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Determination of the relationship between the numbers 
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Argentine ant, Linepithema humile (Mayr) (Hymenoptera: Formicidae), is a pest in southern California citrus 
orchards because it protects honeydew-producing hemipteran pests from natural enemies. A major impedi-
ment to controlling L. humile is estimating ant densities in orchards. Ants use irrigation lines to travel across 
orchard floors to reach trees infested with hemipterans. However, for making ant control decisions, it is the 
number of ants in trees, not on pipes that is critical. Work completed here demonstrates that the number of ants 
counted on pipes is highly correlated with the number of ants counted on trunks. Densities of ants counted on 
trunks are correlated with trunk diameter, citrus variety, and time of year and time of day counts. Six regression 
models, linear regression, zero-inflated Poisson regression, and zero-inflated negative binomial regression 
models, and each of their mixed model extensions, indicated a strong positive relationship between ant counts 
on irrigation pipes and ant counts on tree trunks. Mean squared prediction error and 5-fold cross-validation 
analyses indicated that the best performing of these 6 models was the zero-inflated Poisson mixed regression 
model. A binary classification model developed using support vector machine learning for ant infestation se-
verity levels, categorized as low (<100 ants counted in 1 min) or high (≥100 ants counted in minutes), predicted 
ant densities on trunks with 85% accuracy. These models can be used to estimate the number of ants on the 
trunks of citrus trees by using counts of ants made on irrigation pipes.
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Graphical Abstract 

(A) Argentine ants using a polyethylene irrigation pipe as a ‘highway’ to move across the floor of a commer-
cial citrus orchard. (B) A trail of Argentine ants forming a column on the trunk of a citrus tree. (C) An infra-red 
sensor, attached to a polyethylene irrigation pipe, automates counts of ants on irrigation pipes.

Argentine ant, Linepithema humile (Mayr) (Hymenoptera: 
Formicidae), native to subtropical South America, is a notoriously 
successful invasive tramp species that can thrive in wilderness, urban, 
and agricultural areas (Vega and Rust 2001, Silverman and Brightwell 
2008). Once established, L. humile can cause significant ecological 
and economic damage in invaded regions, especially in areas with 
Mediterranean-like climates (Wetterer et al. 2009). Linepithema 
humile has been established widely around the world and within 
countries due to unintentional human-assisted movement (Ward 
et al. 2005, Wetterer et al. 2009). In agricultural zones, L. humile 
aggravates infestations of invasive phloem-feeding pest hemipterans 
through the formation of disruptive food for protection mutualisms. 
In this instance, L. humile protects sap-sucking pests from natural 
enemies, and in return, ants harvest honeydew, a liquid waste high in 
carbohydrates (i.e., soluble sugars), which foragers return to nests to 
feed nest mates (Moreno et al. 1987, Helms 2013, Tena et al. 2013, 
Yoo et al. 2013, McCalla et al. 2020). Because of this mutualistic 
relationship, the biological control potential of natural enemies is 
reduced by antagonistic interactions with ants (Milosavljević et al. 
2021, McCalla et al. 2023). Consequently, hemipteran populations 
proliferate and produce more honeydew for ants to harvest, which 
in turn, promotes increased population growth of L. humile, which 
amplifies infestations and associated economic damage by both pest 
groups (Schall and Hoddle 2017, McCalla et al. 2023).

In California (USA), the citrus industry is estimated to have a 
total economic value of ~$7.1 billion per year (Babcock 2018). 
Linepithema humile has been present in California since at least 
1905 (Smith 1936) and has developed mutualisms with several 
invasive and economically damaging honeydew producing he-
mipteran citrus pests (Markin 1970, Moreno et al. 1987, Yoo et 
al. 2013, McCalla et al. 2023). Control of L. humile in California 
citrus orchards relied primarily on a contact organophosphate in-
secticide, chlorpyrifos, which was banned in 2021 (Anon. 2020). 
The use of liquid bait stations to deliver very low concentrations of 

insecticide (e.g., boric acid, imidacloprid, methoprene, spinosad, or 
thiamethoxam) to foraging L. humile in a 25% sucrose water solu-
tion has demonstrated efficacy in citrus orchards with appreciable 
reductions in ant densities being achieved (i.e., >90% reduction in 
densities of foraging L. humile) (Klotz et al. 2000, Greenberg et al. 
2013, Schall et al. 2018, McCalla 2019, McCalla et al. 2023). An al-
ternative approach for delivering sucrose water laced with ultra-low 
concentrations of insecticide to L. humile in orchards is to infuse 
biodegradable alginate hydrogel beads (Tay et al. 2017, Schall et al. 
2018, McCalla et al. 2020, Milosavljević et al. 2024) or polyacryla-
mide hydrogels (Buczkowski et al. 2014a, b, Rust et al. 2015, Boser 
et al. 2017, Tay et al. 2020) with toxicant. With both approaches, 
liquid bait stations and hydrogels, ants imbibe toxic sugar water and 
spread it through the colony via trophallaxis. When compared to 
untreated areas, treated areas result in rapid and sustained collapse 
of L. humile populations (McCalla et al. 2020, 2023, Milosavljević 
et al. 2024). Concomitant reductions in densities of hemipteran pests 
quickly result because of increased natural enemy activity (McCalla 
et al. 2023).

