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Sequence analysis
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Abstract
Motivation: Somatic mosaicism has been implicated in several developmental disorders, cancers, and other diseases. Short tandem repeats 
(STRs) consist of repeated sequences of 1–6 bp and comprise >1 million loci in the human genome. Somatic mosaicism at STRs is known to 
play a key role in the pathogenicity of loci implicated in repeat expansion disorders and is highly prevalent in cancers exhibiting microsatellite in-
stability. While a variety of tools have been developed to genotype germline variation at STRs, a method for systematically identifying mosaic 
STRs is lacking.
Results: We introduce prancSTR, a novel method for detecting mosaic STRs from individual high-throughput sequencing datasets. prancSTR is 
designed to detect loci characterized by a single high-frequency mosaic allele, but can also detect loci with multiple mosaic alleles. Unlike many 
existing mosaicism detection methods for other variant types, prancSTR does not require a matched control sample as input. We show that 
prancSTR accurately identifies mosaic STRs in simulated data, demonstrate its feasibility by identifying candidate mosaic STRs in Illumina whole 
genome sequencing data derived from lymphoblastoid cell lines for individuals sequenced by the 1000 Genomes Project, and evaluate the use 
of prancSTR on Element and PacBio data. In addition to prancSTR, we present simTR, a novel simulation framework which simulates raw se-
quencing reads with realistic error profiles at STRs.
Availability and implementation: prancSTR and simTR are freely available at https://github.com/gymrek-lab/trtools. Detailed documentation is 
available at https://trtools.readthedocs.io/.

1 Introduction
Population-level heterogeneity generally arises due to germ-
line mutations that occur before the formation of the zygote 
and are inherited by all cells in the offspring. However, het-
erogeneity within an individual may also exist due to somatic 
mutations that occur post-zygotically in only a sub- 
population of cells [reviewed in Youssoufian and Pyeritz 
(2002)]. Somatic mosaicism has long been known to play a 
key role in cancer [reviewed in Stratton et al. (2009)], and 
has also been implicated in a range of nonneoplastic disorders 
[e.g. Proteus Syndrome (Cohen 1993), Neurofibromatosis 
Type 1 (Ruggieri and Huson 2001), and CLOVES syndrome 
(Kurek et al. 2012)]. Somatic mosaicism is also a hallmark of 
conditions resulting in DNA repair deficiencies, such as 
Xeroderma Pigmentosum (Cleaver 1969). Beyond its role in 
disease, accumulation of somatic mutations is likely a wide-
spread phenomenon occurring in healthy individuals 
throughout their lifetime (Fern�andez et al. 2016).

High-throughput sequencing offers the potential to per-
form genome-wide detection of somatic mosaicism, but also 
presents important technical challenges (Dou et al. 2018). To 
distinguish somatic mutations from germline variants or tech-
nical artifacts, a matched control sample is often required to 
serve as a baseline. Further, in cases where the somatic 

mutation is present in a small fraction of cells, ultra high cov-
erage data is needed to detect the event (Breuss et al. 2022). A 
variety of methods have been developed to address these chal-
lenges [e.g. MrMosaic (King et al. 2017), MosaicForecast 
(Dou et al. 2020), and DeepMosaic (Yang et al. 2023)]. 
However, existing methods in some cases still require 
matched control samples and focus largely on detecting mo-
saic single nucleotide polymorphisms (SNPs) or in some cases 
mosaic copy number variants [e.g. Montage (Glessner 
et al. 2021)].

Short tandem repeats (STRs), consisting of 1–6 bp sequen-
ces repeated in tandem, comprise >3% of the human genome 
(Lander et al. 2001), and exhibit rapid germline mutation 
rates (Sun et al. 2012). Somatic instability of STRs, also 
known as microsatellite instability (MSI), is a hallmark of 
certain cancers such as Lynch Syndrome [reviewed in Lynch 
et al. (2009)]. Recent work identified 10− 4–10− 3 mutations 
per STR in non-MSI cancers, with >0.03 mutations per STR 
in the case of MSI (Fujimoto et al. 2020). In addition, somatic 
mutation of STRs in the brain has been implicated as a key 
driver of pathogenicity in some repeat expansion disorders 
(Swami et al. 2009).

Detection of somatic mosaicism at STRs from sequencing 
data is particularly challenging, as these regions may exhibit 
high error rates due to PCR artifacts (Raz et al. 2019) making 
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it difficult to distinguish true somatic mutations from errors. 
STR-specific genotyping methods have been developed for 
germline genotyping that address this challenge [e.g. HipSTR 
(Willems et al. 2017) and ExpansionHunter (Dolzhenko et al. 
2017)], but these are not designed to detect somatic events. 
Previous studies performed genome-wide analysis of somatic 
STR instability in the context of cancer (Kim et al. 2013, 
Hause et al. 2016, Fujimoto et al. 2020), but relied on com-
paring sequencing from tumors with matched normal sam-
ples. Further, somatic events were detected either using 
custom analysis pipelines not packaged as a separate tool 
(Kim et al. 2013) or were based on heuristics rather than hy-
pothesis testing frameworks. For example (Hause et al. 
2016), which relies on mSINGS (Salipante et al. 2014), iden-
tifies unstable STRs as those for which a tumor sample has 
one or more additional allele lengths observed compared to 
normal. In most cases these methods do not output well- 
calibrated P-values which can be used to control for false dis-
covery rates, cannot incorporate locus-specific error models 
[although these are used in (Fujimoto et al. 2020)] and do not 
provide estimation of the length or fraction of mosaic alleles.

Here, we introduce prancSTR, a novel method for detect-
ing mosaic STRs from high throughput sequencing data with-
out the need for a matched control sample. prancSTR models 
observed reads as a mixture distribution and infers the maxi-
mum likelihood mosaic fraction and the copy number of the 
mosaic versus germline alleles. prancSTR is primarily 
designed to detect mosaicism at loci characterized by a single 
high-frequency mosaic allele. We expect the majority of de-
tectable mosaic STRs from germline genomes to follow this 
pattern. Although they have high mutation rates compared to 
other variant types, it is still unlikely that multiple indepen-
dent mutations would occur at the same STR locus suffi-
ciently early to reach high enough frequency for detection. 
Despite this assumption, we find that prancSTR can detect 
cases with multiple mosaic alleles with similar power com-
pared to single mosaic allele scenarios.

