
Lawrence Berkeley National Laboratory
Materials Sciences

Title
Machine learning action parameters in lattice quantum chromodynamics

Permalink
https://escholarship.org/uc/item/6rb796tv

Journal
Physical Review D, 97(9)

ISSN
2470-0010

Authors
Shanahan, Phiala E
Trewartha, Amalie
Detmold, William

Publication Date
2018-05-01

DOI
10.1103/physrevd.97.094506
 
Peer reviewed

eScholarship.org Powered by the California Digital Library
University of California

https://escholarship.org/uc/item/6rb796tv
https://escholarship.org
http://www.cdlib.org/


MIT-CTP/4980

Machine learning action parameters in lattice quantum chromodynamics

Phiala E. Shanahan,1, 2 Daniel Trewartha,2 and William Detmold3

1Department of Physics, College of William and Mary, Williamsburg, VA 23187-8795, USA
2Jefferson Laboratory, 12000 Jefferson Avenue, Newport News, VA 23606, USA

3Center for Theoretical Physics, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
(Dated: January 18, 2018)

Numerical lattice quantum chromodynamics studies of the strong interaction are important
in many aspects of particle and nuclear physics. Such studies require significant computing
resources to undertake. A number of proposed methods promise improved efficiency of lattice
calculations, and access to regions of parameter space that are currently computationally in-
tractable, via multi-scale action-matching approaches that necessitate parametric regression
of generated lattice datasets. The applicability of machine learning to this regression task is
investigated, with deep neural networks found to provide an efficient solution even in cases
where approaches such as principal component analysis fail. The high information content
and complex symmetries inherent in lattice QCD datasets require custom neural network
layers to be introduced and present opportunities for further development.

PACS numbers: 11.15.Ha, 12.38.Gc,

I. INTRODUCTION

Lattice quantum chromodynamics (LQCD) [1] is a well established numerical method [2, 3] used
to study quantum chromodynamics (QCD), the theory of the strong interaction. A central part
of the Standard Model (SM) of nuclear and particle physics, strong interactions bind quarks and
gluons into protons and nuclei, and dictate the emergence of complex nuclear structure in nature.
High-precision LQCD calculations are important in determining the parameters of the SM and
guide searches for evidence of new physics beyond it [4]. Recent LQCD calculations also provide
new insights into the quark and gluon structure of protons [5] and the structure and interactions
of light nuclei [6, 7]. Similarly, LQCD calculations have enabled investigations of QCD matter at
extreme temperatures, and efforts to understand QCD matter at high density are underway [8].
These calculations are extremely computationally demanding, consuming significant fractions of
the computational resources that are available for scientific research worldwide.

LQCD calculations are performed on a discrete 4-dimensional space-time grid (typically a hy-
percubic lattice), and use Monte-Carlo importance sampling [9] to determine the dynamics of the
quark and gluon fields defined on this space. Achieving physical results requires a series of cal-
culations at different discretisation scales (referred to as the lattice spacing), and different lattice
volumes, and a subsequent extrapolation to the continuum (where the discretisation vanishes) and
infinite volume limits. Particularly challenging is the approach to the continuum limit; the com-
putational cost of the Hybrid Monte-Carlo (HMC) algorithm [10] typically used scales with a high
inverse power of the lattice spacing, a, approximately a−z with z > 6 for a fixed physical lattice
volume [11]. Known as critical slowing down, this occurs because of the quasi-local nature of the
HMC updating procedure, requiring an increasing number of steps to update physics on a fixed
physical volume as the lattice spacing decreases. A number of methods attempt to circumvent this
issue by acting at multiple physical length scales. Examples include perfect actions [12–15] that
aim to achieve almost-continuum physics at finite lattice spacings, and multi-scale thermalisation
techniques [16–21]. Such approaches require careful renormalisation group matching [22, 23] of the
LQCD actions defined at different scales such that they describe the same long-distance physics.
An essential challenge is to solve the parametric regression task: Which action parameters best
represent the coarse-scale physics of an ensemble of samples generated at a finer resolution, and
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vice-versa? Similar parameter regression problems of LQCD datasets arise in the context of mixed
action LQCD simulations (see for example Ref. [24–26]).

In this work, machine learning (ML) techniques, in particular neural networks, are applied
to the regression problem of determining LQCD action parameters from an ensemble of samples.
Significant progress in ML over the last few years has led to new scientific applications of ML tools,
including to a number of statistical and quantum mechanics problems. In one set of studies, ML
has been used to infer the presence of phase transitions and thermodynamic properties in simple
condensed matter models [27–30]. In another study, variational methods have been optimized for
many-body problems using ML techniques [31, 32]. Novel approaches to the Monte-Carlo method
that is ubiquitous in numerical simulations of many systems have also been developed using ML
ideas [33–39]. Finally, ML regression for matching Hamiltonians in condensed matter contexts has
recently been investigated [34, 40] and shows promise. Very few studies, however, have applied ML
techniques to investigate gauge field theories such as LQCD (LQCD is a particularly important
example of a more general class of theories defined with a local invariance known as a gauge
symmetry), and new techniques and adaptations are required because of the unique and complex
symmetry structures of these theories1. Averaged over Monte-Carlo importance sampling, LQCD
data is invariant under discrete spacetime translations and hypercubic group transformations,
although individual samples do not have these symmetries. In addition, internal symmetries based
on the continuous Lie group SU(3) associated with each spacetime location must be respected.
Exploiting these symmetries is essential to the success of the approach used here; it is found
that suitably customised deep neutral networks can provide an efficient and practical method of
determining the action parameters describing the physics of a given set of configurations.

This article is arranged as follows. In Section II, the basic aspects of the lattice QCD calcula-
tions that are used to train and test parametric regression by neural networks are discussed, and a
principal component analysis (PCA) is used to ascertain the difficulty of the regression tasks that
are attempted. In Section III, a number of different neural network structures are studied. First, in
Section III A, a fully connected neural network is used. This easily solves the parameter regression
problem on training ensembles, but suffers from over-fitting due to the inverted hierarchy of the
information content of each sample to the number of samples available for training. Despite its
failure to generalise, this network finds features that persist in the LQCD data for Monte-Carlo
times considerably longer than those seen for typical physics-motivated observables. The over-
fitting problem is remedied in Section III B, where several custom symmetry-enforcing layers are
introduced to define neural network structures that efficiently solve the regression problem. The
trained networks correctly resolve parameter differences even between ensembles which are essen-
tially indistinguishable under the PCA analysis. Section IV provides a summary. Two appendices
provide additional details of aspects of machine learning and of the lattice QCD calculations.