Despite L. humile being a well-recognized indirect pest in 
California citrus orchards, there are no standardized industry-
adopted monitoring protocols to assess ant population densities 
and accordingly there are no action or economic thresholds to guide 
initiation of control treatments based on pest density estimates. 
Monitoring methods to estimate L. humile densities may utilize 
timed visual counts of ants passing a landmark on a tree trunk or 
use sugar water-filled monitoring vials to measure the number of 
ant visits to a sucrose resource over a 24-h period (McCalla et al. 
2020). Both monitoring methods have shortcomings. Visual counts, 
especially when ant numbers are high, often lead to counting fa-
tigue and inaccurate estimates. Moreover, they are neither cost- nor 
time-effective and only provide a temporal snapshot of ant activity 
based on the duration of the sampling interval (e.g., 1 min) and 
time of day (e.g., morning) counts are conducted (McCalla et al. 
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2020, Milosavljević et al. 2024). Subsequently, variation in diurnal 
and importantly nocturnal (Kistner et al. 2017) L. humile activity is 
not assessed. In comparison to visual counts, monitoring vials can 
measure changes in ant activity over time (e.g., 24 h). However, the 
deployment of vials of 25% sucrose solution recruits foragers to a 
highly preferred resource, which may artificially inflate estimates of 
ant densities while simultaneously redirecting ants away from study 
areas of interest (McCalla et al. 2020).

There is an obvious need for the development of new 
technologies to monitor L. humile activity in citrus orchards. Ideally, 
new approaches would be automated, able to accurately monitor 
hourly fluctuations in ant activity over a 24-h period, and ant count 
data would be transferable via cellular networks to cloud-based 
applications that analyze data and provide user-friendly summaries 
that are accessible via smart devices in near real-time. Additionally, 
field-deployed monitoring devices should have no effects on ant 
foraging behavior, be robust to environmental conditions (e.g., heat, 
irrigation water, and curious vertebrate animals), have low mainte-
nance needs, require minimal power to operate, and componentry 
must be cheap, readily accessible, and easy to assemble.

Prototype infra-red sensors (i.e., IR sensors) currently 
undergoing field evaluation for L. humile monitoring in commer-
cial California citrus orchards meet these criteria (Hoddle et al. 
2022a). Strategic placement of IR sensors is critical, and highly rigid 
stereotypical foraging behavior of L. humile can be exploited for 
automating counts. Long runs of polyethylene irrigation pipes that 
lie in straight lines on top of the soil under citrus trees are used as 
“super-highways” by foraging L. humile to move between nests and 
trees with aggregations of honeydew-producing hemipterans. The 
use of irrigation pipes by L. humile for travel reliably concentrates 
workers in a relatively small area of the orchard floor, and the use 
of pipes optimizes foraging routes by maximizing transit linearity 
and smooth surfaces facilitate speed of movement, which collectively 
minimize travel times between nests and food sources (Yates and 
Nonacs 2016, Clifton et al. 2020). Foraging ants exit pipes and walk 
relatively short distances over the soil to access tree trunks to ascend 
into canopies where honeydew is collected and moved to nests via a 
return trip on irrigation pipes. In contrast to pipes where ant activity 
is predictably and reliably concentrated, the number and position of 
forager trails on trunks varies over time, which makes automated 
monitoring of trunks challenging. However, it is ant activity in trees, 
not on pipes, that affects the efficacy of biological control services 
in citrus orchards.

To increase the accuracy of ant density estimates in trees 
based on ant activity on pipes, the relationship between ants 
moving on pipes and tree trunks in citrus orchards needs to be 
determined. The work presented here used field-collected data 
on ant activity on irrigation pipes and movement on tree trunks, 
which were statistically analyzed to determine if a relationship 
exists between these 2 parameters. The construction of a robust 
model that accurately describes the relationship between the 
number of ants counted on irrigation pipes and those found on 
tree trunks would enable the conversion of counts of ants on 
pipes (i.e., automated IR-sensor count data) to estimates of num-
bers of ants moving on tree trunks and ultimately foraging in 
citrus canopies where they harvest honeydew and disrupt biolog-
ical control services provided by natural enemies. Describing and 
defining this relationship between the numbers of ants counted 
on irrigation pipes and observed on trunks is a critical step in 
developing new automated approaches to monitoring L. humile 
in citrus, and the results of work analyzing this pipe-trunk rela-
tionship are presented here.

Materials and Methods

Field Sites and Data Collection
Counts of L. humile moving on the surface of black 12.7-mm di-
ameter polyethylene irrigation pipes lying on the soil surface under 
citrus trees and numbers of ants ascending and descending tree 
trunks were made in 28 commercial citrus orchards in Riverside 
and San Bernardino Counties, California, over the period October 
2019 to June 2020. Ant counts on pipes and trunks were made for 
30 trees in each orchard (one orchard had 32 trees surveyed) for a 
total of 842 trees surveyed. Five trees in each of 6 rows were used, 
and each tree for which ant counts were made was separated by 2 
trees, resulting in counts being made for every third tree in a row. 
Trees for which counts were made were in parallel rows (i.e., tree 
rows were not separated by another tree row; they were immediately 
opposite to each other), and trees for which ant counts were made 
were aligned in columns across rows. Counts in blocks of trees were 
initiated at a minimum of 2 rows from the margin of the citrus block 
being assessed for ant activity.