We show that prancSTR accurately identifies mosaic STRs 
in simulated data and validate mosaic STRs inferred from a 
real Illumina short read dataset with orthogonal long read 
data. We apply prancSTR to 460 whole genome sequencing 
(WGS) datasets from the 1000 Genomes Project derived from 
lymphoblastoid cell lines (LCLs) to characterize genome-wide 
mosaic STRs in different populations. Finally, we evaluate 
the ability of prancSTR to detect mosaic STRs across differ-
ent available sequencing technologies. prancSTR can in the-
ory be applied to data from a range of technologies, but 
provides most accurate results in settings with low sequenc-
ing error rates at STRs, including PCR-free Illumina and 
Element Biosciences data. Overall, prancSTR provides a ro-
bust method to identify mosaic STRs from existing high 
throughput sequencing datasets.

2 Materials and methods
2.1 prancSTR overview
2.1.1 Baseline model
prancSTR is designed to identify mosaic STRs at one locus at 
a time. It takes as input STR genotypes and metadata com-
puted by an existing genotyper and outputs candidate mosaic 
STRs (Fig. 1A). While designed to work downstream of 
HipSTR (Willems et al. 2017), prancSTR can theoretically 
process output from any STR genotyping tool as long as it 

returns estimated diploid repeat lengths and the observed dis-
tribution of copy numbers across all reads aligning to a locus.

At each STR locus, prancSTR takes as input a vector of the 
observed repeat copy number in each read, 
R
!
¼ fr1; r2; . . . ; rng, where ri is the number of copies of the re-

peat observed in the ith read. For each locus, let hA;Bi denote 
the diploid germline genotype, where A and B give the copy 
number of the repeat unit on each chromosome copy. Let f 
denote the fraction of chromosome copies harboring an addi-
tional allele C resulting from a mosaic mutation, and Θ repre-
sent additional error parameters described below. If the 
somatic mutation occurred on the haplotype containing allele 
B, we would expect 12 of chromosome copies to contain allele 
A, 1

2 − f to contain allele B, and f to contain allele C. 
Assuming each observed read is independent, we can then 
write the following likelihood equation: 

LBðC; f jR
!

; hA;Bi;ΘÞ ¼
Y

r2R
!

1
2

SðrjA; ΘÞþ

ð
1
2

− f ÞSðrjB; ΘÞþ fSðrjC; ΘÞ

(1) 

where LB denotes the likelihood of C and f in the case that 
the mosaic allele occurred on the haplotype with allele B. 
SðrjG; ΘÞ gives the probability to observe r copies of the re-
peat in a read given it originated from an allele with G copies 
assuming stutter error model Θ.

2.1.2 Stutter error model
The term SðrjG; ΘÞ is computed based on the error model 
used in HipSTR (Willems et al. 2017), which models errors in 
observed repeat counts in each read that arise during PCR or 
sequencing. The model includes three parameters. The first 
two model the probability for a read to contain a stutter error 
resulting in a repeat expansion (u) or contraction (d). The 
third parameter, ρ, models the distribution of error sizes in 
terms of the absolute number of repeat units. It is assumed 
that errors follow a geometric distribution with parameter ρ. 
The resulting equation for SðrjG; ΘÞ is: 

SðrjG; Θ ¼ fu; d; ρgÞ ¼
1 − u − d r ¼¼ G
uρð1 − ρÞr − G − 1 r>G

dρð1 − ρÞG − r − 1 r<G

8
><

>:
(2) 

We assume here that u, d, and ρ are known for each locus 
as these can be estimated from existing data using other 
methods (Willems et al. 2017, Kristmundsdottir et al. 2020).

In practice with short reads, we are unable to determine 
the haplotype of origin (either A or B) of the mosaic allele. 
Therefore below we aim to identify C and f that maximize 
the log likelihood over two possible cases: 

log LðC; f jR
!
Þ ¼ maxf log LAðC; f jR

!
Þ; log LBðC; f jR

!
Þg (3) 

2.1.3 Likelihood maximization and hypothesis testing
The goal of prancSTR is to find values for C and f that maxi-
mize Equation (3). We assume the underlying stutter model Θ 
and diploid genotype hA;Bi are known and can be obtained 
from HipSTR’s output. We then use an iterative algorithm to 
estimate C and f:
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1) Initialize the value of f to 0.01. 
2) Compute the log-likelihood for each possible value of C, 

given f from step 1. We restrict our search for C to 

ðminR
!

−3;maxR
!
þ3Þ. Return the value of C that maxi-

mizes the log-likelihood. 
3) Find the value of f that maximizes the log-likelihood 

given C from step 2. This step is performed using 
Sequential Least Squares Programming (SLSQP) (Kraft 
1988) restricting f to be between 0 and 0.5. 

4) Repeat steps 2 and 3 until convergence. 

In practice, the read vector R
!

is obtained from the 
MALLREADS format field from HipSTR VCF files. We ex-
clude STR calls from analysis if: they have coverage of 0, 
have missing genotypes, have 0 read support in 
MALLREADS for the called diploid genotype, or if there is 
only evidence in MALLREADS of reads from a single allele.

After obtaining the maximum likelihood estimates f̂ and 
Ĉ, prancSTR computes the likelihood ratio test statistic λLR: 

λLR ¼ − 2ln
LðĈ; f ¼ 0jR

!
; hA;Bi;ΘÞ

LðĈ; f̂ jR
!

; hA;Bi;ΘÞ
(4) 

Finally, we use the likelihood ratio statistic to obtain a P- 
value testing H0 : f ¼ 0 at each STR in each sample. Typically, 
this statistic is expected to follow a χ2(2) distribution under 
the null. However, the null hypothesis (f¼0) falls on the 
boundary of the parameter space, which violates an assump-
tion of the likelihood ratio test. Following a previously pub-
lished method, we use a null consisting of a mixture 
distribution of a point mass at 0, with 50% probability, and a 

chi-square distribution with 2 degrees of freedom, also with 
50% probability (Nielsen and Wakeley 2001). Although that 
method assumes a single parameter of interest whereas we are 
estimating two (C and f), our simulations suggest the resulting 
P-values are generally well calibrated (Supplementary Fig. S1).

