15,

0 otherwise.
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n ≥ 9 :

grj
( n∧

g
)
= 0 for all j.

Table 3.5: Dimensions of grj
(∧n g

)
.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

0 1

1 3 3 2

2 3 9 9 6 1

3 1 9 15 19 9 3

4 3 11 21 21 11 3

5 3 9 19 15 9 1

6 1 6 9 9 3

7 2 3 3

8 1

n j

We collect the above information about the dimensions of the chain complex of g in Table 3.5,

and note that we only need to consider non-zero (non-empty) entries of the table, when we calculate

Hs,t = Hs,n−s (where Hs,t = Hs,t(g, k)). Also, recalling that

Homk

( n∧
g, k
)
=
⊕
s∈Z

Homs
k

( n∧
g, k
)
,

we see that, with j = −s, we get the same table for dimensions of the graded hom-spaces in the

cochain complex.

3.5.3 Finding the graded Lie algebra cohomology, Hs,t(g, k)

We will now go through all different graded chain complexes one by one, using that grj

in the chain complex corresponds to grs with s = −j in the cochain complex. We note that the

graded chain complex corresponds to vertical downwards arrows in Table 3.5, while the cochain

complex corresponds to vertical upwards arrows. And finally, we reiterate that Hn = Hn(g, k) and

Hs,t = Hs,t(g, k) in the following.

Remark 3.21. We will repeatedly use that, if

d
SNF∼ SNFn×m(a1, . . . , ar, 0, . . . , 0)
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with a1, . . . , ar non-zero (in Fp), then

dimker(d) = m− r,

dim im(d) = r,

dim coker(d) = n− r,

as described in Section 3.1.3. △

In grade 0 we have the chain complex

0 k 0

which gives us the grade 0 cochain complex

0 Hom0
k(k, k) 0

So H0 = H0,0 with dimH0,0 = 1.

In grade 1 we have the chain complex

0 g1 0

which gives us the grade −1 cochain complex

0 Hom−1
k (g, k) 0

So dimH−1,2 = 3 by Table 3.5.

In grade 2 we have the chain complex

0 g1 ∧ g1 g2 0


1 0 0

0 −1 0

0 0 1



since

g1 ∧ g1 → g2
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ξ1 ∧ ξ6 7→ −[ξ1, ξ6] = ξ2

ξ1 ∧ ξ7 7→ −[ξ1, ξ7] = −ξ3

ξ6 ∧ ξ7 7→ −[ξ6, ξ7] = ξ8.

This gives us the grade −2 cochain complex

0 Hom−2
k

(∧2 g, k
)

Hom−2
k (g, k) 0,


1 0 0

0 −1 0

0 0 1



where

d =

1 0 0
0 −1 0
0 0 1

 SNF∼ SNF3×3(1, 1, 1).

So

dimH−2,3 = dimker(d) = 0,

dimH−2,4 = dim coker(d) = 0.

In grade 3 we have the chain complex

0 g1 ∧ g1 ∧ g1 g1 ∧ g2 g3 0

(
0 0 −1 0 −1 0 −1 0 0

)⊤

0 0 1 0 0 0 −1 0 0

0 0 1 0 −1 0 0 0 0


which gives us the grade −3 cochain complex

0 Hom−3
k

(∧3 g, k
)

Hom−3
k

(∧2 g, k
)

Hom−3
k (g, k) 0,

(
0 0 −1 0 −1 0 −1 0 0

)

0 0 1 0 0 0 −1 0 0

0 0 1 0 −1 0 0 0 0


⊤
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where

d1 =



0 0
0 0
1 1
0 0
0 −1
0 0
0 −1
0 0
0 0


SNF∼ SNF9×2(1, 1),

d2 =
(
0 0 −1 0 −1 0 −1 0 0

) SNF∼ SNF1×9(1).

So

dimH−3,4 = dimker(d1) = 2− 2 = 0,

dimH−3,5 = dim
ker(d2)

im(d1)
= (9− 1)− 2 = 6,

dimH−3,6 = dim coker(d2) = 1− 1 = 0.

In grade 4 we have the chain complex

0 g1 ∧ ∧g1 ∧ g2
g1 ∧ g3

⊕ g2 ∧ g2
0d⊤

which gives us the grade −4 cochain complex

0 Hom−4
k

(∧3 g, k
)

Hom−4
k

(∧2 g, k
)

0d

where

d
SNF∼ SNF9×9(1, 1, 1, 1, 1, 1, 0, 0, 0).

So

dimH−4,6 = dimker(d) = 9− 6 = 3,

dimH−4,7 = dim coker(d) = 9− 6 = 3.

In grade 5 we have the chain complex

0 g1 ∧ g1 ∧ g1 ∧ g2
g1 ∧ g1 ∧ g3

⊕ g1 ∧ g2 ∧ g2
g2 ∧ g3 0

d⊤2 d⊤1
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which gives us the grade −5 cochain complex

0 Hom−5
k

(∧4 g, k
)

Hom−5
k

(∧3 g, k
)

Hom−5
k

(∧2 g, k
)

0,
d2 d1

where

d1
SNF∼ SNF15×6(1, 1, 1, 1, 1, 1),

d2
SNF∼ SNF3×15(1, 1, 1).

So

dimH−5,7 = dimker(d1) = 6− 6 = 0,

dimH−5,8 = dim
ker(d2)

im(d1)
= (15− 3)− 6 = 6,

dimH−5,9 = dim coker(d2) = 3− 3 = 0.

In grade 6 we have the chain complex

0
g1 ∧ g1 ∧ g1 ∧ g3

⊕ g1 ∧ g1 ∧ g2 ∧ g2

g1 ∧ g2 ∧ g3

⊕ g2 ∧ g2 ∧ g2
g3 ∧ g3 0

d⊤2 d⊤1

which gives us the grade −6 cochain complex

0 Hom−6
k

(∧4 g, k
)

Hom−6
k

(∧3 g, k
)

Hom−6
k

(∧2 g, k
)

0,
d2 d1

where

d1
SNF∼ SNF19×1(1),

d2
SNF∼ SNF11×19(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2).

So

dimH−6,8 = dimker(d1) = 1− 1 = 0,

dimH−6,9 = dim
ker(d2)

im(d1)
= (19− 11)− 1 = 7,

dimH−6,10 = dim coker(d2) = 11− 11 = 0.
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In grade 7 we have the chain complex

0 g1 ∧ g1 ∧ g1 ∧ g2 ∧ g2
g1 ∧ g1 ∧ g2 ∧ g3

⊕ g1 ∧ g2 ∧ g2 ∧ g2

g1 ∧ g3 ∧ g3

⊕ g2 ∧ g2 ∧ g3
0

d⊤2 d⊤1

which gives us the grade −7 cochain complex

0 Hom−7
k

(∧5 g, k
)

Hom−7
k

(∧4 g, k
)

Hom−7
k

(∧3 g, k
)

0,
d2 d1

where

d1
SNF∼ SNF21×9(1, 1, 1, 1, 1, 1, 1, 1, 1),

d2
SNF∼ SNF3×21(1, 1, 1).

So

dimH−7,10 = dimker(d1) = 9− 9 = 0,

dimH−7,11 = dim
ker(d2)

im(d1)
= (21− 3)− 9 = 9,

dimH−7,12 = dim coker(d2) = 3− 3 = 0.

By [Fuk86, Chap 1 §3.6 and §3.7], we can now find the rest of the cohomology using a version

of Poincaré duality for Lie algebra cohomology. But we keep the sketch work to make it clear that

this works. We refer to [Kon22] for the calculations.

In grade −8 we get coboundary maps

d1
SNF∼ SNF21×3(1, 1, 1),

d2
SNF∼ SNF9×21(1, 1, 1, 1, 1, 1, 1, 1, 1).

So

dimH−8,11 = dimker(d1) = 3− 3 = 0,

dimH−8,12 = dim
ker(d2)

im(d1)
= (21− 9)− 3 = 9,

dimH−8,13 = dim coker(d2) = 9− 9 = 0.
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In grade −9 we get coboundary maps

d1
SNF∼ SNF19×11(1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1),

d2
SNF∼ SNF1×19(1).

So

dimH−9,13 = dimker(d1) = 11− 11 = 0,

dimH−9,14 = dim
ker(d2)

im(d1)
= (19− 1)− 11 = 7,

dimH−9,15 = dim coker(d2) = 1− 1 = 0.

In grade −10 we get coboundary maps

d1
SNF∼ SNF15×3(1, 1, 1),

d2
SNF∼ SNF6×15(1, 1, 1, 1, 1, 1).

So

dimH−10,14 = dimker(d1) = 3− 3 = 0,

dimH−10,15 = dim
ker(d2)

im(d1)
= (15− 6)− 3 = 6,

dimH−10,16 = dim coker(d2) = 6− 6 = 0.

In grade −11 we get coboundary maps

d
SNF∼ SNF9×9(1, 1, 1, 1, 1, 1, 0, 0, 0).

So

dimH−11,16 = dimker(d) = 9− 6 = 3,

dimH−11,17 = dim coker(d) = 9− 6 = 3.

In grade −12 we get coboundary maps

d1
SNF∼ SNF9×1(1),

d2
SNF∼ SNF2×9(1, 1).
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So

dimH−12,17 = dimker(d1) = 1− 1 = 0,

dimH−12,18 = dim
ker(d2)

im(d1)
= (9− 2)− 1 = 6,

dimH−12,19 = dim coker(d2) = 2− 2 = 0.

In grade −13 we get coboundary maps

d
SNF∼ SNF3×3(1, 1, 1).

So

dimH−13,19 = dimker(d) = 3− 3 = 0,

dimH−13,20 = dim coker(d) = 3− 3 = 0.

In grade 14 we have the chain complex

0 g1 ∧ g1 ∧ g2 ∧ g2 ∧ g2 ∧ g3 ∧ g3 0

which gives us the grade −14 cochain complex

0 Hom−14
k

(∧7 g, k
)

0

So dimH−14,21 = 3 by Table 3.5.

In grade 15 we have the chain complex

0 g1 ∧ g1 ∧ g1 ∧ g2 ∧ g2 ∧ g2 ∧ g3 ∧ g3 0

which gives us the grade −15 cochain complex

0 Hom−15
k

(∧8 g, k
)

0

So H8 = H−15,23 with dimH−15,23 = 1 by Table 3.5.
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Table 3.6: Dimensions of Es,t
1 = Hs,t = grsHs+t(g, k) for the I ⊆ SL3(Zp) case.

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15

0 1

1

2 3

3

4

5 6

6 3

7 3

8 6

9 7

10

11 9

12 9

13

14 7

15 6

16 3

17 3

18 6

19

20

21 3

22

23 1

t

s
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Altogether, we see that

H0 = H0,0,

H1 = H−1,2,

H2 = H−3,5 ⊕H−4,6,

H3 = H−4,7 ⊕H−5,8 ⊕H−6,9,

H4 = H−7,11 ⊕H−8,12,

H5 = H−9,14 ⊕H−10,15 ⊕H−11,16,

H6 = H−11,17 ⊕H−12,18,

H7 = H−14,21,

H8 = H−15,23

(3.24)

with dimension as described in Table 3.6.

3.5.4 Describing the group cohomology, Hn(I, k)

We note that all differentials ds,tr : Es,t
r → Es+r,t+1−r

r in Table 3.6 has bidegree (r, 1− r), i.e.,

they are all below the (r,−r) arrow going r to the left and r up in the table, where r ≥ 1. Looking

at Table 3.6, this clearly means that all differentials for r ≥ 1 are trivial, and thus the spectral

sequence collapses on the first page. Hence Hs,t(g, k) = Es,t
1
∼= Es,t

∞ = grsHs+t(I, k), and by (3.24)

and Table 3.6 we get that

dimHn(I, k) =



1 n = 0,

3 n = 1,

9 n = 2,

16 n = 3,

18 n = 4,

16 n = 5,

9 n = 6,

3 n = 7,

1 n = 8.

