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On Straight TRACS: A baseline bias from mental models 
 

Kevin Burns (kburns@mitre.org) 
The MITRE Corporation, 202 Burlington Road 

Bedford, MA 01730-1420 USA 
 
 

Abstract 

TRACS (Tool for Research on Adaptive Cognitive 
Strategies) is a family of games played with a special 
deck of two-sided cards (see www.tracsgame.com). 
TRACS has the advantage of being both mathematically 
tractable to theoretical analysis and psychologically 
relevant to practical applications. The simplest game, 
called Straight TRACS, is a series of choices where the 
player must turn over one of two cards to match a third 
card. The object is to make the most matches on a trip 
through the deck. The challenge is to track the changing 
odds in order to make the best choices. We performed 
experiments and simulations to measure human 
performance in this probabilistic and dynamic task. We 
present our finding of a Baseline Bias, in which 
subjective odds are (incorrectly) anchored to the baseline 
odds. This is an interesting result because it is contrary to 
other well-known biases, such as Gambler’s Fallacy, in 
which subjective odds are (incorrectly) not anchored to 
the baseline odds. We propose a theory of mental models 
to reconcile our finding with previous research on 
heuristics and biases.  

Introduction 
A dilemma of decision research is to obtain the rigors 
of controlled experimentation yet maintain some 
relevance to practical applications. Our approach is a 
synthetic task environment (Gray, in press) called 
“TRACS” (Burns, 2001a) that replicates the cognitive 
challenges of naturalistic decision-making  (Klein, 
1998), including probabilistic risk assessment and 
dynamic resource allocation.      
 TRACS is both a unique game and a useful tool 
(Burns, 2001b). From a mathematical perspective, 
TRACS is unique because it is played with a special 
deck of two-sided cards, and because it has extensible 
rules that allow the same game to be played alone or 
with others. 
 Unlike standard playing cards, the backs of the cards 
provide clues to the fronts, and the deck contains 
unequal numbers of each card type (Table 1). 
Compared to Poker and other games of imperfect 
information, the two-sided cards make TRACS more 
tractable to theoretical analysis of optimal solutions. 
Compared to Chess and other games of perfect 
information, the two-sided cards make TRACS more 
relevant to diagnoses and decisions in practical domains 
like business, medicine and warfare. 

 From a psychological perspective, TRACS is useful 
because it provides a naturalistic micro world for 
experiments and simulations. Unlike other approaches 
to research on probabilistic reasoning, which often 
employ verbal stimuli in the form of static questions, 
TRACS employs graphical stimuli in a game of 
dynamic situations. This reduces artificial framing 
effects (see Nickerson, 1996) and introduces realistic 
temporal context.      
 We are using TRACS to perform experiments on 
human subjects and to perform simulations with 
software agents. Our experiments are designed to elicit 
cognitive strategies and our simulations are designed to 
evaluate these strategies against normative standards. 
Taken together, our experiments and simulations allow 
us to build and test models of cognitive competence 
that are relevant to practical applications in command 
and control (Burns, 2001c).   
 This paper reports on our first experiment and 
simulations using the simplest version of the game, 
called Straight TRACS. We explain the game, discuss 
our experiment and present our finding of a Baseline 
Bias. We also propose a theory of mental models to 
reconcile our finding with previous research on 
heuristics and biases.  

The Game 
Straight TRACS is a solitaire game played with 24 two-
sided cards (Table 1). The backs of the cards, called 
“tracks”, show black shapes (triangle, circle or square). 
The fronts of the cards, called “treads”, show colored 
sets (Red or Blue) of these same shapes. Table 1 shows 
the distribution of shape/color (track/tread) cards in the 
deck. This distribution defines the baseline odds. For 
example, at the start of the game, a triangle track is 
likely (6/8 = 75%) to be Red, a square track is likely 
(6/8 = 75%) to be Blue and a circle track is 50-50. 
However, during the game, the odds change as the deck 
is depleted.   
 