A 2-person team made 1 min visual counts of L. humile. One 
person made visual counts on the irrigation pipe immediately oppo-
site the trunk of one of the 30 trees in the block. The second person 
counted the number of ants that were moving in the trails past a 
landmark on the trunk of the selected tree that was closest to the 
irrigation pipe. These trails on trunks are referred to as columns. 
This trail or column of ants on the trunk closest to the irrigation 
pipe was designated as “Column 1,” and this was the column formed 
by ants arriving and exiting onto the pipe from the tree of interest. 
Upon completion of these counts, both team members counted the 
number of ant columns on the trunk and timed 1 min counts of the 
number of ants in these additional columns (n = 1 to 11). In addition 
to ant counts, the following data were collected for each tree: (i) the 
date and time of day that counts commenced for each tree, (ii) the 
diameter (cm) of each trunk (larger diameter trunks have more space 
to accommodate a greater number of ant columns), (iii) the variety 
of citrus comprising the block that ant counts were made in (i.e., 
oranges, grapefruit, lemons, and mixed varietal blocks). These data 
for each variable category were used to develop or “train” statistical 
models assessing the relationships between the numbers of ants on 
pipes and on trunks.

A second data set, used to test or validate (see below) models 
developed from collected data as described above, was generated in 
an identical manner as the original data set. These validation data 
were collected from an additional 10 orchards in Riverside and San 
Bernardino Counties over the period April–May 2021 for an addi-
tional 300 surveyed trees (i.e., 30 trees per orchard were sampled in 
a manner identical to that as described above for the collection of 
the primary data set).

Data Analyses: Visualization of Training Data
For the training data collected from Fall 2019 to Spring 2020, trees 
with missing field data (e.g., tree trunk diameter and ant counts in 
columns 2–11) were removed from analyses. This resulted in the 
use of data from 23 orchards for a total of 700 trees for counts of 
ants on pipes and on trunks (column 1 or all columns on a trunk 
combined). All statistical analyses presented here were done using R. 
4.4.1, and a significance level of 0.05 was used in all statistical tests.

To visualize the data, a dodge histogram (i.e., a side-by-side bar 
chart) was generated and used for side-by-side comparisons across 
the distributions of ant counts from the pipe only, column 1 only, 
and all columns combined (Fig. 1). For model development, the 
“corrplot” package in R was used to generate a correlation plot 
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between ant counts on the pipe, ant counts in Column 1, ant counts 
from all columns combined, and the diameter of the tree. The cor-
relation plot was used to determine if ant counts on the trunk (i.e., 
column 1 or all columns combined) were positively correlated with 
the total number of ants counted on the pipes, which was the focus 
of the modeling efforts detailed in the next section.

Because of potential measurement error due to the visual 
counting of ants, a categorical ant infestation severity index was 
generated, where the numbers of ants counted in 1 min on pipes, 
column 1 and all columns combined were categorized as none [i.e., 
zero ants counted], low [1–19 ants], moderate [20–99 ants], and 
high [≥100 ants]). The moderate (i.e., 20–99 ants) and high (i.e., 
≥100 ants) thresholds were selected to create balanced cohorts of 
trees with respect to ant counts on trunks. Stacked barcharts using 

the “ggplot2” package of R were generated to compare distributions 
of ‘infestation severity’ between different seasons (i.e., fall [October 
2019] vs. spring [April–June, 2020]), citrus types (i.e., oranges, 
grapefruit, lemons, or mixed unidentified varieties), and time of 
the day (i.e., morning vs. afternoon). These plots were generated 
for all ant counts on pipes in column 1 and all columns combined. 
Pearson’s Chi-square tests (the “stat” package in R) were performed 
to determine if ant infestation severity was associated with season, 
time of day, and citrus variety.

Data Analyses: Model Development
Model development was undertaken as a 2-part process. The first 
part was the determination of the relationship between the number 
of ants on tree trunks (ant counts in column 1 only, or all columns 

Fig. 1. A) Histogram of Linepithema humile counts that resulted from timed 1 min counts on irrigation pipes only, in column 1 on the tree trunk closest to the 
irrigation line, and for all ant columns combined. B) The proportion of L. humile in severity infestation category when counted for 1 min on irrigation pipes only, 
in column 1 on a tree trunk, and for all ant columns combined.
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combined) and the number of ants counted on irrigation pipes while 
controlling for other confounding variables such as tree diameter, 
season, time of day, and citrus variety. These relationships were 
investigated by developing regression models that accommodated 
important features of the data, such as the count response variable, 
which, in some instances, had high zero counts for ants, and sampled 
trees in orchards, which had a shared orchard effect. Second, clas-
sification models were developed for infestation severity (i.e., none 
[zero ants counted], low [1–19 ants], moderate [20–99 ants], and 
high [≥100 ants]) by using ant count data on pipes so that model 
results which predict ant densities on trunks can provide estimates of 
ants moving on trunks into trees which can then be used for making 
control decisions. An additional benefit to using classification models 
is that accurate prediction of the ant counts on a highly infested 
tree using a regression model may not be necessary since ant counts 
[≥100 per minute] are subject to high levels of human counting error, 
ant densities ≥100 are likely problematic and increasing estimation 
accuracy (e.g., 180 ants vs. 250 ants per minute) will not change the 
conclusion that damaging ant densities have been observed.