(3.25)
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Recalling that the spectral sequence is multiplicative, we also note, by Table 3.6, that

Hs,t ∪Hs′,t′ ⊆ Hs+s′,t+t′ implies that the cup products

grsHn(I, k)⊗ grs
′
Hn′

(I, k)→ grs+s′ Hn+n′
(I, k)

are trivial. But, since the spectral sequence collapses on the first page, we also have (3.24) for

Hn(I, k), and thus the cup product is trivial.

3.6 I ⊆ GL3(Zp)

In this section we will describe the continuous group cohomology of the pro-p Iwahori

subgroup I of GL3(Qp).

When I is the pro-p Iwahori subgroup in GL3(Qp), we know by Section 3.1 that we can take

it to be of the form

I =

1 + pZp Zp Zp

pZp 1 + pZp Zp

pZp pZp 1 + pZp

 ⊆ GL3(Zp),

and, by Section 3.1, we have an ordered basis

g1 =

1
1

p 1

, g2 =

1
p 1

1

, g3 =

1
1
p 1

,

g4 =

exp(p)
exp(−p)

1

, g5 =

1
exp(p)

exp(−p)

,

g6 =

exp(p)
exp(p)

exp(p)

,

g7 =

1
1 1

1

, g8 =

1 1
1

1

, g9 =

1 1
1

1

.

(3.26)

Since we just renamed some elements and added an element of the center of GL3(Zp) when comparing

to the ordered basis of I ⊆ SL3(Zp) from Section 3.5, it is clear from Equation (3.23) that the only

non-zero commutators [ξi, ξj ] with i < j are:

[ξ1, ξ7] = −ξ2, [ξ1, ξ8] = ξ3, [ξ1, ξ9] = −(ξ4 + ξ5),

[ξ2, ξ8] = −ξ4, [ξ3, ξ7] = −ξ5, [ξ7, ξ8] = −ξ9.
(3.27)
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Looking at Section 3.5.3, we easily see that

g1 = g 1
3
= spank(ξ1, ξ7, ξ8),

g2 = g 2
3
= spank(ξ2, ξ3, ξ9),

g3 = g1 = spank(ξ4, ξ5, ξ6).

This is enough to calculate the graded mod p cohomology of g, see [Kon22] for the details.

We write the result in Table 3.7.

Table 3.7: Dimensions of Es,t
1 = Hs,t = grsHs+t(g, k) for the I ⊆ GL3(Zp) case.

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16 −17 −18

0 1

1

2 3

3

4 1

5 6

6 6

7 3

8 6

9 13

10 3

11 12

12 15

13 7

14 7

15 15

16 12

17 3

18 13

19 6

20 3

21 6

22 6

23 1

24

25 3

26

27 1

t

s
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3.7 I ⊆ SL4(Zp) and I ⊆ GL4(Zp)

In this section we will briefly describe the problem with finding continuous group cohomology

of the pro-p Iwahori subgroup I of SL4(Qp) and GL4(Qp).

We leave all the calculations of commutators and p-valuations to the appendix, cf. Ap-

pendix A.1 and Appendix A.2, and note that the dimensions of the graded cohomology Hs,t(g, k)

for g = k ⊗Fp[π] gr I are shown in Table 3.8 and Table 3.9.

Looking at Table 3.8, we see that it is no longer clear that the spectral sequence collapses on

the first page. To see this, recall that all differentials on the first page are of the form ds,t1 : Es,t
1 →

Es+1,t
1 , so we have maps like d−5,7

1 : H−5,7(g, k)→ H−4,7(g, k) that are not obviously trivial, since

dimk H
−5,7 = 4 and dimk H

−4,7 = 4. To figure out at what page the spectral sequence collapses

in this case, one needs to look more carefully at how exactly the spectral sequence is obtained in

[Sør21], which is much more complicated than what we have done so far.

3.8 I ⊆ SL2(OF ) for quadratic extensions F/Qp

In this section we will describe the continuous group cohomology of the pro-p Iwahori

subgroup I of SL2(F ) for quadratic extensions F/Qp.

We write F = Qp(α), and we will focus on the cases α = i (when p ≡ 3 (mod 4)) and

α =
√
p.

When I is the pro-p Iwahori subgroup in SL2(F ), we know by Section 3.1 that we can take

it to be of the form

I =

(
1 +ϖFOF OF

ϖFOF 1 +ϖFOF

)det=1

⊆ SL2(OF ),

where ϖF = p when F = Qp(i) and ϖF =
√
p when F = Qp(

√
p). By Section 3.1, we have an

ordered basis

g1 =

(
1 0
ϖF 1

)
, g2 =

(
1 0

ϖFα 1

)
,

g3 =

(
exp(ϖF ) 0

0 exp(−ϖF )

)
, g4 =

(
exp(ϖFα) 0

0 exp(−ϖFα)

)
,

g5 =

(
1 1
0 1

)
, g6 =

(
1 α
1 1

)
,

(3.28)

since 1, α is a Zp-basis of OF .
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Table 3.8: Dimensions of Es,t
1 = Hs,t = grsHs+t(g, k) for the I ⊆ SL4(Zp) case. This table only

shows the graded dimensions of H0, . . . ,H7. We note that the graded dimensions of H8, . . . ,H15

can be found using Poincaré duality, which gives us dimk H
s,t = dimk H

−36−s,51−t for (s, t) from
the table.

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16 −17 −18 −19

0 1

1

2 4

3

4 2

5 8

6

7 4 4

8 8

9 20

10 8

11 20 1

12 34

13 16

14 12 18

15 26

16 4 76

17 39

18 28 8

19 68

20 72

21 12 68

22 24 8

23 121

24 80

25 54

26 12

t

s

3.8.1 Finding the commutators [ξi, ξj]

Now

gx1
1 gx2

2 gx3
3 gx4

4 gx5
5 gx6

6 =

(
a11 a12
a21 a22

)
,
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Table 3.9: Dimensions of Es,t
1 = Hs,t = grsHs+t(g, k) for the I ⊆ GL4(Zp) case. This table only

shows the graded dimensions of H0, . . . ,H7. We note that the graded dimensions of H8, . . . ,H15

can be found using Poincaré duality, which gives us dimk H
s,t = dimk H

−40−s,56−t for (s, t) from
the table.

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16 −17 −18 −19 −20 −21 −22 −23

0 1

1

2 4

3

4 2

5 8 1

6

7 4 8

8 8

9 22

10 16

11 20 1

12 38 4

13 24

14 12 38

15 26 8

16 4 96 1

17 73

18 28 24

19 80 18

20 98

21 16 144

22 24 47

23 149 8

24 148

25 12 126

26 66 80

27 104 8

28 242

29 104

30 66

31 12

t

s

where
a11 = exp

(
ϖF (x3 + αx4)

)
,

a12 = (x5 + αx6) exp
(
ϖF (x3 + αx4)

)
,

a21 = ϖF (x1 + αx2) exp
(
ϖF (x3 + αx4)

)
,

a22 = ϖF (x1 + αx2)(x5 + αx6) exp
(
ϖF (x3 + αx4)

)
+ exp

(
−ϖF (x3 + αx4)

)
.

(3.29)

Writing gij = [gi, gj ] and ξij = [ξi, ξj ], we are now ready to find x1, . . . , x8 such that

gij = gx1
1 · · · g

x6
6 for different i < j. (In the following we use that 1

1−x = 1 + x + x2 + · · · and

log(1− x) = −x− x2

2 −
x3

3 − · · · for x ∈ (ϖF ).)
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We now list all non-identity commutators gij = [gi, gj ] and find ξij = [ξi, ξj ] based on these.

(For gij = 12 it is clear that x1 = · · · = x6 = 0, and thus ξij = 0.) To avoid confusion, we will do the

F = Qp(i) case (with p ≡ 3 (mod 4)) first, and then the F = Qp(
√
p) case afterwards. So for now

ϖF = p and α = i. Also, note that we adapt the O(p) notation to OF in the obvious way.

g13 =

(
1 0

p
(
1− exp(−2p)

)
1

)
: Comparing g13 with (3.29), we see that x3 = x4 = x5 = x6 = 0. This

leaves a21 = p(x1 + ix2) = p
(
1− exp(−2p)

)
= 2p2 +O(p3), which implies that x1, x2 ∈ pZp.

Hence ξ13 = 0.

g14 =

(
1 0

p
(
1− exp(−2pi)

)
1

)
: Comparing g14 with (3.29), we see that x3 = x4 = x5 = x6 = 0. This

leaves a21 = p(x1 + ix2) = p
(
1− exp(−2pi)

)
= 2p2i+O(p3), which implies that x1, x2 ∈ pZp.

Hence ξ14 = 0.

g15 =

(
1− p p

−p2 1 + p+ p2

)
: Comparing g15 with (3.29), we see that

a11 = exp
(
p(x3 + ix4)

)
= 1− p,

a12 = (x5 + ix6) exp
(
p(x3 + ix4)

)
= (x5 + ix6)(1− p) = p,

a21 = p(x1 + ix2) exp
(
p(x3 + ix4)

)
= p(x1 + ix2)(1− p) = −p2,

and thus

x3 + ix4 =
1

p
log(1− p) =

1

p

(
(−p) +O(p2)

)
= −1 +O(p),

x5 + ix6 =
p

1− p
= p+O(p2),

x1 + ix2 =
−p2

p(1− p)
= −p+O(p2).

Hence x1, x2, x4, x5, x6 ∈ pZp and x3 ∈ −1 + pZp, which implies that ξ15 = −ξ3.

g16 =

(
1− pi pi2

−p2i 1 + pi+ p2i2

)
: Comparing g16 with (3.29), we see that

a11 = exp
(
p(x3 + ix4)

)
= 1− pi,

a12 = (x5 + ix6) exp
(
p(x3 + ix4)

)
= (x5 + ix6)(1− pi) = −p,

a21 = p(x1 + ix2) exp
(
p(x3 + ix4)

)
= p(x1 + ix2)(1− pi) = −p2i,
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and thus

x3 + ix4 =
1

p
log(1− pi) =

1

p

(
(−pi) +O(p2)

)
= −i+O(p),

x5 + ix6 =
−p
1− p

= −p+O(p2),

x1 + ix2 =
−p2i

p(1− pi)
= −pi+O(p2).

Hence x1, x2, x3, x5, x6 ∈ pZp and x4 ∈ −1 + pZp, which implies that ξ16 = −ξ4.

g23 =

(
1 0

pi
(
1− exp(−2p)

)
1

)
: Comparing g23 with g13, it is not hard to see that ξ23 = 0.

g24 =

(
1 0

pi
(
1− exp(−2pi)

)
1

)
: Comparing g24 with g14, it is not hard to see that ξ24 = 0.

g25 =

(
1− pi pi

−p2i2 1 + pi+ p2i2

)
: Comparing g25 with g16, it is not hard to see that ξ25 = −ξ4.

g26 =

(
1− pi2 pi3

−p2i3 1 + pi2 + p2i4

)
: Comparing g26 with g15 (noting that i2 = −1, so 1− pi2 = 1+ p),

it is not hard to see that ξ25 = ξ3.

g35 =

(
1 exp(2p)− 1
0 1

)
: Comparing g35 with (3.29), we see that x1 = x2 = x3 = x4 = 0. This

leaves a12 = x5 + ix6 = exp(2p) − 1 = 2p + O(p2), which implies that x5, x6 ∈ pZp. Hence

ξ35 = 0.

g36 =

(
1 i

(
exp(2p)− 1

)
0 1

)
: Comparing g36 with g35, it is not hard to see that ξ36 = 0.

g45 =

(
1 exp(2pi)− 1
0 1

)
: Comparing g45 with (3.29), we see that x1 = x2x3 = x4 = 0. This leaves

a12 = x5 + ix6 = exp(2pi)− 1 = 2pi+O(p2), which implies that x5, x6 ∈ pZp. Hence ξ45 = 0.

g46 =

(
1 i

(
exp(2pi)− 1

)
0 1

)
: Comparing g46 with g45, it is not hard to see that ξ45 = 0.

