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Imaging subcellular scattering contrast by using combined
optical coherence and multiphoton microscopy

Shuo Tang
Department of Electrical and Computer Engineering, University of British Columbia, Vancouver V6T
1Z4, Canada, and Beckman Laser Institute, University of California, Irvine, California 92612, USA

Chung-Ho Sun, Tatiana B. Krasieva, Zhongping Chen, and Bruce J. Tromberg
Beckman Laser Institute, University of California, Irvine, California 92612, USA

Abstract
The structural origin of scattering contrast from single cells is examined by using a combined optical
coherence and multiphoton microscope based on a 12 fs Ti:sapphire source and a 0.95 NA objective.
High-resolution coherence-gated scattering images from single cells are coregistered and compared
with two-photon-excited fluorescence images. Scattering contrast is observed from mitochondria,
plasma membrane, actin filaments, and the boundary between cytoplasm and nucleus. There is little
contribution to scattering from regions inside the nuclear core. These results confirm that light
scattering signals from specific sub-cellular structures can be visualized by using coherent reflectance
geometry.

Near-infrared light scattering in tissues is dominated by microscopic particles in cells and
structural proteins in the extracellular matrix. However, the precise structural origins of light
scattering in tissues are not well understood. Beauvoit et al.1 measured hepatocytes and
mitochondria by using time-resolved scattering spectroscopy and discovered that mitochondria
were the primary contributors to light scattering. From the angular dependence of polarized
light scattering in epithelial cells and isolated nuclei, Mourant et al.2 determined that the size
distribution of scattering structures ranged from 2 μm to 10 nm or less. However, a limitation
of these elastic scattering spectroscopy measurements is that microscopic scattering centers
and scatter sizes must be identified and derived indirectly from measurements based on bulk
suspensions.

By imaging single hepatocytes and breast tumor cells with confocal reflectance microscopy,
Drezek et al.3 observed that there was little intrinsic scattering contrast from subcellular
structures but that the nuclear contrast could be selectively increased by adding acetic acid.
Optical coherence tomography (OCT) images of Xenopus laevis and human esophagus
epithelium with imaging areas of hundreds of micrometers have shown strong scattering from
plasma membranes and nuclei.4,5 However, high-NA OCT imaging on the single-cell level
has not been reported, and small scattering centers other than the plasma membrane and nucleus
have not been identified.

In this Letter, we utilize a combined OCT and multiphoton microscopy (MPM) system to study
scattering contrast in single cells. Combined MPM–OCT can acquire coregistered two-photon-
excited fluorescence (TPEF) and backscattered light simultaneously from the same sampling
volume.6-8 This allows the use of fluorescence targeted probes to identify molecular
components of subcellular scattering structures. Details of the combined MPM–OCT system
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used in our experiment are described in Ref. 6. Briefly, a 12 fs Ti:sapphire laser (Femtolasers)
excites MPM and OCT signals simultaneously. The MPM and OCT channels have matched
transverse resolutions (0.5 μm) and axial resolutions6 (1.5 μm). The frame rate of the system
is 0.15 Hz. A 0.95 NA water-immersion objective illuminates and collects light in a full cone
angle of 92°. Because the signals are collected in a backward geometry, the scattering angle
collected is from 88° to 180°.

To develop a realistic three-dimensional (3D) tissue matrix, we embedded human glioblastoma
cells in a Matrigel matrix (BD Biosciences). Matrigel is a solubilized basement membrane
matrix. Embedding the cells in Matrigel creates a natural 3D extracellular matrix environment
for the cells to grow and maintain normal activity. In addition, the cells are mounted for 3D
scanning and lifted above the glass surface to avoid OCT background. In this work, we used
several fluorescent vital dyes on live cells to label subcellular organelles, including DAPI
(Invitrogen) for nuclei, Rhodamine 123 (Invitrogen) for mitochondria, and PKH67 (Sigma)
for plasma membrane. Furthermore, Alexa Fluor 488 conjugated to phalloidin (Invitrogen) is
used to target actin filaments in fixed cells.