2.2 Simulating vectors of observed repeat counts
In our first simulation strategy, we simulated vectors of ob-
served repeat counts for a single locus under various parame-
ter settings. Although prancSTR assumes a single mosaic 
allele, our framework enables simulating 0 or more mosaic 
alleles to evaluate a diverse range of settings. In each case, we 
model k mosaic alleles C1 . . .Ck, their corresponding allele 
fractions f1 . . . fk, germline allele A with frequency 0.5 and 
germline allele B with frequency 0.5–

P
i fi, requiring the total 

frequencies of A, B, and all mosaic alleles to sum to 1. The 
resulting read count vectors, as well as the known values of 
A, B, and Θ, were used as input to prancSTR’s likelihood esti-
mation procedure.

For each tested setting, we performed 200 simulations. 
Power was estimated as the percentage of simulation rounds 
for which prancSTR returned a significant P-value 
(P< 0.05). Notably this captures relative power differences 
across settings but is not reflective of the absolute power in 
genome-wide analyses, in which a more stringent P-value 
threshold is required to account for multiple hypothesis test-
ing. To evaluate false positive rates, we performed simula-
tions with f set to 0 and similarly returned the percentage of 
simulation rounds with significant P-values.

Figure 1. prancSTR overview and validation. (A) Overview of the prancSTR method. The copy numbers observed in each read aligned to a target STR are 
extracted to a vector R

!
, from which prancSTR obtains maximum likelihood estimates for the mosaic allele (C), mosaic allele fraction (f), and a P-value 

testing H0 : f ¼ 0. Single nucleotide variants (SNVs) are not directly used but are shown to illustrate that reads in each sample originate from two 
haplotypes. (B) and (C) Simulated versus estimated values of f. We simulated mosaic STRs under a range of coverage levels and values for f for cases in 
which the germline genotype is heterozygous (B) or homozygous (C). Dots represent the mean estimated f value from 200 simulations. The black line 
denotes the x¼y diagonal. (D) and (E) Power to detect mosaic STRs. Power is computed as the percent of simulations for which P<0.05. For B–E, 
colors denote different coverage levels, where coverage gives the total number of reads spanning the STR of interest. Simulated values for germline 
genotypes A, B, and mosaic allele C are denoted at the top of each panel. Panels here are based on simulated read vectors R

!
. Similar results for 

simulations based on raw reads are shown in Supplementary Figs S3 and S4.
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2.3 A method for simulating error-prone next- 
generation sequencing reads at STRs
For our second simulation strategy, we developed a novel 
simulation framework, simTR, which simulates raw sequenc-
ing reads according to a specified coverage level and error 
model using user-defined repeat alleles. simTR is a wrapper 
built around ART (Huang et al. 2012), an existing, open 
source, next generation sequencing read simulator. ART cre-
ates simulated reads that account for generic insertion and 
deletion mutations. However, stutter errors (additions or 
deletions of one or more repeat units introduced during PCR) 
characteristic of STRs are not specifically modeled. simTR 
adds to ART by incorporating stutter errors into the simu-
lated reads, in addition to existing indel mutations. Stutter 
errors are incorporated based on the HipSTR error model de-
scribed in Equation (2).

simTR takes as input a genome file (fasta format), the ge-
nomic coordinates of the target STR, and stutter parameters 
(u, d, and ρ). Users may also specify optional parameters to 
set the desired coverage, to generate paired-end versus single- 
end reads, the mean and standard deviation of the sequencing 
fragment lengths, and the window size around the STR from 
which to simulate reads. It creates intermediate fasta files 
with separate entries to represent the different possible ob-
served repeat lengths that could result from PCR stutter. It 
then invokes ART to simulate reads from the different fasta 
entries at rates proportional the expected proportion of each 
allele based on the input stutter parameters. Finally, it out-
puts simulated reads in fastq format which can be used for 
benchmarking downstream tools.

To evaluate the entire prancSTR pipeline starting from raw 
reads, we applied simTR to perform in silico titration experi-
ments in which we simulate reads at a target set of mosaic 
STRs under a range of settings by targeting various coverage 
levels for the germline and mosaic alleles to mimic different 
mosaic frequencies. Simulated reads were aligned to a refer-
ence genome (hg38) using BWA MEM (Li 2013) version 
0.7.12-r1039. The resulting reads were used as input to 
HipSTR v0.6.1 for genotyping the target STRs using non-de-
fault options min-reads 5 and stutter-in to provide a file with 
simulated stutter error parameters. The VCF output by 
HipSTR was then used as input to prancSTR to estimate C 
and f. An example IGV (Thorvaldsd�ottir et al. 2013) screen-
shot for simulated reads at a mosaic STR is shown in 
Supplementary Fig. S2.

2.4 Characterizing mosaic STRs in the 1000 
Genomes Project
We focused on individuals from the 1000 Genomes Project 
dataset belonging to CEU (Northern Europeans from Utah; 
n¼ 179), YRI (Yorubans from Nigeria; n¼178), and CHB 
(Han Chinese; n¼103) populations for which high-coverage 
PCR-free WGS is available (Byrska-Bishop et al. 2022). We 
applied prancSTR to identify candidate mosaic STRs in these 
samples based on previously obtained HipSTR calls (Ziaei 
Jam et al. 2023). These calls had already been filtered to ex-
clude loci with call rate <75%, loci with genotypes not 
matching Hardy-Weinberg expectation (P<1e−06), and loci 
overlapping segmental duplications in the human genome. 
prancSTR output was filtered to include candidate mosaic 
STRs with: at least three reads supporting the identified mo-
saic allele C, read depth at least 10, with f ≤ 0:3 (larger f indi-
cates likely heterozygous sites), HipSTR quality score ≥ 0:8. 

To adjust for multiple hypothesis correction, we applied the 
Benjamini–Hochberg (Benjamini and Hochberg 1995) 
method to identify mosaic STRs at a false discovery rate 
of 5%.

