
Lawrence Berkeley National Laboratory
Recent Work

Title
A WATER-COOLED MIRROR SYSTEM FOR SYNCHROTRON RADIATION

Permalink
https://escholarship.org/uc/item/6rf6d34n

Author
DiGennaro, R.

Publication Date
1987-10-19

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rf6d34n
https://escholarship.org
http://www.cdlib.org/


l 

j 

uc-:2JY 
LBL-23777 

C'. l 

Lawrence Berkeley Laboratory 
UNIVERSITY OF CALIFORNIA 

Accelerator & Fusion 
Research Division 

Center for X-Ray Optics 

Presented at the 5th National Conference 
on Synchrotron Radiation Instrumentation, 
Madison, WI, June 21-25, 1987 

For Reference 
Not to be taken from this room 

A WATER-COOLED MIRROR SYSTEM FOR SYNCHROTRON RADIATION 

R. DiGennaro, B.Gee, J. Guigli, H. Hogrefe, 
M. Howells, H. Rarback 

June 1987 

: :.~;::IVL_, 
L,~_v,!r.~(.JC-:: 

O!~~r·~vl~~-~•T0qV 

OCT 1 91987 

Prepared for the U.S. Department of Energy under Contract DE-AC03-76SF00098 



DISCLAIMER 

This document was prepared as an account of work sponsored by the United States 
Government. While this document is believed to contain cmTect information, neither the 
United States Government nor any agency thereof, nor the Regents of the University of 
California, nor any of their employees, makes any warranty, express or implied, or 
assumes any legal responsibility for the accuracy, completeness, or usefulness of any 
information, apparatus, product, or process disclosed, or represents that its use would not 
infringe privately owned rights. Reference herein to any specific commercial product, 
process, or service by its trade name, trademark, manufacturer, or otherwise, does not 
necessarily constitute or imply its endorsement, recommendation, or favoring by the 
United States Government or any agency thereof, or the Regents of the University of 
California. The views and opinions of authors expressed herein do not necessarily state or 
reflect those of the United States Government or any agency thereof or the Regents of the 
University of California. 



• 

A Water-Cooled Mirror System for Synchrotron Radiation 

Richard DiGennaro, Bruce Gee, Jim Guigli, 

Henning Hogrefe, and Malcolm Howells 

Center for X-Ray Optics, Lawrence Berkeley Laboratory 

University of California, Berkeley, California 94720 

Harvey Rarback 

National Synchrotron Light Source, 

Brookhaven National Laboratory 

Upton, New York 11973 

Presented at the 5th National Conference on 

Synchrotron Radiation Instrumentation 

June 21-25, 1987 

Madison, Wisconsin 

Contact:: Richard DiGennaro 

Lawrence Berkeley Laboratory 

University of California 

#1 Cyclotron Road, Mail Stop 46-161 

Berkeley, California 94720 

Phone: (415) 486-6466 



A Water-Cooled Mirror System for Synchrotron Radiation 

Richard DiGennaro, Bruce Gee, Jim Guigli, 

Henning Hogrefe, and Malcolm Howells 

Center for X-Ray Optics, Lawrence Berkeley Laboratory 

University of California, Berkeley, California 94720 

Harvey Rarback 

National Synchrotron Light Source, 

Brookhaven National Laboratory, Upton, New York 11973 

Abstract 

This paper describes the design and performance of a directly-cooled soft x-ray mirror system 

which has been developed at Lawrence Berkeley Laboratory for synchrotron radiation beam lines 

in which mirror thermal distortion must be minimized for acceptable optical performance. I Two 

similar mirror systems are being built: the first mirror has been installed and operated at the 

National Synchrotron Light Source on the X -17T mini-undulator beam line and will be moved to 

the permanent X-1 beam line when a new, more powerful undulator is installed there. The second 

system is being built for installation at the Stanford Synchrotron Radiation Laboratory on Beam 

Line VI, where the total absorbed power on the mirror may be as high as 2400 W with peak 

absorbed power density of 520 W/cm2. Direct cooling by convection is achieved using internal 

water channels in a brazed, dispersion-strengthened copper and OFHC copper substrate with a 

polished electroless-nickel surface. A simple kinematic linkage and flexural pivot mounting provide 

for mirror positioning about two rotational axes that coincide with the optical surface. Surface 

figure metrology, optical configurations, and tolerancing are also discussed. 