Typical TPEF and OCT images of glioblastoma cells are shown in Fig. 1. Each row represents
one cell, with the corresponding TPEF, OCT, and merged images displayed in the left, middle,
and right columns. These images are minimally processed to adjust contrast, and the merged
images are color coded in green for TPEF and red for OCT channels. Overlapping pixels are
displayed in yellow. Figures 1(a)–1(c) show the signals from an unlabeled cell. The scattering
pattern of this cell has a well-organized structure, as shown in Fig. 1(b). The cell shows an
outer ring surrounding a central body within which there is a dark area of relatively low
scattering. A cluster of bright scattering centers is located adjacent to the dark area. The
corresponding TPEF image is shown in Fig. 1(a). The TPEF signal is the autofluorescence
mainly from the cytoplasm due to mitochondrial fluorescence. The merged image is shown in
Fig. 1(c) with the distinctive regions matched in the two channels. The weakly fluorescent
nuclear region matches the low scattering dark area in the center of the cell. The bright
autofluorescence region in the cytoplasm matches the bright scattering cluster area. The bright
scattering pattern in the outer ring does not have a corresponding autofluorescence signature.

Cells labeled with DAPI are imaged to identify the nuclear area, and the images are shown in
Figs. 1(d)–1(f). In Fig. 1(d) the nucleus is clearly revealed by the bright DAPI fluorescence.
In the merged image the area of DAPI fluorescence matches well with the dark area of low
light scattering in OCT. This confirms that the low scattering area coincides with the nuclear
core area. However, on the rim of the nucleus, there is overlap between the nuclear staining
and the bright scattering signal, which is believed to be a result of the refractive index
heterogeneity between the cytoplasm and the nucleus. Figures 1(g)–1(i) show a cell labeled
with the mitochondrial vital dye. In Fig. 1(g), the TPEF image indicates that there are many
mitochondria that are distributed throughout the cytoplasm. In the merged image the bright
scattering area in the cytoplasm matches well with the mitochondrial distribution.

Figures 1(j)–1(l) show images of a cell stained with PKH67 plasma membrane dye. In Fig. 1
(j) plasma membrane fluorescence is clearly visible. A large portion of the dye is also found
inside the cell, because the metabolism of the cell internalizes the dye. Along the plasma
membrane region, bright scattering signals are observed as shown in Fig. 1(l). Because the
thickness of the plasma membrane is below the resolution of the system, other structures
underlying the plasma membrane can also contribute to the scattering signals within the
resolution volume. Figures 1(m)–1(o) show images of a cell stained for actin filaments. Figure
1(m) shows actin filaments concentrated along the cell cortex right below plasma membrane
and actin filopodia reaching out on the cell surface. It is observed that the distribution of actin
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filaments is colocalized with the bright scattering on the cell surface within the resolution of
the system. The actin filopodia are shown to be highly scattering in the OCT image.

Figures 2(a)–2(k) show a series of OCT image sections from a single cell separated by 1 μm
steps in the Z direction. As the focused laser beam scans the top of the cell, scattering is observed
from the plasma membrane and the associated actin filaments. When the laser beam scans a
middle section of the cell, a patterned structure is observed that reveals a weak nuclear signal
and strong scattering from mitochondria. When the laser beam focuses on the bottom of the
cell, the structured pattern disappears, and scattering from the cell surface appears again. The
XY projection of the stack of images is shown in Fig. 2(l) as a comparison. When all the images
are summed up and averaged in the projection, the fine structures of scattering are lost.
Therefore it is important to have ultrahigh resolution in order to see subcellular scattering
contrast.

Quantitative data are further analyzed from 21 cells, including 13 human glioblastoma cells,
3 neonatal foreskin fibroblasts, and 5 rat kangaroo kidney epithelium cells. Within the 21 cells,
7 cells each are stained for mitochondria, actin filaments, and nuclei, respectively. The images
are analyzed with IPLab (BD Biosciences). First the normalized mean scattering intensity is
quantified. For example, the TPEF image is segmented to define the region of mitochondria.
This segmentation is then transferred to the corresponding OCT image to mark out the
mitochondrial region. The OCT intensity is averaged over the mitochondrial region to get the
mean mitochondrial scattering intensity, which is further normalized to the average scattering
intensity of the whole cell. The normalized mean scattering intensity in the mitochondrial
region is found to be 0.79±0.06. In comparison, the normalized mean scattering intensities in
the actin filament and the nuclear regions are 0.79±0.05 and 0.35±0.10, respectively. Therefore
mitochondria and actin filaments are observed to be twice as scattering as the nuclei when
probed with a focused laser beam in a backward geometry.