Hard to map regions of the genome (Olson et al. 2022) were 
obtained from https://ftp-trace.ncbi.nlm.nih.gov/Reference 
Samples/giab/release/genome-stratifications/v3.3/GRCh38https:// 
ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/release/genome- 
stratifications/v3.3/GRCh38@all/Union/GRCh38_alllowmapand 
segdupregions.bed.gz.The intersectBed utility of BEDTools 
(Quinlan and Hall 2010) v2.28.0 was used to intersect STR 
coordinates with these regions. For downstream analyses, we 
removed mosaic STRs identified in >10 samples in a single 
population and those overlapping hard to map regions.

Samples with outlier numbers of mosaic STRs were identi-
fied as those with counts more than two standard deviations 
above the mean across all individuals in each population. 
WGS sequencing coverage and EBV coverage for each sample 
was obtained from the 1000 Genomes Project website: http:// 
ftp.1000genomes.ebi.ac.uk/vol1/ftp/data_collections/1000G_ 
2504_high_coverage/1000G_2504_high_coverage.sequence. 
index and http://ftp.1000genomes.ebi.ac.uk/vol1/ftp/techni 
cal/working/20130606_sample_info/20130606_sample_info.txt.

2.5 Validating mosaic STRs from NA12878 using 
PacBio HiFi long reads
Aligned reads (BAM) for NA12878 based on PacBio HiFi 
long reads were obtained from Genome In A Bottle (https:// 
ftp-trace.ncbi.nlm.nih.gov/ReferenceSamples/giab/data/NA1 
2878/PacBio_SequelII_CCS_11kb/HG001_GRCh38/). We 
used the haplotag (HP) tag to partition the BAM into sepa-
rate files containing reads for each haplotype. We then used 
HipSTR v0.7 to separately genotype reads from each haplo-
type using the following non-default parameters to enable 
running HipSTR on long reads: def-stutter-model, max-str- 
len 1000, max-flank-indel 1, use-unpaired, no-rmdup, min- 
reads 5, output-filters. We extracted the MALLREADS field 
from the HipSTR VCF file to examine support for each allele 
in PacBio reads for each haplotype. Analysis was restricted to 
loci with at least 10 spanning PacBio reads from each of the 
two haplotypes.

For comparison, we performed a similar analysis on all 
CEU samples, including NA12878, to assess how often 
PacBio reads (from NA12878) would appear to validate a 
mosaic STR that was identified in a different sample. For this 
analysis, we further filtered: (i) mosaic STRs where the mo-
saic allele was found on >80% of PacBio reads from a single 
haplotype (indicating the mosaic allele for a sample was most 
likely the NA12878 germline allele) and (ii) unique STR loci 
identified as mosaic STRs in >5 samples, indicating the locus 
is potentially problematic. Finally, we excluded samples from 
the comparison if fewer than five sites remained in a particu-
lar category, as the metrics computed are unreliable on low 
count numbers.

2.6 Evaluation of prancSTR on different sequencing 
technologies
High-coverage (100×) PCR-free Element data (2 × 150bp) for 
sample HG001 (NA12878) was obtained from s3://element- 
public-data/2023-Cloudbreak/adept_human_wgs/bases2fastq/ 
APP-1419/GAT-LI-C014/Elembio-2023-Cloudbreak/APP-1419/ 
HG001-cb-500bp__GAT-LI-C014/. Reads were aligned to the 
GRCh38 reference genome using bwa mem (Li 2013) version 
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0.7.12-r1039 and converted to sorted and indexed BAM format 
using samtools (Li et al. 2009) version 1.9. STRs were genotyped 
in both datasets using HipSTR (Willems et al. 2017) with its 
GRCh38 reference panel. For both datasets, we used non-de-
fault parameters bam-samps HG001 bam-libs HG001, def- 
stutter-model, no-rmdup, min-reads 5, output-filters. For PacBio 
data, we additionally used the options use-unpaired, max-str-len 
1000, max-flank-indel 1. HipSTR results for autosomal regions 
were filtered with dumpSTR (Mousavi et al. 2021) v6.0.2 to re-
move calls with <10 supporting reads, quality score <0.8, and 
loci overlapping segmental duplications in hg38 [obtained from 
the UCSC Genome Browser (Kent et al. 2002)].

To fit technology-specific error models, we wrote a custom 
pipeline that learns a single stutter error model for each re-
peat unit length by jointly analyzing observed reads across all 
STRs with that unit length. We first extracted loci for which 
Illumina genotypes were confidently (Q>0.9, DP > 10) 
called as homozygous in NA12878. We then assume that all 
observed reads not matching the called allele at those loci are 
due to errors. We annotated each observed read as containing 
an insertion error, deletion error, or match, compared to the 
called allele and recorded the absolute difference in the num-
ber of repeat units compared to the called allele for each 
read. We inferred stutter parameters as: u =(num insertion 
reads/num total reads) and d =(num deletion reads/num total 
reads), and ρ =(percentage of reads with an error size of 1 
unit), noting that under the geometric model used for step 
sizes ρ is equivalent to this percentage. Before estimating ρ, 
we excluded reads with extreme step sizes (>10) as these are 
unlikely to be due to stutter error. For comparison, we ap-
plied the same script to Illumina data for NA12878 to ensure 
similar stutter parameters were obtained compared to those 
output by HipSTR.

Filtered VCF files along with technology-specific stutter er-
ror models were used as input to prancSTR with option only- 
passing to process only loci passing dumpSTR’s quality fil-
ters. Mosaic STRs identified by prancSTR were filtered to in-
clude only those with: adjusted P<0.05, minimum mosaic 
support 3 reads, minimum total coverage 10 reads, maximum 
mosaic allele fraction 0.3, genotype quality score ≥ 0:8. We 
further filtered mosaic STRs from PacBio HiFi results for 
which reads showed evidence for >5 distinct alleles and that 
had extremely high coverage (>100 × ). We considered a mo-
saic STR to be replicated across technologies if the same locus 
passed the above criteria in results from each one, even if 
reported values of C and f differed.