Let’s now do the calculations for F = Qp(
√
p), and note that we again adapt the O(p)

notation in the obvious way. Now ϖF =
√
p and α =

√
p.

g13 =

(
1 0

√
p
(
1− exp(−2√p)

)
1

)
: Comparing g13 with (3.29), we see that x3 = x4 = x5 = x6 = 0.

This leaves a21 =
√
p(x1 +

√
px2) =

√
p
(
1− exp(−2√p)

)
= 2p+O(p3/2), which implies that

x1 ∈ pZp and x2 ∈ 2 + pZp. Hence ξ13 = 2ξ2.
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g14 =

(
1 0

√
p
(
1− exp(−2p)

)
1

)
: Comparing g14 with (3.29), we see that x3 = x4 = x5 = x6 = 0.

This leaves a21 =
√
p(x1 +

√
px2) =

√
p
(
1− exp(−2p)

)
= 2p

√
p+O(p2), which implies that

x1, x2 ∈ pZp. Hence ξ14 = 0.

g15 =

(
1−√p √

p

−p 1 +
√
p+ p

)
: Comparing g15 with (3.29), we see that

a11 = exp
(√

p(x3 +
√
px4)

)
= 1−√p,

a12 = (x5 +
√
px6) exp

(√
p(x3 +

√
px4)

)
= (x5 +

√
px6)(1−

√
p) =

√
p,

a21 =
√
p(x1 +

√
px2) exp

(√
p(x3 +

√
px4)

)
=
√
p(x1 +

√
px2)(1−

√
p) = −p,

and thus

x3 +
√
px4 =

1
√
p
log(1−√p) = 1

√
p

(
(−√p)− p

2
+O(p3/2)

)
= −1−

√
p

2
+O(p),

x5 +
√
px6 =

√
p

1−√p
=
√
p+O(p),

x1 +
√
px2 =

−p
√
p(1−√p)

= −√p+O(p).

Hence x1, x5 ∈ pZp, x2, x3, x4 ∈ −1 + pZp and x6 ∈ 1 + pZp, which implies that ξ15 =

−ξ2 − ξ3 − 1
2ξ4 + ξ6. (Here −1

2 = p−1
2 since the characteristic of k is p.)

g16 =

(
1− p p

√
p

−p√p 1 + p+ p2

)
: Comparing g16 with (3.29), we see that

a11 = exp
(√

p(x3 +
√
px4)

)
= 1− p,

a12 = (x5 +
√
px6) exp

(√
p(x3 +

√
px4)

)
= (x5 +

√
px6)(1− p) = p

√
p,

a21 =
√
p(x1 +

√
px2) exp

(√
p(x3 +

√
px4)

)
=
√
p(x1 +

√
px2)(1− p) = −p√p,

and thus

x3 +
√
px4 =

1
√
p
log(1− p) =

1
√
p

(
(−p) +O(p3/2)

)
= −√p+O(p),

x5 +
√
px6 =

p
√
p

1− p
= p
√
p+O(p2),

x1 +
√
px2 =

−p√p
√
p(1− p)

= −p+O(p3/2).

Hence x1, x2, x3.x5, x6 ∈ pZp and x4 ∈ −1 + pZp, which implies that ξ16 = −ξ4.

94



g23 =

(
1 0

p
(
1− exp(−2√p)

)
1

)
: Comparing g23 with g13, it is not hard to see that ξ23 = 0.

g24 =

(
1 0

p
(
1− exp(−2p)

)
1

)
: Comparing g24 with g14, it is not hard to see that ξ24 = 0.

g25 =

(
1− p p

−p2 1 + p+ p2

)
: Comparing g25 with (3.29), we see that

a11 = exp
(√

p(x3 +
√
px4)

)
= 1− p,

a12 = (x5 +
√
px6) exp

(√
p(x3 +

√
px4)

)
= (x5 +

√
px6)(1− p) = p,

a21 =
√
p(x1 +

√
px2) exp

(√
p(x3 +

√
px4)

)
=
√
p(x1 +

√
px2)(1− p) = −p2,

and thus

x3 +
√
px4 =

1
√
p
log(1− p) =

1
√
p

(
(−p) +O(p3/2)

)
= −√p+O(p),

x5 +
√
px6 =

p

1− p
= p+O(p2),

x1 +
√
px2 =

−p2
√
p(1− p)

= −p3/2 +O(p2).

Hence x1, x2, x3.x5, x6 ∈ pZp and x4 ∈ −1 + pZp, which implies that ξ25 = −ξ4.

g26 =

(
1− p

√
p p2

−p2√p 1 + p
√
p+ p3

)
: Comparing g26 with (3.29), we see that

a11 = exp
(√

p(x3 +
√
px4)

)
= 1− p

√
p,

a12 = (x5 +
√
px6) exp

(√
p(x3 +

√
px4)

)
= (x5 +

√
px6)(1− p

√
p) = p2,

a21 =
√
p(x1 +

√
px2) exp

(√
p(x3 +

√
px4)

)
=
√
p(x1 +

√
px2)(1− p

√
p) = −p2√p,

and thus

x3 +
√
px4 =

1
√
p
log(1− p

√
p) =

1
√
p

(
(−p√p) +O(p2)

)
= −p+O(p3/2),

x5 +
√
px6 =

p2

1− p
√
p
= p2 +O(p5/2),

x1 +
√
px2 =

−p2√p
√
p(1− p

√
p)

= −p2 +O(p5/2).

Hence x1, x2, x3, x4, x5, x6 ∈ pZp, which implies that ξ26 = 0.

95



g35 =

(
1 exp(2

√
p)− 1

0 1

)
: Comparing g35 with (3.29), we see that x1 = x2 = x3 = x4 = 0. This

leaves a12 = x5 + ix6 = exp(2
√
p) − 1 = 2

√
p + O(p), which implies that x5 ∈ pZp and

x6 ∈ 2 + pZp. Hence ξ35 = 2ξ6.

g36 =

(
1
√
p
(
exp(2

√
p)− 1

)
0 1

)
: Comparing g36 with g35, it is not hard to see that ξ36 = 0.

g45 =

(
1 exp(2p)− 1
0 1

)
: Comparing g45 with (3.29), we see that x1 = x2 = x3 = x4 = 0. This

leaves a12 = x5 + ix6 = exp(2p) − 1 = 2p + O(p2), which implies that x5, x6 ∈ pZp. Hence

ξ45 = 0.

g46 =

(
1
√
p
(
exp(2p)− 1

)
0 1

)
: Comparing g46 with g45, it is not hard to see that ξ45 = 0.

In summary, the only non-zero commutators [ξi, ξj ] with i < j are

[ξ1, ξ5] = −ξ3, [ξ1, ξ6] = −ξ4,

[ξ2, ξ5] = −ξ4, [ξ2, ξ6] = ξ3,

(3.30)

when p ≡ 3 (mod 4) and F = Qp(i), and

[ξ1, ξ3] = 2ξ2 [ξ1, ξ5] = −ξ2 − ξ3 −
1

2
ξ4 + ξ6,

[ξ1, ξ6] = −ξ4, [ξ2, ξ5] = −ξ4,

[ξ3, ξ5] = 2ξ6,

when F = Qp(
√
p). To make the F = Qp(

√
p) case easier to work with, we make a base change

ξ′5 = ξ5 − 1
2ξ6 and ξ′i = ξi for i ̸= 5, which gives us commutators

[ξ′1, ξ
′
3] = 2ξ′2 [ξ′1, ξ

′
5] = −ξ′2 − ξ′3 + ξ′6,

[ξ′1, ξ
′
6] = −ξ′4, [ξ′2, ξ

′
5] = −ξ′4,

[ξ′3, ξ
′
5] = 2ξ′6.

(3.31)

3.8.2 Finding the cohomology

Looking at (3.3) in the p ≡ 3 (mod 4) and F = Qp(i) case (with e = 1 and h = 2), we see

that

ω(g1) = 1− 1

2
=

1

2
, ω(g2) = 1− 1

2
=

1

2
,
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ω(g3) = 1, ω(g4) = 1,

ω(g5) =
1

2
, ω(g6) =

1

2
.

Hence

g = k ⊗Fp[π] gr I = spank(ξ1, . . . , ξ6) = g1 ⊕ g2,

where

g1 = g 1
2
= spank(ξ1, ξ2, ξ5, ξ6),

g2 = g1 = spank(ξ3, ξ4).

In the F = Qp(
√
p) case (with e = 2 and h = 2) (3.3) gives us

ω(g1) =
1

2

(
1− 1

2

)
=

1

4
, ω(g2) =

1

2

(
1− 1

2

)
=

1

4
,

ω(g3) =
1

2
, ω(g4) =

1

2
,

ω(g5) =
1

4
, ω(g6) =

1

4
.

Hence

g = k ⊗Fp[π] gr I = spank(ξ
′
1, . . . , ξ

′
6) = g1 ⊕ g2,

where

g1 = g 1
4
= spank(ξ

′
1, ξ

′
2, ξ

′
5, ξ

′
6),

g2 = g 1
2
= spank(ξ

′
3, ξ

′
4).

See Remark 3.9 for more details.

This is enough to calculate the graded mod p cohomology of g, see [Kon22] for the details.

We write the result in Table 3.11.
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Table 3.10: Dimensions of Es,t
1 = Hs,t(g,Fp) for the I ⊆ SL2(OF ) case, where F/Qp is a quadratic

extension (either F = Qp(i) or F = Qp(
√
p)).

0 −1 −2 −3 −4 −5 −6 −7 −8

0 1

1

2 4

3

4 4

5 4

6

7 10

8

9 4

10 4

11

12 4

13

14 1

t
s

Altogether, we see that

H0 = H0,0,

H1 = H−1,2,

H2 = H−2,4 ⊕H−3,5,

H3 = H−4,7,

H4 = H−5,9 ⊕H−6,10,

H5 = H−7,12,

H6 = H−8,14,

(3.32)

with dimension as described in Table 3.10 in both the F = Qp(i) and the F = Qp(
√
p) case. I.e.,

the mod p cohomology does not depend on the field extension (among the above ones) in this case.

We note that all differentials ds,tr : Es,t
r → Es+r,t+1−r

r in Table 3.10 have bidegree (r, 1− r),
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i.e., they are all below the (r,−r) arrow going r to the left and r up in the table, where r ≥ 1.

Looking at Table 3.10, this clearly means that all differentials for r ≥ 1 are trivial, and thus the

spectral sequence collapses on the first page. Hence Hs,t(g, k) = Es,t
1
∼= Es,t

∞ = grsHs+t(I, k), and

by (3.32) and Table 3.10 we get that

dimHn(I, k) =



1 n = 0,

4 n = 1,

8 n = 2,

10 n = 3,

8 n = 4,

4 n = 5,

1 n = 6.

(3.33)

3.9 I ⊆ GL2(OF )

In this section we will describe the continuous group cohomology of the pro-p Iwahori

subgroup I of GL2(F ) for quadratic extensions F/Qp.