 
Table 1: Distribution of cards in the deck. The backs 
are called “tracks” and the fronts are called “treads”. 

 
# of Cards 6 4 2 2 4 6 

Front (tread) Red Red Red Blue Blue Blue 
Back (track) ▲▲▲▲ ●●●● ■ ■ ■ ■  ▲▲▲▲ ●●●● ■■■■ 

 
 



To play Straight TRACS, the deck is held face down 
and three cards are dealt to a field. Two cards are dealt 
face down (showing their tracks) and the third card is 
dealt face up (showing its tread). The player’s task is to 
turn over one of the two tracks (revealing its tread), 
trying to match the tread (color) of the third card. The 
turn is scored a “save” if the treads match or a “strike” 
if the treads clash. The two treads are removed from the 
field and the remaining track is turned to reveal its 
tread. This becomes the tread to match on the next turn. 
Two new tracks are dealt from the deck, a track is 
turned, the treads are scored, etc. Play continues until 
all cards (except the last two, which do not count) have 
been paired and scored. The object of the game is to 
minimize strikes on a trip through the deck. 

Experiment 
The goal of our experiment was to measure how people 
track the changing odds in TRACS. The probe in our 
experiment was a confidence meter that players set 
before each turn to indicate their subjective belief in the 
color (tread) of each shape (track) on the field. We used 
two different confidence meters (Figure 1), both based 
on a spectrum that runs from 100% Red to 100% Blue. 
One confidence meter displayed a discrete set of 
qualitative values on an octal scale. The other 
confidence meter displayed a continuous set of 
quantitative values on a decimal scale. 
 
 
 
 

“Button” Confidence Meter 
 
 
 
 

“Pointer” Confidence Meter 
 

Figure 1: Two different confidence meters. 
 

We tested 43 adults playing 10 games each. Subjects 
were tested on a personal computer using a mouse to set 
the confidence meter. There were no time limits, but 
each game was typically completed in less than 5 
minutes. Each subject played in two blocks of 5 games, 
one block with each confidence meter in balanced 
design to control for fatigue and learning effects. The 
two blocks were separated by a short break. Before data 
collection, subjects read a playbook that described the 
cards and rules, watched a demo and played a practice 
game. All games were played with random shuffles of 
the deck and all 43*10 = 430 shuffles were unique. The 
experimental results were similar for Button and 
Pointer confidence meters, so all data is combined here, 
rounding Pointer data to the nearest Button for 
consistency.  

Analysis  

Baseline Bias 
The player’s problem is illustrated in Figure 2, which 
shows the actual odds for a typical game. By 
convention, we measure odds in % Red, where % Blue 
= 100 - % Red. Figure 2 shows that the odds for each 
track type start at their baseline values (75% Red for 
triangles, 50% Red for circles and 25% Red for 
squares). However, the actual odds change (moving 
up/down on Figure 2) as tracks are turned to reveal their 
treads (moving right on Figure 2).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 2: Change in actual odds (typical game). 
 
 Figure 3 illustrates a typical player’s solution to the 
problem illustrated in Figure 2, as reported by the 
player’s setting of the confidence meter for each track 
(before each turn). Relative to the actual odds (Figure 
2), we see that the reported odds exhibit a bias towards 
the baseline odds. For example, after a minor 
adjustment near the start of the game, the player (Figure 
3) reported constant odds for circles even after the 
actual odds (Figure 2) had moved far from the baseline. 
This Baseline Bias is explored further below. 

Odds Inversions 
Recall that the object of Straight TRACS is to turn the 
track that is most likely to match a given tread. At the 
start of the game, this is a simple task since the baseline 
odds specify which track to turn, e.g., triangle rather 
than circle to match Red. However, as the deck is 
depleted, the actual odds for two track types may 
become “inverted” with respect to their baseline 
configuration. This occurs whenever there is a 
crossover of two track types on the dynamic odds plot 
(Figure 2).  
 

Red 

Red 

Blue 

Blue 



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3: Change in reported odds (typical game). 
 