II. LATTICE QCD

Lattice QCD calculations are performed by approximating the QCD path integral by a Monte
Carlo sum over gauge field configurations on a discrete four-dimensional space-time. The expecta-

1 Ref. [41] investigates the ability for neural networks to learn a simple order parameter in pure SU(2) gauge theory
at finite temperature.
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tion value of an operator O that defines some physical quantity is given by:

〈O〉 =
1

Z

∫
DψDψ̄DAO[ψ, ψ̄, A] e−S[ψ,ψ̄,A] (1)

=
1

Z

∫
DUÕ[U ] e−S̃[U ], (2)

where Z =
∫
DψDψ̄DAe−S[ψ,ψ̄,A], the (anti-)fermion and gluon fields (gauge fields) are denoted

by ψ(ψ̄) and A, and S[ψ, ψ̄, A] is the discretised QCD action (defined in Appendix B 1). In the
second line, the fermion and anti-fermion fields are integrated out exactly, and the gauge fields are
transformed to link fields U = eiA, to give an effective action S̃[U ] and operator Õ[U ] depending
only on the gluon link fields. The resulting integral can be approximated as

〈O〉 u 1

Ncfg

Ncfg∑
i=1

O[Ui], (3)

where the gauge field configurations Ui (i indexes the configurations in a given “ensemble” of

fields) are distributed according to the probability measure e−S̃[U ]. In practice, this is guaranteed
by sampling the fields from a Markov chain Monte-Carlo stream for which this probability measure
is a fixed point. These representative gauge fields are the input data for the ML approaches to
parametric regression studied here. For additional details of the LQCD approach, see Refs. [2, 3]
and Appendix B 1.

Lattice QCD gauge fields are represented as links between sites on a 4-dimensional lattice
of volume2 V = L3 × T , with the lattice sites separated by some physical distance a, typically
0.05–0.15 fm. Each link, labelled by Uµ(x), where x denotes the spacetime coordinates of the
origin site and µ the direction of the link, is encoded by an SU(3) matrix (a 3 × 3 complex
matrix M with M−1 = M † and det[M ] = 1)3. Links in opposing directions are related via

U−µ(x) = U †µ(x − µ̂), and only links in the positive direction are stored. In this format, a gauge
field used in typical modern lattice QCD calculations, where for example L = 64 and T = 128, is
described by L3×T ×4×18 ≈ O(109) floating point or double precision numbers, where the factor
of 4 arises from the number of positive spacetime directions (labelled by µ). In order to recover
QCD results, calculations must be performed on a number of ensembles of field configurations with
different lattice spacings a and lattice volumes V , and the continuum (a → 0) and large-volume
(V →∞) limits must be taken.

The governing equations of QCD and their lattice counterparts have a variety of symmetries,
some that are highly non-trivial. The symmetries satisfied by ensembles of gauge fields are of par-
ticular interest in the context of the ML approaches studied here, as they place strong restrictions
on numerical operations that can be performed on lattice data to extract physically meaningful
results. In particular, lattice QCD is invariant under a local symmetry of the gauge fields known
as a gauge symmetry; this is an invariance under local multiplications of link variables by SU(3)
matrices

Uµ(x)→ U ′µ(x) = Ω(x)Uµ(x)Ω†(x+ µ̂) for all Ω(x) ∈ SU(3), (4)

referred to as a gauge transformation (note that the matrix Ω(x) differs at every spacetime point).
This symmetry is not apparent from the numerical representation of a QCD configuration, but

2 The spatial, L, and temporal, T , extents of the lattice geometry are often distinct.
3 Here, M† = (M∗)T is the Hermitian conjugate. An SU(3) matrix can be specified by 8 real numbers, but typically

the redundant representation with 18 real numbers is used.
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rather constrains physical observables calculated on a given gauge field to be invariant under
all gauge transformations of that field. In addition, lattice QCD defined on a discretised finite
volume is invariant under discrete translations and under 4-dimensional rotations and reflections
(transformations generated by the hypercubic group, H4 [42]). Unlike gauge symmetry, these latter
symmetries do not hold on a configuration-by-configuration basis, but rather emerge after averaging
physical quantities over all gauge fields in an ensemble. An additional important property of QCD
is that a characteristic length scale, 1/ΛQCD ∼ 1 fm, emerges dynamically from the interactions of
the theory, setting a spacetime distance over which values of the link fields are correlated.

A. Lattice QCD ensembles

A number of different ensembles of lattice QCD gauge field configurations were used for this
first exploratory study. Each ensemble was generated using a two-colour Nc = 2 Wilson gauge
action with Nf = 2 flavours of dynamical Wilson fermions (defined in Appendix B 1). This action
depends on two bare couplings/parameters, β and m0. QCD with Nc = 2 exhibits similar rich
dynamical structure to the full theory with Nc = 3 and is a natural testing ground for the new
approaches developed here. Ensembles were generated with a standard HMC algorithm using a
leapfrog integrator to take molecular dynamics trajectory steps of length τMD = 0.5 in 15–40
substeps (tuned to keep the acceptance rate ∼ 70%). In each case, the streams were initialised
from a hot start or from a thermalised lattice from a nearby set of couplings, and the initial 500
trajectories were not included in the further analysis. For most ensembles, configurations were
saved every 10 trajectories to generate ensembles of O(103) independent configurations, with the
separation determined from studies of the autocorrelation times of typical observables (for some
ensembles, configurations were saved every trajectory to allow studies of autocorrelation times to
be undertaken). Since Nc = 2 in these calculations, rather than Nc = 3 in full QCD, the lattice data
structures used here are somewhat smaller than those used for state-of-the-art calculations, with
each configuration represented by O(106) double precision numbers. All ensembles were generated
using a modified version of the chroma lattice field theory library [43] that was previously [44]
found to produce results consistent with an independent code [45].

Ensembles were generated at many points in parameter space:

• Grid A: Twenty 123 × 36 ensembles of 10,000 trajectories with each β ∈
{1.785, 1.835, 1.885, 1.935, 1.985} and m0 ∈ {−0.7,−0.8,−0.9,−1.0}, excluding the pair
{β,m0} = {1.985,−1.0} which could not be thermalised efficiently;

• Grid B: Twenty-five 123 × 36 ensembles of 10,000 trajectories with each β ∈
{1.76, 1.81, 1.86, 1.91, 1.96} and m0 ∈ {−0.65,−0.75,−0.85,−0.95,−1.05}, excluding the
pair {β,m0} = {1.91,−1.05} which could not be thermalised efficiently;

• Grid C: Twenty ensembles with the same bare parameters as Grid A, but with a spacetime
volume of 163 × 48, excluding the pairs {β,m0} = {1.935,−1.0} and {1.985,−1.0}, which
could not be thermalised efficiently;

• Two sequences of ensembles with parameters tuned to produce closely matched plaquette
values. The parameters of each set are indicated by the parentheses (β,m0):

– Set D: {D1(1.815,−0.98), D2(1.825,−0.93), D3(1.838,−0.87), D4(1.85,−0.83)
D5(1.862,−0.79)};

– Set E: {E1(1.826,−1.03), E2(1.837,−0.99), E3(1.847,−0.95), E4(1.858,−0.9)
E5(1.87,−0.85)};
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FIG. 1: Contours show the scale setting quantities t0 and ω0, as well as the lattice spacing times the pion
mass amπ, and rho meson mass amρ, determined using calculations on each ensemble in the two L/a = 12
grids. The stars show the locations of the ensembles from Grids A (blue) and B (orange).