Development of Regression Models for Ant Count 
Data
Since the primary outcome of analyses is a count variable, 3 types 
of regression models, linear regression, Poisson regression, and neg-
ative binomial regression, were assessed for their abilities to model 
the relationship between ant counts on tree trunks and those on 
pipes while controlling for the effects of confounding variables (i.e., 
tree diameter, season, time of day, and citrus variety). The linear re-
gression model was used as a baseline model against which outputs 
from the Poisson and negative binomial regression models were 
compared. Due to the excessive number of zero ant counts in column 
1 and all ant columns combined on trunks, zero-inflated versions of 
the Poisson and negative binomial regression models were used for 
analyses, both of which were implemented using the “zeroinfl” func-
tion in the “pscl” package in R. Additionally, for each of the 3 basic 
types of models (i.e., linear, zero-inflated Poisson, and zero-inflated 
negative binomial), generalized linear mixed model extensions 
were also assessed (i.e., linear mixed, zero-inflated mixed Poisson, 
and zero-inflated mixed negative binomial). Mixed model analyses 
were conducted to account for intrinsic differences among sampled 
orchards by incorporating “orchard” as a random effect. This 
resulted in a total of 6 regression models being tested. The linear 
mixed model was fitted using the “lmer” function in the “lme4” 
package of R, while the zero-inflated Poisson mixed model and the 
zero-inflated negative binomial mixed model were fitted using the 
“mixed_model” function in the “GLMMadaptive” package of R.

For each of the 6 models, the following variables were considered 
as predictors: ant counts on the neighboring section of pipe in the 
same tree row where counts were also made, season, citrus variety, 
time of day counts were made, and the diameter of the trunk. Nearby 
counts of ants on adjacent sections of the monitored pipe were used 
to provide more information on ant presence and activity when the 
initial counts at the point of interest were zero. The reason for doing 
this was that ants may have been present but not at the time the 
visual count was done, and this “nearby” ant count approach used 
existing information on ant infestation levels on the pipe in the im-
mediate vicinity of the point of interest. As such, a dummy variable 
“ant present on pipe” was included as a covariate in all models. The 
dummy variable was coded as 1 if an ant count on nearby pipe was 
nonzero and 0 if there were no ants present at the nearby ant count 
location. The performance of the 6 models was compared based on 
their mean squared prediction error (MSPE), which was calculated 

using 5-fold cross-validation. Specifically, data were randomly di-
vided into 5 subgroups and used to train the models multiple times, 
with each training run using 4 subgroups (i.e., 80% of data) for 
training and the remaining subgroup (i.e., 20% of data) as valida-
tion data. The MSPE was then averaged over the 5 subgroups. To 
have every orchard represented equally in each subgroup, trees were 
randomized separately within each orchard when data splitting was 
performed. Finally, all candidate models were applied to the valida-
tion data collected in 2021 to assess robustness and generalizability.

Use of Machine Learning for the Development of 
Classification Models for Infestation Severity
To develop classification models for the ant infestation severity levels 
(i.e., none [0 ants counted in 1 min], low [1–19], moderate [20–99], 
and high [≥100]), the out-of-sample classification performance of 
2 most widely used machine learning methods, the multinomial lo-
gistic regression model and the multicategory support vector ma-
chine (SVM), were compared using both the training and test data 
sets.

Classification of ant infestation severity levels can be directly 
linked to ant management decision-making (i.e., treat or do not 
treat for ants). For example, a severe infestation level (i.e., ≥100 
ants counted in 1 min) can result in the decision “treat,” whereas 
a nonsevere infestation level (i.e., <100 ants) may result in a “do 
not treat” decision. Therefore, binary classifiers for nonsevere vs. 
severe infestation levels were constructed using both logistic regres-
sion and SVM.

Results

Visualization of Data
Distributions of the 3 ants count (pipes only, column one only, and 
all columns combined) were all right-skewed with ~67% of all 
observations being recorded in bin intervals <100 ants (Fig. 1A). 
The distribution plots of infestation severity (none, low, moderate, 
or high) for the 3 ant count variables (pipe only, column one only, 
and all columns combined) indicated a higher proportion of “high” 
infestations when all columns were combined (Fig. 1B).

The correlation between all numerical variables in the training 
data, including the 3 ant count variables and tree trunk diam-
eter, was examined (Fig. 2). Trunk diameter had a mean width 
of 26.32 cm ± 8.71cm (SE) (min. = 4.0 cm, max. = 50 cm, me-
dian = 27.55 cm), and data had a nonnormal distribution (Shapiro–
Walk’s Normality test P < 0.001). The correlation plot suggested 
that there were strong correlations between ant counts on pipes and 
those on trunks (column 1 and all columns combined). This obser-
vation substantiated the underlying rationale of this study to build 
statistical and machine learning models predicting the ant counts on 
trunks using counts of ants on irrigation pipes. There were weak neg-
ative correlations between trunk diameter and ant counts, but these 
correlations were confounded by other factors, such as citrus variety. 
The importance of potential confounding effects was explored in 
subsequent regression analyses.

Stacked bar charts and chi-square tests were used to check if ant 
infestation severity (i.e., none, low, moderate, or high) was inde-
pendent of other categorical variables such as season, citrus variety, 
and time of the day. Among the 700 trees retained in the training 
data set, 278 and 422 were surveyed in fall 2019 and spring 2020, 
respectively. Fig. 3A–C suggests there was a seasonal effect on ant 
infestation severity. A higher proportion of trees were classified as 
highly infested in spring when compared to fall. Chi-square tests con-
firmed that ant infestation severity levels were significantly affected 
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by season for both ants in column 1 (χ2 = 32.28; df = 3; P < 0.001), 
and all columns combined (χ2 = 33.66; df = 3; P < 0.001). However, 
infestation ant severity on pipes was not significantly affected by 
season (χ2 = 3.77; df = 3; P = 0.287).