For example, in Figure 2, a crossover near the middle 
of the game causes the odds to be less % Red for 
triangles than for circles for the remainder of the game. 
This is an inversion of the baseline odds relation 
between triangles and circles. Figure 3 shows that the 
player failed to detect this odds inversion.   

As a gross measure of cognitive competence, we treat 
each odds inversion as a signal that a player must detect 
in order to minimize strikes in Straight TRACS. Figure 
4 shows the total number of hits, misses and false 
alarms for this signal (for all players and all games). 
The relatively small number of hits compared to misses 
demonstrates that subjects exhibit a Baseline Bias. The 
occurrence of some hits and false alarms suggests that, 
although biased towards the baseline odds, subjects are 
at least trying to update odds, i.e., they are not just 
playing the baseline odds. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 4: Detection of odds inversions. 

 

Average Error 
Each odds inversion (see above) involves a pair of 
tracks. As another measure of cognitive competence, 
we also examine confidence errors for single tracks. 
Figure 5 shows the average error versus turn in game, 
for human subjects and for a simulated agent that 
always plays the baseline odds. 

Figure 5 shows that error increases with turn, i.e., as 
the actual odds deviate more from the baseline odds, for 
both the human subjects and the baseline agent. This 
shows that people have a Baseline Bias relative to the 
actual odds (zero error). Figure 5 also shows that the 
average error is higher for human subjects than for the 
baseline agent at the start of the game. This is a 
surprising result because: (1) The baseline odds are 
explicitly illustrated on the cards (treads) for the player 
to see. (2) The actual odds are obviously equal to the 
baseline odds at the start of the game. (3) Playing the 
baseline odds is a strategy that requires virtually no 
mental effort.  

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 

Figure 5: Average error in reported odds. 

Kinds of Errors  
To help explain Figure 5, we define a taxonomy of 
errors (Table 2). We first distinguish between Cognitive 
Errors, which are mental errors in judging odds, and 
Manipulative Errors, which are physical errors in 
moving the mouse to match the mind. We then 
distinguish between two kinds of Cognitive Errors: 
Update Errors are mental errors in updating odds 
relative to baseline odds, and Baseline Errors are 
mental errors in estimating the baseline odds 
themselves. Finally, we further distinguish between two 
kinds of Update Errors: Omission Errors are where no 
mental update is performed when it should be, and 
Commission Errors are where a mental update is 
performed but the result is incorrect.   

 
 



 
Table 2: A taxonomy of errors. 

 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
The baseline agent makes no Manipulative Errors, no 

Baseline Errors and no Commission Errors, i.e., it 
makes only Update Errors of Omission. In fact, since 
the baseline agent never updates odds, its performance 
provides an upper bound on the magnitude of Omission 
Errors. Figure 5 shows that the baseline agent’s Update 
Error is non-zero on turn 1. This is because the tread on 
the first field can cause a change in odds before the first 
turn. For example, assume that the cards on the first 
field are circle (track), Red circle (tread) and square 
(track). The baseline odds for circles are 4/8 Red, but 
since one Red circle is revealed as a tread on the field, 
the actual (updated) odds for circles are 3/7 Red. The 
same effect is magnified on later turns as more treads 
are revealed, hence the Omission Error increases with 
turn (Figure 5, curve for baseline agent). 

For human subjects, the total error comprises 
Manipulative Error, Baseline Error and Update Error 
(Omission and Commission). The difference between 
total human error and baseline agent error on turn 1 is 
attributed to Manipulative Error and Baseline Error, 
which we assume are relatively independent of turn in 
game. Thus, the curve for total human error can be 
shifted downwards (curve * in Figure 5) to get an 
estimate of human Update Error. 