Second, the normalized area of scattering is also calculated. For instance, the TPEF and OCT
images are segmented to define the mitochondrial and the scattering areas. The overlapping
area between the two segments is defined as the scattering mitochondrial area. This scattering
mitochondrial area is then normalized to the total mitochondrial area. In the analysis, (0.63
±0.04) × 100% of the mitochondrial area is found to have bright scattering signals. In
comparison, (0.64±0.04) × 100% and (0.17±0.07) × 100% of the actin and nuclear areas are
scattering, respectively. Therefore it is shown that the majority of the mitochondrial and actin
areas are scattering but that little of the nuclear area is scattering.

No significant difference in the scattering properties is observed, and the above characteristics
are common to all three cell types. The statistics are summarized in Table 1. Systematic errors
introduced by the speckle noise and the slow demodulation speed of the OCT channel are the
main reasons that the fluorescence–scattering correlation values are not optimum. Data from
the plasma membrane staining are not used in the quantitative analysis because the dye is not
localized in plasma membrane only.

In our experiment, the focused laser beam probes the heterogeneity of the refractive index in
cells on the scale of the system resolution. We have observed high scattering contrast from
mitochondria, plasma membrane, actin filaments, and the boundary between cytoplasm and
nucleus. These regions have a high heterogeneity of refractive index on the ∼1 μm scale because
of densely packed lipids, proteins, and nucleic acids. In our study the nuclear core area has
been found to have relatively lower scattering than the cytoplasm, which we believe is because
of our probing geometry. Nuclei tend to have smaller scattering angles compared with
mitochondria and actin filaments, but angles smaller than 88° are not detected in our system.
Furthermore, when probed with a focused laser beam, the nucleus should not be looked at as
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a single particle but as an organelle structure. Its heterogeneity is mainly on the boundary
between cytoplasm and nucleus but with little variation inside the nucleus, likely due to the
quasi-uniform distribution of chromatin and proteins.

In conclusion, we have investigated the scattering origins of subcellular structures by using a
combined MPM–OCT system. High scattering contrast has been observed from mitochondria,
plasma membrane and associated actin filaments, and the boundary between cytoplasm and
nucleus. This method can be used to improve our understanding of the microscopic origins of
scattering contrast in cells and extracellular matrix and possibly to enhance contrast in tissue
optical imaging.
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Fig. 1.
Comparison of TPEF (left), OCT (middle), and merged (right) images of single cells. (a)–(c)
Single cell without labeling; (d)–(f) with DAPI labeling for nuclei; (g)–(i) with Rhodamine
123 labeling for mitochondria; (j)–(l) with PKH67 labeling for plasma membrane; (m)–(o)
with Alexa Fluor 488 conjugated to phalloidin for actin filaments. In the merged images, TPEF
and OCT signals are in green and red, respectively. The scale bar is 10 μm.
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Fig. 2.
(Color online) Multiple frames of OCT images of a single cell optically sliced from the top to
the bottom. From (a) to (k), the images are taken at progressive 1 μm Z steps. (l) is the XY
projection of the whole Z stack of cell slices. The scale bar is 10 μm.
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Table 1
Normalized Mean Scattering Intensity and Scattering Area by Regiona

Region Mean Scattering Intensity Scattering Area (×100%)

Mitochondria 0.79±0.06 0.63±0.04
Actin Filaments 0.79±0.05 0.64±0.04

Nuclei 0.35±0.10 0.17±0.07

a
Data are averaged over 7 cells, each stained for mitochondria, actin filaments and nuclei, respectively, with a total of 21 cells.
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