• Set F: Ten independent streams of 10,000 trajectories denoted F1, . . . , F10, saved every tra-
jectory, generated with the same values of β = 1.76 and m0 = −0.75.

Simple physical observables, including the pion and rho meson masses and scale setting observables
w0 and t0 [46], have been calculated on Grids A and B; contour plots displaying the variation of
these quantities across the ensembles are shown in Fig. 1.

In order to check the validity of the HMC streams, the evolution of simple quantities along
the trajectories has been monitored. The simplest, and computationally cheapest, way to produce
a gauge invariant quantity from links is to take the trace of products of links over closed loops
(“Wilson loops”). Wilson loops are defined from gauge links as shown schematically in Fig. 2,
and detailed in Appendix B 1. Planar Wilson loops Wk×l(x), with indices k and l denoting the
dimensions of the loop (with orientation label suppressed), were computed for square loops up
to 6 × 6, as well as rectangular loops of size 1 × n for n = 2, . . . , 12, and all possible planar
orientations. The evolution of representative loop types for the ensembles in Grids A, B, and C,
averaged over orientations and spacetime position, is shown in Appendix B 2. For each case, this
evolution indicates that the data is well thermalised after approximately 500 trajectories.

To determine the number of HMC steps required for gauge field configurations to be indepen-
dent, the autocorrelation times of the pion and rho two-point correlation functions, and of the
same sets of Wilson loops introduced above, have been calculated. The autocorrelation function
for a given operator O is defined as

ρ(τ) =
∑
τ ′

〈(O(τ ′)− 〈O〉)(O(τ ′ + τ)− 〈O〉)〉, (5)
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Uµ(x)

x

y

W3⇥2(y)

µ̂

⌫̂

x + µ̂

FIG. 2: Diagrammatic representation of the construction of planar Wilson loops Wk×l(x), with indices k
and l denoting the dimensions of the loop (with orientation label suppressed), from gauge links Uµ(x).

where τ is the trajectory difference in the autocorrelation. This function decays exponentially as
ρ(τ) ∼ exp[−τ/τexp] at large Monte-Carlo times τ . The decay constant τexp defines an autocor-
relation time. Calculations of the autocorrelation time using this definition can suffer from large
uncertainties, especially when τexp is small. Another definition of the autocorrelation time is [3, 47]

τint =
1

2
+ lim
τmax→∞

1

ρ(0)

τmax∑
τ=0

ρ(τ), (6)

which approaches a constant as τmax →∞. The autocorrelation functions and integrated autocor-
relation times τint for the Wilson loops, and those for the zero-momentum projected pion and rho
two point correlation functions, Cπ(ρ) (defined in Appendix B 1), are shown in Fig. 3. In all cases,
the integrated autocorrelation time is / 10 trajectories, validating the choice to take trajectories
spaced by this distance as an uncorrelated set to form an ensemble. Other observables may have
different autocorrelation times, but the observables considered here are relatively representative4.

B. Ensemble discrimination using principle component analysis

To guide the application of ML methods to parametric regression of gauge fields in the space
defined by the sample ensembles, the differentiability of the ensembles was assessed using a principle
component analysis (PCA) [48–50]. Since Wilson loops are the simplest gauge-invariant objects,
the basis for the PCA was generated by calculating a set of square planar loops of sizes up to
L/2 × L/2, as well as 1 × n for n up to L, averaged over all possible planar orientations and
space-time locations. Averaged loops are denoted Wj×l =

∑
O(j×l)

∑
xWj×l(x), where the sum

over O(j × l) is over all hypercubic transformations of the indicated loop. The averaged loop data
are sufficiently small in dimension that it is possible to display them for a representative set of
ensembles. Fig. 4 shows contour plots of ln |Wn×m| from evaluations on each ensemble in the two
L/a = 12 grids (Grids A and B). Figs. 20, 22, and 24 (in Appendix B 2) show histograms for a
subset of the loops for each ensemble in each of Grid A, B, and C, respectively. Clearly, some of the
loops are statistically well determined, and subsets of the ensembles can be clearly distinguished.
Ensembles in Grid C have loop distributions that are more sharply defined than those in Grids A
and B as their larger spacetime volume enables more statistical averaging. For large loop sizes, all
ensembles become hard to distinguish.

4 The topological charge of the gauge field typically has a long autocorrelation time, but at the relatively coarse
lattice spacings used here, it will be comparable to that of the observables that are investigated.
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FIG. 3: Autocorrelation functions ρ(τ)/ρ(0) (left, defined in Eq. (5)) and autocorrelation times τint (right,
defined in Eq. (6)) of the pion (top) and ρ (centre) two-point correlation functions at different Euclidean time
separations, and of the various space-time averaged n ×m planar Wilson loops (bottom). Measurements
are performed on a subset of ensemble F1, for Ntraj = 4000 sequential trajectories (Ntraj = 7980 for the
loops). The colours identify the type of loop and the shaded bands correspond to the uncertainties on these
quantities as determined from a bootstrap procedure using Nboot = 100 bootstrap resamplings of size Ntraj.

To perform the PCA on the loop data, a correlation matrix between the various loop observables
can be constructed, either for a given ensemble, or, as is done here, across a collection of ensembles.
The correlation matrix elements are

M`i,`j =
∑
e

∑
c

[
W`i(e, c)−W `i(e)

] [
W`j (e, c)−W `j (e)

]
σ(W`i(e))σ(W`j (e))

, (7)

where `i ∈ {1×1, 2×2, . . .}, and e and c label the ensemble and the configuration in that ensemble,
respectively. The summation over ensembles is for all ensembles in a given grid, and X and σ(X)
denote the mean and standard deviation of the given quantity over the particular ensemble of
configurations. The eigenvalues, ei, and eigenvectors, vi, of this correlation matrix for Grid A are
shown in Fig. 5. There are three particularly large eigenvalues. Similar pictures emerge from PCAs
run on Grid B and Grid C, indicating three dominant degrees of freedom in the calculated Wilson
loops. Histograms showing the combinations of loops corresponding to the three dominant, and
fourth sub-dominant, eigenvectors are presented for the ensembles in Grid A in Fig. 6. Clearly,
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FIG. 4: Contours show ln |Wn×m| from evaluations on each ensemble in the two L/a = 12 grids. The stars
show the locations of the ensembles from Grids A (blue) and B (orange).
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FIG. 5: Eigenvalues en (left panel) and eigenvectors vn (right panel) of the loop correlation matrix for
Grid A. The strength of the contribution of each loop to each eigenvector is represented by the tone of the
corresponding box in the right panel (i.e., darker = larger contribution).
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FIG. 6: Combinations of loops corresponding to the four largest eigenvectors of the loop correlation matrix
for Grid A. Each colour denotes a different ensemble in Grid A.

the information encoded in a collection of the simplest gauge-invariant objects is sufficient to
distinguish all but a few of the ensembles in Grid A.