3 Results
3.1 Benchmarking prancSTR using simulated data
To evaluate prancSTR, we performed simulations using two 
strategies (Section 2). First, to evaluate our likelihood maxi-
mization procedure, we simulated vectors of observed repeat 
counts in each read aligned to a locus (R

!
) according to the 

baseline model described in Section 2. In this case, we as-
sumed the germline (diploid) genotype hA;Bi is known, and 
used the ground truth values of A and B as well as the simu-
lated read vectors as input to the maximum likelihood esti-
mation of mosaic allele (C) and mosaic fraction (f). Second, 
to evaluate our end to end pipeline starting from raw reads, 
we used simTR to simulate reads for mosaic STRs under a 
range of conditions, which were used as input to HipSTR to 

infer the germline genotype and compute read vectors. 
HipSTR results were used as input for mosaicism detection.

We first evaluated prancSTR under the null setting of f¼0 
to determine how often we falsely detect a significant mosaic 
STR. P-values returned by prancSTR are well-calibrated, fol-
lowing the expected uniform distribution in this case 
(Supplementary Fig. S1A and B). As expected, at a P-value 
threshold of 0.05, prancSTR falsely identifies approximately 
5% of null simulation rounds as significant mosaic STRs in 
the case of error rates similar to PCR free Illumina data 
(Supplementary Fig. S1C and D). False positive rates are 
slightly increased when simulating data under PCRþ condi-
tions (Supplementary Fig. S1E and F). As expected, false posi-
tive rates are dramatically higher when running prancSTR 
with error model parameters that do not match the input 
data (e.g. using PCR-free models for PCRþ data; 
Supplementary Fig. S1G and H).

Next, we simulated mosaic STRs under a range of values 
for coverage and mosaic allele fraction and for cases in which 
the germline genotype is either homozygous or heterozygous. 
Using both simulation strategies, estimated values of the mo-
saic allele fraction f̂ are highly consistent with simulated val-
ues (Fig. 1B and C, Supplementary Figs S3 and S4). In cases 
that are underpowered (f<0.02 and/or coverage 10 × ), 
prancSTR tends to slightly but consistently overestimate the 
mosaic allele fraction. In practice, these cases are unlikely to 
reach genome-wide significance.

As expected, power to detect mosaic STRs increases as a 
function of f and sequencing coverage in all simulation set-
tings (Fig. 1D and E, Supplementary Figs S3 and S4) with 
near perfect power at P<0.05 to detect mosaic STRs with 
f>0.1 at loci with at least 50 × coverage. In both simulation 
strategies, power is higher when the germline genotype is het-
erozygous versus homozygous. This difference is more pro-
nounced in results based on simTR simulations. In that case, 
this bias is partially explained by genotyping errors. We ob-
served that cases where the simulated germline genotype is 
homozygous but the mosaic fraction is high are consistently 
misidentified by HipSTR as heterozygous sites, and therefore 
cannot be identified by prancSTR as mosaic STRs. We addi-
tionally evaluated the impact of the mosaic allele size on 
power. We observed that power increases with the absolute 
difference in length of the mosaic allele compared to the near-
est germline allele (Supplementary Fig. S5). This is expected, 
since larger differences in size make it easier to distinguish 
true mosaic alleles from errors.

We next evaluated the impact of sequencing errors at STRs 
on the ability to detect mosaic STRs from simulated read vec-
tors under varying stutter model parameters meant to capture 
typical error rates in PCRþ (�10% of reads) versus PCR-free 
(�1% of reads) data (Supplementary Figs S6–S8). As 
expected, with high stutter error rate, power is reduced in 
cases of low coverage and low mosaic fraction, and estimates 
of C and f show greater variability. This suggests detection of 
mosaic STRs will perform poorly on PCRþ short read data, 
where stutter error rates may often exceed expected mo-
saic fractions.

Finally, we evaluated the ability of prancSTR to detect mo-
saic STRs in cases where multiple mosaic alleles are present. 
In the first setting, we simulated 2–3 mosaic alleles (total mo-
saic fraction ranging from 0.03 to 0.3) for a range of cover-
age and frequency values (Supplementary Fig. S9). In the 
second, we simulated a spread of larger allele lengths to 
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represent patterns of mosaicism seen in repeat expansion dis-
orders (Swami et al. 2009) (Supplementary Fig. S10). In both 
cases, we found that prancSTR has high power to detect mo-
saicism under similar settings where we were powered to de-
tect a single mosaic allele: coverage at least 50×, mosaic 
fraction >0.1, with increased power when the mosaic alleles 
show larger differences from the germline alleles. By design, 
prancSTR will still only return a single inferred mosaic allele 
and fraction (f) in these cases. We found that the inferred f 
tended to match either the sum of the fraction of all mosaic 
alleles (in cases where the mosaic alleles were similar to each 
other) or the fraction of the most frequent mosaic allele (in 
cases where the mosaic alleles showed greater differences; 
Supplementary Figs S9 and S10). Overall, these results sug-
gest that although prancSTR’s model assumes a single mosaic 
allele, it has reasonable power to detect mosaic STRs even in 
cases where this assumption is broken.

3.2 Population-wide characterization of 
mosaic STRs
We next applied prancSTR to characterize population-wide 
trends of STR mosaicism. We focused on individuals from 
1000 Genomes samples from the CEU (Northern Europeans 
from Utah; n¼ 179), YRI (Yorubans from Nigeria; n¼ 178), 
and CHB (Han Chinese; n¼103) populations for which 
high-coverage PCR-free WGS is available (Byrska-Bishop 
et al. 2022). Notably, since the data is LCL-derived, identi-
fied mosaic STRs may consist of a combination of true so-
matic mutations that existed before sample collection as well 
as mutations that have accumulated during cell line passages, 
a phenomenon that has been previously observed for STRs 
and structural variants (Mohyuddin et al. 2004, Scheinfeldt 
et al. 2018).