There were 371 orange trees, 212 grapefruit trees, 30 lemon 
trees, and 87 citrus trees with mixed unidentified varieties in the 
training data. Fig. 3D–F suggests that ant infestation severity 
differed across citrus varieties. There was a higher proportion 
of highly infested trees in blocks of oranges and mixed varieties. 
In contrast, there was a very small proportion of highly infested 
trees in lemons. Chi-square tests confirmed significant associations 
between citrus variety and ants on irrigation pipes (χ2 = 72.23; 
df = 9; P < 0.001), number of ants in column 1 (χ2 = 63.34; df = 9; 
P < 0.001), and total ants in all columns combined (χ2 = 64.13; 
df = 9; P < 0.001).

Trees and pipes were not assessed for ant activity at a con-
sistent time period on each sampling event. A total of 415 trees were 
assessed for ant activity in the morning, and 285 were surveyed in 
the afternoon. Fig. 3G–I does not show an obvious difference be-
tween ant infestation severity levels in the morning when compared 
to the afternoon. However, chi-square test results showed a marginal 
significance for all columns combined (χ2 = 8.68; df = 3; P = 0.034) 
but not for ants on irrigation pipes (χ2 = 4.05; df = 3; P = 0.256) and 
ants in column 1 (χ2 = 7.37; df = 3; P = 0.061) with respect to time 
of day when counts were made.

Regression Models
Regression analyses focused on the relationship between ant counts 
on tree trunks (column 1 only or all columns combined) and the 
number of ants counted on irrigation pipes. Results for regression 
and classification analyses for column 1 ant counts were similar to 
results for all columns combined. Consequently, results for column 1 
ant counts are not considered further.

All 6 regression models, linear (mixed) regression, zero-inflated 
Poisson (mixed) regression, and zero-inflated negative binomial 
(mixed) regression models, indicated a strong positive relationship 
between ant counts on irrigation pipes and ant counts on tree trunks. 
To determine which model provided the best fit to the data, the 
MSPE for each of the 6 candidate models were compared.

For each candidate model, the MSPE for ant counts in all columns 
combined were compared using 5-fold cross-validation (Table 1). In 
addition to the overall MSPE, the MSPE for ant counts in each of 
the 4 ant infestation severity levels (i.e., none, low, moderate, and 
high) were also compared (Table 1). Based on the MSPEs, the zero-
inflated Poisson mixed regression model, which took into account 
the random orchard effect, had the best fit to the training data 
(Table 1). The zero-inflated Poisson mixed regression model had the 
smallest overall prediction error, the smallest prediction error in 2 
out of the 4 ant infestation severity levels (i.e., none and high) and 
the second-best performance in the remaining 2 levels (low and mod-
erate ant severity levels).

The estimated coefficients of the zero-inflated Poisson mixed re-
gression models using the full training data are presented in Table 
2. The zero-inflated Poisson mixed regression model consists of 2 
components: a binary logistic regression submodel (i.e., the zero-
inflation model) to handle the excessive zero counts in the data and 
a Poisson mixed regression submodel with a log link function to pre-
dict nonzero ant counts. Both season (fall vs spring) and time of the 
day (morning vs afternoon) were binary predictors. The effects of the 
binary predictors reported in Table 2 represent the contrasts between 
spring versus fall and afternoon versus morning, respectively. Citrus 
variety was a categorical variable with 4 levels. Using grapefruit as 
the baseline, the effects associated with citrus variety in Table 2 were 
contrasts between orange versus grapefruit, lemon versus grapefruit, 
and mixed varieties versus grapefruit, respectively.

The results of these analyses suggest that the presence of ants on 
pipes and the actual counts on the pipe were both positively associ-
ated with the probability of a nonzero ant count on the trunk (Table 
2). The likelihood of a nonzero ant count on the trunk in the spring 
and afternoon was greater when compared to ants being present in 
fall and morning, respectively (Table 2). There was also a higher like-
lihood of nonzero ant counts on the trunk of orange trees compared 
with other citrus varieties. Results of the Poisson mixed submodel 
also indicated that trunk diameter, ant counts on pipes, and the in-
dicator of nonzero ant counts on pipes were all positively associated 
with nonzero ant counts on trunks.

To determine if these findings could be generalized, the 6 trained 
models, using the training data, were tested to predict ant counts 
from test data obtained in the Spring of 2021. Table 3 shows the 
MSPE of the 6 models used for testing the data, including the 
overall MSPE as well as the MSPE in 2 subgroups: (i) those with 
<100 ants counted per minute in all columns combined and (ii) 
those with ≥100 ants counted per minute in all columns combined. 
For all ant columns on trunks combined, the linear regression 
model had the best overall prediction performance, while the zero-
inflated Poisson regression model was a close second in terms of 
performance (Table 3). The zero-inflated Poisson mixed regression 
model had the best prediction performance when ant counts on 
trunks were <100, an ant density category we are using here as 
being the most important for making control decisions (Table 3). 
The zero-inflated negative binomial regression model performed 
the best when ant counts on trunks were ≥100, a category that is 
subject to an increased likelihood of human counting error (Table 
3). From a pest control perspective, accurate prediction of ant 
counts on trunks becomes less important when ant densities are 

Fig. 2. Correlation plot between numerical variables in the training data, 
including ant counts on pipes, ant counts in column 1 only, ant counts in 
all columns combined, and the diameter of the tree trunks. The numbers in 
the plot are the correlation coefficients organized in the same order as in a 
correlation matrix. For example, −0.13 is the correlation coefficient between 
trunk diameter and column 1 ant counts.
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high (i.e., ≥100 ants counted per minute) because a less accurate 
prediction of the ant count will often lead to the same conclusion; 
ant densities are high and may need management. Therefore, these 
results from the test data support the conclusion that the zero-
inflated Poisson mixed regression model provided the best overall 
fit to the ant count data.