The Jensen-Shannon divergence [51, 52] provides a measure of the overlap of probability dis-
tributions and can be used to quantify the distinguishability of such distributions. Given two
probability distributions P and Q, defined over a space X, the Jensen-Shannon divergence is given
by

DJS(P ||Q) =
1

2
DKL(P ||M) +

1

2
DKL(Q||M), (8)

where M = 1
2(P +Q), and DKL(P ||Q) is the Kullback-Leibler divergence [53], defined as

DKL(P ||Q) =

∫
dxP (x) log2

P (x)

Q(x)
. (9)

The Jensen-Shannon divergence is bounded by 0 ≤ DJS(P ||Q) ≤ 1, with DJS = 0 if and only if
Q = P almost everywhere, and larger values denoting lower overlap between distributions. The
square root of the Jensen-Shannon divergence provides a well-defined metric [54, 55].

As a test of differentiability, the Jensen-Shannon divergences were calculated between all pairs
of three-dimensional probability distributions defined by the three dominant eigenvectors of the
loop correlation matrix for each ensemble in Grid A5. To do this, each distribution was first
interpolated over the samples from the given ensemble using smooth kernel distributions. The
resulting values of DJS are shown pictorially in Fig. 7 for all pairs of the 19 ensembles in Grid A.

5 On a given ensemble e, this three-dimensional probability distribution is given by Pe(si, s2, s3) where

si = vi · (W1×1(e, c),W2×2(e, c), . . .W1×12(e, c)) ,

and where vi is the ith eigenvector of the PCA. Additional tests with the largest two or four eigenvectors gave
qualitatively similar results.
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FIG. 7: The Jensen-Shannon divergence, DJS , between pairs of ensembles in Grid A, calculated over the
three-dimensional distributions defined by the three dominant eigenvectors of the loop correlation matrix
used for the PCA. DJS = 1 implies completely distinguishable distributions.

Clearly, the dominant eigenvectors in loop space allow excellent differentiation between most pairs
of ensembles, with approximately 8 out of 171 independent pairs that are only weakly, or not at
all, differentiable.

A more challenging test of distribution differentiability is provided by the ensembles in Sets D
and E, each designed to have maximal overlap of Wilson loops on each of the ensembles in the
set, but different parameters in the {β,m0} plane. Fig. 8 shows histograms of the combinations
of Wilson loops corresponding to the dominant eigenvectors of the loop correlation matrix for
ensemble Sets D and E, while Fig. 9 displays the Jensen-Shannon divergence between pairs of
ensembles in these sets. As the ensembles in each of Sets D and E are very poorly distinguishable
in the space of Wilson loops, accurate differentiation between them presents a key challenge to
parametric regression via ML.

III. NEURAL NETWORKS FOR PARAMETRIC REGRESSION OF LATTICE QCD
GAUGE FIELDS

Machine learning techniques, and in particular neural networks, offer a promising solution to
parameter regression problems. The main focus of this work is to address such a problem in the
context of LQCD: given an ensemble of lattice gauge fields, determine the parameters of a given
action that are most likely to have generated it. As discussed in the introduction, this challenge
arises, for example, in attempts to ameliorate critical slowing down by the matching of coarse
and fine lattice actions, and in the context of perfect actions. Its solution will allow for more
efficient LQCD calculations, enabling studies in regions of parameter space which are currently
computationally unreachable.

To determine the action parameters of a given ensemble (for a particular choice of lattice
action), one possible approach is to calculate a sufficiently large set of physics observables both
on that ensemble and on a set of ensembles for which the parameters are known, and perform
an interpolation and matching task using the calculated observables. The alternative considered
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FIG. 8: Combinations of loops corresponding to the dominant eigenvectors of the loop correlation matrix
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FIG. 9: The Jensen-Shannon divergence, DJS , between pairs of ensembles in Sets D (left) and E (right),
calculated over the three-dimensional distributions defined by the three dominant eigenvectors of the loop
correlation matrix used for the PCA. The maximum value of DJS in each Set is 0.6. DJS = 1 corresponds
to completely distinguishable distributions.

here is to train a neural network to perform the regression directly. In principle, this approach is
far more general than one based on a set of physics quantities, as the network can use all of the
information encoded in a gauge field configuration. On the other hand, this is also challenging. As
discussed in Section II A, a single gauge field configuration is represented by O(109) real numbers
in modern lattice QCD calculations. In comparison, a typical ensemble used for such calculations
consists of O(103) configurations. This hierarchy implies that the stochastic learning of features
of the relevant degrees of freedom of the gauge field configurations—in particular that extracted
physics results must be invariant under spacetime translations, reflections, and hypercubic rotations
as well as under gauge transformations—is challenging.

This challenge is approached in two ways, described in the following two sections. First, a
multi-layer perceptron (a fully connected feed-forward neural network) is trained to learn the action
parameters corresponding to lattice gauge field configurations. As anticipated, using gauge fields
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FIG. 10: A schematic representation of the neural network structure used for parametric regression. Gauge
links, expressed in an SU(2) basis as 4 real numbers, are used as inputs to the network. There are 4 links in
each positive direction from a given site, giving a total of 4× 4× V = 16× 123 × 36 = 995328 real numbers
per gauge field. Two fully connected layers, each with 96 nodes, are used. Each hidden layer features a
tanh activation function and dropout. A random set of connections between layers are omitted to denote
dropout.

as input with no symmetry constraints leads to over-fitting of the spacetime and gauge features
of the data which are not related to the physics encoded by a given ensemble. Nevertheless, this
exploration reveals a number of interesting features of the problem at hand. Second, a practical
solution to the parametric regression problem is provided in the form of a network with a structure
that imposes the spacetime and gauge symmetries of LQCD (or, equivalently, involves preprocessing
gauge field data into a format that respects these symmetries).

A. Fully-connected network

The simplest approach to the parametric regression of lattice QCD gauge fields using neural
networks is to use a multi-layer perceptron [56–59], i.e., a fully-connected feed-forward network
structure (a glossary of neural network terminology is provided in Appendix A). For each of the
ensembles of gauge-field configurations in Grid B, 850 configurations were randomly selected as
training data, while 100 were held out as validation data [60, 61]. Each gauge field configuration,
consisting of O(106) real numbers, was treated as an individual input. As physical quantities
are only defined on ensemble average, regression on these inputs can not be exact; a given gauge
configuration could, with various probabilities, have been generated from an action differing in both
form and parameters from the one that it was in fact generated with, so a perfectly functioning
network will necessarily have some spread in predictions from a given ensemble. Quantifying this
maximum resolution is possible in principle, but computationally prohibitive, and for this reason
has not been undertaken. Investigations into new ensemble-based training approaches that would
sharpen the maximum regressor predictability are ongoing.
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FIG. 11: Predictions of β and m0 on validation ensembles at the same parameter values as the training
ensembles. The stars in the left panel denote the parameters used to generate the ensembles, while the
ellipses show the one-standard deviation confidence interval of the predictions for the validation ensembles.
The same validation data are shown as histograms in the right figure, with the intersections of the grid lines
indicating the parameters used for ensemble generation.