We again write F = Qp(α) and focus on the cases α = i (when p ≡ 3 (mod 4)) and α =
√
p.

When I is the pro-p Iwahori subgroup in GL2(F ), we know by Section 3.1 that we can take

it to be of the form

I =

(
1 +ϖFOF OF

ϖFOF 1 +ϖFOF

)
⊆ GL2(OF ),

where ϖF = p when F = Qp(i) and ϖF =
√
p when F = Qp(

√
p). By Section 3.1, we have an

ordered basis

g1 =

(
1 0
ϖF 1

)
, g2 =

(
1 0

ϖFα 1

)
,

g3 =

(
exp(ϖF ) 0

0 exp(−ϖF )

)
, g4 =

(
exp(ϖFα) 0

0 exp(−ϖFα)

)
,

g5 =

(
exp(ϖF ) 0

0 exp(ϖF )

)
, g6 =

(
exp(ϖFα) 0

0 exp(ϖFα)

)
,

g7 =

(
1 1
0 1

)
, g8 =

(
1 α
1 1

)
,

(3.34)

since 1, α is a Zp-basis of OF .
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Since we just renamed some elements and added an element of the center of GL(OF ) when

comparing to the ordered basis of I ⊆ SL2(OF ) from Section 3.8, it is clear from Equation (3.30)

and Equation (3.31) that the only non-zero commutators [ξi, ξj ] (with i < j) in g = k ⊗ grG are

[ξ1, ξ7] = −ξ3, [ξ1, ξ8] = −ξ4,

[ξ2, ξ7] = −ξ4, [ξ2, ξ8] = ξ3,

(3.35)

when p ≡ 3 (mod 4) and F = Qp(i), and

[ξ1, ξ3] = 2ξ2 [ξ1, ξ7] = −ξ2 − ξ3 −
1

2
ξ4 + ξ8,

[ξ1, ξ8] = −ξ4, [ξ2, ξ7] = −ξ4,

[ξ3, ξ7] = 2ξ8,

when F = Qp(
√
p). To make the F = Qp(

√
p) case easier to work with, we again make a base change

ξ′7 = ξ7 − 1
2ξ8 and ξ′i = ξi for i ̸= 6, which gives us commutators

[ξ′1, ξ
′
3] = 2ξ′2 [ξ′1, ξ

′
7] = −ξ′2 − ξ′3 + ξ′8,

[ξ′1, ξ
′
8] = −ξ′4, [ξ′2, ξ

′
7] = −ξ′4,

[ξ′3, ξ
′
7] = 2ξ′8.

(3.36)

Looking at Section 3.8.2, we easily see that

g1 = spank(ξ1, ξ2, ξ7, ξ8),

g2 = spank(ξ3, ξ4, ξ5, ξ6),

in both cases.

This is enough to calculate the graded mod p cohomology of g, see [Kon22] for the details.

We write the result in Table 3.11.
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Table 3.11: Dimensions of Es,t
1 = Hs,t(g,Fp) for the I ⊆ GL2(OF ) case, where F/Qp is a quadratic

extension (either F = Qp(i) or F = Qp(
√
p)).

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12

0 1

1

2 4

3 2

4 4

5 12

6 1

7 18

8 12

9 4

10 28

11 4

12 12

13 18

14 1

15 12

16 4

17 2

18 4

19

20 1

t

s
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Altogether, we see that

H0 = H0,0,

H1 = H−1,2 ⊕H−2,3,

H2 = H−2,4 ⊕H−3,5 ⊕H−4,6,

H3 = H−4,7 ⊕H−5,8,

H4 = H−5,9 ⊕H−6,10 ⊕H−7,11,

H5 = H−7,12 ⊕H−8,13,

H6 = H−8,14 ⊕H−9,15 ⊕H−10,16,

H7 = H−10,17 ⊕H−11,18,

H8 = H−12,20

(3.37)

with dimension as described in Table 3.11 in both the F = Qp(i) and the F = Qp(
√
p) case. I.e.,

the mod p cohomology does not depend on the field extension (among the above ones) in this case.

We note that all differentials ds,tr : Es,t
r → Es+r,t+1−r

r in Table 3.11 have bidegree (r, 1− r),

i.e., they are all below the (r,−r) arrow going r to the left and r up in the table, where r ≥ 1.

Looking at Table 3.11, this clearly means that all differentials for r ≥ 1 are trivial, and thus the

spectral sequence collapses on the first page. Hence Hs,t(g, k) = Es,t
1
∼= Es,t

∞ = grsHs+t(I, k), and

by (3.37) and Table 3.11 we get that

dimHn(I, k) =



1 n = 0,

6 n = 1,

17 n = 2,

30 n = 3,

36 n = 4,

30 n = 5,

17 n = 6,

6 n = 7,

1 n = 8.

(3.38)
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3.10 Nilpotency index

Before ending this chapter with a brief discussion of future research directions, we will

mention an interesting consequence of our above calculations.

Given any cohomology theory H (say over k), one can always think of the ring H∗ with the

cup product as H∗ = k ⊕H+, where k = H0 and H+ =
⊕

n>0H
n. Assuming that only finitely

many Hn are non-zero and that each Hn is finite dimensional, one can note that H+ must be

nilpotent. Thus an interesting question becomes: what is the nilpotency index of H+? I.e., what

is the smallest positive integer m such that (H+)m = 0? In continuation of this, another slightly

easier question to answer is, what is the nilpotency index of H1? I.e., what is the smallest positive

integer m such that (H1)m = 0.

We will now try to answer the above questions for the group cohomology H∗(I, k) in each of

the cases we have discussed in this chapter. Before beginning, recall that

Hs,t ∪Hs′,t′ ⊆ Hs+s′,t+t′ (3.39)

by [Fuk86, Chap. 1 §3.7]. This will be useful for finding upper bounds for the nilpotency index.

Also, note that we write H+ ∪H+ for the image of ∪ : H+ ×H+ → H+, and similarly for H1.

In the I ⊆ SL2(Zp) case, we saw in (3.12) that the cup product is trivial except for

∪ : H1 ×H2 → H3, so H1 ∪H1 = 0 and

H+ ∪H+ ̸= 0, H+ ∪H+ ∪H+ = 0.

In the I ⊆ GL2(Zp) case, we completely described the (graded) cup product in (3.17), which

should be enough to answer the questions. Looking at Table 3.4 and using (3.39), we see that an

upper bound for H1 is that

H1 ∪H1 ∪H1 ̸= 0, H1 ∪H1 ∪H1 ∪H1 = 0,

by starting with H−1,2 ∪H−2,3 ⊆ H−3,5 ≠ 0 and then using that H−3,5 ∪H−1,2 ⊆ H−4,7 ≠ 0 or

H−3,5∪H−2,3 ⊆ H−5,8 ̸= 0, and finally H−4,7∪H−2,3 ⊆ H−6,10 ̸= 0 or H−5,8∪H−1,2 ⊆ H−6,10 ̸= 0.

The question is whether we can follow those steps with non-zero cup products. We note by (3.20)

that

e1 ∪ e3 = e1,3, e4 ∪ e3 = e4,3,
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are the only non-zero cup product we can do in H1 = H−1,2 ⊕ H−2,3. But H−1,2 = k[e1, e4]

and H−2,3 = k[e3] by (3.19), and we already noted in Section 3.4.3 that ei1,...,im ∪ ej1,...,jℓ if

{i1, . . . , im}∩ {j1, . . . , jℓ} ≠ ∅, so we clearly cannot cup with anything from H1 without getting zero.

Thus

H1 ∪H1 ̸= 0, H1 ∪H1 ∪H1 = 0.

Now, having only four possible numbers in the subscript and using the above equation, we note that

we can only ever hope to have two cup products before getting zero (cf. (3.19)). By (3.20)

e3 ∪ (e1 ∪ e4,2) = e3 ∪ e1,4,2 = −e1,4,2,3 ̸= 0,

so

H+ ∪H+ ∪H+ ̸= 0, H+ ∪H+ ∪H+ ∪H+ = 0,

for I ⊆ GL2(Zp).

In the I ⊆ SL3(Zp) case, we have not described the cup product in detail, but we can tell

purely from (3.39) and Table 3.6, that H1 ∪H1 = 0. Going through Table 3.6, we also note that an

upper bound for H+ is

H+ ∪H+ ∪H+ ∪H+ ̸= 0, H+ ∪H+ ∪H+ ∪H+ ∪H+ = 0,

which possibly can be achieved through (cf. [Kon22])

H−4,6 ∪H−6,9 ⊆ H−10,15, H−10,15 ∪H−4,6 ⊆ H−14,21,

H−14,21 ∪H−1,2 ⊆ H−15,23.

It still remains to check whether such a series of non-zero cup products exist, which we will not do

here. (This would require a lot of extra computations by hand, or hopefully better automation for

computing cup products than what has been achieved so far.)

Remark 3.22. To give estimates for the upper bounds of m such that (H+)m ̸= 0, we can build a

directed graph with nodes (s, t) for (s, t) such that Hs,t ̸= 0 and arrows (s, t)→ (s+ s′, t+ t′) (and

(s′, t′) → (s+ s′, t+ t′)) for (s′, t′) such that Hs′,t′ ̸= 0 and Hs+s′,t+t′ ̸= 0 (so that Hs,t ∪Hs′,t′ ⊆
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Hs+s′,t+t′ has a chance of being non-zero). Then standard algorithms for finding the longest path in

a directed graph can quickly give us a longest path as above.

Note that we sometime can be more restrictive than just finding the longest path by also

considering dimension arguments. This is the case when working with I ⊆ SL4(Zp) in the following,

where dimk H
−5,7 = 4, so if H−5,7 is used in the sequence of cup products as part of the longest

path more than 4 times, then we know the cup product must be zero. △

In the I ⊆ GL3(Zp) case, we also have not described the cup product in detail, but we can

tell purely from (3.39) and Table 3.7, that

H1 ∪H1 ∪H1 ̸= 0, H1 ∪H1 ∪H1 ∪H1 = 0,

is an upper bound, since dimk H
−3,4 = 1, so H−3,4 can only be used once in a non-zero cup

product.This upper bound might be achieved through

H−3,4 ∪H−1,2 ⊆ H−4,6, H−4,6 ∪H−1,2 ⊂ H−5,8,

but it still remains to check whether such a non-zero cup product exists. Going through Table 3.7,

we also note that an upper bound for H+ is

(H+)5 ̸= 0, (H+)6 = 0,

which possibly can be achieved through (cf. [Kon22])

H−3,4 ∪H−1,2 ⊆ H−4,6, H−4,6 ∪H−1,2 ⊆ H−5,8,

H−5,8 ∪H−3,4 ⊆ H−8,12, H−8,12 ∪H−1,2 ⊆ HH−9,14,

H−9,14 ∪H−6,9 ⊆ H−15,23.

Again it still remains to check whether such a series of non-zero cup products exist.

In the I ⊆ SL4(Zp) case, we also have not described the cup product in detail, and we do

not even fully know the cohomology of I in this case, but from (3.39) and Table 3.8, we at least

know enough to see that

H1 ∪H1 ̸= 0, H1 ∪H1 ∪H1 = 0,
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is an upper bound, since the dimension of the entries Es,t
r are non-increasing when r increases. This

upper bound might be achieved through

H−1,2 ∪H−1,2 ⊆ H−2,4,

but it still remains to check whether such a non-zero cup product exists. Going through Table 3.8,

we also note that an upper bound for H+ is

(H+)7 ̸= 0, (H+)8 = 0,

which possibly can be achieved through (cf. [Kon22])

H−1,2 ∪H−5,7 ⊆ H−6,9, H−6,9 ∪H−5,7 ⊆ H−11,16,

H−11,16 ∪H−5,7 ⊆ H−16,23, H−16,23 ∪H−5,7 ⊆ HH−21,30,

H−21,30 ∪H−7,10 ⊆ H−28,40, H−28,40 ∪H−8,11 ⊆ H−36,51.