This shifted curve for human error is directly 
comparable to the error curve for the baseline agent, 
which also includes only Update Error. The comparison 
(Figure 5) shows that human subjects are biased 
towards the baseline agent, relative to the actual odds 
(zero error). However, the shifted curve also shows that 
human subjects outperform the baseline agent (who 
does not update odds), and the difference grows with 
turn as the difference between actual odds and baseline 
odds increases. Thus, we conclude that human subjects 
make fewer Omission Errors than the baseline agent, 
and that the Commission Errors made by human 
subjects are not significantly larger in number and 
magnitude than the baseline agent’s Omission Errors. 

Anchoring and Adjustment 
These results are consistent with the well-known 
heuristic strategy of “anchoring and adjustment” 
(Tversky & Kahneman, 1974). In our case, the baseline 
odds (with some Baseline Error, see above) are the 
anchor to which people make adjustments. The 
adjustments are, on average, better than pure anchoring 
but significantly worse than optimal adjusting.  

To gain further insight into the adjustments, we 
examine how the confidence meter settings change 
from turn to turn (for the same track type). We define 
various magnitudes of adjustment (i.e., no-button jump, 
one-button jump, two-button jump, etc.) and compute 
the number of times each magnitude of adjustment was 
made. Figure 6 compares the results for human subjects 
to an optimal agent (playing the same games) who 
always sets the confidence meter at the actual odds. As 
expected from anchoring, human subjects most often 
make a no-button adjustment. This is in contrast to the 
optimal agent, who most often makes a one-button 
adjustment.  

 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 6: Number of adjustments (by magnitude). 
 

Besides the magnitude of adjustment, we also 
examine various types of adjustments. We define five 
types of adjustments (Table 3) and compute the number 
of times each type of adjustment was made. Figure 7 
compares the results for human subjects to an optimal 
agent (playing the same games) who always sets the 
confidence meter at the actual odds.  

 
Table 3: Types of adjustments (anchor = baseline odds). 

 
Type 0 No adjustment 
Type 1 From on-anchor to off-anchor 
Type 2 From off-anchor to more off-anchor 
Type 3 From more off-anchor to less off-anchor 
Type 4 From off-anchor to on-anchor 

Cognitive Errors 

Errors 

Manipulative Errors 

Update Errors Baseline Errors 

 Omission Errors  Commission Errors 



As expected from anchoring, Figure 7 shows that 
human subjects make many more Type 0 adjustments  
(actually non-adjustments) and less Type 1 and Type 2 
adjustments than the optimal agent. Figure 7 also shows 
that the difference between Type 1 and Type 4 
adjustments is smaller for human subjects than for the 
optimal agent. This suggests that, when people do move 
off the baseline anchor (Type 1) in an attempt to adjust 
odds, they often “lose it” and return to the baseline 
anchor (Type 4). The optimal agent moves off the 
baseline anchor (Type 1) more often and returns to the 
anchor (Type 4) only when the actual odds are equal to 
the baseline odds (i.e., the agent never “loses it”). 

These results (Figures 6 and 7) further support our 
conclusion that Baseline Bias in TRACS (Figures 4 and 
5) is caused by a heuristic strategy of anchoring and 
adjustment.  

 

 

 
 
 
 
 
 
 
 
 
 
 
 

Figure 7: Number of adjustments (by type). 
 

The question, of course, is how (exactly) do people 
decide when and how much to move off anchor? That 
is, what (exactly) are the mental limits that prevent 
more accurate adjustments? The answer is crucial if we 
are to explain and predict human performance in 
TRACS or any other domain where people must think 
probabilistically about things that are changing 
dynamically. Below we propose a theory of mental 
models that takes a first step in this direction. 

Theory  

Mind Sets  
We claim (Burns, in press; 2002; 2001b; 2001c; 2001d) 
that people make sense of the world by forming 
probabilistic models in their heads (see Knill & 
Richards, 1996; Johnson-Laird, 1994; Gigerenzer et al., 
1991).  
 

We further claim that: (1) Mental models are 
bounded by natural regularities of the world. (2) Mental 
models have a normative basis within their natural 
bounds. (3) Cognitive competence can be explained and 
predicted by specifying the natural bounds and 
normative basis of mental models (i.e., in bounded 
rationality, see Simon, 1990).  