A simple fully-connected neural network structure, represented graphically in Fig. 10, was
trained on the regression task6. The network was initialised by setting the biases to zero and
the weights to a truncated normal distribution centred at zero with a width of 0.02. A tanh ac-
tivation function was applied to the nodes in each layer, as well as an L2 regulariser with weight
decay set to 0.001. Dropout [62–64] was also applied to each layer. While many variations of the
network structure were investigated, a systematic hyperparameter tuning was not undertaken due
to computational limitations. In general, it was found that fewer hidden units and layers than in
the illustrated network led to less optimal minima of the loss function, while a greater number did
not appreciably change the outcome. Dropouts in the range 0.3–0.6 were required to eliminate
over-fitting. A range of regularisation prescriptions and hyperparameters, as well as a range of
activations including tanh, reLU [65–67], and sigmoid were studied. The Adam optimiser [68]
reached the minimum loss with less training than stochastic gradient descent (SGD), and a loss
function based on least absolute deviations (L1) rather than least square errors (L2), performed
better.

The predictions of the best-performing network for the held-out validation data are shown in
Fig. 11. While these results appear to signal the success of this approach, the generalisation ability
of the network, i.e., its ability to interpolate in parameter space, is poor. In particular:

• New ensembles, even those in the 10 ensembles of Set F, generated from separate HMC
streams but with the same {β,m0} as one of the training ensembles, were predicted to sit at
the average β and m0 values of all ensembles included in training. This indicates that the
network did not succeed in learning the gauge-invariance properties of lattice QCD gauge
fields, nor in parametrising the parameter space of the grid of ensembles;

6 The open source packages tensorflow and tflearn were used to to implement all neural networks and are available
from https://www.tensorflow.org and http://tflearn.org, respectively.

http://tflearn.org


14

• Configurations from the continuation of the HMC streams used to generate the training and
validation configurations were also predicted to have different parameters. Specifically, the
next configurations in the HMC streams were predicted to have the correct m0 and β values,
but these predictions drifted towards the average over all training ensembles within a few
steps. This indicates that the network is identifying some quantity with a longer autocor-
relation time than the physics quantities studied in Sec. II A, i.e., that the configurations
separated in MC time such that they are independent by the measure of various physics
observables, are not independent by the alternative measure found by the network.

The majority of these features are unsurprising; information content suggests that with O(103)
samples containing O(106) real numbers each, it is not feasible to stochastically learn symmetries
such as the gauge invariance of the data, and that generalisation will be challenging. This could
be remedied by using far larger ensembles of gauge field configurations for training, if that were
computationally feasible.

The ability of the network to distinguish different streams generated at the same values of β
and m0 is interesting. In the limit of infinite stream lengths, no calculated quantity, corresponding
to a physical observable or otherwise, can achieve this distinction. Such distinguishability indicates
that the streams are not completely sampling the gauge field configuration space and is tied to the
existence of a feature, identified by the network, that has a longer autocorrelation than those of
the physics observables studied in Sec. II A. An autocorrelation time of the neural network feature
was obtained from the output of classification networks trained on each of the pairs of streams
in Set F, generated at the same set of action parameters. Rather than training this network
to identify the {β,m0} of a given gauge field as for the regression network described previously,
the classifier was trained to produce a classification: {1, 0} for configurations from one stream,
and {0, 1} for those from a second. The network structure used was identical to that shown in
Fig. 10, with a softmax [69] activation function used for the final layer to provide a normalised
probability interpretation for the output: an output {a, 1 − a} for a given configuration indicates
that that sample can be identified with the first stream with a probability a. A categorical cross-
entropy [70, 71] loss function was used for this training. For each pair of streams, 600 trajectories
from each stream were used to train an instance of the network. The output of that instance for
the trajectories sequentially following the training data defines an autocorrelation function:

ρ(τ) = 2
[
Pα (cα(τ)) + Pβ

(
cβ(τ)

)]
− 1, (10)

where P {α,β}(c) denotes the probability for configuration c to be in stream α or β (i.e., the first
and second element of the network output for that configuration). The configuration is labelled
c{α,β}(τ) to denote a trajectory from stream α or β, τ steps in Monte-Carlo time after the end
of the sequence used as training data. The autocorrelation function, and an autocorrelation time
determined from this function by Eq. (6), are shown in Fig. 12. Comparing to Fig. 3, it is clear that
the autocorrelation time of the feature used by the network to distinguish streams is approximately
three times longer than the longest autocorrelation time of the physics observables that were
calculated in Section II.

It is natural to speculate that the strong autocorrelation observed in the neural network output
is based on some local features of the data, rather than features encoding the physics of interest7.
Further investigation did not find evidence for this interpretation; neither Moran’s I [72] nor Geary’s
C [73] tests supported the existence of correlated spatial regions in the derivatives of the loss

7 This is supported by the observation that features with similar autocorrelation times were identified using network
structures that respect gauge-invariance, but retain full spatial information.
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FIG. 12: Autocorrelation function in Monte-Carlo time (left, defined in Eq. (10)) and autocorrelation time
(right, defined in Eq. (6)) of the feature distinguishing two streams at the same set of parameters, trained on
sequences of gauge field configurations. The autocorrelation function was generated by averaging over many
different results (trained using all different pairs of the 10 streams, F1,...,10, at the same parameters), and
was found to be robust under changes of the network structure used to generate it. The dashed horizontal
line on the right figure shows the maximum autocorrelation time of various physics observables (see Fig. 3).

function with respect to inputs. There is also no correlation of these derivatives with known
spatially-varying physical quantities such as topological charge density and action density. While
the long–correlation-time feature could not be identified in this study, it provides an interesting
topic for further study. In particular, it will be informative to investigate how this scale changes
with parameter range, particularly in regions of parameter space where topological charge freezing
becomes a difficult problem for simulations.

B. Custom symmetry enforcing network structure

As described in the previous section, experiments with simple fully-connected neural networks
were not successful at parametric regression of lattice QCD gauge fields for the training data sets
used in this study. This is not unexpected; learning the symmetries of gauge field configurations
stochastically is certain to be a challenging task. Symmetries of lattice QCD, however, act to
reduce the effective degrees of freedom of the problem, and can be incorporated into the structure
and training of neural networks in several ways. First, the stochastic learning of symmetries
can be accelerated through data augmentation (i.e., randomly performing a gauge transformation
and/or translation/lattice rotation on a configuration). This is analogous to typical uses of data
augmentation [74] in, for example, image recognition [75, 76], to introduce symmetries such as
rotational symmetry8. In practice, this was found to be untenable for the case studied here as
a result of the large number of symmetries that must be learned, their complex nature, and the
requirement that they be strictly observed. Secondly, custom network layers can be designed
(or equivalently, data can be pre-processed) to only allow gauge invariant and lattice-symmetry
invariant outputs of the network. This approach is found to be successful.