Similarly, in the I ⊆ GL4(Zp) case, we also have not described the cup product or fully know

the cohomology of I in this case, but from (3.39) and Table 3.9, we at least know enough to see that

(H1)4 ̸= 0, (H1)5 = 0,

is an upper bound, since the dimension of the entries Es,t
r are non-increasing when r increases. This

upper bound might be achieved through

H−4,5 ∪H−1,2 ⊆ H−5,7, H−5,7 ∪H−1,2 ⊆ H−6,9,

H−6,9 ∪H−1,2 ⊆ H−7,11,

but it still remains to check whether such a non-zero cup product exists. Going through Table 3.9,

we also note that an upper bound for H+ is

(H+)10 ̸= 0, (H+)11 = 0,

which possibly can be achieved through (cf. [Kon22])

H−4,5 ∪H−1,2 ⊆ H−5,7, H−5,7 ∪H−1,2 ⊆ H−6,9,

H−6,9 ∪H−1,2 ⊆ H−7,11, H−7,11 ∪H−4,5 ⊆ HH−11,16,
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H−11,16 ∪H−1,2 ⊆ H−12,18, H−12,18 ∪H−5,7 ⊆ H−17,25,

H−17,25 ∪H−9,12 ⊆ H−26,37, H−26,37 ∪H−5,7 ⊆ H−31,44,

H−31,44 ∪H−5,7 ⊆ H−36,51.

In the I ⊆ SL2(OF ) (with F/Qp quadratic) case, we also have not described the cup product

in detail, but from (3.39) and Table 3.10, we at least know enough to see that

H1 ∪H1 ̸= 0, H1 ∪H1 ∪H1 = 0,

is an upper bound. This upper bound might be achieved through

H−1,2 ∪H−1,2 ⊆ H−2,4,

but it still remains to check whether such a non-zero cup product exists. Going through Table 3.10,

we also note that an upper bound for H+ is

(H+)4 ̸= 0, (H+)5 = 0,

which possibly can be achieved through (cf. [Kon22])

H−3,5 ∪H−3,5 ⊆ H−6,10, H−6,10 ∪H−1,2 ⊆ H−7,12,

H−7,12 ∪H−1,2 ⊆ H−8,14.

In the I ⊆ GL2(OF ) (with F/Qp quadratic) case, we also have not described the cup product

in detail, but from (3.39) and Table 3.11, we at least know enough to see that

(H1)4 ̸= 0, (H1)5 = 0,

is an upper bound. This upper bound might be achieved through

H−2,3 ∪H−1,2 ⊆ H−3,5, H−3,5 ∪H−1,2 ⊆ H−4,7,

H−4,7 ∪H−1,2 ⊆ H−5,9,

but it still remains to check whether such a non-zero cup product exists. Going through Table 3.11,

we also note that an upper bound for H+ is

(H+)6 ̸= 0, (H+)7 = 0,
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which possibly can be achieved through (cf. [Kon22])

H−2,3 ∪H−1,2 ⊆ H−3,5, H−3,5 ∪H−1,2 ⊆ H−4,7,

H−4,7 ∪H−1,2 ⊆ H−5,9, H−5,9 ∪H−2,3 ⊆ H−7,12,

H−7,12 ∪H−1,2 ⊆ H−8,14.

We collect our nilpotency index upper bounds in Table 3.12.

Table 3.12: The upper bound for the nilpotency index of mod p cohomology for each pro-p Iwahori
subgroup of SLn and GLn that we have found. Confirmed nilpotency indices are bolded, and pure
upper bounds are not bolded.

n 2 3 4
I ⊆ SLn(Zp), H1 2 2 3
I ⊆ SLn(Zp), H+ 3 5 8
I ⊆ GLn(Zp), H1 3 4 5
I ⊆ GLn(Zp), H+ 4 7 11

I ⊆ SLn(OF ) (quadratic), H1 3
I ⊆ SLn(OF ) (quadratic), H+ 4
I ⊆ GLn(OF ) (quadratic), H1 5
I ⊆ GLn(OF ) (quadratic), H+ 7

3.11 Future work

In this section we will discuss some interesting future directions of research. We will assume

for the whole section that k = Fp.

3.11.1 Quaternion algebras

In this subsection, we will further assume that p > 5 is a prime of the form p ≡ 3 (mod 4),

so that Qp2 = Qp(i) is the unique unramified quadratic extension of Qp, and Fp2 = Fp[i] is the

unique quadratic extension of Fp.

Let D be the division quaternion algebra over Qp and let G̃ = 1+mD and G = (1+mD)Nrd=1,

where Nrd = NrdD/Qp
is the norm form. By [Voi21, Thm. 12.1.5] we can assume that i2 = −1

and j2 = p (i.e., we have a tower D/Qp(i)/Qp), and that OD = Zp[i, j, k] (where k = ij) and

mD = jOD = ODj (i.e., ϖD = j), which has Zp-basis p, pi, j, k, by [Voi21, Thm.13.1.6].
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Now let σ : Qp(i)→ Qp(i) be the complex conjugate and note that ⟨σ⟩ = Gal
(
Qp(i)/Qp

)
, so

D ∼=
{(

a+ bi c+ di
p(c− di) a− bi

) ∣∣∣∣ a, b, c, d ∈ Qp

}
⊆M2

(
Qp(i)

)
by [Voi21, Cor. 13.3.14]. Hence we have an embedding

D ↪→M2

(
Qp(i)

)
a+ bi+ cj + dk 7→

(
a+ bi c+ di

p(c− di) a− bi

)
with

Nrd(a+ bi+ cj + dk) = a2 + b2 − pc2 − pd2 = det
(( a+ bi c+ di

p(c− di) a− bi

))
.

We note furthermore that OD = Zp[i]⊕ Zp[i]j and mD = ODj = pZp[i]⊕ Zp[i]j gives us

mD
∼=
{(

p(a+ bi) c+ di
p(c− di) p(a− bi)

) ∣∣∣∣ a, b, c, d ∈ Qp

}
,

so 1 +mD ⊆ IGL2(Qp(i)), where we denote by IG the (standard choice of) pro-p Iwahori subgroup of

G (cf. Section 3.1.2). Altogether, we get a commutative diagram

(1 +mD)
Nrd=1 ISL2(Qp(i)) ISL2(Qp)

(O×
D)

Nrd=1 SL2

(
Zp[i]

)
SL2(Zp)

(D×)Nrd=1 SL2

(
Qp(i)

)
SL2(Qp)

D× GL2

(
Qp(i)

)
GL2(Qp)

O×
D GL2

(
Zp[i]

)
GL2(Zp)

1 +mD IGL2(Qp(i)) IGL2(Qp).

(3.40)

We saw in Remark 3.14 that H∗(G,Fp) ∼= H∗(ISL2(Qp),Fp), and in Remark 3.20 we noted

that H∗(ISL2(Qp),Fp)⊗Fp Fp[ε] ∼= H∗(IGL2(Qp),Fp) (where ε2 = 0), while [Sør21, Sect. 6.3] notes that

H∗(G̃,Fp) ∼= H∗(G,Fp)⊗Fp Fp[ε], so H∗(G̃,Fp) ∼= H∗(IGL2(Qp),Fp). (Recall that G = (1+mD)Nrd=1

and G̃ = 1 + mD.) Furthermore, [Sør21, Sect. 6.3] argues that H∗(O×
D,Fp) ∼= H∗(G̃,Fp)

F×
D , using
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that we can factor O×
D as a semi-direct product G̃ ⋊ F×

D. Here the F×
D-action on H∗(G̃,Fp) is

understood and non-trivial, cf. [Hen07, Prop. 7 (b)]. An interesting question is, if the comparison

between cohomology of the left side and right side of (3.40) can be somehow continued?

Remark 3.23. To see that H∗(G̃,Fp) ∼= H∗(IGL2(Qp),Fp) for p ≥ 5 in general, and not just for p ≡ 3

(mod 4), one can compare the basis and structure of H∗(G̃,Fp) described in [Rav77, Thm. 3.2] with

the basis and structure we describe in (3.19) and (3.20). △

Another interesting direction of research is to note that we already have bijections between

certain mod p representations of D× and GL2(Qp) from the Jacquet-Langlands correspondence for

GL2 (cf. [JL70]), and we can ask whether there are similar relations in between the left and right

side of the other rows of (3.40). Here we note that by [Tok15, Rem. 4.5] irreducible representations

of D× are trivial on 1+mD, so we need something new if we want a correspondence between certain

mod p representations of G = (1 +mD)Nrd=1 and ISL2(Qp) or between certain mod p representations

of G̃ = 1 +mD and IGL2(Qp).

Finally, although we already have isomorphisms H∗(G,Fp) ∼= H∗(ISL2(Qp),Fp) and H∗(G̃,Fp) ∼=

H∗(IGL2(Qp),Fp), we note that these were obtained by concrete calculations, and we would really

prefer to have canonical isomorphisms (possibly obtained by working with the corresponding row of

(3.40)).

In pursuit of the canonical isomorphisms mentioned above, we note that one can show by

explicit calculations (with bases) that the inclusions of (3.40) give inclusions

gr(1 +mD)
Nrd=1 gr ISL2(Qp(i)) gr ISL2(Qp),

gr(1 +mD) gr IGL2(Qp(i)) gr IGL2(Qp),

where the pro-p Iwahori subgroups are graded as usual (start with gr I =
⊕

ν>0 grν I where

grν I = Iν/Iν+ and translate to gri I), 1+mD is graded by gri(1 +mD) = (1+mi
D)/(1 +mi+1

D ), and

(1 +mD)
Nrd=1 is graded by gri(1 +mD)

Nrd=1 = (1 +mi
D)

Nrd=1/(1 +mi+1
D )Nrd=1. These inclusions

further translate to inclusions
g(1+mD)Nrd=1 gISL2(Qp(i))

gISL2(Qp)
,

g(1+mD) gIGL2(Qp(i))
gIGL2(Qp)

,
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where gG = Fp ⊗Fp[π] grG is the Lazard Lie algebra of G. We note that these inclusions do not have

the same images, but we noted in Remark 3.14 that g(1+mD)Nrd=1
∼= gISL2(Qp(i))

, so we might be able

to come up with a canonical isomorphism through these somehow.

3.11.2 Central division algebras

Let D be the central division algebra over Qp of dimension n2 and invariant 1
n . Recall the

following setup from [Sør21, Sect. 6.3]: The valuation vp on Qp extends uniquely to a valuation

ṽ : D× → 1
nZ by the formula ṽ(x) = 1

nv
(
NrdD/Qp

(x)
)
, and the valuation ring OD = {x : ṽ(x) > 0}

is the maximal compact subring of D. It is local with maximal ideal mD = {x : ṽ(x) > 0} and

residue field FD
∼= Fpn . Furthermore, we can pick ϖD such that ṽ(ϖD) = 1

n , mD = ϖDOD = ODϖD

and p = ϖn
D.

When p > n+ 1, we also saw in [Sør21, Sect. 6.3] that G̃ = 1 +mD has Lazard Lie algebra

g̃ = FD ⊕ · · · ⊕ FD concentrated in degrees 1, 2, . . . , n with Lie bracket given by the formula

[x, y] = xyp
i − yxp

j
(3.41)

for x ∈ g̃i ∼= FD and y ∈ g̃j . Furthermore G = (1 + mD)
Nrd=1 has Lazard Lie algebra g =

FD ⊕ · · · ⊕ FD ⊕ FTr=0
D concentrated in degrees 1, 2, . . . , n with Lie bracket given by (3.41). (Note

that one can easily check that [x, y] has trace zero when i+ j = n.) Here FTr=0
D is the kernel of the

trace TrFD/Fp
and g ⊆ g̃ is a codimension one Lie subalgebra.