Classification Model Results from Machine Learning
The out-of-sample classification accuracy of the multinomial logistic 
regression model and the multicategory SVM were estimated to be 
59.6% and 60.2%, respectively, for all ant columns combined for 

infestation severity categories (i.e., none, low, moderate, or high) 
based on 5-fold cross-validation using the training data. Additionally, 
both methods achieved 68.0% accuracy in the testing data col-
lected in 2021. In comparison, a classifier can also be built using 
the predicted values of any of the regression models described in the 
previous section. The classifier based on the best regression model, 
the zero-inflated Poisson mixed model, had an accuracy of 47.6% 
based on a 5-fold cross-validation in the training data and 55.0% 
in the test data. In contrast to the regression models classifiers, the 
2 machine learning classifiers had better performance as they were 
designed specifically for classification tasks.

Fig. 3. Linepithema humile infestation severity graphs for season A–C), citrus variety D–F), and time of day ant counts were conducted G–I).
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Since the multinomial logistic regression model had comparable 
classification performance, and was more easily interpretable than 
the SVM, estimation results of the multinomial logistic regression 
using the full training data are presented in Table 4. The baseline 
infestation level used in the model was “none,” and the parameters 
listed in Table 4 were the coefficients of various predictors in the 
log odds ratio between each ant infestation severity category (i.e., 
low, moderate, and high) versus “none.” These results indicated that 
ants counted on pipes were highly informative for 2 reasons. First, 
knowing if there was a nonzero ant count on the irrigation pipe was 
highly predictive for the presence of ants on neighboring tree trunks. 
Second, visual ant counts on irrigation pipes were highly significant 
when classifying ant infestations as moderate or high on trunks. 
Additionally, both season and time of day were significant factors, 
and the results suggested that the infestation level tended to be 
higher in the afternoons in spring as opposed to mornings in fall, re-
spectively. The diameter of the trunk was only significant for highly 
infested trees (≥100 ants counted in 1 min), and trees with larger 
trunk diameters had a greater tendency to be highly infested with 

ants. Finally, the results indicate that there is a greater likelihood of 
moderate to high infestation levels for orange trees when compared 
to other citrus varieties. There were no significant differences be-
tween grapefruit, lemon, and mixed citrus varieties. These results 
were consistent with findings from the regression analysis.

A contingency table between the true and predicted infestation 
levels based on the training data is presented in Table 5. Among the 4 
ant infestation severity categories, the low infestation category (1–19 
ants) was the most challenging for the logistic regression to correctly 
classify, as it only accounted for ~14% of all sampled trees in the 
training data. Of the total of 101 trees that had a low infestation 
severity rating (i.e., 1–19 ants counted per minute on trunks), the 
multinomial logistic regression misclassified 33, 38, and 8 trees to be 
in the infestation categories of none, moderate (20–99 ants) and high 
(>100 ants) infestation, respectively, and only 22 trees were correctly 
classified as having a low infestation of ants. The lower number of 
training samples in this relatively narrow interval likely resulted in 
the misclassification of these trees into neighboring, albeit incorrect 
classification categories. On the other hand, multinomial logistic re-
gression did a good job classifying the highly infested trees. Out of 
the 231 trees that were highly infested, 170 trees (i.e., 73.6%) were 
correctly classified in this category.

To link classification results to pest control decisions (i.e., “treat” 
versus “do not treat”), a binary logistic regression and SVM were 
applied to classify ant counts as either nonsevere infestations (i.e., 
<100 ants counted per minute on trunks) versus severe infestation 
(i.e., ≥100 ants counted per minute on trunks). Based on 5-fold 

Table 1. The MSPE comparison among 6 different regression models based on 5-fold cross-validation for numbers of ants counted visually 
over a 1-min period for all ant columns on trunks combined. Bold numbers are the smallest values in each row indicating the strongest 
model fits the data

Ant infestation bin cate-
gory (and severity rating)

Linear re-
gression

Linear mixed 
regression

Zero-inflated 
Poisson regression

Zero-inflated mixed 
Poisson regression

Zero-inflated negative 
binomial regression

Zero-inflated mixed neg-
ative binomial regression

0 2,772.86 1,456.69 2,112.18 650.81 1,933.89 958.90
1–19 (low) 3,844.89 3,037.55 4,044.81 2,446.69 3,718.54 2,038.67
20–99 (moderate) 8,574.06 6,734.37 5,384.08 4,299.43 8,618.51 2,678.52
≥100 (high) 58,043.65 46,602.20 50,987.86 40,463.17 60,547.53 79,520.00
Overall 23,402.17 18,520.45 19,806.76 15,279.48 23,920.10 28,325.23

Table 2. Model estimations of the fitted zero-inflated Poisson mixed 
regression model, which is a mixture of 2 submodels—a logistic 
regression model (zero-inflation submodel) on the probability of a 
nonzero ant count on a tree trunk and a Poisson mixed regression 
submodel to predict the nonzero ant count on the tree trunk. The 
reported estimates are the regression coefficients of the predictors 
in the 2 submodels, respectively