To incorporate the symmetries of lattice QCD gauge fields into neural network structures,
several custom networks were designed, featuring an initial pre-processing layer that forms only
quantities that respect the invariances of the problem, followed by fully-connected layers operating
on these quantities. The possible gauge and translation-invariant degrees of freedom that are

8 The incorporation of symmetries into various neural network structures has been studied in Refs. [77–80].
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allowed by the first layer are specified by hand; in principle this choice could be part of the
learning process, although näıve implementations are prohibitively expensive. Wilson loops of all
shapes and sizes, along with their correlated products, suitably averaged over spacetime, provide a
natural choice of gauge-invariant, translation-invariant quantities that can be formed from a gauge
field configuration. The number of such loops is exponentially large in the spacetime volume and
it is computationally intractable to allow all to be generated, so a suitable subset must be chosen.
As used in the PCA analysis in Section II B, one such subset is the set of square planar loops of
sizes up to L/2× L/2, as well as 1× n rectangular loops for n up to L, averaged over all possible
planar orientations and space-time locations. Another natural choice is the set of all correlated
products of two Wilson loops, similarly averaged:

Wj×k,l×m(R) =
∑
|r|=R

∑
`∈O(j×k)

∑
`′∈O(l×m)

∑
x

W`(x)W`′(x+ r), (11)

where the sum over ` ∈ O(j×k) is over all lattice rotations of loops of size j×k, and these loops are
chosen from the same list as the single loops described above. Histograms of these correlated loop
products for each ensemble in Grids A, B, and C are shown in Figs. 21, 23, and 25 in Appendix B 2.
A third choice of simple, gauge-invariant quantities is the set of subtracted correlated products of
loops,

W(sub)
j×k,l×m(R) =

∑
|r|=R

∑
`∈O(j×k)

∑
`′∈O(l×m)

[∑
x

W`(x)W`′(x+ r)−
∑
x

W`(x)
∑
x

W`′(x)

]
. (12)

Network structures that allow each of these sets—labelled as single loops (SL), unsubtracted prod-
ucts of two loops (CP), and single loops plus the subtracted correlated products of two loops
(SLCP)—to be formed in the first layer, are studied.

The complete network structures used for regression are illustrated in Fig. 13 for each of the
SL, CP, and SLCP cases. Each network was trained using 850 independent configurations from
each ensemble in a given grid, with a further 100 held out as validation data. As for the fully-
connected network described in the previous section, the networks were initialised by setting the
biases to zero and the weights to a truncated normal distribution centred at zero with a width
of 0.02. Although no rigorous tuning of the hyperparameters of the networks was undertaken
for the various structures, a large number of variations were investigated. In general, networks
with fewer hidden units, or fewer layers, than those illustrated in Fig. 13 were found to produce
less optimal solutions, while larger networks did not significantly improve on the results that are
presented. As for the fully-connected networks, an L1 distance in the two-dimensional parameter
space was used as the loss function, and this was found to perform considerably better than the
L2 distance. For a given network structure and loss function, the same minimum loss was achieved
using different choices of optimiser, including SGD, Adam [68], and Nesterov [81], with various
parameters, although the number of epochs required to convergence varied.

The outputs of neural networks allowing each of the SL, SLCP, or CP loop sets to be formed in
the first layer, trained on the ensembles in Grid A, are shown in Fig. 14. In each case, the results
display accurate regression and clear differentiation between the ensembles, with the shapes of the
confidence ellipses of network predictions elongated in the direction of constant 1 × 1 plaquette,
the simplest and most precise gauge-invariant object. The mild distortion of the regression results
towards the centre of the grid is natural, as this will always lead to a smaller loss in the case
of misidentifications than any alternative. With additional tuning and larger or denser parameter
grids for training, one might expect that this distortion can be removed. The training and validation
losses of each network are shown against training epoch in Fig. 15. The CP network performs
slightly better than the SL network, as one may anticipate, given that it allows a larger number of
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(a) SL

(b) CP

(c) SLCP

FIG. 13: Diagrams of the neural network structure used. In the first layer, SL, CP, or SLCP structures are
formed, e.g., in the CP case, products of the 18 different types of loops separated by lattice distance R < 13
(averaged in integer space bins of R) are allowed, for a total of 18× 18× 13 = 4212 loop products. The first
layer is followed by 3 fully connected hidden layers with 1024, 512, and 256 nodes. Each hidden layer uses
a tanh activation function, with dropouts between layers.
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degrees of freedom to be utilised. The SLCP network, while also having more degrees of freedom
than the SL network, displays over-fitting: while the training loss is as good as that of the CP
network, the validation loss remains higher. It is likely that tuning the network hyperparameters
individually for each network structure would improve these results. For the purpose of the present
proof-of-principle study, the CP network is taken as the best example for further study.

Unlike the fully-connected network described in the previous section, the symmetry-respecting
networks generalise successfully, both correctly identifying the parameters of other streams gen-
erated with the same action as the training data, which are indistinguishable from the validation
distributions, and interpolating to intermediate ensembles. This interpolation is illustrated in
Fig. 16, which shows the predictions of the CP network on both the evenly-spaced intermediate
ensembles of Grid B, and on ensembles in Sets D and E, generated to lie along lines of constant pla-
quette (isoplaquette lines). While the latter ensembles are essentially indistinguishable along each
isoplaquette by various Wilson loops, even using a principal component analysis (see Sec. II B), the
parameter predictions from the trained network are distinguishable, and, most importantly, have
the correct relative positions in parameter space. The overlap between the network predictions for
the very closely-spaced ensembles from Set E is anticipated; as described in earlier sections, there
is a maximum resolution inherent in this regression problem. Nevertheless, the ordering of the
central values of the distributions remains robust. This shows accurate regression of dense points
in a region of parameter space significantly smaller than the space between adjacent training en-
sembles, confirming that the network has successfully parametrised the relevant features of lattice
QCD gauge fields.

The accurate regression achieved with the CP network relies on having a sufficient density of
points in the {β,m0} plane in the training data set to enable interpolation. Reducing this density by
half, for example, and training the same network structure in the same manner, yields a network
instance that generalises poorly to intermediate ensembles. Fig. 17 shows the results of such a
test, using the Grid A ensembles. Despite the poor generalisation performance, both training and
validation loss converge to the same values as for the CP network trained on the entirety of Grid
A; that is, the training does not indicate over-fitting.