A total of 84,373, 103,473, and 45,682 unique mosaic 
STRs were identified in the CEU, YRI, and CHB populations. 
Example visualizations of read alignments spanning mosaic 
STRs are shown in Supplementary Fig. S11. Mosaic STRs 
were identified across all autosomal chromosomes 
(Supplementary Fig. S12). As expected, the majority of 
unique mosaic STRs (range 75.7%–86.6% in each popula-
tion) were only identified in a single sample in each popula-
tion. A small number of mosaic STRs (range 41–121 in each 
population) were identified in >10 individuals in a single 
population. Further, we found that mosaic STRs are enriched 
in difficult to map regions (Fisher Exact two-sided P<10− 91 

in all groups, mean OR¼1.8). These highly recurrent mosaic 
STRs and those falling in challenging regions of the genome 
are likely enriched for false positive calls and thus were fil-
tered from downstream analyses. After filtering these loci and 
performing additional quality filtering (Section 2), 81,710, 
100,407, and 44,129 unique mosaic STRs remained in CEU, 
YRI, and CHB. On average we identified 73 (565) nonhomo-
polymer (homopolymer) mosaic STRs per cell line (Fig. 2A 
and B) corresponding to a rate of 0.00072 (0.00191) mosaic 
STRs per nonhomopolymer (homopolymer) tested. Overall, 
homopolymers far outnumber nonhomopolymers among 
mosaic STRs, and the majority of mosaic nonhomopolymers 
identified occur at loci for which the germline genotype is 
heterozygous (Supplementary Fig. S13). These trends are con-
sistent across all populations analyzed.

We noticed substantial variation in mosaic STR counts 
across cell lines. The number of homopolymer and nonhomo-
polymer mosaic STRs per cell line are highly correlated 

(Supplementary Fig. S14), with the correlation strongest 
when considering mosaic STR calls at germline heterozygous 
sites (Pearson r¼0.97, two-sided P¼ 1.96e−110 in CEU). 
We also identified 13, 8, and 4 cell lines from CEU, YRI, and 
CHB, respectively, with outlier total mosaic STR counts 
(Section 2). Overall, these results suggest certain cell lines 
have higher rates of STR instability, potentially due to genetic 
or environmental factors. Variation in mosaic STR counts 
across cell lines is not significantly correlated with the num-
ber of sites considered or EBV virus count (two-sided P ≥ 
0.05), and is only modestly correlated with sequencing cover-
age (Pearson r¼0.20, two-sided P¼0.051 for nonhomopoly-
mers and r¼0.16, P¼0.10 for homopolymers; 
Supplementary Fig. S15). Passage numbers for these cell lines 
were not available, and so the impact of cell culture history, 
which is likely to play a role in mutation counts, could not 
be assessed.

We next investigated the distribution of the sizes of mosaic 
STR mutations. The majority of events (86.9% and 90.8% 
for nonhomopolymer and homopolymer mosaic STRs, re-
spectively) result in insertions or deletions of a single repeat 
unit (Fig. 2C and D), although larger step sizes were ob-
served. Mutation sizes are larger on average for mutations at 
STRs with homozygous versus heterozygous germline geno-
types and show an overall bias toward deletions versus con-
tractions. A similar deletion bias has been observed for 
somatic mutations at STRs in cancer (Fujimoto et al. 2020). 
However, both biases described above are more pronounced 
at homopolymer loci, suggesting they may arise in part from 
erroneous mosaic STR calls (Supplementary Fig. S16). 
Indeed, inferred stutter error rates suggest deletion errors are 
more common than insertions (Supplementary Figs S7 and 
S8), and large mutation step sizes at homozygous sites may 
reflect true heterozygous sites that were incor-
rectly genotyped.

We then examined the distribution of variant allele frac-
tions (f) for detected mosaic STRs (Fig. 2E and F, 
Supplementary Fig. S17). In all cases, f distributions show 
peaks around 0.15–0.20, consistent with the range where we 
expect to have sufficient power (Fig. 1D and E), whereas true 
mosaic sites with higher f values are likely to be indistinguish-
able from heterozygous sites. Further, homopolymer calls 
with high f values nearly all occur at homozygous sites, and 
the observed deletion bias is strongest overall for sites with 
high f values, indicating mosaic STRs with f> 0.2 may be 
enriched for false positive calls.

3.3 Validating mosaic STRs in NA12878
To further evaluate whether our pipeline is identifying true 
mosaic STRs, we performed a more detailed analysis of mo-
saic STRs identified in the highly characterized NA12878 
sample. To evaluate these loci, we compared to an orthogo-
nal dataset of haplotagged PacBio HiFi long reads (mean cov-
erage �30×) available for the same individual (Section 2). 
Notably, although PacBio HiFi shows high accuracy at most 
regions, it has elevated error rates at homopolymers (Wenger 
et al. 2019), suggesting repeat counts obtained from PacBio 
reads at those loci may not serve as an accurate ground truth 
dataset. In addition, we observed that inferred stutter error 
rates in short reads are highest at homopolymer STRs 
(Supplementary Fig. S7). Therefore, results below are 
reported separately for nonhomopolymer versus homopoly-
mer STRs.
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We reasoned that true mosaic alleles with sufficiently high 
variant allele fractions should be observed in both datasets, 
and that the mosaic allele should typically only occur on long 
reads from one of the two haplotypes at a locus (Fig. 3A). On 
the other hand, inferred mosaic alleles that are actually due 
to stutter or other error sources might be found on both hap-
lotypes. After filtering, our analysis above had identified 411 
candidate autosomal mosaic STRs in NA12878, 375 (91%) 
of which occur at homopolymer loci. Of these, we deemed 15 
(109) corresponding to 42% (29%) of candidate nonhomo-
polymer (homopolymer) mosaic STRs to have sufficient 
PacBio HiFi coverage (at least 10 reads per haplotype) to at-
tempt validation.

For each candidate mosaic STR, we examined the percent-
age of long reads from each haplotype supporting the inferred 
mosaic allele (C) (Fig. 3B–D) and classified calls into three 
categories. Likely true positives, corresponding to 80% 
(48%) of nonhomopolymers (homopolymers), consist of calls 
for which C is only identified in HiFi reads from a single hap-
lotype. For these sites, variant allele fractions estimated from 
short reads are strongly correlated with those observed in the 
HiFi reads (Pearson r¼0.76, two-sided P¼ 0.0040 for non-
homopolymers and r¼0.49, P¼0.00025 for homopolymers;  
Fig. 3E and F). Likely false positives, corresponding to 6.7% 
(49%) of nonhomopolymers (homopolymers), consist of calls 
for which C is supported by at least one HiFi read from each 
haplotype. Undetermined, corresponding to 13% (4%) of 
nonhomopolymers (homopolymers), consists of calls for 
which C is not supported by long reads on either haplotype. 
This could indicate an incorrect mosaic STR call, but could 
also originate from insufficient coverage at mosaic STRs with 
low variant allele fractions.