More specifically, we claim that probabilistic mental 
models can be characterized as computational “mind 
sets” (Burns, 2002). Like the term “model”, which is 
both noun and verb, we use the term “set” in dual sense 
to refer to both the mental representation of classes 
(e.g., declarative knowledge) and the mental operation 
of routines  (e.g., procedural knowledge). The central 
tenet of our theory (Burns 2002) is that these mind sets 
are normative within their cognitive bounds. 

As an initial test, below we sketch how our theory 
can explain Baseline Bias in TRACS. We also sketch 
how our theory can reconcile Baseline Bias with 
previous findings of Gambler’s Fallacy and Base Rate 
Neglect in other probabilistic reasoning tasks (Tversky 
& Kahneman, 1974). This is a non-trivial test of the 
theory, since Gambler’s Fallacy and Base Rate Neglect 
appear at first glance to be contrary to Baseline Bias. 

Gambler’s Fallacy and Base Rate Neglect 
In Baseline Bias (in TRACS), people do not update the 
baseline odds when they should. Conversely, in 
Gambler’s Fallacy, people update the baseline odds 
when they should not. Furthermore, in Base Rate 
Neglect, people discount or ignore the baseline odds 
altogether. How can we explain these differences? 
According to our theory, all three biases occur because 
people reason about probabilities with mind sets.  

For Base Rate Neglect (Tversky & Kahneman, 1974; 
Koehler, 1996; Cosmides & Tooby, 1996), we suggest 
that people ignore the baseline odds in light of other 
evidence because they believe that the baseline odds 
reflect a less relevant (not applicable) set of 
occurrences. It is difficult in theory, let alone in 
practice, to aggregate probabilities that are derived from 
diverse sources with different pedigrees. As such, it is a 
bounded-Bayesian strategy to rely on the one source 
that is judged to be most relevant and reliable. Base 
rates that are judged irrelevant or unreliable are 
therefore neglected. 

For Gambler’s Fallacy (Tversky & Kahneman, 
1974), we suggest that people update the baseline odds 
because they are judging odds for a finite (bounded) set 
rather than for an infinite set. For example, after seeing 
10 heads and 2 tails, a gambler who believes the coin is 
fair will think that the future holds more tails than 
heads, simply because he thinks that the eventual (large 
but finite) set of many tosses for this coin will be 
balanced. As such, it is a bounded-Bayesian inference 
to conclude that the future odds are slightly higher for 
tails than for heads. 



For Baseline Bias (in TRACS), we suggest that 
people want to update odds (as they tell us) but that it is 
simply beyond their cognitive capacity. To do so, 
players must count cards in each of six sets (see Table 
1) and normalize to convert the counts to odds. These 
two tasks, i.e., concurrent counting and normalizing 
numbers, are naturally hard for the unaided mind 
(Dehaene, 1997; Dehaene, 1992; Gallistel & Gelman, 
1992; Nickerson, 1996). Thus, with self-knowledge of 
mental limits, it is a bounded-Bayesian strategy to 
remain anchored to the baseline odds unless and until 
the evidence for an adjustment is compelling. For 
example, in the extreme case, pure anchoring to 
baseline odds (i.e., never adjusting) is the bounded-
Bayesian strategy for a decision maker who knows that 
he cannot remember which cards have been revealed in 
the course of a game. 

Conclusion 
Our initial experiment and simulations show that 
TRACS provides a useful micro world for investigating 
how people make diagnoses and decisions under 
uncertainty. Our finding in Straight TRACS is that 
players exhibit a Baseline Bias, which we attribute to a 
heuristic strategy of anchoring and adjustment. We 
sketched a theory of set-based mental models that 
reconciles our finding with previous research on 
heuristics and biases. Our future plans are to use 
TRACS to investigate the mental limits of concurrent 
counting, normalizing numbers and other facets of 
cognitive competence in probabilistic and dynamic 
reasoning.   
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