In the previous subsection we focused on the case n = 2 (and p ≡ 3 (mod 4)), but one can

ask if some of the ideas work in more general cases. For the remainder of this subsection we will

focus on the case n = 3 and p = 5.

We note that x3 + 3x + 3 is an irreducible polynomial in F5[x], so FD
∼= F53

∼= Fp[α]

where α3 = −3α − 3 = 2α + 2. Now let ξ1 = 1, ξ2 = α, ξ3 = α2 be the basis of g̃1 ∼= FD, let

ξ4 = 1, ξ5 = α, ξ6 = α2 be the basis of g̃2 ∼= FD, and let ξ7 = 1, ξ8 = α, ξ9 = α2 be the basis of
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g̃3 ∼= FD. Using (3.41), we see that

[ξ1, ξ2] = 4ξ4 + 3ξ5 + 2ξ6, [ξ1, ξ3] = 3ξ4 + 2ξ5 + 4ξ6,

[ξ1, ξ5] = 4ξ7 + 3ξ8 + 2ξ9, [ξ1, ξ6] = 3ξ7 + 2ξ8 + 4ξ9,

[ξ2, ξ3] = 2ξ4 + ξ5 + 4ξ6, [ξ2, ξ4] = 4ξ7 + ξ8 + 2ξ9,

[ξ2, ξ5] = 3ξ7 + ξ8 + 4ξ9, [ξ2, ξ6] = 2ξ8,

[ξ3, ξ4] = 4ξ7 + 2ξ8 + 2ξ9, [ξ3, ξ5] = 3ξ8,

[ξ3, ξ6] = 3ξ7 + 4ξ9.

(3.42)

Here

g̃1 = spanF5
(ξ1, ξ2, ξ3), g̃2 = spanF5

(ξ4, ξ5, ξ6), g̃3 = spanF5
(ξ7, ξ8, ξ9),

so we order the basis by the index of the ξi’s. Calculating the cohomology as in the previous sections

with this information, we get Table 3.13.

Remark 3.24. Note that when calculating the cohomology here, we need to do all calculations

modulo 5 since (3.42) do not lift to a Lie algebra over Z with these Chevalley constants. See [Kon22]

for the details. △

Comparing Table 3.7 and Table 3.13, we see that H∗(I,F5) for I ⊆ GL3(Zp) and H∗(1 +

mD,F5) have the same graded cohomology dimensions, and it would be interesting to investigate

whether H∗(I,F5) ∼= H∗(1 + mD,F5) as graded algebras. More generally, is H∗(I,Fp) ∼= H∗(1 +

mD,Fp) as graded algebras for p ≥ 5?

In a similar vein, we can recall that TrFDF5(x) = x+ x5 + x5
2 for x ∈ FD

∼= F53 , so

TrFD/F5
(1) = 3, TrFD/F5

(α) = 0, TrFD/F5
(α2) = 4,

since α3 = 2α+ 2. Thus FTr=0
D has basis α, 4 + 2α2. Now let ξ′1 = 1, ξ′2 = α, ξ′3 = α2 be the basis

of g1 ∼= FD, let ξ′4 = 1, ξ′5 = α, ξ′6 = α2 be the basis of g2 ∼= FD, and let ξ′7 = α, ξ′8 = 4 + 2α be the

basis of g3 ∼= FTr=0
D . Using (3.41), we see that
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Table 3.13: Dimensions of Es,t
1 = Hs,t = grsHs+t(g̃,F5) for G̃ = 1 + mD in the n = 3 and p = 5

case.

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15 −16 −17 −18

0 1

1

2 3

3

4 1

5 6

6 6

7 3

8 6

9 13

10 3

11 12

12 15

13 7

14 7

15 15

16 12

17 3

18 13

19 6

20 3

21 6

22 6

23 1

24

25 3

26

27 1

t

s
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[ξ′1, ξ
′
2] = 4ξ′4 + 3ξ′5 + 2ξ′6, [ξ′1, ξ

′
3] = 3ξ′4 + 2ξ′5 + 4ξ′6,

[ξ′1, ξ
′
5] = 3ξ′7 + ξ′8, [ξ′1, ξ

′
6] = 2ξ′7 + 2ξ′8,

[ξ′2, ξ
′
3] = 2ξ′4 + ξ′5 + 4ξ′6, [ξ′2, ξ

′
4] = ξ′7 + ξ′8,

[ξ′2, ξ
′
5] = ξ′7 + 2ξ′8, [ξ′2, ξ

′
6] = 2ξ′7,

[ξ′3, ξ
′
4] = 2ξ′7 + ξ′8, [ξ′3, ξ

′
5] = 3ξ′7,

[ξ′3, ξ
′
6] = 2ξ′8.

(3.43)

Here

g1 = spanF5
(ξ′1, ξ

′
2, ξ

′
3), g2 = spanF5

(ξ′4, ξ
′
5, ξ

′
6), g3 = spanF5

(ξ′7, ξ
′
8),

so we order the basis by the index of the ξ′i’s. Calculating the cohomology as in the previous sections

with this information, we get Table 3.14

Again, comparing Table 3.6 and Table 3.14, we see that H∗(I,F5) for I ⊆ SL3(Zp) and

H∗((1 +mD)
Nrd=1,F5

)
have the same graded cohomology dimensions, and it would be interesting

to investigate whether H∗(I,F5) ∼= H∗((1 +mD)
Nrd=1,F5

)
as graded algebras. More generally, is

H∗(I,Fp) ∼= H∗((1 +mD)
Nrd=1,Fp

)
as graded algebras for p ≥ 5?

Another interesting observation is that H∗(G̃,Fp) ∼= H∗(G,Fp)⊗Fp Fp[ε] as graded algebras

(with ε2 = 0) by [Sør21, Sect. 6.3], so an interesting question is whether H∗(IGLn(Qp),Fp) ∼=

H∗(ISLn(Qp),Fp)⊗Fp Fp[ε] as graded algebras.

Altogether, the above seems to hint at the following conjecture:

Conjecture 3.25. Let D be the central division algebra over Qp of dimension n2 and invariant

1
n . Let OD be the maximal compact (local) subring of D with maximal ideal mD and residue field

FD
∼= Fpn . If p > n+ 1 then

• H∗(IGLn(Qp),Fp

) ∼= H∗(1 +mD,Fp

)
as graded algebras, and

• H∗(ISLn(Qp),Fp

) ∼= H∗((1 +mD)
Nrd=1,Fp

)
as graded algebras.

In particular, this implies by [Sør21, Sect. 6.3] that

H∗(IGLn(Qp),Fp) ∼= H∗(ISLn(Qp),Fp)⊗Fp Fp[ε]

as graded algebras, where Fp[ε] denote the dual numbers (ε2 = 0). ⃝
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Table 3.14: Dimensions of Es,t
1 = Hs,t = grsHs+t(g,F5) for G = (1 + mD)

Nrd=1 in the n = 3 and
p = 5 case.

0 −1 −2 −3 −4 −5 −6 −7 −8 −9 −10 −11 −12 −13 −14 −15

0 1

1

2 3

3

4

5 6

6 3

7 3

8 6

9 7

10

11 9

12 9

13

14 7

15 6

16 3

17 3

18 6

19

20

21 3

22

23 1

t

s

3.11.3 Serre spectral sequence

Another interesting research direction is to try to work with the Serre spectral sequence in

the following way.

Assume we have the “standard” setup with G = SLn, U unipotent upper triangular matrices

and T diagonal matrices with determinant 1. Let also I ⊆ SLn(Zp) be the pro-p Iwahori subgroup

of SLn(Qp) which is upper triangular and unipotent modulo p, and let

K := ker
(
red: G(Zp)→ G(Fp)

)
,
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where red: G(Zp)→ G(Fp) is the reduction map. (Note that I = {g ∈ G(Zp) : red(g) ∈ U(Fp)} in

this case, cf. [CR16].) Then

I/K ∼= U(Fp),

and thus we get the Serre spectral sequence

Ei,j
2 = H i

(
U(Fp), H

j(K,Fp)
)
=⇒ H i+j(I,Fp),

which is also a multiplicative spectral sequence. Since K is a uniformly powerful group (cf. [OS19,

Prop. 7.6]), we know by [Laz65, p. 183] that

Hj(K,Fp) ∼=
j∧
HomFp(K,Fp).

Now we can let SLn(Zp) act by

(g . f)(x) = f(g−1xg)

for g ∈ SLn(Zp), f : K → Fp and x ∈ K, and hope to split
∧j HomFp(K,Fp) into a direct sum of

Verma modules
⊕

λ V (λ) for p-restricted λ (λ with 0 ≤ ⟨λ, α∨⟩ ≤ p− 1), similarly to what is done

in [PT18] (as we used in Chapter 2). This description might be easier to generalize than what we

have worked with in this chapter, but it is harder to get started with since the spectral sequence is

more complicated. One can hope that the difference in the spectral sequence might make it so that

it will always collapse on the second page (the starting page in this case).
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Appendix A

Calculations

A.1 I ⊆ SL4(Zp)

In this section we will describe the work need to find the continuous group cohomology of

the pro-p Iwahori subgroup I of SL4(Qp).

When I is the pro-p Iwahori subgroup in SL4(Qp), we know by Section 3.1 that we can take

it to be of the form

I =


1 + pZp Zp Zp Zp

pZp 1 + pZp Zp Zp

pZp pZp 1 + pZp Zp

pZp pZp pZp 1 + pZp


det=1

⊆ SL4(Zp),
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and, by Section 3.1, we have an ordered basis

g1 =


1

1
1

p 1

, g2 =


1

1
p 1

1

, g3 =


1
p 1

1
1

,

g4 =


1

1
1

p 1

, g5 =


1

1
p 1

1

, g6 =


1

1
1
p 1

,

g7 =


exp(p)

exp(−p)
1

1

, g8 =


1

exp(p)
exp(−p)

1

,

g9 =


1

1
exp(p)

exp(−p)

,

g10 =


1 1

1
1

1

, g11 =


1

1 1
1

1

, g12 =


1

1
1 1

1

,

g13 =


1 1

1
1

1

, g14 =


1

1 1
1

1

, g15 =


1 1

1
1

1

.

(A.1)

Here we write any zeros as blank space in matrices, to make the notation easier to read for the

bigger matrices.

Remark A.1. Note that the order is not going from the lower left corner to the upper right corner

along “diagonals”, which might be a more standard ordering to chose. The reason we choose this

alternative order is to simplify some calculations. In particular, this order gives simpler aij below.△

A.1.1 Finding the commutators [ξi, ξj]

Now

gx1
1 gx2

2 · · · g
x15
15 =


a11 a12 a13 a14
a21 a22 a23 a24
a31 a32 a33 a34
a41 a42 a43 a44

,
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where
a11 = exp(px7),

a12 = x15 exp(px7),

a13 = x13 exp(px7),

a14 = x10 exp(px7),

a21 = px3 exp(px7),

a22 = px15x3 exp(px7) + exp
(
p(x8 − x7)

)
,

a23 = px13x3 exp(px7) + x14 exp
(
p(x8 − x7)

)
,

a24 = px10x3 exp(px7) + x11 exp
(
p(x8 − x7)

)
,

a31 = px2 exp(px7),

a32 = px15x2 exp(px7) + px5 exp
(
p(x8 − x7)

)
,

a33 = px13x2 exp(px7) + px14x5 exp
(
p(x8 − x7)

)
+ exp

(
p(x9 − x8)

)
,

a34 = px10x2 exp(px7) + px11x5 exp
(
p(x8 − x7)

)
+ x12 exp

(
p(x9 − x8)

)
,

a41 = px1 exp(px7),

a42 = px1x15 exp(px7) + px4 exp
(
p(x8 − x7)

)
a43 = px1x13 exp(px7) + px14x4 exp

(
p(x8 − x7)

)
+ px6 exp

(
p(x9 − x8)

)
,

a44 = px1x10 exp(px7) + px11x4 exp
(
p(x8 − x7)

)
+ px12x6 exp

(
p(x9 − x8)

)
+ exp(−px9).