We further examined read support on each haplotype at 
remaining candidate mosaic STRs (Supplementary Fig. S18). 
This revealed that the majority of homopolymer mosaic STRs 
identified as likely false positives occurred at loci for which 
the germline genotype was called as homozygous and long 
reads from both haplotypes supported multiple different 
alleles, suggesting reads at these loci are error prone. We ad-
ditionally observed across all loci that the majority of vali-
dated high-confidence mosaic STRs occur at loci for which 
the germline genotype is heterozygous. This is consistent with 
our simulation results, in which true mosaic alleles with high 
mosaic allele fraction occurring at homozygous sites are in-
correctly genotyped as heterozygous and therefore systemati-
cally missing from our mosaic STR callset. On the other 
hand, those with low allele fraction are unlikely to be 
detected at genome-wide significance. Overall, in combina-
tion with the population-wide analysis performed above, our 
results suggest mosaic STRs identified at heterozygous sites at 
moderate f values are robust, whereas accurate identification 
of mosaicism at homopolymers or for sites with either high 
or very low mosaic allele fractions remains challenging with 
short read data.

We evaluated whether mosaic STRs detected from short 
reads for NA12878 may appear to validate in HiFi data sim-
ply due to the high indel error rates in long reads, which 
could result in reads that match the inferred mosaic just due 
to chance. To test this, we determined how often mosaic 
STRs inferred from short reads for CEU samples other than 
NA12878 validate in long reads from NA12878. For each 
sample, we computed the percent of mosaic STRs classified 
as true positives and the significance (−log10 P-value) of the 
correlation between the mosaic fraction observed in short 

Figure 2. Mosaic STR trends across populations in the 1000 Genomes dataset. (A) and (B) Distribution of the number of mosaic STRs across different 
populations. The x-axis gives the number of mosaic STRs for a given population and the y-axis gives the number of samples. Data is shown for 
nonhomopolymers (A) and homopolymers (B). Dashed colored lines (CEU¼blue, YRI¼orange, CHB¼green) give population-specific means, and the black 
line denotes the overall mean. Bars are stacked. (C) and (D) Distribution of mosaic STR mutation sizes. The x-axis represents the mutation size, 
computed as the difference between the mosaic allele length and the closest germline allele. Positive mutation sizes indicate insertions and negative 
sizes indicate deletions. Data is shown for nonhomopolymers (C) and homopolymers (D) and is for CEU only. Other populations showed similar trends. 
Blue represents homozygous loci and orange represents heterozygous loci. (E) and (F) Distribution of mosaic allele fraction (f) across mosaic STRs. Data 
is shown for nonhomopolymers (E) and homopolymers (F) and is for CEU only. Bars are stacked and colored to denote the number of mosaic STRs 
occurring at homozygous (blue) versus heterozygous (orange) sites.
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versus long reads, and compared those to metrics obtained 
for NA12878 (Supplementary Fig. S19). In all cases except 
the percent of true positive homopolymer calls, mosaic STRs 
obtained from NA12878 showed the highest validation met-
rics. For example, for nonhomopolymers (homopolymers), 
on average 29% (35%) of mosaic STRs identified in different 
samples were classified as potential true positives in PacBio 
data compared to 86% (48%) for NA12878.

3.4 Evaluating prancSTR on additional technologies
Finally, we evaluated the ability of prancSTR to detect mo-
saic STRs in two alternative technologies for which datasets 
were available for NA12878: Element Biosciences (Arslan 
et al. 2024) (100× coverage, 2 × 150 bp reads) and the 
PacBio HiFi long read dataset analyzed above. Prior to run-
ning prancSTR, we learned technology-specific error models 
for both technologies. Overall, we found that Element data 
shows far lower stutter error than the other technologies 
(Supplementary Table S1), including at homopolymers, 
whereas PacBio HiFi shows the highest error. We found that 
while our geometric distribution model fits Illumina error 
sizes well, it shows reduced fit at nonhomopolymers for 
Element, and further reduced for PacBio HiFi, which show 
higher rates of reads with errors that are not multiples of the 
repeat unit (Supplementary Fig. S20). Therefore, P-values 
returned by prancSTR below may not be well-calibrated for 
these cases and would benefit from improved technology- 
specific error models.

We next compared mosaic STRs identified by each technol-
ogy. After filtering, a total of 4773 and 11,752 mosaic STRs 
were identified by Element and PacBio, respectively, 

compared to 411 identified by Illumina (Supplementary 
Table S2). When considering mosaic STRs identified by 
Illumina, the overall replication rate in Element is 37.7%. 
This rises to 93.8% (out of 16) and 39.7% (out of 312) when 
considering nonhomopolymer and homopolymer loci, respec-
tively, with at least 4 reads supporting the mosaic allele 
(Supplementary Fig. S21), and is generally higher in cases 
where the germline allele is heterozygous (Supplementary Fig. 
S21). For example, 72.7% of heterozygous homopolymer 
mosaic STRs identified in Illumina replicate in Element.

Mosaic STRs identified by either Element or PacBio 
showed lower replication rates in other technologies than 
those discovered in Illumina data. For Element data, replica-
tion rates in Illumina increase with the same factors (mosaic 
allele frequency, mosaic support, and heterozygous versus 
homozygous loci) as described above. Thus the low overlap 
may be partially explained by increased power of detection in 
Element compared to Illumina due to higher coverage (mean 
depth 79× versus 40× in prancSTR output for each) and 
lower stutter error rates. On the other hand, mosaic STRs 
identified from PacBio data showed low overall replication 
rates (< 5% in all categories), suggesting a high false posi-
tive rate.