Predictors Coefficients

Poisson regression sub-model
Ants counted on pipes 0.0045a

Trunk diameter 0.0324a

Season: Spring 0.9405
Oranges 0.5650
Lemons 0.0792
Mixed citrus varieties 0.5552
Time of day −0.0633a 
Ants present on pipe 0.0559a

Zero-inflation sub-model
Ant counts on pipes 0.0062a

Trunk diameter 0.0112
Season: Spring 0.5153a

Oranges 0.5586a

Lemons 0.5550
Mixed citrus varieties −0.0494
Time of day 0.5444a

Ants present on pipe 1.4751a

Model evaluation
Amount of deviance explained 65%

a P ≤ 0.001

Table 3. The MSPE for the 6 regression models was evaluated using 
test data obtained in Spring 2021. Bold numbers are the smallest 
values in each column indicating the strongest model fits the data

Model

All ant columns 
on trunks 
combined

Ant 
counts on 

trunks < 100

Ant 
counts on 

trunks ≥ 100

Linear regression model 6,546.62 2,912.58 14,268.95
Linear mixed regression 

model
8,719.14 4,194.98 18,332.97

Zero-inflated Poisson 
regression model

6,551.86 2,706.57 14,723.09

Zero-inflated Poisson 
mixed regression 
model

9,731.03 1,716.66 26,761.54

Zero-inflated negative 
binomial regression 
model

6,554.79 3,620.16 12,790.88

Zero-inflated negative 
binomial mixed re-
gression model

7,506.78 1,838.04 19,552.85
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cross-validation using the training data, the out-of-sample classifi-
cation accuracy for ants counted in all columns on trunks combined 
and infestation severity was estimated to be 80.0% for the logistic 
regression model and 80.4% for SVM. The 2 binary classifiers 
achieved 84.7% and 87.4% accuracy for the infestation severity cat-
egory for ants counted in all columns combined when using the test 
data collected in 2021. As the 2 binary classifier models had compa-
rable classification, the estimated coefficients for the binary logistic 
regression model are presented in Table 6. These coefficients can be 
directly interpreted as log odds ratios. The conclusions drawn from 
the results presented in Table 6 were consistent with those obtained 
from the multinomial logistic regression analyses: visual timed 1 min 
ant counts on irrigation pipes, tree diameter, season (spring, fall), 
citrus variety (oranges, lemons, grapefruit, and mixed varieties) and 
time of the day (morning, afternoon) are all significantly associated 
with ant infestations categorized as “severe” (i.e., ≥100 ants counted 
per minute) for ants counts in all columns on trunks combined.

Discussion

Results of regression analyses indicated strong statistical support 
for a robust association between the numbers of ants counted visu-
ally for 1 min on irrigation pipes and the numbers of ants counted 

visually in all columns on tree trunks for 1 min in commercial citrus 
orchards in southern California. This relationship holds strongly 
when controlling for confounding factors such as the diameter of 
the trunk (i.e., tree size), season (spring and fall), time of the day 
(morning and afternoon), and citrus variety (oranges, lemons, 
grapefruit, and mixed varieties). Among the 6 regression models 
evaluated, the zero-inflated Poisson mixed model, which accounted 
for the orchard as a random effect, provided the best fit to data based 
on MSPE estimates.

To link the results of these regression analyses directly to ant 
management decision-making and to avoid overfitting models to 
high ant counts (i.e., ≥100 ants counted per minute), which are sub-
ject to a higher human counting error, classification models were 
used to assess ant infestation severity levels (none [0 ants counted in 
1 min], low [1–19 ants], moderate [20–99 ants], or high [≥100 ants]). 
The multinomial logistic model, which had a classification accuracy 
of 68%, performed better than fitted regression models (i.e., 55% 
classification accuracy for the best regression model), provided ad-
ditional insight into how different factors (e.g., citrus variety, trunk 
diameter) affected ant counts in the different ant infestation severity 
categories. However, ant counts on trees that fall into the low infes-
tation bin category (i.e., 1–19 ants counted per minute) accounted 
for only 14% of the data, and this resulted in models misclassifying 
this category and placing low infestation measurements into neigh-
boring bins (i.e., none or moderate severity categories). To circum-
vent this misclassification issue, especially at low ant densities where 
ant control decision-making is most critical, the binary logistic clas-
sifier was used.

The binary classifier directly predicts whether pest control ac-
tion is needed based on whether ant counts fall into one of 2 in-
festation categories. The 2 infestation categories were classified as 
either nonsevere or severe. A nonsevere categorization, for example, 
would require no ant control treatments when <99 ants are counted 
in 1 min. Alternatively, ant control could be initiated, for example, 
when ant count densities are categorized as severe and ≥100 ants 
are counted per minute. The binary logistic classifier model achieved 
very high classification accuracy, 85%, in evaluation runs using field-
collected testing data.