(A.2)

Furthermore, write gi,j = [gi, gj ] and ξi,j = [ξi, ξj ]. Then we are ready to find x1, . . . , x15

such that gi,j = gx1
1 · · · g

x15
15 for different i < j. (In the following we use that 1

p−1 = 1 + p+ p2 + · · ·

and log(1 − p) = −p − p2

2 −
p3

3 − · · · .) Also, except in the first case, we will note that xk ∈ pZp

implies that the coefficient on ξk in ξi,j is zero.

We now list all non-identity commutators gi,j = [gi, gj ] and find ξi,j = [ξi, ξj ] based on these.

(For gi,j = 14 it is clear that x1 = · · · = x15 = 0, and thus ξi,j = 0.)

g1,7 =


1

1
1

p
(
1− exp(−p)

)
1

: Comparing g1,7 with (A.2), we see that x2 = x3 = x7 =

x10 = x13 = x15 = 0, and thus also x4 = x5 = x8 = x11 = x14 = 0, which implies that
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x6 = x9 = x12 = 0. This leaves a41 = px1 = p
(
1− exp(−p)

)
= p2 +O(p3), which implies that

x1 = p+O(p2). Hence σ(g1,7) = π . σ(g1), which implies that ξ1,7 = 0.

g1,9 =


1

1
1

p
(
1− exp(−p)

)
1

: Since g1,9 = g1,7, the above calculation shows that ξ1,8 = 0.

g1,10 =


1− p p

1
1

−p2 1 + p+ p2

: Comparing g1,10 with (A.2), we see that all xi are in pZp except

x7 = x8 = x9, for which we have a11 = exp(px7) = 1−p, and thus x7 = 1
p log(1−p) = −1+O(p).

Hence ξ1,10 = −ξ7 − ξ8 − ξ9.

g1,11 =


1
−p 1

1
1

: Comparing g1,11 with (A.2), we see that all xi are in pZp except x3, for

which we have a21 = px3 = −p, and thus x3 = −1. Hence ξ1,11 = −ξ3.

g1,12 =


1

1
−p 1

1

: Comparing g1,12 with (A.2), we see that all xi are in pZp except x2, for

which we have a31 = px2 = −p, and thus x2 = −1. Hence ξ1,12 = −ξ2.

g1,13 =


1

1
1
p 1

: Comparing g1,13 with (A.2), we see that all xi are in pZp except x6, for

which we have a43 = px6 = p, and thus x6 = 1. Hence ξ1,13 = ξ6.

g1,15 =


1

1
1

p 1

: Comparing g1,15 with (A.2), we see that all xi are in pZp except x4, for

which we have a42 = px4 = p, and thus x4 = 1. Hence ξ1,15 = ξ4.

g2,6 =


1

1
1

−p2 1

: Comparing g2,6 with (A.2), we see that all xi are in pZp. Hence ξ2,6 = 0.

g2,7 =


1

1

p
(
1− exp(−p)

)
1

1

: Comparing g2,7 with (A.2), we see that all xi are in pZp. Hence

ξ2,7 = 0.
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g2,8 =


1

1

p
(
1− exp(−p)

)
1

1

: Since g2,8 = g2,7, the above shows that ξ2,8 = 0.

g2,9 =


1

1

p
(
1− exp(p)

)
1

1

: Comparing g2,9 with (A.2), we see that all xi are in pZp. Hence

ξ2,9 = 0.

g2,10 =


1

1
1 p

1

: Comparing g2,10 with (A.2), we see that all xi are in pZp. Hence ξ2,10 = 0.

g2,13 =


1− p p

1

−p2 1 + p+ p2

1

: Comparing g2,13 with (A.2), we see that all xi are in pZp except

x7 = x8, for which we have a11 = exp(px7) = 1− p, and thus x7 =
1
p log(1− p) = −1 +O(p).

Hence ξ2,13 = −ξ7 − ξ8.

g2,14 =


1
−p 1

1
1

: Comparing g2,14 with (A.2), we see that all xi are in pZp except x3, for

which we have a21 = px3 = −p, and thus x3 = −1. Hence ξ2,14 = −ξ3.

g2,15 =


1

1
p 1

1

: Comparing g2,15 with (A.2), we see that all xi are in pZp except x5, for

which we have a32 = px5 = p, and thus x5 = 1. Hence ξ2,15 = ξ5.

g3,4 =


1

1
1

−p2 1

: Comparing g3,4 with (A.2), we see that all xi are in pZp. Hence ξ3,4 = 0.

g3,5 =


1

1

−p2 1
1

: Comparing g3,5 with (A.2), we see that all xi are in pZp. Hence ξ3,5 = 0.
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g3,7 =


1

p
(
1− exp(−2p)

)
1

1
1

: Comparing g3,7 with (A.2), we see that all xi are in pZp.

Hence ξ3,7 = 0.

g3,8 =


1

p
(
1− exp(p)

)
1

1
1

: Comparing g3,8 with (A.2), we see that all xi are in pZp. Hence

ξ3,8 = 0.

g3,10 =


1

1 p
1

1

: Comparing g3,10 with (A.2), we see that all xi are in pZp. Hence ξ3,10 = 0.

g3,13 =


1

1 p
1

1

: Comparing g3,13 with (A.2), we see that all xi are in pZp. Hence ξ3,13 = 0.

g3,15 =


1− p p

−p2 1 + p+ p2

1
1

: Comparing g3,15 with (A.2), we see that all xi are in pZp except

x7, for which we have a11 = exp(px7) = 1− p, and thus x7 = 1
p log(1− p) = −1+O(p). Hence

ξ3,15 = −ξ7.

g4,7 =


1

1
1

p
(
1− exp(p)

)
1

: Comparing g4,7 with (A.2), we see that all xi are in pZp. Hence

ξ4,7 = 0.

g4,8 =


1

1
1

p
(
1− exp(−p)

)
1

: Comparing g4,8 with (A.2), we see that all xi are in pZp. Hence

ξ4,8 = 0.

g4,9 =


1

1
1

p
(
1− exp(−p)

)
1

: Since g4,9 = g4,8, the above shows that ξ4,9 = 0.
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g4,10 =


1 −p

1
1

1

: Comparing g4,10 with (A.2), we see that all xi are in pZp. Hence ξ4,10 = 0.

g4,11 =


1

1− p p
1

−p2 1 + p+ p2

: Comparing g4,11 with (A.2), we see that all xi are in pZp except

x8 = x9, for which we have a22 = exp(px8) = 1− p, and thus x8 =
1
p log(1− p) = −1 +O(p).

Hence ξ4,11 = −ξ8 − ξ9.

g4,12 =


1

1
−p 1

1

: Comparing g4,12 with (A.2), we see that all xi are in pZp except x5, for

which we have a32 = px5 = −p, and thus x5 = −1. Hence ξ4,12 = −ξ5.

g4,14 =


1

1
1
p 1

: Comparing g4,14 with (A.2), we see that all xi are in pZp except x6, for

which we have a43 = px6 = p, and thus x6 = 1. Hence ξ4,14 = ξ6.

g5,6 =


1

1
1

−p2 1

: Comparing g5,6 with (A.2), we see that all xi are in pZp. Hence ξ5,6 = 0.

g5,7 =


1

1

p
(
1− exp(p)

)
1

1

: Comparing g5,7 with (A.2), we see that all xi are in pZp. Hence

ξ5,7 = 0.

g5,8 =


1

1

p
(
1− exp(−2p)

)
1

1

: Comparing g5,8 with (A.2), we see that all xi are in pZp.

Hence ξ5,8 = 0.

g5,9 =


1

1

p
(
1− exp(p)

)
1

1

: Since g5,9 = g5,7, the above shows that ξ5,9 = 0.
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g5,11 =


1

1
1 p

1

: Comparing g5,11 with (A.2), we see that all xi are in pZp. Hence ξ5,11 = 0.

g5,13 =


1 −p

1
1

1

: Comparing g5,13 with (A.2), we see that all xi are in pZp. Hence ξ5,13 = 0.

g5,14 =


1

1− p p

−p2 1 + p+ p2

1

: Comparing g5,14 with (A.2), we see that all xi are in pZp except

x8, for which we have a22 = exp(px8) = 1− p, and thus x8 = 1
p log(1− p) = −1+O(p). Hence

ξ5,14 = −ξ8.

g6,8 =


1

1
1

p
(
1− exp(p)

)
1

: Comparing g6,8 with (A.2), we see that all xi are in pZp. Hence

ξ6,8 = 0.

g6,9 =


1

1
1

p
(
1− exp(−2p)

)
1

: Comparing g6,9 with (A.2), we see that all xi are in pZp.

Hence ξ6,9 = 0.

g6,10 =


1 −p

1
1

1

: Comparing g6,10 with (A.2), we see that all xi are in pZp. Hence ξ6,10 = 0.

g6,11 =


1

1 −p
1

1

: Comparing g6,11 with (A.2), we see that all xi are in pZp. Hence ξ6,11 = 0.

g6,12 =


1

1
1− p p

−p2 1 + p+ p2

: Comparing g6,12 with (A.2), we see that all xi are in pZp except

x9, for which we have a33 = exp(px9) = 1− p, and thus x9 = 1
p log(1− p) = −1+O(p). Hence

ξ6,12 = −ξ9.
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g7,10 =


1 exp(p)− 1

1
1

1

: Comparing g7,10 with (A.2), we see that all xi are in pZp. Hence

ξ7,10 = 0.

g7,11 =


1

1 exp(−p)− 1
1

1

: Comparing g7,11 with (A.2), we see that all xi are in pZp. Hence

ξ7,11 = 0.

g7,13 =


1 exp(p)− 1

1
1

1

: Comparing g7,13 with (A.2), we see that all xi are in pZp. Hence

ξ7,13 = 0.

g7,14 =


1

1 exp(−p)− 1
1

1

: Comparing g7,14 with (A.2), we see that all xi are in pZp. Hence

ξ7,14 = 0.

g7,15 =


1 exp(2p)− 1

1
1

1

: Comparing g7,15 with (A.2), we see that all xi are in pZp. Hence

ξ7,15 = 0.

g8,11 =


1

1 exp(p)− 1
1

1

: Comparing g8,11 with (A.2), we see that all xi are in pZp. Hence

ξ8,11 = 0.

g8,12 =


1

1
1 exp(−p)− 1

1

: Comparing g8,12 with (A.2), we see that all xi are in pZp. Hence

ξ8,12 = 0.

g8,13 =


1 exp(p)− 1

1
1

1

: Since g8,13 = g7,13, the above shows that ξ8,13 = 0.
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g8,14 =


1

1 exp(2p)− 1
1

1

: Comparing g8,14 with (A.2), we see that all xi are in pZp. Hence

ξ8,14 = 0.

g8,15 =


1 exp(−p)− 1

1
1

1

: Comparing g8,15 with (A.2), we see that all xi are in pZp. Hence

ξ8,15 = 0.

g9,10 =


1 exp(p)− 1

1
1

1

: Since g9,10 = g7,10, the above shows that ξ8,15 = 0.

g9,11 =


1

1 exp(p)− 1
1

1

: Since g9,11 = g8,11, the above shows that ξ9,11 = 0.

g9,12 =


1

1
1 exp(2p)− 1

1

: Comparing g9,12 with (A.2), we see that all xi are in pZp. Hence

ξ9,12 = 0.

g9,13 =


1 exp(−p)− 1

1
1

1

: Comparing g9,13 with (A.2), we see that all xi are in pZp. Hence

ξ9,13 = 0.

g9,14 =


1

1 exp(−p)− 1
1

1

: Comparing g9,14 with (A.2), we see that all xi are in pZp. Hence

ξ9,14 = 0.

g11,15 =


1 −1

1
1

1

: Comparing g11,15 with (A.2), we see that all xi are in pZp except x10, for

which we have a14 = x10 = −1. Hence ξ11,15 = −ξ10.

g12,13 =


1 −1

1
1

1

: Since g12,13 = g11,15, the above shows that ξ12,13 = −ξ10.
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g12,14 =


1

1 −1
1

1

: Comparing g12,14 with (A.2), we see that all xi are in pZp except x11, for

which we have a24 = x11 = −1. Hence ξ12,14 = −ξ11.

g14,15 =


1 −1

1
1

1

: Comparing g14,15 with (A.2), we see that all xi are in pZp except x13, for

which we have a13 = x13 = −1. Hence ξ14,15 = −ξ13.