1 This work was supported by the Office of Basic Energy Sciences, U. S. Department of Energy, under 

contract# DE-AC03-76SF00098. 
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Introduction 

Thermal design issues for synchrotron radiation instrumentation continue to be among the primary 

factors that strongly influence beam line performance and cost. Thermal loading, combined with 

additional requirements for ultra-high vacuum (UHV), safety, reliability, stability requirements and 

optical system precision, consumes significant engineering effort in order to assure acceptable 

performance. [ 1] 

Also, in order to exploit low emittance characteristics of modem synchrotron sources, beam line 

optical system designers are required to achieve high spatial and wavelength resolution. Thermal 

distortion of optical surfaces in high flux beam lines must therefore be minimized in order not to 

limit the imaging quality of the system. 

Lawrence Berkeley Laboratory (LBL) has developed a directly-cooled soft x-ray mirror system for 

synchrotron radiation beam lines where mirror thermal distortion must be minimized for acceptable 

optical performance. [2] Two similar mirror systems are being built in which direct mirror cooling 

by convection is achieved using internal water channels in a brazed, dispersion-strengthened 

copper alloy [3] and OFHC copper substrate, with a polished electroless-nickel surface. The first 

mirror has been installed and operated at the National Synchrotron Light Source (NSLS) on the X-

17T mini-undulator beam line and will be moved to the permanent X-1 beam line when a new, 

more powerful undulator is installed there. [4, 5] The X-1 beam line will be used primarily for soft 

x-ray imaging using such methods as microscopy and holography, in the wavelength range of 1 to 

5 nm. The total incident power on the mirror may be as high as 720 W with a peak power density 

of about 70 W/cm2. 

The second mirror is being built for installation at the Stanford Synchrotron Radiation Laboratory 

(SSRL) on Beam Line VI with the LBL/Exxon/SSRL 54-pole wiggler source, where the total 

absorbed power on the mirror may be as high as 2400 W with a peak absorbed power density of 

520 W/cm2. This new branch line for Beam Line VI is intended to provide high photon flux with 

good spectral resolution in the wavelength range of 1 to 30 nm. 
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Optical Configuration and Tolerancing 

In both beam lines, at NSLS and at SSRL, the mirror is used as a simple, high-power beam 

deflector which separates part of the primary beam as a branch line from the straight-through beam. 

The other task performed by the mirror is that of a low-pass photon energy filter to absorb the hard 

x-ray photons which contain most of the beam power. This must be done without distorting the 

optical wavefront beyond acceptable limits (see below). The beam line optical configurations and 

important beam line parameters are given in Figures la and lb. 

These configurations determine the tolerance requirements as well as optical and mechanical layout 

of the mirror systems. For ideal optical elements along a beam line, the source size (approximately 

20}I x 2cry ) limits the optical performance that can be achieved at the experiment- usually 

measured in terms of flux, spot size, and energy resolution. Degradation of optimum performance 

introduced by real, non-ideal optical elements can arise from mechanical and surface errors. 

Maximum allowable surface slope errors ~. i.e. errors that account for long surface wavelengths 

(geometrical optics regime), can be derived from the requirement that the virtual image of the 

source in the plane deflection mirror shall not be significantly larger than the real source. This 

implies: 

In horizontal (tangential) plane : 

In vertical (sagittal) plane: 

~t = 2crHf2r 

~s = 2cry/2r8 

Actual figure errors should be even a factor of 3 to 10 smaller than ~t and ~s in order to avoid 

significant image broadening due to mirror slope errors. 