The successful parametric regression of lattice QCD gauge fields presented here must be ex-
tended to larger-volume lattices more typical of modern lattice QCD calculations for the method
to be applied in practice. As lattice volume increases, Wilson loop distributions become more
sharply peaked, and as a result become more distinct, as can be seen by comparing Figs. 21 and
25 which display these loops for data sets with spacetime volumes V = L3 × T = 123 × 36 and
163 × 48, respectively. It can thus be anticipated that regression performance with the network
structures developed here will improve on larger lattice volumes. Fig. 18 shows the results of a
CP network structure trained on Grid C. As expected, the regression performance is better than
for the smaller-volume ensembles. Extending these results to even larger volumes, and to Nc = 3
QCD, is essential.

IV. SUMMARY

Deep neural networks with custom symmetry-preserving layers provide a solution to the param-
eter regression problem in lattice QCD, for the proof-of-principle case considered here. Specifically,
neural networks regressors trained on grids of ensembles in action parameter space were able to
accurately identify the parameters used to generate streams of ensembles, generalising successfully
and accurately to ensembles densely spaced and between grid points in the training space. Non-
symmetry preserving networks were also studied. While these were unsuccessful at the regression
task, they revealed an unknown feature of the lattice ensembles with a longer correlation length
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FIG. 14: Predictions of β and m0 for the validation ensembles in Grid A at the same parameter values of the
training ensembles, using SL (left panel), SLCP (right panel) and CP (bottom panel) network structures.
The stars show the location of each ensemble in parameter space, while the ellipses show the 1σ confidence
regions generated from the variation of the predictions for the 100 validation samples from each ensemble.

than any of the physics observables that were studied.
Extending this work to SU(3) gauge groups and to larger lattice volumes will be essential for

the practical application of the methods developed. In addition to the symmetries exploited here, a
typical length scale, 1/ΛQCD ∼ 10−15m, emerges dynamically in LQCD calculations. Consequently,
there are potential advantages for a convolutional approach [82–84] at larger lattice volumes. Con-
volutional layers would again have to be customised, respecting the gauge symmetry of the problem.
Particular use-cases of LQCD parameter regression may also impose additional constraints. For
example, regression for the matching of coarse and fine lattice actions requires the identification of
ensembles generated in a coarse space with ensembles describing the same physics, but generated
via a coarsening prescription [20, 21]. The latter ensembles, by renormalisation-group evolution,



20

0 50 100 150 200 250 300 350
0.00

0.02

0.04

0.06

0.08

0.10
SL training
SL validation

CP training
CP validation
SLCP training
SLCP validation
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loss and the pale lines show loss on the validation data.
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FIG. 16: Predictions of β and m0 from the CP network trained on Grid A, for the ensembles in Grid B (left
panel) and Sets D and E (right panel). The open circles show the the location of each ensemble in parameter
space, while the ellipses show the 1σ confidence regions generated from the variation of the predictions for
the 100 validation samples from each ensemble. The greyed-out stars and ellipses show the validation data
and training ensemble locations.

are described by lattice actions with more parameters than those generated in the coarse space.
Preliminary investigation suggests that regression under these conditions will require network struc-
tures invariant under irrelevant short-distance degrees of freedom, or the marginalisation over such
degrees of freedom in the learning procedure. Regression of the larger number of parameters in
such actions (and used in the construction of perfect actions [12–15]), must also be investigated
further.

Clearly, having demonstrated the feasibility of neural network approaches to LQCD in the
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FIG. 17: Predictions of β and m0 from a CP network trained on a subset of the ensembles in Grid A.
The stars show the location of each ensemble in parameter space, while the ellipses show the 1σ confidence
regions generated from the variation of the predictions for the 100 validation samples from each ensemble.
In the right panel, the open circles show the location of testing ensembles, that were not included in training,
in the parameter space, while the matched-colour ellipses show the 1σ confidence regions of the network
predictions.

present work, significant further study is warranted. In particular, the use of lattice symmetries
to overcome the dramatic inverted data hierarchy of LQCD—the feature that there are typically
far fewer samples than degrees of freedom per sample available—opens the door to many novel
applications of machine learning in LQCD.

Acknowledgments

We are grateful to Kyle Cranmer, Michael Endres, Brendan Fong, Andrew Pochinsky, and Mike
Williams for numerous discussions. The calculations in this project were performed using the Hyak
High Performance Computing and Data Ecosystem at the University of Washington, supported,
in part, by the U.S. National Science Foundation Major Research Instrumentation Award, Grant
Number 0922770, and on clusters at MIT with support from the NEC Corporation Fund. WD was
partly supported by U.S. Department of Energy Early Career Research Award de-sc0010495 and
grant number de-sc0011090 and by the SciDAC4 award de-sc0018121: Computing the Properties
of Matter with Leadership Computing Resources. PES and DT were partially supported through
contract number DE-AC0506OR23177 under which JSA operates the Thomas Jefferson National
Accelerator Facility. DT was supported by the Exascale Computing Project (17-SC-20-SC), a
collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear
Security Administration.

[1] K. G. Wilson, Phys. Rev. D10, 2445 (1974), [,45(1974)].
[2] H. J. Rothe, World Sci. Lect. Notes Phys. 43, 1 (1992), [World Sci. Lect. Notes Phys.82,1(2012)].

http://arxiv.org/abs/de-sc/0010495
http://arxiv.org/abs/de-sc/0011090
http://arxiv.org/abs/de-sc/0018121


22

**

**

**

**

**

**

****

****

** **

**** **

**

**

**

1.75 1.80 1.85 1.90 1.95 2.00

-1.0

-0.9

-0.8

-0.7

FIG. 18: Predictions of β and m0 for the validation ensembles in Grid C at the same parameter values
of the training ensembles, using a CP network structure. The stars show the location of each ensemble
in parameter space, while the ellipses show the 1σ confidence regions generated from the variation of the
predictions for the 100 validation samples from each ensemble.

[3] C. Gattringer and C. B. Lang, Lect. Notes Phys. 788, 1 (2010).
[4] S. Aoki et al., Eur. Phys. J. C77, 112 (2017), 1607.00299.
[5] M. Constantinou, PoS CD15, 009 (2015), 1511.00214.
[6] S. R. Beane, W. Detmold, K. Orginos, and M. J. Savage, Prog. Part. Nucl. Phys. 66, 1 (2011), 1004.2935.
[7] Z. Davoudi, in 35th International Symposium on Lattice Field Theory (Lattice 2017) Granada, Spain,

June 18-24, 2017 (2017), 1711.02020.
[8] H.-T. Ding, F. Karsch, and S. Mukherjee, Int. J. Mod. Phys. E24, 1530007 (2015), 1504.05274.
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[78] F. J. Király, A. Ziehe, and K.-R. Müller, ArXiv e-prints (2014), 1411.7817.
[79] B. Schölkopf, C. Burges, and V. Vapnik, Incorporating invariances in support vector learning machines

(Springer Berlin Heidelberg, Berlin, Heidelberg, 1996), p. 47, ISBN 978.
[80] C. J. C. Burges and B. Schölkopf, in Advances in Neural Information Processing Systems 9, edited by

M. C. Mozer, M. I. Jordan, and T. Petsche (MIT Press, 1997), pp. 375–381.
[81] Y. Nesterov, Soviet Mathematics Doklady 27, 372 (1983).
[82] K. Fukushima, Trans. IECE J62-A(10), 658 (1979).
[83] K. Fukushima, Biological Cybernetics 36(4), 193 (1980).
[84] J. Gu, Z. Wang, J. Kuen, L. Ma, A. Shahroudy, B. Shuai, T. Liu, X. Wang, and G. Wang, CoRR

(2015), 1512.07108.