Our analyses focused initially on ant counts in column 1, the 
ant column on the trunk closest to the irrigation pipe ants used to 
move across the orchard floor. However, additional analyses indi-
cated that total ant counts for all ant columns combined on trunks 
provided similar findings to analyses using count data for all ant 

Table 4. Estimated parameters from the multinomial logistic re-
gression model where the dependent feature is all columns 
combined infestation severity (none [0 ants counted in 1 min], 
low [1–19 ants counted], moderate [20–99 ants counted], and high 
[≥100 ants counted])

Predictors
Coefficients 

(low)
Coefficients 
(moderate)

Coefficients 
(high)

Ant counts on pipe −0.0023 0.0222c 0.0358c

Trunk diameter 0.0147 0.0202 0.0516b

Season: spring 0.9168b 1.4518c 1.9107c

Oranges 0.4395 0.8546a 1.8567c

Lemons 0.7413 0.5725 1.0161
Mixed citrus 

varieties
0.1815 −0.7204 0.2720

Time of the day 0.8444a 1.0277c 1.7829c

Ants present on 
pipes

2.4015c 2.7621c 2.3699c

aP ≤ 0.05;
bP ≤ 0.01;
cP ≤ 0.001.

Table 5. The contingency table of the predicted infestation levels 
using the multinomial logistic regression (rows) versus the true 
infestation levels (columns) for all columns combined for ant in-
festation severity in the training data

Ant infestation severity category

Predicted severity category Nonea Lowa Moderatea Higha

Nonea 151 33 24 11
Lowa 11 22 8 1
Moderatea 20 38 92 49
Higha 5 8 57 170
Total number of trees 187 101 181 231

aWhere none = zero ants counted, low = 1–19 ants counted, 
moderate = 20–99 ants counted, and high was ≥100 ants counted 
visually in 1 min across all ant columns combined on citrus trunks.

Table 6. Estimated coefficients of the logistic regression model 
for the binary classification of the total number of ants counted 
in all columns on trunks combined. The binary infestation severity 
categories used were nonsevere (0–99 ants counted per minute) 
vs. severe (≥100 ants counted per minute)

Predictors Coefficients

Ant counts on pipe 0.0183c

Trunk diameter 0.0303a

Season; spring 0.7983b

Oranges 1.2455c

Lemons 0.4505
Mixed citrus varieties 0.5644
Time of day 0.9586c

Ants present on pipe 0.7834b

aP ≤ 0.05;
bP ≤ 0.01;
cP ≤ 0.001.
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columns combined. What is of most importance for ant manage-
ment, and for analyses provided here, is the total number of ants 
counted in all columns (i.e., total ant load), not just the total number 
of ants in column 1, moving up trunks into citrus trees to tend he-
mipteran pests.

The practical applications of these findings can be used to esti-
mate counts of ants on pipes made by IR sensors used to automate 
ant counts. The binary classifier nonsevere (i.e., <99 ants counted) vs. 
severe (≥100 ants counted per minute) predicted ant infestation se-
verity level on trunks with 85% accuracy. These findings now enable 
statistical models to be programmed into software used to count and 
analyze IR sensor ant count data from irrigation pipes. These data, 
which can be uploaded and processed by cloud-based software, re-
turn density estimates of ants on pipes, which, using results from 
these analyses, can now be used to estimate the numbers of ants 
trunks of citrus trees. A binary classification output (85% accuracy), 
such as nonsevere (i.e., do not treat) vs. severe (i.e., treat), is possible. 
This simple and easy-to-understand output can assist with making 
decisions on whether or not management of Argentine ant is needed 
in commercial citrus orchards.

Additional research is needed if automated ant counts using IR 
sensors are to be realized. At this time, IR sensors have demonstrated 
proof of principle; they are able to make hourly ant counts and use 
orchard-based gateways and local cellular networks to transmit 
daily count data from citrus orchards to the cloud, where data can 
be accessed via an app. Cloud-based data for ant counts on irrigation 
pipes can be visualized and subsequently downloaded and analyzed 
(Hoddle et al. 2022a, b). However, the minimum number of IR 
sensors attached to irrigation pipes that would be needed per acre, 
for example, to estimate ant densities with an acceptable level of 
accuracy (e.g., ≥85%), is not known. Furthermore, the distribution 
pattern (e.g., random, zig-zag, or checkerboard) of IR sensors on ir-
rigation lines across rows of trees in a 1 acre block, for example, is 
also unknown. These 2 additional factors, minimum sensor number 
per acre and placement patterns, can be resolved with additional 
fieldwork and appropriate statistical analyses and data modeling.

The ultimate use of IR sensors will be to automate all aspects of L. 
humile management in citrus orchards, from monitoring to deploy-
ment of controls. GPS-tagged IR sensors, deployed at appropriate per 
acre densities and placement patterns, would relay to cloud-based 
analytic software hourly counts of ants on irrigation pipes. This pipe 
count data, using analyses presented here, would be converted to 
estimates of ant densities foraging in trees. “Treat” or “do not treat” 
recommendations based on grower customizable action thresholds 
(e.g., ≥100 ants moving on trunks into tree canopies) would be made 
using count data specific to orchard sectors being monitored. Ant 
control treatments, such as biodegradable hydrogel beads (McCalla 
et al. 2020, Milosavljević et al. 2024), would be precision delivered 
using GPS data from sensors to guide land drones to areas of orchards 
needing ant control. To maximize control efficacy and bead longevity, 
hydrogels could be delivered at night when L. humile is foraging 
(Kistner et al. 2017), temperatures are lower, humidity is higher, and 
orchard workers are absent, thereby circumventing access restrictions 
due to reentry intervals. The Internet of Things is making these types 
of sophisticated, accurate, and reduced labor technologies possible, 
and L. humile control in citrus orchards is ideally suited to automated 
management as described here.
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