Thus the non-zero commutators [ξi, ξj ] with i < j are:

[ξ1, ξ10] = −(ξ7 + ξ8 + ξ9), [ξ1, ξ11] = −ξ3, [ξ1, ξ12] = −ξ2,

[ξ1, ξ13] = ξ6, [ξ1, ξ15] = ξ4, [ξ2, ξ13] = −(ξ7 + ξ8),

[ξ2, ξ14] = −ξ3, [ξ2, ξ15] = ξ5, [ξ3, ξ15] = −ξ7,

[ξ4, ξ11] = −(ξ8 + ξ9), [ξ4, ξ12] = −ξ5, [ξ4, ξ14] = ξ6,

[ξ5, ξ14] = −ξ8, [ξ6, ξ12] = −ξ9, [ξ11, ξ15] = −ξ10,

[ξ12, ξ13] = −ξ10, [ξ12, ξ14] = −ξ11, [ξ14, ξ15] = −ξ13.

(A.3)

A.1.2 Describing the graded chain complex, grj
(∧n g

)
Looking at (3.3) (with e = 1 and h = 4), we see that

ω(g1) = 1− 3

4
=

1

4
, ω(g2) = 1− 2

4
=

1

2
, ω(g3) = 1− 1

4
=

3

4
,

ω(g4) = 1− 2

4
=

1

2
, ω(g5) = 1− 1

4
=

3

4
, ω(g6) = 1− 1

4
=

3

4
,

ω(g7) = 1, ω(g8) = 1, ω(g8) = 1, ω(g9) = 1,

ω(g10) =
3

4
, ω(g11) =

2

4
=

1

2
, ω(g12) =

1

4
,

ω(g13) =
2

4
=

1

2
, ω(g14) =

1

4
, ω(g15) =

1

4
.

Hence

g = k ⊗Fp[π] gr I = spank(ξ1, . . . , ξ15) = g1 ⊕ g2 ⊕ g3 ⊕ g4,

where

g1 = g 1
4
= spank(ξ1, ξ12, ξ14, ξ15),
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g2 = g 1
2
= spank(ξ2, ξ4, ξ11, ξ13),

g3 = g 3
4
= spank(ξ3, ξ5, ξ6, ξ10),

g4 = g1 = spank(ξ7, ξ8, ξ9).

See Remark 3.9 for more details.

This is enough to calculate the graded mod p cohomology of g, see [Kon22] for the details.

We write the result in Table 3.8.

A.2 I ⊆ GL4(Zp)

In this section we will briefly describe the work needed to find continuous group cohomology

of the pro-p Iwahori subgroup I of GL4(Qp).

When I is the pro-p Iwahori subgroup in GL4(Qp), we know by Section 3.1 that we can take

it to be of the form

I =


1 + pZp Zp Zp Zp

pZp 1 + pZp Zp Zp

pZp pZp 1 + pZp Zp

pZp pZp pZp 1 + pZp

 ⊆ GL4(Zp),
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and, by Section 3.1, we have an ordered basis

g1 =


1

1
1

p 1

, g2 =


1

1
p 1

1

, g3 =


1
p 1

1
1

,

g4 =


1

1
1

1 1

, g5 =


1

1
p 1

1

, g6 =


1

1
1
p 1

,

g7 =


exp(p)

exp(−p)
1

1

, g8 =


1

exp(p)
exp(−p)

1

,

g9 =


1

1
exp(p)

exp(−p)

, g10 =


exp(p)

exp(p)
exp(p)

exp(p)

,

g11 =


1 1

1
1

1

, g12 =


1

1 1
1

1

, g13 =


1

1
1 1

1

,

g14 =


1 1

1
1

1

, g15 =


1

1 1
1

1

, g16 =


1 1

1
1

1

.

(A.4)

Since we just renamed some elements and added an element of the center of GL4(Zp) when comparing

to the ordered basis of I ⊆ SL4(Zp) from Appendix A.1, it is clear from Equation (A.3) that the

only non-zero commutators [ξi, ξj ] with i < j are:

[ξ1, ξ11] = −(ξ7 + ξ8 + ξ9), [ξ1, ξ12] = −ξ3, [ξ1, ξ12] = −ξ2,

[ξ1, ξ14] = ξ6, [ξ1, ξ16] = ξ4, [ξ2, ξ14] = −(ξ7 + ξ8),

[ξ2, ξ15] = −ξ3, [ξ2, ξ16] = ξ5, [ξ3, ξ16] = −ξ7,

[ξ4, ξ12] = −(ξ8 + ξ9), [ξ4, ξ13] = −ξ5, [ξ4, ξ15] = ξ6,

[ξ5, ξ15] = −ξ8, [ξ6, ξ13] = −ξ9, [ξ12, ξ16] = −ξ11,

[ξ12, ξ14] = −ξ11, [ξ12, ξ15] = −ξ12, [ξ15, ξ16] = −ξ14.

(A.5)

Looking at Appendix A.1, we easily see that

g1 = g 1
4
= spank(ξ1, ξ13, ξ15, ξ16),
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g2 = g 1
2
= spank(ξ2, ξ4, ξ12, ξ14),

g3 = g 3
4
= spank(ξ3, ξ5, ξ6, ξ11),

g4 = g1 = spank(ξ7, ξ8, ξ9, ξ10).

This is enough to calculate the graded mod p cohomology of g, see [Kon22] for the details.

We write the result in Table 3.9.
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Appendix B

Other Research

In this chapter, I will give a very brief introduction to other research I have participated

in. This is all joint research and it is beyond the scope of this dissertation. I refer to the papers

[Dia+21a; Dia+21b; DKK20] for background and details. The research has been focused on two

different, but closely related, subjects.

List-decodable mean estimation. In many statistical settings, including machine learning

security and exploratory data analysis e.g. in biology, datasets contain arbitrary — and even

adversarially chosen — outliers. The central question of the field of robust statistics is to design

estimators tolerant to a small amount of unconstrained contamination (corrupted points).

The main question we have been researching is how to quickly find a robust estimator of

the mean in the case where more than 1
2 the points are corrupted. In this case a single accurate

hypothesis is information-theoretically impossible, but one may be able to compute a small list

of hypotheses with the guarantee that at least one of them is accurate. This relaxed notion of

estimation is known as list-decodable learning in general, and list-decodable mean estimation in our

more specialized case. In other words, we are giving an algorithm that solves the following problem

“quickly”.

Let D be a distribution with unknown mean µ and unknown bounded covariance Σ ⪯ σ2I.

Given a set T ⊂ Rd of size n and α ∈ (0, 1/2) such that an α-fraction of the points in T are i.i.d.

samples from D. We want to output a list of candidate vectors {µ̂i}i∈[s] such that s = poly(1/α)
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(or optimally O(1/α)) and with high probability mini∈[s] ∥µ̂i − µ∥2 is small.

During our research we managed to give algorithms that solve the above list-decodable

problem using n = Ω(d/α) samples (optimal), O(1/α) hypotheses (optimal), and error and runtime

as follows:

Error Time

[CMY20]a O(σ/
√
α) Õ(nd/αC) (C ≥ 6)

[DKK20] O(σ log(1/α)/
√
α) Õ(n2d/α)

O(σ/
√
α) Õ(nd/α+ 1/α6)

O(σ
√
log(1/α)/α) Õ(nd/α)

[Dia+21a] O(σ log(1/α)/
√
α) Õ(n1+εd) (ε > 0 small)

[Dia+21b]

a Concurrent work.

In summary, our most recent result (cf. [Dia+21a, Thm. 6]) — which is the best known

currently in this setting — is:

Theorem B.1 (informal). For any fixed constant ε0 > 0, there is an algorithm FastMultifilter

with the following guarantee. Let D be a distribution over Rd with unknown mean µ∗ and unknown

covariance Σ with ∥Σ∥op ≤ σ2, and let α ∈ (0, 1). Given α and a multiset of n = Ω( dα) points on

Rd such that an α-fraction are i.i.d. draws from D, FastMultifilter runs in time O(n1+εd) and

outputs a list L of O(α−1) hypotheses so that with high probability we have

min
µ̂∈L
∥µ̂− µ∗∥2 = O

(σ logα−1

√
α

)
.

♣

Clustering well-separated mixture models. Mixture models are a well-studied class of gen-

erative models used widely in practice. Given a family of distributions F , a mixture model M

with k components is specified by k distributions D1, . . . ,Dk ∈ F and non-negative mixing weights

α1, . . . , αk summing to one, and its law is given by
∑

i∈[k] αiDi. That is, to draw a sample from M,

we first choose i ∈ [k] with probability αi, and then draw a sample from Di. When the weights are

all equal to 1
k , we call the mixture uniform. Mixture models, especially Gaussian mixture models,

have been widely studied in statistics since pioneering work of Pearson in 1894, and more recently,

in theoretical computer science.
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A canonical learning task for mixture models is the clustering problem. Namely, given

independent samples drawn fromM, the goal is to approximately recover which samples came from

which component. To ensure that this inference task is information-theoretically possible, a common

assumption is that M is “well-separated” and “well-behaved”: for example, we may assume each

component Di is sufficiently concentrated (with sub-Gaussian tails or bounded moments), and that

component means have pairwise distance at least ∆, for sufficiently large ∆. The goal is then to

efficiently and accurately cluster samples fromM with as small a separation as possible.

For this problem, we gave different algorithms for different settings, and managed to get

different interesting results in each case in [Dia+21a]. In particular, see [Dia+21a, Cor. 6, 8, 9] for

more details. Our main result can be considered to be:

Theorem B.2 (informal). For any fixed constant ε0 > 0, there is an algorithm with the following

guarantee. Given a multiset of n = Ω(dk) i.i.d. samples from a uniform mixture model M =∑
i∈[k]

1
kDi, where each component Di has unknown mean µi, unknown covariance matrix Σi with

∥Σi∥op ≤ σ2, and mini,i′∈[k],i ̸=i′ ∥µi−µi′∥2 = Ω̃(
√
k)σ, the algorithm runs in time O(n1+ε0 max(k, d)),

and with high probability correctly clusters 99% of the points. ♣

Again, this is the best known currently in this setting.
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