Appendix A: Neural Network Glossary

Multi-layer Perceptron A Multi-layer Perceptron is the simplest form of a multi-layer neural
network, having a feed-forward network structure, i.e., triggering the activation of each layer of the
network successively, without circulating, and consisting of multiple fully-connected layers that use
nonlinear activation functions.

Loss Function A loss, or objective, function, is a measure of the difference between the output
of a neural network for a given training sample, and the ground truth. This function defines success
for network training. Training procedures, such as stochastic gradient descent, or adaptive learning
rate algorithms such as Adam or Nesterov, update the weights and biases of neural networks to
minimise the loss.

Training and validation datasets It is typical to hold out some data from training a neural
network to form a validation dataset to provide a generalisation test for the network. A larger loss
calculated on the validation data than on that used for training is an indication of over-fitting.

Over-fitting The production of a model that is fit to irrelevant features or fluctuations of the
training data and therefore fails to generalise reliably.

Dropout Dropout is a regularisation procedure in neural networks whose purpose is to prevent
over-fitting. Dropout prevents neutrons from co-adapting by randomly setting a fraction, governed
by the dropout hyperparameter, to zero at each training iteration. This results in a model that
can be interpreted as randomly sampling from an exponential number of similar networks [64], and
creates more generalisable representations of data.

Activation A neural network layer typically consists of a linear transformation followed by a
non-linear transformation at each node, known as the activation function. This non-linearity is
what allows neural networks to learn complex decision boundaries. Typical choices of activation
functions include sigmoid, tanh, and reLU (defined as x for x > 0, 0 otherwise).

Epoch vs. Iteration In the training of a neural network, an iteration is one update of
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the neural net model parameters. Typically, networks are batch-trained, with a hyperparameter
governing the batch size of training data considered per update. An epoch is a complete pass
through a given training dataset, which may take one (if the batch size is equal to the size of the
dataset) or more iterations.

Appendix B: Lattice QCD details

1. Details of lattice actions, correlation functions, and Wilson loops

The discretised lattice QCD action is expressed in terms of the gauge links between lattice sites,
Uµ(x) (which are SU(Nc) matrices for a theory with Nc colours), and the fermion fields ψ(x), with
the Euclidean space-time positions x ∈ Λ = {a(n1, n2, n3, n4)

∣∣ni ∈ Z}. The simplest action with
the appropriate symmetries for a theory with Nf flavours is given by:

S(β,m0) =
β

Nc

∑
x∈Λ

∑
µ<ν

ReTr [1− Pµν(x)] +

Nf∑
f=1

a4
∑
x,y∈Λ

ψf (x)D(m0)ψf (y), (B1)

where Pµν is the plaquette: the shortest, nontrivial, closed loop on the lattice, defined in terms of
gauge links as

Pµν(x) = Uµ(x)Uν(x+ µ̂)U−µ(x+ µ̂+ ν̂)U−ν(x+ ν̂), (B2)

where µ̂ denotes the vector of length a in the µ direction. The Wilson Dirac operator is

D(m0) =

(
4

a
+m0

)
I− 1

a

3∑
µ=0

(
P−µ Ω+

µ + P+
µ Ω−µ

)
, (B3)

with

P±µ =
1

2
(1± γµ), 〈x|Ω+

µ |y〉 = δx+µ,yU(x, µ), Ω−µ = (Ω+
µ )†. (B4)

The action is parameterised by two values: the coupling constant β and the bare quark mass
m0.

The plaquette can be generalised to Wilson loops of arbitrary shapes and dimensions. Planar
Wilson loops Wk×l(x), with indices k and l denoting the dimensions of the loop (with orientation
label suppressed), as illustrated in Fig. 2, are expressed in terms of gauge links as

Wk×l(x) =Uµ(x)Uµ(x+ µ̂) . . . Uµ(x+ (k − 1)µ̂)

× Uν(x+ kµ̂)Uν(x+ kµ̂+ ν̂) . . . Uν(x+ kµ̂+ (l − 1)ν̂)

× U−µ(x+ kµ̂+ lν̂)U−µ(x+ (k − 1)µ̂+ lν̂) . . . U−µ(x+ µ̂+ lν̂)

× U−ν(x+ lν̂)U−ν(x+ (l − 1)ν̂) . . . U−ν(x+ ν̂) (B5)

Two-point correlation functions are defined as the matrix elements corresponding to the creation
of some state at a time 0, and annihilation at some later time t. For the pion and rho mesons
considered in this work, with suitable choices of creation and annihilation operators, the zero-
momentum projected correlation functions can be defined as

Cπ(ρ)(t) =
∑
x

〈0|uγ5(3)d(x, t)dγ5(3)u(0, 0)|0〉, (B6)

where u and d denote quark creation (and u and d annihilation) operators. For further details, see
Refs. [2, 3].
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FIG. 19: The various Wilson loops, Wm×n, on the first 1600 (of 10000) trajectories of each of the ensembles
in Grid A (left column), Grid B (middle column) and Grid C (right column).

2. Further details of ensemble properties

In this appendix, the properties of the various LQCD data sets used in this work are presented.
Fig. 19 shows the evolution of various Wilson loops with HMC trajectory for the ensembles in Grids
A, B, and C, while Figs. 20–25 present histograms of the Wilson loops and correlated products of
Wilson loops on each ensemble in these grids.
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FIG. 20: The various Wilson loops, Wm×n, on each of the ensembles in Grid A for all m,n combinations
used in this work.

FIG. 21: The various Wilson loop correlators, Wm×n,p×q(r), on each of the ensembles in Grid A for a
selection of choices of loop shapes and separations r = 0, 1.
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FIG. 22: The various Wilson loops, Wm×n, on each of the ensembles in Grid B for all m,n combinations
used in this work.

FIG. 23: The various Wilson loop correlators, Wm×n,p×q(r), on each of the ensembles in Grid B for a
selection of choices of loop shapes and separations r = 0, 1.
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FIG. 24: The various Wilson loops, Wm×n, on each of the ensembles in Grid C for all m,n combinations
used in this work.

FIG. 25: The various Wilson loop correlators, Wm×n,p×q(r), on each of the ensembles in Grid C for a
selection of choices of loop shapes and separations r = 0, 1.
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