4 Discussion
Here, we presented prancSTR, a method for genome-wide de-
tection of somatic mosaicism at STRs from high throughput 
sequencing datasets. prancSTR can accurately identify mosaic 
STRs without the need for a matched control sample. It has 
highest power to detect mosaic STRs with mosaic allele 

Figure 3. Validating candidate mosaic STRs identified in short reads from NA12878 (HG001) with PacBio HiFi reads. (A) Schematic representation of 
mosaicism validation with long reads. PacBio HiFi reads are haplotagged as belonging to either of the two haplotypes in a sample. The highlighted region 
denotes the STR region. Horizontal lines indicate deletions and purple rectangles indicate insertions compared to the reference genome. Mosaic alleles 
(red star) are typically expected to occur on only one of the two haplotypes. (B) Visualization of categories for validation of mosaic STRs in long read data. 
We classified mosaic STRs into several categories for long read data validation: I: Potential true positives (mosaic allele observed only on a single 
haplotype), II: Potential false positives (mosaic allele observed on both haplotypes) and III: Undetermined (mosaic allele not observed on either 
haplotype). The germline alleles are represented by purple and blue and the mosaic allele is represented by green. (C) and (D) Mosaic allele support in 
long reads from each haplotype. The x-axis and y-axis show the percentage of reads on each haplotype matching the mosaic allele for nonhomopolymer 
(C) and homopolymer (D) loci. Mosaic STRs were classified according to the three categories described above (purple¼potential true positives, 
green¼potential false positives, blue¼undetermined). (E) and (F) Correlation of mosaic fraction between short and long reads. Comparisons of estimated 
allele fractions (for the mosaic allele identified in short reads) from short reads (x-axis) versus PacBio reads (y-axis) are shown for nonhomopolymer (E) 
and homopolymer (F) mosaic STRs. Black lines denote the best fit line. Only mosaic STRs categorized as potential true positives are included.
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fractions of approximately 10%–20% in PCR-free datasets 
with 30–50× coverage, but could detect reproducible mosaic 
STRs sites with mosaic allele fractions as low as 7%. 
Application of prancSTR to population-scale short read 
WGS for the 1000 Genomes derived from lymphoblastoid 
cell lines identified hundreds of mosaic STRs per cell line 
with broadly consistent mosaic STR patterns across popula-
tions. Validation with orthogonal long read (PacBio HiFi) 
data supported 80% and 48% of high-confidence mosaic 
STR calls at nonhomopolymers and homopolymers, respec-
tively, at sites with sufficient long read coverage.

prancSTR is a versatile tool that can be used to detect mo-
saicism in a variety of settings as long as accurate stutter error 
parameters are available. Our results testing prancSTR on 
other technologies suggests it is compatible with Element 
Biosciences data, which shows a large reduction in stutter er-
ror rates, especially at homopolymers, compared to Illumina. 
Although prancSTR can be run directly on PacBio HiFi data-
sets, we found a low rate of replication of mosaic STRs iden-
tified in PacBio in other technologies suggesting a high rate of 
false positive calls. Results for both technologies will show 
improvement with models that more closely capture error 
patterns specific to those datasets, since current models show 
the best fit to Illumina data. prancSTR as well as the read 
simulation method developed here (simTR) have been pack-
aged into our existing toolkit, TRTools (Mousavi et al. 
2021), enabling easy integration with other TR analy-
sis tools.

Application of prancSTR genome-wide to WGS from 460 
cell lines revealed interesting patterns of mosaic STRs. Our 
results broadly suggest mosaic STRs identified from short 
reads at nonhomopolymers and at sites with germline hetero-
zygous genotypes are most reliable, whereas homopolymers 
remain particularly challenging. Overall, we found an aver-
age of 73 and 565 nonhomopolymer and homopolymer mo-
saic STRs per cell line, corresponding to mutation rates of 
approximately 10− 4 and 10− 3 mutations per STR per sam-
ple. Intriguingly, we identified multiple cell lines from each 
population with outlier mutation counts, and found strong 
correlation between the number of mosaic STRs at homopol-
ymers versus nonhomopolymers. This suggests some cell lines 
have higher rates of STR instability than others, and that 
these trends are present across a broad set of loci.

prancSTR currently faces multiple limitations. First, it 
relies on an upstream genotyper (here, HipSTR) to provide 
accurate germline genotype calls as input. In cases where a 
mosaic allele is present at high frequency, it may be indistin-
guishable from a germline allele and incorrectly genotyped as 
heterozygous, causing mosaicism to be missed. Further, par-
ticularly at loci with high stutter error rates or low coverage, 
a truly heterozygous site may be incorrectly genotyped as ho-
mozygous, causing prancSTR to incorrectly identify the sec-
ond germline allele as mosaicism. As a result, mosaic STRs 
identified at heterozygous sites are likely more reliable. 
Second, prancSTR currently focuses on identifying mosaic 
STRs with a single high frequency mosaic allele. While this is 
likely to capture mosaic events at shorter STRs, longer 
repeats such as the Huntington’s Disease locus where mosai-
cism is known to play a role in disease pathogenesis tend to 
show a broad range of mosaic allele lengths (Swami et al. 
2009). Still, simulations show that the method is already able 
to detect more complex cases with multiple mosaic alleles, 
with similar power compared to single mosaic allele 

scenarios. Third, similar to mosaicism detection tools for 
other variant types, prancSTR is limited by the coverage of 
current datasets, which is insufficient to detect most mosaic 
events below 5% frequency.

Overall, prancSTR can serve as a valuable method to char-
acterize somatic mosaicism at STRs in healthy individuals or 
in disease settings such as microsatellite instability in cancer 
(Boland and Goel 2010) or neurological diseases (Telenius 
et al. 1994) where mosaicism is known to play a key role. We 
envision multiple future extensions of this framework. 
prancSTR’s model can be extended to directly model cases 
with multiple mosaic alleles. Further, incorporating phase in-
formation from haplotagged reads can help determine if a 
mosaic allele is found on a single haplotype, and can there-
fore be used to distinguish heterozygous versus high fre-
quency mosaic alleles. Long reads, which can be easily 
haplotagged, are an especially promising solution to this chal-
lenge. Finally, a combination of improved STR error models 
as well as the steady reduction of error rates is likely to im-
prove detection of mosaic STRs directly from long reads in 
the future.
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