From the above equations, we can see that mirror performance is much more forgiving to sagittal 

slope errors compared with tangential errors- by a factor of 1/8. This effect is exploited in our 

schemes by the choice of horizontal deflection. The long narrow beam footprint on the mirror, 

which results from this choice in grazing incidence, causes figure errors primarily in the sagittal 

direction and therefore has reduced effect on image broadening. Water cooling is needed to keep 

both temperatures and thermal stresses low. Because of the smaller source size and the larger 

object distance, slope tolerances are tighter for the NSLS X-1 beam line than for SSRL Beam Line 
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VI. At NSLS, with a source size of 20H x 2cry = 1 x 0.2 mm2 and angle of incidence of 8 = 40 

mrad, we have .1t = 8 arcsec and .1s = 40 arcsec. At SSRL, .1t = 100 arcsec and .1s = 150 arcsec, 

but thermal distortion is also much more severe. 

Allowing for thermal distortion and a margin of safety, our specifications for optical fabrication 

were 1 arcsec rms slope error in all directions for both mirrors, or A/20 over any 5 mm along the 

surface. For a plane mirror, this is a fairly generous tolerance in precision optics, the main 

complications in this case being the heavy, unbalanced metal substrate with internal water-cooling 

channels 3 mm below the optical surface. 

Surface microroughness, which we define heuristically to mean surface imperfections with spatial 

wavelengths smaller than about 5 mm (physical optics regime), causes an undesirable stray light 

background in the optical system. We specified rms surface roughness a~ 10 A, a value that 

requires advanced polishing techniques for electroless nickel coated metal surfaces but is 

nontheless regularly achieved by good optical fabricators. 

Mirror Thermal Loading 

The mirror on the SSRL beam line will receive up to 2400 W total absorbed power with peak 

power density of more than 520 W/cm2. At this power level, direct water-cooling of the mirror 

substrate is required. Without direct cooling, substrate temperatures, distortion, and thermal 

stresses would be unacceptably high; mirror coatings and substrate materials could not survive 

maximum thermal loads. An optimized geometry for internal water channels in a metal substrate 

has been chosen, which comprises a single cooling passage matched to the long, narrow beam 

footprint. With this configuration, calculated maximum thermal stress is less than 1/4 of the 

measured 0.01% offset yield strength of 35,000 psi for the substrate material [6], and peak surface 

temperatures will be less than 60°C. Thus, the mirror is expected to be able to withstand maximum 

beam power, corresponding to being plunged into the center of the beam of the wiggler at 

minimum gap and 200 mAmp storage ring current at 3.0 GeV with no permanent distortion or 

damage to the optical surface and temporary distortion within the optical limits. 

Finite element analysis using a fine-mesh, 2-dimensional model (Figures 2a,3a,3b) for calculating 

thermal distortion at varying power levels on Beam Line VI indicate that maximum sagittal slope 
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error at the optical surface is directly proportional to the peak absorbed power density. At 520 

W/cm2, maximum sagittal slope error due to thermal distortion is expected to be less than 60 arcsec 

in the illuminated region. 

Although the absorbed power is significantly less for the mirror system on the X-1 Beam Line, 

thermal distortion tolerance is also somewhat lower in order to achieve high photon flux through a 

collimating pinhole located downstream from the mirror. Here, the maximum sagittal slope error 

due to thermal distortion is expected to be less than 8 arcsec. Therefore, with direct water-cooling, 

both mirrors can be kept within the maximum allowable 6s values specified above. 

Additional finite element analysis with a 3-dimensional model (Figure 2b) to estimate the tangential 

slope errors, 6t, due to thermal distortion show that the figure error is primarily due to gross 

temperature variations within the mirror substrate near the edges of the illuminated region. On 

Beam Line VI, the figure error is significant only at the mirror ends where there is an abrupt 

transition from the illuminated region to an unheated region of water-cooled substrate, causing 

large temperature gradients there. Only under unusual conditions of maximum thermal loading in 

which the downstream end of the mirror could receive central beam power, would 6t exceed the 

specified 100 arcsec tolerance in the region within about 1 to 2 em from the end. Even then, about 

90% of the mirror length would remain within tolerance for 6t. Relatively small tangential figure 

errors over most of the mirror length are mainly due to gross bending of the substrate caused by 

thermal expansion along the illuminated surface. 

At NSLS, the mirror is preceded by an aperture-defining device that will absorb much of the 

unwanted beam power in the horizontal (tangential) direction. The mirror generally receives only a 

central portion of the undulator radiation. Consequently, tangential errors due to thermal distortion 

will be small mainly because of significantly lower total absorbed power- a small fraction of the 

720 W maximum power output from the undulator. Since only a small region of the mirror is 

illuminated, the bulk of the mirror substrate will be at a uniform temperature, and substrate bending 

is not significant. As with the SSRL m,irror, tangential figure errors are due mainly to temperature 

gradients near the edges of the illuminated region, but because total power and power densities are 

much lower, peak surface temperatures are closer to the bulk temperature of the substrate and 

gradients are less significant. Maximum tangential figure error is estimated to be about the same as 

the sagittal error - less than the allowed 8 arcsec even with full beam power incident on the mirror. 
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Mirror System Design 

The mirror substrate is a furnace-brazed assembly, fabricated with a dispersion-strengthened 

copper, UNS Copper Alloy C15715 [3,7], which has a high yield strength due to a fine dispersion 

of alumina particles in an OFHC copper matrix. The brazed mirror assembly is approximately 26 

em in length and 9 em by 9 em in cross-section. The clear aperture of the optical surface is 20 em 

by 2 em. A single water circuit through machined water channels and brazed tubing supplies 

cooling water close to the optical surface (see Figures 4 and 5 ) and also to an upstream mask 

which prevents beam impingement on the end of the mirror. 

The mirror back is a box-like, machined piece of OFHC copper, brazed to the front substrate in 

order to provide an air-jacket around all water connections and vent to atmosphere. The mirror 

back also isolates the clamping forces for mirror mounting the optical surface. 

After brazing, the mirror surface was polished, electroless nickel plated, then polished again. At 

the one end of the mirror where roundoff from polishing must be minimized, a copper extension 

piece was attached to the mirror for final machining, plating, and polishing, and then removed for 

operation. (The mirror is thus a "scraper" mirror.) After polishing, cleaning for UHV was done by 

a vapor degrease, followed by a series of wipe-and-rinse procedures with alcohol and filtered, 

deionized water. 

Mirror mounting provides independent positioning adjustments during operation for three degrees 

of freedom: roll and yaw, which are the two motions that steer the beam, and horizontal translation 

(see Figures 6 - 9). The mirror back is rigidly clamped to flexural pivots that are aligned with the 

(vertical) y-axis at the optical surface for yaw positioning adjustments. The flexural pivots are 

mounted on a hinged-linkage assembly that has a center of rotation which coincides with the 

(longitudinal) z-axis at the optical surface for roll positioning. A "joy-stick" and bellows are 

connected to the mirror back for yaw and roll adjustments, with supply and return water tubing 

passing through the joy-stick. Internal water connections to the mirror and mask use o-ring 

fittings, with ethylene propylene diene (EPDM) elastomer o-rings for resistance to radiation 

damage. [8] 
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The vent to atmosphere through the joy-stick also allows a convenient feed-through for leads to 

thermocouples that are embedded in the mirror substrate. This feature provides a way to directly 

monitor temperatures close to the illuminated surface during operation (and during bake-out as 

well). 

The entire in-vacuum mounting assembly is supported on a rigid translation tube with a second 

bellows for (horizontal) x-axis positioning. Two pairs of constant-force negator springs are used to 

reduce loads due to atmospheric pressure against vacuum for horizontal translation. 

Linear translation slides and encoders for all three motions are driven by stepper motors for remote 

operation of the position adjustments. Incremental resolution for roll and yaw motion is determined 

by the absolute encoder count and the joy-stick length: with 2.5 microns per count and joy-stick 

length of about 66 em, angular incremental resolution that can be achieved is 0.8 arcsec over a 

range of adjustment of about ±2°. The mirror mounting and positioning system is mounted on a 

single flange and then supported on the vacuum chamber, which is aligned at installation for pitch, 

elevation, and longitudinal position. 

The mirror used at NSLS also takes advantage of the two internal water-cooling channels (for 

water supply and return) by using different optical coatings on two separate clear apertures, one at 

each channel. In order to vary the cutoff wavelength, either gold or beryllium coating may be 

selected by vertical adjustment of the entire mirror and vacuum chamber assembly to align one of 

the apertures and cooling channels with the synchrotron beam. The SSRL mirror has a gold 

coating on the entire optical surface. 

Mirror Fabrication, Polishing, and Metrology 

Machining and brazing for fabrication of the mirror blank was done at LBL, and electro less nickel 

plating and optical polishing was done by a commercial optical company.[9] Verification of 

compliance with specified surface figure and roughness tolerances described above was required 

using standard, commercially-available instrumentation. 

Surface figure (slope error) was tested with a Zygo Mark III interferometer, which provides a 
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digital printout of surface height deviations from an average ideal plane on a specified spatial grid, 

chosen to be 3 x 3 mm2 for these measurements. With the available equipment, only half the 

mirror length (10 em) could be measured at one time. Maximum height deviation over the central 

portion of the mirror was 0.7 A (A= 0.633 microns). Overlapping with this central region, two 

additional 8 em long interferograms were made at the opposite ends of the clear aperture. These 

yielded even smaller deviations but gave no information regarding the tilt of the reference planes 

among the three measurements. However, this is quite acceptable in defining slope errors since 

these naturally become small at the longest spatial wavelengths. These measurements were later 

confirmed using a Davidson Fizeau interferometer. 

Surface roughness was measured with a Wyko interferometer using a 2.5x objective, giving a 5 

mm trace length. The main point of this process is that the use of the 5 mm trace Wyko 

profilometer plus the height measurements on a 3 mm grid provide coverage of the spatial 

wavelength spectrum with no gap in between the figure and finish measurements. This has only 

recently become possible using commercially-available instrumentation. On the NSLS mirror, 

measured roughness for spatial wavelengths between 5 microns and 5 mm was 7.5 A, with little 

variation over the entire surface. At the time of this writing, polishing of the SSRL mirror is in 

progress. 

Mirror Performance at NSLS 

The first mirror system was installed at NSLS on X-17T, a temporary beam line with a 5-period 

mini-undulator source, which was intended to provide scientific experimental opportunities while 

awaiting completion and installation of the soft x-ray undulator for the X-1 beam line. The mirror 

system was used for about 3 months before the beam line was disassembled and moved to its final 

location. Since thermal loading on the mirror was only a small fraction of the design loads, it is 

somewhat premature to evaluate the optical performance. However, using a shearing interferometer 

set-up, measurements of surface figure errors due to thermal distortion were made at incident 

power levels of approximately 5 W, with no measurable distortion of the optical surface, within 

about A/10 accuracy. [10,11]. The mechanical system performance exceeded our requirements, 

with excellent positioning resolution and reproducibility and UHV operation in the range of 1 

nanotorr. 
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Potential for Future High Power Synchrotron Sources 

Although the optical and thermal loading requirements for the SSRL and NSLS beam lines have 

largely driven the development of this water-cooled mirror system, many aspects of the 

configuration were designed in anticipation of new, high power synchrotron sources on existing 

storage rings as well as the future 1-2 GeV Synchrotron Light Source at LBL and Advanced 

Photon Source at Argonne National Laboratory. Without major design modifications, the mirror 

system is suitable for a variety of optical systems on synchrotron radiation beam lines in which 

water-cooling is required in order to achieve high performance goals. 
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Figure Captions 

Figure 1. Two similar water-cooled, plane-deflection mirror systems are being built. One is to be 

installed on the X-1 Beam Line at NSLS (Fig. 1a), and the other is to be installed on a new VUV 

Branch Line of Beam Line VI at SSRL (Fig. 1b). 

Figure la. NSLS X-1 Beam Line. Source size: 2crH = 1 mm, 2crv = 0.2 mm. 

Figure lb. LBL/Exxon/SSRL Beam Line VI - VUV Branch Line. Source size: 2crH = 8 mm, 

2crv = 0.6 mm. 

Figure 2. Finite element calculations were done to estimate mirror temperatures, stresses, and 

distortion due to thermal loading. Fig. 2a describes the 2-dimensional mesh model utilizing 

symmetry to model 1/2 of the mirror cross-section and thermal boundary conditions. The 2-d 

model was used to optimize the cooling channel geometry for minimum thermal distortion at 

acceptable stress levels. The 3-dimensional model shown in Fig. 2b, based on l/4 symmetry, was 

used for thermal stress calculations to achieve an accurate representation of the true stress state 

without using 2-d approximations. 

Figure 2a. 2-d finite element model for thermal distortion analysis and design optimization. 

Figure 2b. 3-d finite element model for thermal stress analysis. 

Figure 3. Finite element analysis results with 2-d model. Fig. 3a shows temperature contours- at 

maximum power, peak surface temperature will be less than 70° C, with ~T of about 20°C across 

the 3 mm wall thickness to the cooling channel. In Fig. 3b, the undistorted mirror mesh model 

(dashed lines) is overlayed with the distorted shape (solid lines), showing the distortions magnified 

by a scale factor of 400. Maximum sagittal slope error occurs near the edge of the illuminated 

region, less than 60 arcsec at maximum power conditions on Beam Line VI, and less than 8 arcsec 

on X-1. 
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Figure 3a. Isothermal contour lines in the mirror substrate near the illuminated region and cooling 

channel. 

Figure 3b. Thermal distortion (magnified, shown with solid lines) overlayed on the undistorted 

shape (dashed lines). 

Figure 4. The mirror substrate is a furnace-brazed assembly with machined internal water-cooling 

channels, shown in Fig. 4a with the inserts, before brazing. Both supply and return water channels 

are close to the optical surface for optimum cooling, and the single water circuit also provides 

coolant for an upstream mask which is mounted directly to the mirror assembly. The box-like 

mirror back shown in Fig. 4b is brazed to the front substrate to provide an air-jacket around all 

water connections and vent to atmosphere, and also isolates mounting and clamping forces to 

prevent distortion of the optical surface. 

Figure 4a. Mirror substrate machined cooling channels and inserts for brazing. 

Figure 4b. Brazed internal assembly with a single water circuit for cooling both the substrate and 

upstream mask. 

Figure 5. Mirror mounting and mechanism which provides positioning adjustments for three 

degrees of freedom. Flexural pivots align with the vertical Y-Y axis for yaw positioning. For roll 

adjustments, a linkage assembly using flexural hinges has a center of rotation which coincides 

with the longitudinal Z-Z axis at the optical surface. Water tubing and air vents pass through a joy

stick positioning tube. The entire in-vacuum assembly may be moved horizontally along the X-X 

axis for translation in or out of the synchrotron beam. 

Figure 6. Flange-mounted mirror system before polishing. At installation, a water-cooled 

upstream mask (not shown) is mounted to the mini-conflat flanges seen in the foreground, with 

internal o-ring fittings for water connections. 

Figure 7. Flange-mounted mirror system assembly with linear slides and stepper motors for 

positioning adjustments. 

13 



Figure 8. Complete mirror assembly and water-cooled mask. Photograph was taken after the 

mirror was removed from the temporary X-17T mini-undulator beam line at NSLS. 
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Figure 3a. Isothermal contour lines in the mirror substrate near the 

illuminated region and cooling channel. 
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